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Abstract—A lifting-linearization method based on the Koop-
man operator and Dual Faceted Linearization is applied to
the control of a robotic excavator. In excavation, a bucket
interacts with the surrounding soil in a highly nonlinear and
complex manner. Here, we propose to represent the nonlinear
bucket-soil dynamics with a set of linear state equations in
a higher-dimensional space. The space of independent state
variables is augmented by adding variables associated with
nonlinear elements involved in the bucket-soil dynamics. These
include nonlinear resistive forces and moment acting on the
bucket from the soil, and the effective inertia of the bucket
that varies as the soil is captured into the bucket. Variables
associated with these nonlinear resistive and inertia elements are
treated as additional state variables, and their time evolution is
represented as another set of linear differential equations. The
lifted linear dynamic model is then applied to Model Predictive
Contouring Control, where a cost functional is minimized as
a convex optimization problem thanks to the linear dynamics
in the lifted space. The lifted linear model is tuned based
on a data-driven method by using a soil dynamics simulator.
Simulation experiments verify the effectiveness of the proposed
lifting linearization compared to its counterpart.

Index Terms—autonomous excavation, construction and min-
ing robots, lifting linearization, Koopman operator, model
predictive contouring control, dual faceted linearization

I. INTRODUCTION

In many earth-moving tasks such as trenching, foundation
digging and bench forming, it is necessary to use an excavator
to move soil so as to achieve a desired final shape of the
site soil. There have been a multitude of attempts from
both industry and academia to develop autonomous soil
forming robots. Simple autonomous systems have already
been commercially available for final grading, in which the
very final layer of soil is removed to create a precise soil
shape. This yields a precise final soil shape but does not
deal with the most challenging issue of precision digging:
at deeper digging depths, the excavator experiences large,
nonlinear forces that arise from the dynamic bucket-soil
interactions. This is often cited as one of the most prominent
challenges [1] and various approaches have been proposed
to tackle this.

Both model-free and model-based approaches have been
employed. Singh [2] used the Fundamental Earthmoving
Equation (FEE) and a learned model to constrain the action
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space from which an optimal trajectory is planned. More
recently, Yang et al. [3] have used an optimization approach
with a simple analytical soil model to determine time varying
minimum torque trajectories.

Limitations in available models have led to efforts to
reduce the necessity for a model altogether. One common
approach has been to use interaction control to regulate the
forces between bucket and soil. An early effort employed
by Bernold [4] was to use impedance control so as to
control the relationship between the bucket trajectory error
and the exerted force. In this vein, Richardson-Little and
Damaren [5] utilized a rheological model in combination with
a compliance controller. An alternate approach proposed by
Jud et al. [6] is to use a desired force trajectory to maintain
a desirable interaction with the soil.

While model free control methods can react to chang-
ing soil forces, they are limited in achieving precise path
tracking. When precise tracking of a path is required, it is
necessary to predict interaction forces that vary dynamically
depending on nonlinear soil properties as well as on the
changing soil profile. One must predict and compensate
for the complex nonlinear forces. Model Predictive Control
(MPC), a framework for realizing prediction and compensa-
tion, meets this goal. The challenge, however, is to construct
a dynamic model to predict the highly nonlinear and complex
bucket-soil interaction.

For the use of MPC, we seek a bucket-soil interaction
model that meets several key requirements. Specifically, the
model must:

« Capture the rich nonlinear bucket-soil dynamics;
« Be trainable from sampled trajectory data;

« Exploit sensing, including visual mapping;

« Be usable for real-time optimization; and

o Account for the effect of soil shape.

To fulfil these requirements, we aim to exploit an emergent
modeling methodology, termed lifting linearization. This
modeling methodology, underpinned by the theory of the
Koopman operator [7] and grounded in physical modeling
theory and Dual Faceted Linearization (DFL) [8], can capture
complex nonlinear dynamics with a set of linear differential
equations in a higher-dimensional space. The linear repre-
sentation of the nonlinear dynamics can remove or alleviate
the fundamental difficulty in the use of MPC for real-time
control. The cost functional of MPC can be minimized as a
convex optimization problem subject to linear dynamics and
linear constraints.



In the following, Koopman operator and DFL will be
briefly summarized for readability, and the nonlinear dynam-
ics of bucket-soil interaction will be lifted and represented
with higher-dimensional linear equations. MPC will then be
applied to the lifted linear system. The path tracking problem
will be formulated as a contouring control form of MPC
[9], where the bucket can be controlled along a task defined
spatial path while satisfying constraints relating to the task
and actuation limits. Simulation experiments evaluate the
modeling accuracy and demonstrate the contouring control
performance.

II. LIFTING LINEARIZATION

Lifting linearization is rooted in the seminal work by
Koopman [7]. His operator theory underpins more recent
development of lifting linearization. The Koopman Operator,
IC is a linear infinite dimensional operator which evolves
observations g(x) of the state x € R" of an autonomous
nonlinear dynamical system such that:

Z38(x) = Kg(x) n

or
g(Xkr1) = Kag(xx) (2)

for the continuous- and discrete-time systems with no control,
respectively.

A. Approximating the Koopman Operator for systems with
Control

Being infinite-dimensional and for purely autonomous sys-
tems means that the Koopman operator has limited utility in
the context of practical nonlinear control systems. To remedy
this, a finite-dimensional approximation of the Koopman
operator may be obtained as well as an approximation of
the closest linear effect of the exogenous inputs such that:

k1 = AG +Buy 3)
where uw € R™ is the input, and & =
[xp g1(xx) ... gn,(xi)]" € R"™ is the set of chosen
observation functions including the state itself for

convenience. The discrete transition matrices with compatible
dimensions A and B can then be regressed directly from Np
data:

G* ==Y’ (4)

where G* =[AB], E=[§; & ... &y,] is the measured state
and observables data matrix, ¥ = [yo y1 --- yn,—1] is the
regressor data matrix with y; = [T uJ]" and Y is the Moore-
Penrose pseudo-inverse of Y.

This outline is only the briefest introduction to the concept
of identifying linear representations of nonlinear control
systems based on the Koopman Operator, but for a complete
treatment the reader is referred to [10] as well as several
examples of this idea being applied to robotic systems [11].

B. Observables for Lifting Linearization

One factor not mentioned thus far is what functions are
to be used as the observables. This is a critical factor in
applying lifting linearization, as a good selection of ob-
servables can not only improve the modeling accuracy but
also do so with a lower order model. To this end, different
approaches have been proposed, including identifying the
best observables from large libraries of nonlinear observables
[12], using generic observables such as radial basis functions
[13], harnessing the kernel trick to efficiently represent the
nonlinear observables [14], using an optimization framework
to determine Koopman eigenfunctions [15], and even using
a learning approach to learn the nonlinear dictionary terms
[16]. A point that has been noted by multiple authors is that
choosing observables that are either related to the form of
the nonlinearity in the differential equation if known [17]
or observables that are otherwise physically motivated [13]
often leads to superior results.

In this vein, Dual-Faceted Linearization (DFL) [8], [18]
is a method of lifting linearization which exploits principles
from physical modeling theory, in particular, the structure
of a lumped parameter model, to determine the observables.
DFL determines a special set of measurements used as lifting
variables (termed “auxiliary variables”) in a systematic man-
ner based on the connectivity of physical elements depicted
in a bond graph [19] or by inspecting the equations of
motion of the system. By construction, the auxiliary variables
all relate to physical quantities in the original nonlinear
system and thus can often be directly measured. Thus, even
without knowledge of the system’s nonlinear constitutive
relations one can create the structure of the lifted linear
system, and allow for regressing the linear model using
the physical measurements of the states and the specified
auxiliary variables.

C. Lifting Linearization based on DFL

In this section, we outline the essentials to generating DFL
models. An in-depth treatment on this subject can be found
in [8] but an overview is presented here for clarity.

The essence of the DFL method is defining the special
lifting variables, termed auxiliary variables 11 € R, as the
output of all nonlinear elements involved in the nonlinear
dynamical system. This representation is motivated by the
natural linearity arising from the connectivity of elements in
physical systems. Connections of elements, be they linear
or nonlinear, are governed by linear relations. For example,
Kirchoff’s current law says that all currents going in and out
of a point sum to zero. Similarly, in the mechanical domain,
Newton’s second law dictates that all the forces acting on a
body (including the inertial force) sum to zero.

Using this definition results in the system being modeled
by the following set of linear differential equations:

X _ Ac,x Ac,n X Bc7x
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where A.x € R™" A, € R and B.x € R™™ are
exact parameter matrices determined by the system structure,
whereas H.x € R"*", H, , € R%*" and H., € R"*"™ are
approximate and to be determined from data.

The exactness of Acx, A.p and B, x, which is proven in
[8], is facilitated by the definition of the auxiliary variables
which are defined as the outputs of all the nonlinear elements
in a lumped-parameter system. A similar idea is presented
in [20] for Lagrangian systems where the position variables
have an exact differential equation.

The estimated matrices Hex, He 5, and He, can then be
regressed from data using a least squares estimate:

o . D 2
H=argmin || — 1, ] ©®

where 1),, are measured data of the auxiliary variable time
derivatives and H = [H x He,p He o).

This methodology has been compared with more typical
Koopman operator modeling and it was reported that choos-
ing the observables based on DFL yielded performance com-
parable to a Koopman model utilizing a substantially larger
vector of observables [21]. This makes DFL advantageous in
applications where having a compact and interpretable model
is necessary.

In a control setting we may be interested in utilizing a
discrete representation of the system. This can be derived
through using an ordinary system discretization: A = ¢
and B=A_!'(A —1I)B. from the continuous DFL model or
directly regressing the system matrices exactly as in (4)
where & = [x{n]]".

In this work, we will use the DFL method for selecting
observable variables and constructing the lifting linearization.
This is because it offers some specific features and benefits:

o The model is composed of physically meaningful vari-
ables. As such, the model is accountable and provides
the control designer with physical intuitions.

o The lifting variables can be measured with sensors,
providing richer data than independent state variables
alone. It opens up an avenue for exploiting sensor
technology for improved modeling and control.

« Choosing the observables is structured, reducing trial-
and-error efforts for selecting lifting variables.

III. EXCAVATION MODEL WITH DFL

In this section, we present the modeling of the bucket-
soil system using DFL. In the spirit of simplicity and to
elucidate the capability of the lifted linearization to capture
the soil dynamics, we purely model and control a bucket
while decoupling the boom-arm structure and dynamics. This
equates to controlling a robot in operational space [22].
Although challenging due to high levels of internal friction
in excavation machinery, there have been several successful
endeavours in controlling excavators in task space [6], [23],
[24].

In addition, we consider the bucket moving purely in the
vertical plane. This is a practical simplification since the
forces necessary to move a bucket sideways generally mean
these motions are either not possible or practical.

A. Bucket State Equations

Given the high level assumptions, the bucket is modeled
to translate and rotate in the vertical plane (see Fig 1). As
the soil ahead of the bucket fails through shearing, it exerts
the forces er, and er; on the bucket. These nonlinear forces
also generate a moment ey ¢ on the bucket. Physically, these
forces and moment are generated through highly nonlinear
bucket-soil interactions, which are nonlinear resistive ele-
ments. According to the DFL method, ery, er., ery are
auxiliary variables, since they are the outputs of nonlinear
resistive elements.

These forces and moments in conjunction with the con-
trol inputs, which are the actuator forces and torque, u =
[y u; u¢]T , represent the total forces and torque acting on
the bucket. From Newton’s Second Law, the total forces and
moment are equal to the time rate of change to the momenta
and angular momentum of the bucket and the soil that moves
together with the bucket.

Px = —erx+ux

p;=—er;+u; @)

Py = —erg t iy
where p., p., py are, respectively, momenta and angular
momentum of the combined bucket and soil that move
together. According to the physical modeling theory and the
DFL modeling, the output of an inertial element is velocity.
As the inertia of the soil captured by the bucket is not
constant, the functional relationship between momenta and
velocities of the combined bucket and soil is nonlinear. This
implies that the velocities are auxiliary variables, according
to the DFL formalism. Let x and z be the coordinates of
the tip of the bucket and ¢ the orientation of the bucket, as
shown in Fig. 1. Their time derivatives are:

X =V
= (8)
b=

Equations (7) and (8) represent the state equations of the
bucket dynamics, where the independent state variables are
x=[xz¢ pxp; p¢]T. Note that the state equations are linear
equations of the auxiliary variables vy, v,, @ and er, er_,
ety as well as inputs. These correspond to the upper half of
the lifted state equations (5).

B. Dynamics of auxiliary variables

In lifting linearization, nonlinear elements, such as the
resistive element associated to the bucket-soil interactions
and the interial elements associated to the combined bucket-
soil system, are linearized not merely by taking an algebraic
approximation but by recasting the nonlinear dynamics in a
higher dimensional space and approximating it as a higher-
order linear differential equation. Auxiliary variables er,,
et er,¢ for example, are treated as state variables possessing
linear state equations, as in the lower half of equation
(5). As for the auxiliary variables, v,, v,, @, associated to
the nonlinear inertia of the combined bucket and soil, the



nonlinearity comes from the varying mass and moment of
inertia.

Vy = px/ m,

o =ps/I,
Note that the bucket inertias, mp,cke; and Ipycre;, are con-
stant and that soil inertia, my,; and I,; are variables that
dynamically vary as the soil is collected into the bucket. We
treat these variables as auxiliary variables and represent their
dynamics as a linear differential equation of the motion of the
bucket interacting with soil. As shown in Fig. 1, the transition
of my,; and I,; depends on a) bucket position, b) bucket
velocity, ¢) soil surface profile, d) the amount and distribution
of soil captured by the bucket and e) soil properties. Variables
a) are involved in the bucket state x, b) is in the auxiliary
variables 7, d) is represented with the current soil mass and
moment of inertia my,; and I;,; which are now part of the
auxiliary variables.

V= Dz / m where m = mpycker + Myoil

©))

where I = Ipycker + Lsoil -

n= [Vx Ve, @ e x er 7 eT,¢ Myoil Isoil]T € RS (10)

Parameters of soil properties are assumed constant. The
remaining variables are related to the soil surface profile c).

Vsoil Msoil Lsoil

(ezjx ) ezz)

Fig. 1. Variables used as states and auxiliary variables in the planar
excavation model.

C. Inclusion of Soil Shape

We represent the soil profile as a function of x : s = s(x).
See Fig. 2. The soil profile s(x) influences the bucket dynam-
ics. Variation in the profile results in changes in the resistive
forces and moments, as well as in the soil captured by the
bucket. Therefore, we treat the soil profile as an exogenous
input or disturbance, and assume that the soil profile input
drives the system linearly.

Eri1 = A& + By + Bysy (11)

where s; = [s(x) ' (x¢) |7 € R%. Numerical analysis reveals
that the soil height s and its gradient s’ have significant
influences upon the system dynamics, while the influence
of its higher-order spatial derivatives are negligible. The
auxiliary variable dynamics can be determined in the same

ways as (4) where now G* = [AB B, and yx = [ u] s]]T.

IV. CONTROL

Based on the lifted dynamic model, this section aims to
construct a controller for tracking a geometric path.

Initial soil shape During excavation

(> z)

00—
I s(p)

N s'(xy)

Fig. 2. The soil shape s(x) is illustrated on AGX Dynamics simulation
environment. sy is determined by evaluating what the soil height and gradient
of the initial soil shape was at the current bucket tip location xy.

A. Model Predictive Contouring Control

In an excavation task, the high level objective is to have
the bucket pass through a certain path relative to the surface
of the soil so as to shape the soil in a specific manner. In
this sense, the control objective is not to have the bucket
follow a time trajectory of positions but rather to traverse the
geometric and spatial path as closely as possible. Thus, the
predictive control methodology used to determine the input u,
is based on the model predictive contouring control (MPCC)
algorithm presented by Lam et al. [9].

€'k 01) Desired

path
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Fig. 3. The cost of the MPCC is composed of two error, & the contouring
error and é‘,f the lag error between the bucket tip and a point on the path
parametrized by 6.

The crux of the methodology is to augment the system
dynamics with a virtual state 8, which represents the arc-
length of a given path. As shown in Fig. 3, virtual state 6
dictates the desired position on the path (x;(60),z,(0)) for
each trajectory timestep. Instead of calculating the shortest
distance between path and bucket tip, which is computation-
ally expensive, the path error is represented based on two
orthogonal components, the contouring and lag errors, as
shown in Fig. 3.

& (&, 0) = sinB(6r) (xx —xa(6k))

—c0s B(6k) (2 — 24 (k) (12
84 (&, Bk) = —cos B (6;) (xk —x4(6x)) (13)
—sin (0 (zx —za(6k))
where,
_ 8Zd/99
B(6x) = arctan <8xd/89 99k> (14)



and the dynamics of the path variable 6 are controlled by
the virtual input vy:

6kJrl = 6k+ Vg, Uk € [Ovvmax]; Umax > 0 (15)

In the MPCC formulation, these contouring and lag errors
are evaluated over a given time horizon, say N time-steps.
While the dynamics of the system have been expressed lin-
early in the lifted space, the transformation of the contouring
and lag errors to the state variables is nonlinear, as shown
in egs. (12) and (13). Furthermore, the soil profile s(x;) is a
nonlinear function of xy.

For both the errors, £ (&, 6) and & (&, 6), and the
soil surface shape s, a linearization is performed about
thf: Optimizgd trajectory at the previous time-steps: =
{Si s Siinoaat - and O ={67, ..., 67 v ;,}. This
results in the linearized contouring and lag error:

Ak
Hk =

v e . P A Skt1
g]?iiyk = 86(§;+,’,ka O i) + Vgc(gg+i,k7 O ix) {91;1

£ (16)
sl _al(gx g gl(Ex . 0 kel
Ein =& (S Oin) + VE (S i Oyin) {61;1]

and linearized soil profile:

@ [S/(fiw—m)} i {Sll/(’?ﬂri—l,k)
LT s (Feri1x) " (Risi1 k)

i=1,2,...,N

} (Xkrio1 —fz+;_1,k)

a7
With these linearized errors and dynamics, the following
convex QP can be defined to solve the MPCC problem:

min Jr

Ut i—15 Vk4i—1

Eitis Ot

i=12,...N

st Gipi = A&y +Bugyig +BsSiio1 4
Okvi = Okyio1 + Okt

Vgyi1 € [0, Upnax]
Or1i € [65,0]

Ug4i—1 S [umimumax]v

§k+i S [gmina gmax]a

where the cost Jj at time k, is:

N éa,c T éa,c
k+ik k+ik
k+ik

(18)

i=1 k-+ik
T
n [Auk+1:| R |:Auk+1] )
Avgy AV

where Q € R?>*? defines the contouring and lag cost, g € R
rewards progression along the path, R € R*** defines the cost
of changes in the input and N is the prediction horizon.

One of the key benefits of using an optimization framework
to control our system is that we can set constraints on the
control inputs and states. Here for the majority of the states
we set the limits so that the states fall within the 10-th and
90-th percentile of the training data used to determine the
model. This is especially important since the linear model of

the nonlinear system will be most valid in the region of the
state space where it was trained.

Additionally we can set state constraints which may aid
in the excavation task. Firstly, we constrain the horizontal
velocity to be positive: 0 < v, ;. The vertical position of the
bucket tip is constrained to be below the surface of the soil
according to s(x) and the previous optimized trajectory such
that z; < (85, 4)-

Furthermore, DFL allows us to constrain the auxiliary
variables. Unlike ordinary Koopman modeling where the
observables do not possess any specific physical interpreta-
tion, in DFL the auxiliary variables (lifting variables) are
physically meaningful and thus the system designer may
seek to constrain them. In excavation this may be applied
in several places. Firstly, the forces on the bucket can be
directly constrained, for example, so as to reduce wear and
damage to the bucket. Moreover, since the soil mass, m,;, is
part of the lifted space, one can constrain it to within desired
amounts so as to collect a certain amount of soil.

V. NUMERICAL SYSTEM SIMULATION

This section aims to implement and test the proposed
method in a simulation environment based on the AGX
dynamics' physics simulator and the specialized module
for the simulation of machine-soil interactions: agxTerrain
[25]. This simulation environment allows for testing our
proposed method on a system which embodies many of the
characteristic nonlinearities present in an excavation system.
The MPCC QP is solved using the OSQP solver? [26].

A. Digging environment

The soil shape is randomized by adding and subtracting
multiple 2-D Gaussians (with randomly sampled height and
standard deviation) from a height field with a randomized
gradient. This yields soil surfaces with greatly varying shapes
(See Fig. 2 for a sample site shape). The soil properties
are implemented using the preset calibrated “gravel” material
model.

B. Data Collection

In most examples in the lifting linearization literature,
open loop random signals are applied to the system inputs
to collect training data. However, this is not feasible in this
application. Controlling the bucket without feedback readily
results in either becoming deeply lodged in the soil and
stalling, or leaving the soil altogether. Instead, we implement
a simple PID control scheme whereby the translational d.o.f
are speed controlled, and the angle of the bucket is position
controlled:

uy = PID(vy —U (Vi min, Vemax)) +U (=W, wy)

u; = PID(v; — U (Vo min, Vomax)) +U(—wz, w7)

up = PID(¢ — U (Pmin, Dmax)) +U(—wgp,wy)
The setpoints are drawn from a uniform distribution (U (a,b)
between a and b) and additionally random noise, again from

a uniform distribution, is added. This injection of noise is
necessary so as to be able to correctly identify the system

19)
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dynamics despite utilizing feedback to collect the data [27].
The control and data sampling frequency is 30Hz.

C. Measurement of lifted state variables

Modeling and control based on DFL lifting linearization
requires the access to all the states and auxiliary variables.
This section discusses how these variables can be obtained
in both simulation environment and experimental setting.
The bucket positions (x, z, ¢) and velocities (vy, v;, @) are
accessible in both simulation and experiment. The interactive
bucket-soil forces ery, er, and ery can be extracted from
the internal variables in the simulation environment described
above. The inertial variables, my,; and I, too, can be
determined by counting the number and distribution of the
grains of soil within the bucket.

In an experimental setting, additional instrumentation will
be necessary to obtain these variables in real time. The
bucket-soil interaction forces can be estimated based on
piston pressure measurements [28], or be directly measured
by instrumenting the bucket [29]. The inertial variables, m,;
and Iy,;, can be estimated with use of a vision system.
Assuming a constant soil density py,;, the soil mass is given
by Meii = PsoitVsoit Where Vyoi = [dV is the volume of all the
soil grains in the bucket. Similarly I; = Psoir [ r*dV where
r is the distance from the tip to all the points within the
bucket. These soil volume and distribution can be determined
from images of the bucket and the surrounding soil. In
recent years, camera systems used to monitor the bucket of
excavation machines, mounted on the boom and arm, have
been proposed and this technology can be used to estimate
those quantities [30]. Given a known pose of the bucket and a
depth camera attached properly, one can estimate the volume
of soil within the bucket as well as evaluate the integral
necessary for the inertia.

The soil surface shape function s(x) is determined by
matching a cubic spline to the initial soil surface and using
that smooth functional approximation to evaluate the height,
s and derivatives s’ and s”.

VI. RESULTS AND DISCUSSION

This section presents the simulation experiment results
obtained from the simulation environment providing all the
state and auxiliary variables.

A. Model Evaluation

First, we evaluate the model in terms of prediction ac-
curacy compared to the ground truth agxTerrain simula-
tion values. The Mean Squared Error (MSE) of the bucket
position and orientation over an extended time horizon is
shown in Fig. 4 in logarithmic scale. Each data-point on
this plot is based on 30,000 test samples. From the data, 10
different data sets were created and the model was trained
for each data set. Furthermore, each model was tested using
10 validation trajectories and forecasting forward from 300
randomly selected initial locations. The plots in Fig. 4 show
the average of these test results. Prediction error is small in
general. However, it increases as the time horizon increases.

For MPC application, this lifted linear model can be used as
a valid model over a finite time horizon.

The proposed DFL-based lifted linear model was com-
pared to a Koopman-based model, where a set of polynomial
functions of state variables were used as observables. We can
find that the DFL-based model outperforms the Koopman-
based method, although the order of the DFL model (14th
order) is much lower than that of the Koopman (27th order).

=———e— Dual Faceted Linearization

————— Koopman w/ X

DFL + Koopman w/ x and

MSEz (m?)

MSE¢$ (rad?)

10° 10' 10°
Time horizon, (steps)

Fig. 4. The MSE error for each of the three position variables using
DFL and Koopman. The black line is for the DFL model presented in this
paper, blue is the conventional Koopman-operator method with polynomial
observables of state variables, and orange is the Koopman-operator model
utilizing both the independent states and auxiliary variables with polynomial
observables. The DFL model (black) is 14th order, the Koopman with
2nd-order polynomial observables of state x (blue) is 27th order, and the
combined Koopman + DFL with 2nd-order polynomial observables of x and
n (orange) is 119th order.

Note that in DFL measured auxiliary variables are used.
Even for a considerably smaller number of total observables,
the DFL model generally outperforms the Koopman lifted
model that utilizes only the state variables (black versus blue
data). This highlights the importance of judicious choice of
measurements with which to lift the dynamics. Physically
meaningful measurements provide critical information for
regressing higher accuracy models.

In Fig. 4, the DFL model was also compared to the
Koopman-based model where both state and auxiliary vari-
ables were used for constructing observables. The resultant
lifted system order of this Koopman model is 119th order.
Despite the high order, the Koopman-model does not exhibit
significant improvement in prediction accuracy compared to
the DFL model.

In constructing these models, it was found that a model
with fewer variables is more robust to training data-set
selection and regression. We found that further increasing
the polynomial order of the Koopman models incurred a



significant increase of validation test error. This was observed
to be caused by the regressed model often being dynamically
unstable. This is an issue which has been observed by prior
works [31], [32]. The observables determined through DFL
appear to be more robust to obtaining a model from data than
higher order models when using a pure L2 regression. The
effect of training dataset size shown in Fig. 5 revealed that
approximately 2,000 sample pairs were sufficient to learn the
model to the level where no more data significantly improve
performance.

10 10’ 10
Training Dataset Size

Fig. 5. Prediction MSE at a time horizon of 20 steps as a function of training
dataset size. For all the variables it is observed that the model prediction
improves with increased dataset size but saturates at approximately 2000-
3000 sample pairs.

B. Trajectory Control Evaluation

We also evaluated the performance of the proposed model
for contouring control of the bucket system along desired
paths. The MPCC control was implemented for the DFL-
based lifted linear model and tested in the agxTerrain simu-
lation environment. Fig. 6 shows the simulation experiment
results of the tip trajectories for several soil profiles. The
bucket successfully follows the path, despite the initial tran-
sient error. Once the bucket tip arrived near the desired path,
the MPCC controller allowed the bucket to track the desired
path although the soil profile varied. The path tracking
accuracy was improved as the model was trained with a larger
training dataset, as shown in Fig. 7. With a high contouring
error penalty, the mean path error decreased with increasing
training dataset size. The performance appears to saturate at
approximately the same dataset size as in the case of the
model prediction performance.

Changing the relative magnitude of the weight matrices
in the MPCC controller allows us to make the trade-off
between speed progression along the path and precision of
the digging task. As illustrated in Fig. 8, modulating gg alters
the resulting trajectory and time to completion, for identical
soil conditions and desired paths.

It is interesting to note that the proposed MPCC controller
can also be utilized to incrementally find a multi-path exca-
vation trajectory for digging a deep trench. See Fig. 9. As
the profile becomes deep, it is impossible to excavate it in a
single scooping cycle due to input or soil force constraints.
Instead, the optimization subject to these constraints leads to
incremental multi-cycle excavation. Using the same path and
same control parameters the soil profile is excavated through
consecutive cycles.

0.0 | el L NS g
—0.51 a / SN N Bucket tip position and angle
’ Desired path
Soil surface
-4 -3 -2 -1 0

x (m)

Fig. 6. Several sample results using the MPCC-DFL controller on soil with
various shapes.
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Mean Path Error (m)
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Fig. 7. The mean path error utilizing the proposed controller, with low
g such that a close following of the path is sought is plotted for varying
dataset size used to train the DFL model. The path error is defined as the
minimum distance between a (x,z) location and the path.
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Fig. 8. Changing the path progression weight gg changes the balance of
progressing rapidly versus accurately through the soil. For lower values of
qe the path is followed more precisely but at a slower speed. For this trial
the time to complete the excavation cycle was 4.2s for g9 =4 (green) and
7.0s for gg =1 (blue).

VII. CONCLUSION AND FURTHER WORK

In this paper we have demonstrated the feasibility of using
lifting linearization to model the dynamic interactions be-
tween a bucket and the soil it is excavating. The learned DFL
model was compact, yet capable of capturing a significant
portion of the nonlinear dynamics. Using this model we
found that we were able to control a bucket to follow desired
paths, while respecting state and input constraints, using a
model predictive contouring controller with quadratic cost
and linear constraints.

There are a few important issues to be addressed further.
First, the proposed method must be integrated with a com-



-4 -3 -2 -1 0
x (m)
Fig. 9. Excavation of a desired soil shape is achieved through consecutive
digging cycles utilizing the same path and control parameters. The black
lines indicate the initial and final soil shape, the orange the desired shape,
and the progressively darker blue lines the successive digging trajectories.

plete excavator controller. This paper focused on the bucket-
soil dynamics and omitted the dynamics of the hydraulically-
powered excavator dynamics. MPC control of hydraulic
excavators has been addressed in multiple prior works [33],
[34]. It is necessary to integrate the bucket-soil dynamic
control with those prior works focusing on the excavator
control with simple soil dynamics.

Another critical aspect which must be addressed is dealing
with varying or changing soil types. Currently we rely on
a static dataset which is trained on a single soil type. By
leveraging techniques in active learning for lifted lineariza-
tion [35] or selectively sampling from a large pre-existing
dataset we may be able to expand the applicability to varying
soil properties encountered by the excavator.
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