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Momentum-Aware Trajectory Optimization and
Control for Agile Quadrupedal Locomotion

Ziyi Zhou
Nathan Boyd

Abstract—In this letter, we present a versatile hierarchical offline
planning algorithm, along with an online control pipeline for agile
quadrupedal locomotion. Our offline planner alternates between
optimizing centroidal dynamics for a reduced-order model and
whole-body trajectory optimization, with the aim of achieving
dynamics consensus. Our novel momentum-inertia-aware
centroidal optimization, which uses an equimomental ellipsoid
parameterization, is able to generate highly acrobatic motions
via “inertia shaping”. Our whole-body optimization approach
significantly improves upon the quality of standard DDP-based
approaches by iteratively exploiting feedback from the centroidal
level. For online control, we have developed a novel convex model
predictive control scheme through a linear transformation of the
full centroidal dynamics. Our controller can efficiently optimize for
both contact forces and joint accelerations in single optimization,
enabling more straightforward tracking for momentum-rich
motions compared to existing quadrupedal MPC controllers.
We demonstrate the capability and generality of our trajectory
planner on four different dynamic maneuvers. We then present
one hardware experiment on the MIT Mini Cheetah platform to
demonstrate the performance of the entire planning and control
pipeline on a twisting jump maneuver.

Index Terms—Whole-body motion planning and control, legged
robots, optimization and optimal control.

1. INTRODUCTION

ITH the recent rapid increase in capabilities of legged
W robots, the demand for more sophisticated approaches
to trajectory optimization and online control has motivated
a plethora of optimization-based motion planning strategies.
Broadly speaking, these can be divided into methods that solve
a single trajectory optimization (TO) problem, and those that
decompose the overall problem into a set of decoupled subprob-
lems. Single-optimization methods can be further subdivided
into those that use reduced order models and those that optimize
over the full-order dynamics.
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Fig. 1. Dynamic maneuvers that require high-fidelity control of angular mo-
mentum, such as “parkour” (top) and cantering (bottom).

Reduced-order models, such as the spring loaded inverted
pendulum (SLIP) model, single rigid body model (SRBM), cen-
troidal dynamics model, etc., have been widely adopted. High
speed and robust running are demonstrated in [1]-[3], using
SRBM and user defined heuristics; however, their framework
can only generate cyclic and short-horizon gaits. To generate
more complex motions, Winkler et al. proposed TOWR [4],
which is capable of directly optimizing over contact sequences
and timings, through its phase-based parameterization. Incorpo-
rating joint information to reason about the centroidal inertia is
non-trivial with these models, which limits their ability to gen-
erate angular-momentum-rich motions using limb movements
such as the maneuvers shown in Fig. 1. TOWR+ [5] and the
lumped-leg SRBM [6] attempted to augment the standard SRBM
by approximating the time-varying inertia tensor; however, nei-
ther use the full capabilities of the joint motions. Earlier works,
such as [7] and [8] derived analytical models, known as equimo-
mental ellipsoids, to parameterize centroidal inertia; however,
discovering physically meaningful inertia trajectories solely
through the ellipsoid parameterization has proven difficult.

It is also possible to use full-order dynamic models in single-
optimization approaches. One option is to use full dynamics with
either a hybrid [9]-[11] or contact-implicit [12]-[15] formula-
tion. Alternatively, centroidal dynamics are utilized in [16]—[18]
with full kinematics through the centroidal momentum matrix
(CMM) [19]. Notably, the differential dynamic programming
(DDP)-based indirect approaches, such as FDDP [10] and con-
strained SLQ [18], have shown impressive results in terms of
computational efficiency and constraint handling. Additional
efforts have been made in [20]-[22] to enforce general equality
and inequality constraints; however, a both efficient and general-
purpose solver, capable of handling nonlinear full-order models,
does not yet exist, especially for highly agile acrobatic motions.
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By decomposing trajectory optimization into simpler sub-
problems, it is possible to leverage the benefits of both reduced
and full-order models. One strategy is through a hierarchical
optimization. In [23], [24], a centroidal optimization solves for
momentum and contact force trajectories, then inverse kine-
matics is applied to generate joint motions. Similarly, Nguyen
et al. [25] proposed a pipeline, first solving an SRBM-based
centroidal optimization, then using its solution as the tracking
objective for a full dynamics-based whole-body optimization.
However, as pointed out by [26], additional constraints project-
ing whole-body information to the centroidal level are required
to ensure feasible solutions, which are often computationally
expensive and difficult to define, especially when involving
angular momentum (AM).

An alternative strategy is to iteratively solve the two
optimizations in an alternating fashion until the convergence
of a common set of dynamics variables is achieved (dynamics
consensus) [26]-[29]. To date, existing frameworks compromise
in either of the two optimizations: only full kinematics models
(instead of dynamics ones) are considered in [27], [28] during
its whole-body optimization, while the centroidal optimizations
proposed in [26], [29] did not explicitly optimize over foot
placements. To our knowledge, no alternating optimization
frameworks currently exist that both optimize over contact
and use inertia-aware reduced order models at the centroidal
level, while formulating constrained full dynamics DDP at the
whole-body level.

In this letter, we introduce a new alternating centroidal and
whole-body optimization framework. Compared to existing al-
ternating frameworks, we improve the centroidal optimization
by incorporating the equimomental ellipsoid parameterization
of centroidal inertia [8] with SRBM, and by leveraging the
inertia feedback from whole-body optimization to enable a
wide range of motions previously unachievable with standard
centroidal optimization (e.g., “inertia shaping” [8] that aims to
reach a goal pose through precise control of centroidal inertia).
In addition, our whole-body optimization is designed to only
incorporate minimal constraints to track nominal trajectories
from the centroidal level in its objective; therefore, efficient
methods such as DDP can be used. We ensure solution feasibility,
in terms of constraint satisfaction, by handling most task-space
constraints at the centroidal level via direct collocation, and
improve solution accuracy at the whole-body level through
dynamics consensus.

In order to implement our method on real robots, we have
developed a novel discrete-time finite-horizon model predictive
tracking controller (MPC). Many predictive tracking controllers
exist in the legged locomotion control literature; however, to
achieve reasonable control frequency, it is common to use
reduced order models within the problem formulation [1], [3].
Although efficient and capable, these controllers are primarily
designed for stabilizing fast periodic gaits, and often require
expertly designed cost heuristics to generate desired motion [3].
These controllers also do not explicitly solve for joint variables,
which makes precisely tracking angular-momentum-rich joint
motions impossible without introducing additional layers
of whole-body kinematics/dynamics optimization [2], [6].
Our implementation of MPC aims to address these short
comings. Specifically, the SRBM is augmented with centroidal
momentum terms, and the joint variables are introduced
through the CMM. With some mild assumptions, the proposed
model can be linearized, which not only allows for an efficient
QP formulation of the MPC similar to [1], but also grants
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us direct control over the joint variables for momentum
tracking.

Our core contributions are highlighted as follows:

® We introduce an alternating centroidal, whole-body opti-
mization scheme targeting a wide range of motions. Inertia
shaping tasks can be performed due to our inertia-aware
SRBM based centroidal optimization. We also demonstrate
improvement in solution feasibility compared to the stan-
dard whole-body optimization, via dynamics consensus.

® We formulate a novel convex model predictive controller
by modifying the original [1] with a linear transformation
of the standard full centroidal dynamics. Our MPC is
capable of tracking momentum-rich motions by jointly op-
timizing over contact forces and joint accelerations, while
still retaining model simplicity for fast online computation.

® We show that the proposed trajectory optimization pipeline
generates high-fidelity contact and momentum-rich agile
maneuvers, and demonstrate the capability of our con-
troller through numerical simulations and one experiment
performing a 180-degree twisting jump.

II. SYSTEM OVERVIEW

We propose a hierarchical planning and control framework
in this letter, as shown in Fig. 2. The inputs to our framework
consist of the desired motions, specified by the user (e.g. trot,
canter, twisting jump, etc.), along with the associated contact
sequence, total motion duration, initial and final poses, and the
terrain map. The offline trajectory planner solves centroidal
and whole-body optimizations in an alternating fashion, until
dynamics consensus is achieved. The resulting centroidal mo-
mentum, base motion, and joint trajectories are modified and
tracked online using the proposed full centroidal MPC, which
re-computes foot contact forces and joint accelerations based on
feedback from an state estimator. The contact forces and joint
accelerations are then sent to an inverse dynamics block for
computing the feedforward joint torques, which are combined
with the feedback term and passed to the PD.

A. System Modeling

Consider the standard floating base model of a legged robot,
with an unactuated 6-DoF base and a set of n-DoF fully-actuated
limbs. The equations of motion is given by:

M(q)V + C(q,v) = m T+ J F. (1)

~—
B

where q = [qn" qJT]T eR™, v=[v] qu]T € R
are the generalized coordinates and velocities partitioned in
base and joint variables. The subscripts b and j are base
and joint related quantities, respectively. Base coordinates

qp = [pr GbT]T € RS are partitioned as base position

and orientation. Base velocities vy, = [[’)g wT]T € RS are
partitioned as base linear and angular velocities in the world
frame. M(q) is the joint space mass matrix. C(q, v) captures
the nonlinear effects. 7 € R™ denotes joint torques. J.(q)
is the stacked contact Jacobian and F' is the stacked contact
reaction force vector. Without loss of generality, an implicit
assumption v = ¢ is made for the subsequent development of
centroidal and whole-body optimization. This model will be
referred to as the full dynamics of the robot.
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Fig. 2.

Overall planning and control framework that consists of offline trajectory generation (red) and online execution (blue). The input to offline block is

specifically decided by the desired motion. Full-body, centroidal, and contact information are passed from offline generation to online control.
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Fig. 3. The block diagram that demonstrates the proposed alternating cen-
troidal, whole-body optimization.

Assuming full control authority over the joint variables qj, (1)
can be converted into Newton-Euler equations of motion about
the robot’s center-of-mass (CoM) [30]:

. ne—1
il ny—1
1 Zj:fO (pj—r) xf
where it is assumed that the robot has ny feet with point

contacts. h = [kT lT] " are the linear and angular centroidal
momentum. p; and r are the individual contact and CoM position
in the world frame. fj are the individual foot contact forces.
This reduced-order model will be referred to as the centroidal
dynamics throughout this letter.

III. OFFLINE TRAJECTORY GENERATION

We present an alternating centroidal, whole-body trajectory
optimization scheme in this section. Detailed formulations for
individual components are provided in Sections III-A and ITI-B.
The alternating update scheme and the importance of dynamics
consensus are discussed in Section III-C.

A. Centroidal Trajectory Optimization

Formulation 1 details the TO problem to be solved at the
centroidal level, which utilizes the centroidal dynamics in
(2). We transcribe the optimization problem into a nonlinear
program through direct collocation. Total duration 7" of the
desired motion is equally divided into /N knot points.

The centroidal decision set e, consists of CoM position
r, CoM linear velocity r, angular excursion with Euler angle
parameterization @ and its rate 8, centroidal angular momentum
1and its rate 1, j* foot’s position p; and contact force fj. e and
~ are inertia variables characterizing the principle semi-axes
and orientation of the equimomental ellipsoid [8] (illustrated in
Fig. 3). Ellipsoid orientation is again parameterized using Euler

angles. All components of ¢, belongs to R?. The optimization
objective contains a user-defined cost L., (-) which specifies
various heuristics, such as penalizing the velocity of foot po-
sition to discourage violent movements. In addition, a tracking
cost Ween(@een, ﬁflf) ) that minimizes the tracking error to the
whole-body reference trajectories (solution to Formulation 2 and
the variable qbgf}gd is defined in Formulation 1) are included.
Benefits of this tracking cost will be discussed in Section III-C.

Weon = v — e alBeen + I — KoL [Bgen

= Ll + Lo = Terp e

nffl

f
+ 3 (Ips = Piftnalidg )
7=0

Symmetric positive definite weighting matrices for tracking the

reference CoM position rrekf)d, linear momentum (LM) kfﬁ;d,

w

angular momentum (AM) lﬁfgd, and foot positions pf‘ibd are
denoted as Q;°", Qp", Qi*", and Qge“, respectively. Inertia
tracking is achieved through minimizing the Qf°*-weighted
Frobenius norm of the difference between the inertia tensors
of the equimomental ellipsoid i, and that of the reference
composite rigid body (CRB) I, both expressed in the world
frame. Constraints in centroidal optimization include:

Dynamic constraint: The discrete-time non-linear centroidal
dynamics are used. Eq. (3a) explicitly includes the relationship
between centroidal angular momentum, ellipsoid inertia tensor,
and CoM angular velocity. The inertia tensor Ly, in the world
frame is constructed from the rotational transformation of the
inertia tensor in the base frame, Ionip = R(v)sLenip(€)R(Y) "
with R(+y) being the rotation transformation between the el-
lipsoid base frame and world frame. Inertia tensor in the base
frame is defined as gLy, = diag([P, I¥Y, 1727 with I** =
tm(e? +e*?), I¥Y = tm(e*? + e*?), and I** = Lm(e*? +
ev?).

Ellipsoid mass constraint: To ensure the equimomental ellip-
soid has the same mass as the robot, ellipsoid semi-axes, e, must
be constrained. Ellipsoid mass m = %ﬂexey e”p with p being
the average mass density. p can be obtained from the reference
CRB inertia tensor I, for each time step [19]. When the inertia
reference is unavailable, p is kept constant using the initial robot
configuration.

Integration constraint: By adopting trapezoidal integration
scheme, the quantities r, 1, @ and | are approximated as piecewise
linear functions as shown in (3¢)—(3f). The final knot points are
set to be free but subject to final conditions if needed. At denotes
one time step.

Frictional constraint: Friction cone constraint and unilateral
constraint on the contact forces are both modeled in (3g)—(31).
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Formulation 1: Centroidal trajectory optimization.

Formulation 2: Whole-body trajectory optimization.

min l:cen((bcen) + \Pcen(¢cen> ¢$1£d)

cen

(Variables)  ¢eenld] = [¢[i] T, 2[i] 7, 004", 0[], 1[i] T,
16", psla) " 80 eld] L) ]
N—_——
inertia vectors
Bibalil = [Thpaldl " Fab a7 Belald)
p;',e\fvbd [i]T’ Icrb [i]T}T

Vi=0,...,N—-1,j=0,....,nfp — 1

(Dynamics) st. | 1] | = Z]- (p;[i] —rfi]) x £5[7] | (3a)
1[2] Iellip (e[z], 7[7’])“) [’L]
(Bllipsoid)  m = 3re(ilelile“lilpli] @ab)
(Integration) r[i+ 1] —r[i] = %(r[z + 1]+ #[i]) (o)
i + 1) — i) = S0 (5l + 1] + ¥l (3d)
0li + 1] — 0[i] = %(9[z‘+1]+9[i}) (e)
i+ 1] —1[i] = %(i[z' + 1]+ ifi]) GhH
(Frictional) f;[q] - n(P;uM) >0, Vi €y Gg)
£ [i] € F(p,m, p]z'y[i])v VieC; (3h)
;[ =0, Vi ¢ C; (31)
(Terrain) p;Yli+ 1] —p; i =0,VieC; @)
pj [i] = hterrain (p;ym)v Vi e Cj Gk)
(Kinematics) p;[i] € R;(r[i],0]i]) @b

Specifically, friction cones are approximated as friction pyra-
mids F to remove nonlinearity. The contact normal forces are
non-negative, and always equal to zero during the swing phase.

Terrain constraint: For each foot during the stance phase, (3j)
defines the no-slip condition. While (3k) guarantees that foot
placement remains on the terrain surface, as specified by the
height map hierrain (see [4] for details).

Kinematic constraint: Foot position range-of-motion con-
straints, (31), are defined, to heuristically bound each foot’s
movement within a fixed sized box k.

B. Whole-Body Trajectory Optimization

For legged systems, leveraging full-body dynamics, such
as the angular momentum of limbs, is critical for generating
dynamic motions. The whole-body optimization is formulated
in a hybrid dynamics fashion. The objective is to track quantities
computed from centroidal optimization. Formulation 2 details
this whole-body optimization.

The decision set ¢ g consists of the generalized position g
and velocity q, joint torques 7 and contact forces F'.. Similar to
the centroidal optimization, the objective includes a user-defined
heuristic cost L4, such as torque minimization, and a tracking
cost Uophd(Pwbd, @°L) to minimize the deviation from the
centroidal reference trajectories (solution to Formulation 1).

Vb = [[X(q) = récnlgpea + [A(Q)d — DG

min Ly (Pwba) + Pwbd(Puwbd, L)

'wbd
(Variables) Gwbali] = [q[i]T7 Q[i]T, T[i]T, F. [i]T]T
drenli] = [eben[i] " hien i) T, pitenli] 1T
Vi=01,....N—1;j=0,...np—1
. M(q)§ + C(q,q) = BT + J [ F.
Dynamics S.t. . . ¢
Dy ) {M(q)qfr ~M(q)gq =JA
(4a)
(Contact) {icgjicoq =0 (4b)
(Limits) qe J, TteT (40)
(Frictioncone) A, € K (4d)
7I,f

f
37 (1% (@) — pifteuliByns)
=0

where the quadratic weighting matrices for tracking the ref-
erence CoM position r'f | centroidal momentum hi¢f . and
foot positions p°l,, are denoted as Q"9 Qi"¢, and Q},
respectively. A.(-) and X;(-) map the generalized position to
CoM position and the jth end-effector (EE)’s position. The cen-
troidal momentum matrix, A (q) € R*(6+7)  referring to (6),
provides a linear relationship between the centoridal momentum
h and generalized velocities ¢ [19]. In (4a), the hybrid dynamics
constraint includes either the continuous full dynamics (first
row), or the impact dynamics (second row), where A stands
for the contact impulse, and ¢~ and ¢ are instantaneous joint
velocities before and after the impact. Following (4a), a contact
constraint (4b) is added for the stance or impact foot assuming
a rigid contact, while a zero force is applied to the non-contact
foot. Joint limit, torque limit, and friction cone are also modeled
as shown in (4¢)—(4d).

Considering the computational efficiency, we then choose the
DDP-based method implemented in [10] to solve the whole-
body optimization. Briefly, depending on the continuous (im-
pact) phase, the dynamics and contact constraints are coupled
to derive the joint acceleration ¢ (joint velocity after impact
&™) and contact forces F. (contact impulse A) simultaneously,
so that the forward pass for DDP can be performed. The joint
limit, torque limit and friction cone constraints are encoded as
quadratic barrier functions inside the objective function.

C. Alternating CEN-WBD Optimization

We perform an alternating update scheme based on the afore-
mentioned centroidal optimization (CEN) and whole-body op-
timization (WBD) problems. Fig. 3 demonstrates the proposed
updating sequence, where the CEN optimization is first solved
and then followed by the WBD optimization. Note that no
hand-crafted reference trajectory is required and a constant Mol
is employed for the first CEN optimization. The WBD or CEN
reference trajectories are updated accordingly after each CEN
or WBD optimization solve. Z.,;, maps the generalized coordi-
nates to the CRB inertia tensor I,,. Similar to [26]-[29], this
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process, referred to as one alternating iteration, is iterated until
the dynamics consensus between CEN and WBD is achieved.
Moreover, our proposed consensus quantities include not only
CoM position, centroidal momentum, and EE locations, but
also the equimomental inertia tensors (Icyi, in CEN and I, in
WBD). This is achieved by enabling the variables, constraints,
and costs that involve ellipsoid inertia vectors e and v in CEN,
which allows generating robot behaviors that cannot be captured
by only using centroidal dynamics such as zero-gravity reorien-
tation (see Remark 1). For the other motions unnecessary to
parameterize centroidal inertia, we disable the ellipsoid related
terms in CEN and directly use I, from WBD. This hybrid
formulation reduces the complexity of directly solving Formu-
lation 1 and saves the solve time. More results will be shown in
Section V.

Remark 1: We introduce two sets of orientation representa-
tions in CEN: angular excursion 8 and equimomental ellipsoid
orientation v. The former one can be seen as the angular analog
of CoM and only changed under external torques [7], while
the latter one can be affected given any limb movements even
without external forces [8].

IV. FULL CENTROIDAL CONVEX MPC

Starting with the derivation of the linearized full centroidal
dynamics, this section presents a QP-based MPC problem. We
then discuss the benefits of our controller and provides the
comparison with the original convex-MPC [1] in Section IV-C.

A. Full Centroidal Dynamics

Standard full centroidal dynamics as shown in (2) has been
widely used in the legged systems literature [16], [17]. We
propose a linearized variant of this model, and demonstrate
its benefits within the context of MPC. To make this linear
model unambiguous, the transformation T4, between the time
derivative of generalized base coordinates and the generalized
base velocities is explicitly stated here:

. 1 033
qb{om W(eb)} v )

N ——
Ty (a)

where W (60),) represents the velocity transform for different
choices of orientation parameterization, see [31].

Using the CMM, A(q) € R®*(6+7) {0 relate centroidal
momentum to generalized velocities:

h=[Ay(q) Aj(q)] [Vb] 6)
—_— G
A(a)

Rearranging (6) for v, and using (5), one has

@ = | To(@AL (@) ~Tu(@)A; (@A (@) [

An(a)

where Avh(q) and :A:J(q) will be referred to as trans-
formed CMMs. Defining an augmented state x =

[hT,qu,q]-T,qu,gT]T, and combining (2) and (7), the
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augmented state dynamics can be written as:
h 0 00 O mB] h
an = = b
bl A 0 0 Af@ 0
& 0o 00 I o ||
@ 0O 00 O o ||™
8l 1l o 00 o o |L®
H(a)
i I I 0]
(Po — 1) (Pn;-1—1) O fo
I 0 0 0 :
0 0 0Ol £, 1
0 0 I a
. 0 0 0| ——
u
G(p.r)
(®)

We refer to this system as the full centroidal dynamics. The

~operator transforms the cross-product operation into a matrix

multiplication. Note that, H only depends on the joint configura-
tion g, and G only depends on contact and CoM locations, p and
r. Each control vector u consists of the foot contact forces f; and
the joint accelerations a € R™J. Similar to [1], we assume that
the robot follows the desired reference trajectory generated from
our offline optimization, then foot placements, CoM location,
and transformed CMMs from offline trajectory can be directly
substituted into (8).

% = H(qrcf)x + G(pmf, rrcf)u (9)

which simplifies to a linear time-varying (LTV) system in the
augmented state x.

B. Full Centroidal Convex MPC

The discretized version of continuous LTV dynamics (9) is
given as:

x[i 4+ 1] = H[i]x[i] + G[i]uli] (10)

where H and G are matrix exponential of H and G from (9).
Similar to the original convex-MPC [1], to reduce the size of
the proposed MPC problem, state variables can be eliminated
from the decision set by adopting a condensed dynamics formu-
lation [32]. At time step k, assuming a MPC prediction horizon
of n € N* and aggregating (10) fromi =ktoi =k +n—1
produces:

X = HAx[k] + GAT (11)
with aggregated states, X = [x[k + 1] x[k +2]7 ---x[k +

n]T]". Weighting matrix HA is given as

k+1 _ k+n—1 _ T

—— ko
IR Ul UL | i O
i=k i=k i=k

and actuation matrix G4 is given as Unnumbered equation
shown at the bottom of next page. The decision variables for this
dense QP formulation are aggregated control vectors U over the
n-step prediction horizon, W = [u[k]"ulk +1]"---ulk +n —
1]7]". It is straightforward to define the QP objective as a sum
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of tracking cost and a regularization term:
A A f
Ty = [HAX[K] + GAT - X q, + [ TR,

where X°f = [href’ qref’, q}efT, quefT]T are given by the de-
sired reference, generated through offline optimization, for the
entire horizon ¢ = k + 1 to ¢ = k + n. Friction pyramid con-
straint, joint acceleration constraint, and normal force constraint
are also added into the QP formulation to ensure physically
feasible contact forces and joint accelerations. The computed
contact forces and joint accelerations from the proposed MPC-
QP problem are fed into the inverse dynamics (ID) controller to
generate joint torques as shown in Fig. 2.

C. Comparison With the Original Convex-MPC

Compared to the original Convex-MPC [1], our formula-
tion added the ability to directly track centroidal momentum
quantities. This offers a tighter integration with our offline
trajectory generation, and fully utilizes the generated reference
linear and angular momentum trajectories to faithfully execute
momentum-rich motions, such as twisting jump and zero-gravity
body reorientation (see Section V). Unlike the original convex-
MPC controller [1], where cost heuristics must be designed to
generate such motions [3], our controller allows momentum
to be designed as part of the desired reference trajectory, and
directly tracked online. In addition, leveraging CMMs in the
system dynamics naturally allows the inclusion of joint variables
as decision variables, thus eliminating the need for any additional
kinematics optimizations commonly found in such control hier-
archies [2], [6]. Another benefit when compared to the original is
that our formulation does not assume zero roll direction rotation
of the robot. On the downside, the ability to track momentum
and joint trajectories directly increases the QP problem size,
and our formulation is indeed slower to compute compared
to the original, for the same length prediction horizon. Direct
comparison against the original MPC is provided in Section V-B
for a 180° twisting jump maneuver.

The crucial assumption in our formulation is that the robot
must follow the reference trajectory generated by offline plan-
ning for the approximation in (9) to hold true. This assumption
is reasonable because when the robot deviates from the offline
reference, our MPC controller will generate new contact forces
and joint accelerations, at a fast rate (see Section V-B), to bring
the robot state back to the reference.

V. RESULTS

We perform various experiments both in simulation and hard-
ware using the alternating CEN-WBD and MPC framework.
Both the Unitree A1 and MIT Mini Cheetah [33] were used
to verify the proposed methods on quadrupedal platforms. In
simulation, dynamic maneuvers such as cantering, “parkour,”
and zero gravity reorientation are shown to have stable and
converging solutions. In addition, hardware tests were conducted
with the Mini Cheetah to verify both the offline optimization and
online MPC in the real world.
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TABLE I
SOLVE TIMES AND RESIDUALS FOR TRAJECTORY GENERATION

Desired Solve times Solve times Residuals for Residuals for

motions CEN,WBD  CEN,WBD CoM.EE,AM CoM,EE,AM
(s) (Hierarchical)  (m, kg - mz/s) (Hierarchical)
Cantering 36.8, 4.9 14.0, 3.4 1.3,69,9.9 1.4,83,12.7
“Parkour” 213.0, 10.3 538,74 52,113,429 53.8,49.7, 197.2
Inertia shaping 35.9, 48.1 4.1,458 0,129, 0 0, 290.0, 0
Twisting jump 453,53 25,24 0.7, 1.5, 6.2 4.15,22.1, 47.1
0.200
m=0.175{ = WBD only
So1s0] — A\(errfatmg
N == Terrain
£ 0.125
; 0.100
o
2.0.075
H 0.050
i. 0.025
0.000 ————tl e - ———
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time [s] Time [s]
Fig.4. EEin z-axis for FL and RR legs with a flat terrain (grey), generated by

using only WBD optimization (red) and our alternating one (green).

A. Trajectory Generation and Simulation

Example dynamic maneuvers generated using our offline al-
ternating CEN-WBD optimization are presented here. The direct
transcription in CEN optimization is solved by IPOPT [34],
and uses a universal 0.01 s timestep. For the inertia shaping
example, the number of decision variables per knot point in CEN
is 48, while the other examples use 42 since the inertia vector is
turned off. The WBD optimization is solved by crocoddyl [10],
and applies the same amount of knot points as the CEN. The
number of decision variables in WBD remains 61 (49 for states
and 12 for control inputs) for all examples. Aggregated solve
times and residuals of both our alternating update scheme and
a hierarchical one, i.e., running only one alternating iteration,
are documented in Table I. We run 3 alternating iterations for
all examples. The accumulated solve times for CEN and WBD
optimizations are reported separately. We use the residuals to
measure the consensus errors for CoM position (m), EE position
(m), and AM (kg - m?/s), which are defined as the [2-norm of
the error between CEN and WBD accumulated along the entire
time horizon. Note that the residual for EE is also accumulated
over all 4 legs. It is observed that although the solve times are
longer, the residuals with more alternating iterations are signif-
icantly smaller and consensus performance is improved, which
can be attributed to the benefit that one level of optimization
iteratively receives feedback from the other.

Our offline TO pipeline is able to replicate the highly dynamic
cantering gait. A one-second clip of motion capture (mocap)
data from a real animal is used to first generate the initial seed
trajectory for our robot’s morphology through re-targeting [35].
Then our TO pipeline uses the re-targeted inputs to produce base
and joint trajectories which are not only faithful to the original
mocap recording, but also physically-correct. We benchmark
our solution accuracy against that of only running WBD op-
timization. Fig. 4 shows a comparison of the front left (FL)
and front right (FR) z-direction foot position trajectories for the
cantering example. It is clear that WBD optimization by itself

G[k]
| HEGH Glk+1] 0
GA =
k4+n—1 17711~ ktn—l -1 ~ _
T2 HEGH  T1 HEGHE +1] Glk +n — 1]
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Fig. 5. Simulated motion of Al turning 90° in a zero-gravity environment.

has difficulty constraining foot positions on the ground during
stance phases, but our alternating pipeline can correctly enforce
terrain constraints, which improves the overall solution accu-
racy. The residuals in Table I also reflect the improved solution
accuracy, considering that most constraints to be satisfied in
CEN optimization, such as the terrain constraints, are indirectly
enforced in the WBD optimization through the tracking tasks.

A “parkour” scenario, where the robot traverses over a large
gap via inclined surfaces, using hopping gaits, is also suc-
cessfully computed through our TO pipeline. We set up the
CEN optimization by manually providing the desired contact
sequence, timings, and a terrain map with a 2.4 s time horizon.
Intermediate states, for each landing configuration on the in-
clined surfaces, are also specified as hard constraints to improve
solver convergence rate. The cantering and “parkour” examples
are visualized in Fig. 1.

To demonstrate the benefit of momentum-inertia-aware CEN
optimization in the offline TO, we study the zero-gravity body
reorientation problem. Fig. 5 shows the simulation result using
Drake [36]. Starting from stationary initial configuration, the
robot is tasked to turn its trunk 90° within two seconds. Since no
gravity nor external contacts are present in the problem setup,
the robot is forced to rely on its limb motions to produce the
turning behavior. In the absence of external forces, CEN opti-
mization by itself and all other SRBM-based approaches cannot
discover meaningful EE trajectories for this specific example.
However, with inertia feedback from the WBD level, the two
optimization levels indeed reach dynamics consensus, as shown
in Table I with the EE residual decreasing from 290 to 12.9.
This further validates that inclusion of the momentum inertia
parameterization at the CEN level is physically meaningful. It is
also worth noting that for this example, the WBD optimization
takes significantly longer than the other examples, although the
total motion horizon is short. This is because during the first
alternating iteration, WBD optimization lacks good tracking
reference from the CEN level, due to the absence of any contact
related constraints. This further illustrates that a decent tracking
reference generated from CEN level helps drastically reduce the
solve time for the WBD optimization.

The 180° twisting jump maneuver is also studied, consisting
of three contact phases: takeoff (0-0.3 s), aerial (0.3-0.7 s), and
landing (0.7-1.0 s). The robot must gain enough AM during
takeoff to achieve the goal orientation after landing. We provide
a comparison study against a SRBM with inverse kinematics
(SRBM+IK)-based trajectory optimization scheme. Different
from [37], no hand-crafted reference trajectory is employed for
SRBM+IK as a fair comparison. Centroidal AM trajectories
are compared in the right sub-figure of Fig. 6. By achieving
momentum consensus through CRB inertia feedback I.,}, from
WBD, our CEN-WBD optimization leverages additional leg
movements [a swift counter rotation observed in Fig. 7(1b)]
during the take-off phase, which leads to a larger centroidal
angular momentum. The slight but non-trivial change of

Eoas

"""""" —— CEN-WBD e-X
—— CEN-WBD e-Y
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E -— SRBMeY 210
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Fig. 6. Equimomental ellipsoid semi-axes changes (left) and centroidal angu-

lar momentum in z direction (right) generated by CEN-WBD and SRBM+IK

for 180° twisting jump.

(2a) (2b)

Fig. 7.

(2c)

Demonstration of the Mini Cheetah executing a 180° twisting jump.

The first row (1a)—(le) shows the performance on tracking the trajectory gen-
erated by our CEN-WBD, while the trajectory used in the second experiment
(2a)—(2e) is from a SRBM combined with IK.

= Offline

= PD only
= Original MPC

AM in z from sim [kg - m?/s]
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Fig. 8. Tracking performances from simulations (left) and experiments (right)
for a twisting jump by comparing the offline reference trajectories and the
measured data during online execution with different control strategies.

equimomental ellipsoid semi-axes in Fig. 6 guarantees a high-
fidelity momentum trajectory to be tracked by our controller.
When tested on hardware and using identical controller setups,
trajectories generated using SRBM+IK fail to guide the robot
to the full 180° rotation, as shown in Fig. 7. More hardware
implementation details are described in the subsequent section.

B. Hardware Demonstration

We validate the tracking performance of the proposed MPC
controller, by reproducing the twisting jump maneuver on the
Mini-Cheetah platform. Since our MPC lacks the ability to
directly optimize contact timings, a heuristics-based contact
detection scheme is devised to deal with the early touchdown
scenario. For each leg, touchdown is estimated by detecting an
abrupt velocity change for the knee joints after the takeoff phase.
For each leg, if a touchdown is early, tracking reference is imme-
diately shifted to the point of touchdown on the offline trajectory.
When all four legs land, base and momentum trajectories are also
shifted to their respective points of touchdown.

Our controller is deployed directly on the Mini-Cheetah on-
board computer, and updates at 100 Hz with a prediction horizon
of 50 ms. Compare to the original convex MPC controller [1],
which updates at around 30 Hz, our version updates at a higher
frequency, but with a shorter prediction horizon (up to 0.5 s pre-
diction horizon for the original). Fig. 8 shows the performance
of both our proposed and the original convex MPC for the 180°
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twisting jump maneuver. A baseline benchmark using a joint PD
controller is also included in the figure. Our proposed controller
gives the best tracking performance and is able to generate the
largest angular momentum. In both simulation and on hardware,
the original convex MPC and the PD controllers fail to achieve
the full 180° rotation, while our proposed controller successfully
achieves the desired rotation. We attribute the improvement
in performance over the original convex MPC to the choice
of centroidal momentum as decision variables, rather than the
base linear and angular velocities employed by the original. The
inclusion of joint states as decision variables also allows us to
better reason about joint tracking, and not relying on Cartesian
PD as is the case for original convex MPC.

VI. CONCLUSION AND FUTURE WORK

We presented a trajectory optimization and QP-based MPC
framework for versatile and agile quadrupedal locomotion.
The novelty of our proposed TO framework lied in the
inclusion of equimomental ellipsoid, and an alternating
scheme to achieve dynamics consensus between CEN and
WBD optimizations. The MPC controller used the generated
trajectory and re-computed contact forces and joint accelerations
for online execution. Our proposed pipeline has been verified
through a range of dynamic motions in both simulation and real
world. Future works include optimizing over foot placements
and contact timings in our MPC controller to realize cantering
and “parkour” on hardware.
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