
NONLINEAR DYNAMICS AND DISSIPATION OF VORTEX LINES
DRIVEN BY STRONG RF FIELDS∗

W.P.M.R Pathirana†, Alex Gurevich
Center for Accelerator Science, Old Dominion University, Norfolk, USA

Abstract
Trapped vortices can contribute significantly to a residual

surface resistance of superconducting radio frequency (SRF)
cavities but the nonlinear dynamics of flexible vortex lines
driven by strong rf currents has not been yet investigated.
Here we report extensive numerical simulations of large-
amplitude oscillations of a trapped vortex line under the
strong rf magnetic field. The rf power dissipated by an oscil-
lating vortex segment driven by the rf Meissner currents was
calculated by taking into account the nonlinear vortex line
tension, vortex mass and a nonlinear Larkin-Ovchinnikov
viscous drag force. We calculated the field dependence of
the residual surface resistance Ri and showed that at low
frequencies Ri(H) increases with H but as the frequency
increases, Ri(H) becomes a nonmonotonic function of H
which decreases with H at higher fields. These results sug-
gest that trapped vortices can contribute to the extended
Q(H) rise observed on the SRF cavities.

INTRODUCTION
The field performance and losses of the SRF accelerator

cavities are quantified by the quality factor Q(H) which is
inversely proportional to the surface resistance Rs(R). At
low RF fields Rs = RBCS+Ri = (A f 2/T) exp(−∆/kBT)+Ri

contains the BCS contribution due to thermally activated
quasiparticles and the residual resistance Ri which remains
finite as T → 0. The best Nb resonator cavities can have
Q ≈ 1010 − 1011 with Rs ≈ 10 − 30 nΩ and Ri ≈ 2 − 10 nΩ
at 2 K [1–3]. The residual resistance gives a significant
contribution to the RF losses (about ≳ 20% for Nb and
≳ 50% for Nb3Sn at 2K [4]), so the dependence of Ri on
the magnetic field H and frequency f is of much interest.

One of the essential contributions to Ri comes from
trapped vortices generated during the cavity cool down
through the critical temperature Tc at which the lower crit-
ical field Hc1(T) vanishes [5–13]. In this case even small
stray fields H > Hc1(T) such as unscreened earth magnetic
field can produce vortices in the cavity. During the subse-
quent cooldown to T ≃ 2 K some of these vortices exit the
cavity but some get trapped by the material defects such as
non-superconducting precipitates, network of dislocations
or grain boundaries.

RF power generated by oscillating flexible vortices under
weak RF field has been addressed theoretically [6, 14] and
in a simplified model [15] which neglects the essential line
tension of the vortex. Quasi-static power generated by single
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vortices parallel to the surface [16] and perpendicular vor-
tices in the collective pinning theory [4] has been recently
calculated. However, the nonlinear dynamics of trapped vor-
tex lines perpendicular to the surface under strong rf currents
has not been addressed. In this work we calculate the field
and frequency dependence of Rs due to a trapped vortex
line under the strong rf magnetic field, taking into account
the nonlinear vortex line tension, vortex mass and nonlinear
viscous drag force. Our results show that Ri(H) can decrease
with the RF field at higher frequencies.

DYNAMICS OF A TRAPPED VORTEX
UNDER STRONG RF FIELD

Consider a single vortex pinned by a materials defect as
shown in the Figure 1. The motion of a vortex is completely

Figure 1: A flexible vortex shown by the read line driven
by the rf surface current. The black dots represent pinning
centers such as nonsuperconducting precipitates.

determined by its horizontal displacement u(z, t) as a func-
tion of z and t. Here the tip of the vortex is perpendicular
to the surface [14] so that u′(0) = 0. We did simulations
for defects with different pinning forces, but here we only
present results for the case when the other end of the vortex
segment is fixed by a strong pin at l = 0 resulting in the
second boundary condition u(l) = 0 [6].

The dynamic equation for the local velocity v(x, t) normal
to the curved vortex line can be written in the form:

m Ûv + η(v)v =
ϵ

R
−
ϕ0H
λ

e−z/λ sin(ωt), (1)

where λ is the London penetration depth, m is the vor-
tex mass, η(v) is the nonlinear viscosity, ϵ = ϕ2

0 ln(κ +
0.5)/4πµ0λ

2 is the vortex line energy, κ = λ/ξ is the
Ginzburg-Landau parameter, ξ is the coherence length, and



R−1 is the local curvature of the vortex line. The perpendic-
ular velocity of the vortex v(z, t) is related by the parallel ve-
locity component Ûu(z, t) along x by Ûu by v(z, t) = Ûu

√
1 + u′2.

Equation (1) represents the balance of four major forces
acting perpendicular to the vortex line: the inertial and the
viscous drag forces in the left hand side are balanced by the
elastic force ϵ/R and the Lorentz force of the RF current
in the right hand side. The line tension force ϵ/R in which
the local curvature R−1 = u′′(1 + u′2)−3/2 depends on the
shape of the vortex line accounts for a nonlinear elasticity
of vortices in the London model [14]. Detailed calculations
of nonlinear deformation of vortices described by the time-
dependent GL equations were performed in Ref. [17].

Viscous drag force Fη = ηv results from eddy currents
of quasiparticles in the vortex core [18]. At small veloci-
ties the viscous drag coefficient can be estimated from the
Bardeen-Stephen model which gives η0 = Bc2ϕ0/ρn for su-
perconductors with a short mean free path ℓ < ξ0, where ρn
is normal-state resistivity Bc2 = ϕ0/2πξ2 is the upper criti-
cal field and ϕ0 is the magnetic flux quantum. However, as
the vortex velocity increases η(v) becomes dependent on v.
For instance, Larkin and Ovchinnikov (LO) [19] have shown
that the damping coefficient η(v) decreases with v because
the number of normal quasiparticles in the core decreases as
they diffuse away from the core at high velocities [17,19,20].
In this case the nonlinear drag force can be written in the
form [19]:

Fη =
η0v

1 + v2/v2
0

(2)

The critical LO velocity v0 ∝ (D/τϵ )
1/2 in Eq. (2) depends

on the energy relaxation time τϵ and diffusivity D of normal
quasiparticles [19]. Here v0(T) vanishes at Tc but decreases
at low temperatures T ≪ Tc , where τϵ (T) increases rapidly
at T decreases [20]. A similar velocity dependence of Fη(V)

occurs due to electron overheating in the moving vortex [16].
The force Fη(v) is a nonmonotonic function of v which

reaches maximum Fmax = η0v0/2 at the vortex velocity
vmax = v0. As a result, the drag force can balance the
Lorentz forces FL of the driving current only if FL < Fmax

and v < v0. At v > v0 the velocity of a straight vortex
driven by a uniform current density jumps to greater values
corresponding to highly dissipative states [19]. Such LO
instability has been observed on many superconducting ma-
terials [21–26] with typical values of v0 ∼ 10−2 − 1 km/s.
At the LO instability, a differential flux-flow resistivity be-
comes negative, resulting in jumps and negative slopes on
I-V curves.

An estimate of the maximum vortex velocity vm ∼

ϕ0B/η0µ0λ in a Nb cavity at B ≃ 0.1Bc ≈ 20 mT gives
vm ≃ 0.1Bcρn/µ0λBc2 ≃ 1 km/s which is larger than typi-
cal LO critical velocities v0 ≈ 0.01−1 km/s observed on Nb
films [21]. Thus, for strong RF fields of interest to the Nb
cavities, the Bardeen-Stephen model becomes inadequate
and the velocity dependence of η(v) should be taken into
account.

The effective inertial mass m per unit length of the vortex
in Eq. (1) mostly results from the kinetic energy of quasipar-
ticles in the vortex core [20]. The first estimates of the vortex
mass by Suhl [27] gave ms ≃ 2kF/π3, where me is the elec-
tron mass, kF = (3π2n0)

1/3 is the Fermi wave vector and
n0 is the electron density. Since then many different mecha-
nisms have been proposed [28–30] which can increase the
vortex mass well above the Suhl estimate. Measurements of
the vortex mass in Nb by Golubchik et al., [31] have shown
that m can be some 2 orders of magnitude higher than ms

near Tc .

DYNAMIC EQUATIONS
Combining all force contributions discussed above, we re-

duce Eq. (1) to a single nonlinear partial differential equation
for the local displacement u(z, t) of the vortex line written
in the following dimensionless form:

µ Üu
√

1 + u′2 +
γ Ûu

√
1 + u′2

1 + α Ûu2(1 + u′2)
=

u′′

(1 + u′2)3/2
− β1e−z,

(3)
where u(z, t) = x(z, t)/λ is the dimensionless displacement
of the vortex line along x, and the coordinate z and time t are
in units of λ and the rf period, respectively. The parameters
in Eq. (3) are given by

γ = f / f0, f0 = Bc1ρn/Bc2λ
2µ0 (4)

α = α0γ
2, α0 = (λ f0/v0)

2 (5)
β1 = β sin(2πt), β = B/Bc1 (6)

µ = µ1γ
2, µ1 = λ

2 f 2
0 mµ0/ϕ0Bc1, (7)

where B is the applied field, and Bc1 = (ϕ0/4πλ2) ln(κ+0.5)
is the lower critical field.

The RF power P0 = t−1
m

∫ tm

0

∫ l

0 ηv
2dzdt produced by the

drag force along the oscillating vortex and averaged over the
time period tm can be expressed in terms of the dimension-
less power P as follows

P =
P0
P1
= γ2

∫ 1

0
dt

∫ l

0

Ûu2(1 + u′2)3/2dz
1 + α(1 + u′2) Ûu2 , (8)

where P1 = λ
3 f 2

0 η0. We then define the dimensionless
surface resistance Rs(β) which gives the field dependence
of the residual resistance of trapped vortices:

Rs(β) = P(β)/β2. (9)

NUMERICAL RESULTS
Equation (3) was simulated numerically with the boundary

conditions u′(0) = 0 and u(l) = 0 using COMSOL [32].
Taking λ/ξ = 1, λ = 40 nm, ρn = 10−9Ωm, n0 = 6 ×

1028 m−3 [33], f = 1 GHz, 10 GHz, and v0 = 1 − 100 m/s
[23] for clean Nb at T <<< Tc , we obtain γ ≈ 0.01 and
0.1 for 1 GHz and 10 GHz, respectively. Given the lack of
experimental data for v0 for Nb at T ≪ Tc , we simulated
Eq. (3) for different γ at α = 0,1,10 and 100 which cover



Figure 2: Rs vs β at γ = 0.01 for l/λ = 3.

the observed values of v0 near Tc and the likely decrease of
v0 at low temperatures. We also set µ/γ = 10−4 by taking
the vortex mass m = 50 ms ≈ 2.5 · 10−20 kg/m for Nb.

Shown in Figure 2 are the field dependencies of Rs calcu-
lated for different values ofα at γ = 0.01. At low frequencies
α ∝ f 2 ≪ 1, the vortex velocities are small so the LO mech-
anism is ineffective, and the surface resistance increases with
B as it is expected from the conventional Bardeen-Stephen
viscous drag force and the effect of nonlinear vortex elas-
ticity. However, as the frequency increases and α exceeds
αc ∼ 1, the surface resistance starts decreasing with B even
at small fields due to the decrease of the LO vortex viscosity
with v, as it is evident from Eq. (8).

If µ << γ << 1, the first two terms in the left hand side of
Eq. (3) are neglegible and u(z, t) can be obtained analytically.
For instance, if α Ûu2 ≫ 1, the velocity Ûu cancels out in Eq. (8)
and P ≈ γ2l/α becomes independent of β at 0.1 < β <
0.5. In this case Rs ≈ γ2l/α2β2 decreases with β in good
agreement with the numerical result presented in Fig. 2. As
the frequency increases the parameter α ∝ f 2 increases
and the drop of Rs(B) with B becomes more pronounced.
Moreover, this dependence of Rs ∝ B−2 is in agreement with
the experimental data on the low-field decrease of Rs(B)
observed on Nb cavities [34]. At low fields, β ≲

√
α/2πl2

the surface resistance tends to a constant value, as shown in
Fig. 2.

The dimensionless Rs can be converted back toΩm2 units
by multiplying Rs by 2µ2

0P1/B2
c1 ≈ 5 · 10−16Ωm2 for a

single trapped vortex in Nb. For γ = 0.01 and α = 100, this
gives Rs ≈ 120 nΩm2 at β = 0.1 and Rs ≈ 5200 nΩm2 at
β = 0.002. The net residual resistance is then obtained by
multiplying Rs by the mean areal density of trapped vortices.

Figure 2 shows the field dependence of Rs calculated
at γ = 0.1 for different values of α. Unlike the case of
γ = 0.01 considered above, the Rs(β) curves at γ = 0.1
have nonmonotonic field dependencies, the peaks in Rs(β)
shifting to lower fields as the frequency and the parameter
α increase.

The character of vortex oscillations changes significantly
as β exceeds the peak position in Rs(β). For instance, Fig. 4

Figure 3: Rs vs β at γ = 0.1 for l/λ = 3.

shows the vortex tip oscillations near the peak of Rs(β) in
Fig. 3 for the case of γ = 0.1 and α = 10. Clearly the
time dependence of u(0, t) changes from a nearly harmonic
at β before the peak to a highly unharmonic u(0, t) after
the peak. This behavior can be qualitatively attributed to
the fact that the velocity of the vortex tip reaches the LO
instability threshold, which is however countered by the
restoring elastic force due to the line tension of the rest of
the vortex segment.

Figure 4: Vortex tip oscillation near the peak in Figure 3
for the case of γ = 0.1 and α = 10. Here the blue and the
red lines correspond to u(0, t) just before and after the peak,
respectively.

Another issue is that the vortex oscillations are mostly
confined within the elastic skin depth Lω ≃

√
ϵ/η(v)ω from

the surface [6]. If γ = 0.01, the length Lω ≈ 10λ is larger
than the simulated vortex length l = 3λ, so the vortex seg-
ment swings as a whole at all β. However, at γ = 0.1, the
length Lω ≈ 3λ is about equal to l at β ≪ 1. In this case Rs

first increases as β increases, but after the peak in Rs(β) at
which Fη reaches the LO maximum, the viscous drag drops
rapidly with v. As a result, Lω becomes much larger that l,
and Rs(β) starts decreasing with β similar to the case shown
in Fig. 2.



The parameters γ, α and µ depend on the concentration
of nonmagnetic impurities which can be taken into account
in the dependencies of ρn ∝ 1/li , λ ∝ 1/

√
li , v0 ∝

√
li and

ξ ∝
√

li on the mean-free path li in the dirty limit. In this
case all γ, α and µ would increase like l−2

i as li decreases.
Therefore, γ = 0.1 can represent the case of a dirty surface
layer of Nb at 1 GHz or at a pure Nb at 10 GHz.

The effect of frequency on the field dependence of Rs can
be inferred from Figs. 2 and 3, since γ ∝ f and α ∝ f 2. For
instance, Fig. 5 shows the change in the field dependence of
Rs(β, f ) with frequency calculated for γ = 0.01 and α = 1
at 1 GHz. In this case Rs(β) is nearly field-independent at
low f but as the frequency increases, a strong decrease of
Rs with the RF field develops.

Figure 5: Rs(β) vs β at f = 1 GHz, 2 GHz and 10 GHz.

The results presented in this work suggest that strong os-
cillations of trapped vortices can result in a decrease of the
residual surface resistance with the RF field. This effect
can contribute to the negative Q(H) slope observed on ni-
trogen or titanium alloyed Nb cavities [35–39]. The vortex
mechanism based on the LO decrease of the drag coefficient
with the vortex velocity has a different physics than the de-
crease of the quasiparticle BCS surface resistance with the
RF field [40, 41]. Yet our simulations show that trapped
vortices could provide a field-induced reduction of the resid-
ual resistance which becomes more pronounced at higher
frequencies. This result seems consistent with the recent
experiment [42] which showed that a negative Q(H) slope
in nitrogen-doped Nb cavities becomes stronger as the RF
frequency increases.

CONCLUSION
We presented extensive simulations of the nonlinear dy-

namics of a single vortex under strong rf magnetic field. The
power dissipated by strongly oscillating vortex segment was
calculated taking into account the nonlinear line tension of
the vortex, nonlinear Larkin-Ovchinnikov viscous drag force
and the vortex mass at different RF frequencies. At low
frequencies Rs(H) gradually increases with field, but as the
frequency increases Rs(H) becomes a non-monotonic func-
tion of H which decreases with H at higher fields. These

results suggest that trapped vortices could provide a field-
induced reduction of the residual surface resistance which
contributes to the extended Q(H) rise observed on Nb cavi-
ties.
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