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ABSTRACT

We present ADAGIO, a new method for network-based disease
gene prioritization that balances network interconnection struc-
ture with an embedding measure of network similarity. We show
ADAGIO performs better than previous methods for recovering
known disease genes in a recent benchmark set encompassing
disease-associated genes for 22 polygenic diseases. We find ADA-
GIO discovers some interesting new disease gene candidates in
both Alzheimer’s and Parkinson’s diseases.

Code, ranked lists of disease genes, and supplementary figures and
tables appear at https://github.com/merterden98/ADAGIO.
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1 INTRODUCTION

Network-based disease gene prioritization is one of the best studied
classical inference problems on biological networks [7]. Given a
protein-protein association network, a list of known disease genes,
and a list of candidate disease genes (either from a linkage interval
or genome-wide), the output is a ranked list of the candidate genes.
Based on the underlying graph structure of the association network,
predicted genes are ranked in order of how strongly they are related
to the set of known disease genes. While many computational
methods have been proposed to leverage network information to
create these ranked lists [9, 14, 18, 25], until recently, it was difficult
to come up with a fair and unbiased way to measure performance
of methods. Fortunately, recently, several high-quality benchmarks
have been constructed for exactly this purpose [19, 27]. In this work,
we concentrate on the benchmark sets from [19], constructed using
the Open Targets gene lists [10].
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This benchmark curates two types of sets of disease genes for 22
different polygenic diseases. In practice, when looking for disease
genes in a chromosomal region, the set of candidate disease genes is
restricted to only a subset of the genes. In a benchmarking context,
however, it is more typical as in [19] to compare whole genome
ranked lists. In addition to the global measures of AUROC and
AUPRC, disease-gene prioritization ranked lists are compared using
measures that look only at what is placed in the top k portion of
the list (see Section 3.3.1).

Recently, for the different but related problem of link prediction,
we introduced GLIDE [8], which considers gene similarity using
different methods for genes in the highly connected core than in
the periphery of the network. GLIDE combines a simple score based
on common neighbors in the dense core, with a diffusion-based em-
bedding that encapsulates the network structure in the periphery.
For the disease-gene prioritization problem, we find that throwing
out the network and ranking disease genes in order of their GLIDE
scores is not competitive with even the simplest RWR (Random
Walk with Restart) method from Kohler’s original paper [14]. How-
ever, we find that retaining the network but reweighting edges
according to their GLIDE scores and then running RWR on the
reweighted network produces near state-of-the art performance
on the benchmark of [19]. Finally, we improve performance fur-
ther by augmenting the network with new high-confidence edges
predicted by GLIDE We call our new method ADAGIO (for Aug-
mented Disease Associated GLIDE Index Order), and describe it
more completely in Section 2.1.

In addition to measuring ADAGIO’s global performance on the
entire benchmark set of 22 diseases, we propose a new framework
to flag high-ranking genes that competing algorithms fail to identify.
We examine several of the brain-related diseases in our benchmark,
and look to the literature for evidence of disease involvement for
the novel genes found by ADAGIO and not by other methods. We
suggest several new genes for involvement in Alzheimer’s and
Parkinson’s Disease.

ADAGIO is available at https://github.com/merterden98/ADAGIO

2 METHODS

2.1 ADAGIO

An overview of ADAGIO appears in Figure 1. ADAGIO first trans-
forms the underlying network using a variant of the GLIDE [8]
similarity score, which we describe here next. On this new aug-
mented network, standard random walk with restart (RWR; see
Section 2.2.1) is run using a list of known candidate genes. The
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output, as in all disease gene prioritization algorithms, is a ranked
list of genes that are most similar to the candidate genes.

GLIDE combines a simple local score that captures relationships
in the dense core with a diffusion-based embedding that encap-
sulates the network structure in the periphery. For ADAGIO, we
pair a local score based on common neighbors with global score
UDSEDY, a variant of DSEDY from the original GLIDE paper [8].

Definition 2.1. DSEY Embedding (from [8]) Let P be a Markov
transition matrix computed from a graph G with a unique stationary
distribution 7 and let D be the diagonal degree matrix representing
the weighted degree of all the nodes in the network. Then the DSEY
embedding is:

DSEY =1+ Z YL P - W), (1)
t=1

where W is a constant matrix whose rows are copies of the sta-
tionary distribution 7, and y is a parameter satisfying 0 < y < 1,
which is used to control the contribution of larger time-steps in the
computation of the embedding. We set y = 1 in all our experiments,
as suggested in [8].

Definition 2.2. Global Score: UDSEDY Distance.

If DSEY (p) and DSEY (g) represent the DSEY embeddings for the
nodes p and q respectively, we consider the (un-normalized) L2
distance between their DSEY embeddings. Formally, this can be
written as

UDSED' (p, )& = \/Z(DSEY(P)k — DSEY (g)1)?
k

Definition 2.3. Local Score: Common Weighted Normalized
Given nodes p, g € G, the Common Weighted Normalized (CWN)
score is

ZreNPan (Wp,r +Wgr)
Vk(p)k(q)

where for any node x € G, Ny is the neighbor set of x, Wx,y 18
the weight of the edge (x,y), and k(x) represents the weighted
degree of x. Note that this is slightly different from the CW metric
described in [8], because of the square roots in the denominator.

CWN(p,q) =

GLIDE score. Just as in [8] we define the following score between
each pair of nodes:

a - global(x;, x;)

LIDE = _—
G (p.q) = exp global (xi, xj) + p

local(x;, x;)
+ global(xi, x;),

where GLIDE chooses local(p, ) = CWN(p, q) and global(p, q) =
1/UDSEDY (p, q). We choose the default values of ¢ and f as sug-
gested by [8] (« = 0.1, f = 1000), where these choices for « and
makes the local embedding dominant for ranking, while the global
embedding is used to break ties and order nodes with the same
strong local score. For the CWN local score, if nodes have no com-
mon neighbors, the first term is 0 and only the global score is used. It
was shown in [8] that a variant of GLIDE improved link prediction
algorithms.
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2.1.1 Glide Based Reweighting. We re-weight the original PPI net-
work by substituting the existing edge weights with their computed
GLIDE scores. For example, consider a graph G = (V, E, W). Then
the new weight, or W’ (p, q), for the edge (p, q) of the re-weighted
graph G’ = (V,E,W’) is W’(p, q) = GLIDE(p, q).

The prime intuition behind this network re-weighting operation
is that the distribution of edge-weights in a PPI network is often
impervious to the presence of high degree hub nodes, present in the
network’s dense core. Randomly walking on this degree-agnostic
network could then result in a distribution where hub proteins
dominate over every other node, limiting the discovery of novel
and more surprising associations facilitated by the peripheral nodes
in the network. Our assumption is that the use of GLIDE scores
can restrain this excessive influence of hubs, while making use
of the powerful GLIDE global embedding component to find the
interesting parts of the network that are not dominated by hubs in
the dense core. In our experiments, below, we also compare GLIDE
to another method that explicitly seeks to control the influence of
hub nodes: DADA. [9].

2.1.2 GLIDE-Based Edge Addition. The addition of new edges uses
GLIDE scores to find the most likely links for each node in the
network. For each node p, we select the top k highest scoring new
pairs (containing p as one of the endpoints) and add it to the original
network. We experimented with different choices of k and settled
on setting k equal to half the average network degree. (i.e. k is set to
L%J) Exploration of performance for different values of k appear
in the supplement.

2.2 Existing Methods

We test ADAGIO against the 5 best performing methods tested
in the benchmark paper (see [19]). These are Kohler’s RWR [14]
(which they call Personalized Pagerank), EGAD [4], a GeneMA-
NIA [18] based disease gene prioritization method, a Monte Carlo
method, and an SVM method. These methods are all implemented
exactly as in [21]. In addition, we tested the popular DADA algo-
rithm from [9], since, like ADAGIO, it is an RWR-related method
that seeks to minimize contribution of hub nodes. A brief descrip-
tion of all these methods appears next.

2.2.1 Random Walk With Restart. Random Walk With Restart
(RWR) or Personalized Pagerank (PP) is a widely-used diffusion-
based approach, popular in other computational settings (social
networks, web search, etc). This method uses global network diffu-
sion properties, realized through the usage of lazy random walks, to
access/rank the similarities between nodes. Given a set of "starting
nodes", Pagerank computes the steady-state distribution of the lazy
random walks originating from the starting nodes, and uses this
distribution to rank the relatedness of the remaining nodes.

Let W be the Markov Transition matrix of a connected graph
G = (V,E,W) and let S C V be the set of starting nodes. Since
the starting probabilities (denoted by po) are uniformly distributed
among the elements of S, it can be written as po = 15/|S|, provided
15 is a vector which has value 1 for elements in S and 0 otherwise.
Then, the distribution p; at timestep ¢ can be described as

73
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Figure 1: Overview of Network Augmentation and Re-weighting with ADAGIO. (a) Original edge weights are replaced with
GLIDE weights. (b) For each disease gene, the network is augmented with the k missing heaviest GLIDE-scoring edges with
that endpoint, where k is the average degree of the network. (c) Kohler’s classical Random Walk with Restart is run on the

modified network to produce the ranked gene list.

where % represents the probability. In theory this is a changeable
parameter; however, to stay consistent with the benchmark [19] we
fix it to be %. At equilibrium, the steady-state value p can be com-
puted, but is often much slower to compute compared to an iterative
solution due to matrix inversion. This p is very useful in accessing
the degree of association between the starting nodes in S and the
rest of the network. In fact, [2] showed that the ordering of vertices
obtained from the steady-state Pagerank vector produced localized
clusters with good intra-cluster association. This, equipped with
a sufficiently strong restart probability (which, in our instance is
0.15), would then result in the ordering of nodes where the top
nodes have a high degree of relatedness with the starting nodes.
In ADAGIO the matrix W corresponds to the reweighted network
with a new set of links as described in Section 2.1.2.

2.2.2  Degree-Aware Disease Gene Prioritization Algorithm (DADA).
The skewed degree distribution of PPI networks can make the RWR-
based prioritization algorithms assign disproportionate importance
to high-degree hub genes. DADA [9] addresses this hub effect by em-
ploying a suite of statistical adjustment strategies to detect loosely
connected disease genes that are missed by the existing RWR-based
approaches.

This suite is composed of three reference models, each of which
can be independently applied to the results obtained from RWR.
The degree-adjusted RWR vector, after the application of these
models, can then be used for the discovery of new disease gene
associations.

2.2.3 Diffusion with GeneMANIA-based weights (gm). The label
propagation mechanism in GeneMANIA, originally used for pre-
dicting gene function [18], can also be employed for predicting new

disease genes. The reworked version of GeneMANIA is available
in the diffusStats [21] package.

This new adaptation uses the graph Laplacian as the coefficient
matrix for the propagation of disease genes. Additionally, the vector
of node-level biases, namely y g5, which incorporates the strength
of association between the disease and genes, is set in the following
way

-1 ,n is a known negative
Ygm(n) = . 1 ,n is a known positive 2)
% ,n has unknown association
where N*, N~, and N denote the numbers of known disease genes,
known negatives, and genes with unknown association, respec-
tively.

The output disease associations f is now obtained by linearly
transforming ygm using the kernel matrix K. Mathematically, this
can be represented as f = K ygm.

So, the gm method uses this transformed vector output f to
compare and rank the disease associations of genes.

2.2.4  Extending ‘Guilt-by-Association‘ by Degree (EGAD). EGAD [4],
originally developed for predicting functional relationships, ranks

disease-gene associations based on the assumption that genes with

common functions preferentially have a localized network relation-
ship. Given a node with unknown disease association, EGAD uses

a neighborhood voting algorithm to calculate the ratio of neigh-

bors with known disease association. This ratio is then used for

comparing disease associations between genes.

2.2.5 Monte Carlo Normalized Scores. Monte Carlo normalized
scores (mc) is a diffusion-based technique that uses statistical nor-
malization to assign scores to genes. As described in [20], input



BCB ’22, August 7-10, 2022, Northbrook, IL, USA

genes are permuted multiple times to observe the number of times
a randomly permuted set of disease genes leads to higher diffusion
scores compared to just using a kernel matrix alongside an indicator
vector of disease genes.

2.26  SVM. This method, described in [19], uses the results from a
SVM binary classifier for gene prioritization. The gene embeddings
supplied to the classifier are derived from the graph Laplacian,
where each row of the matrix functions as the feature vector for a
particular gene. A portion of the disease genes are separated out
as positive examples for training, and the negative examples are
randomly selected from the network. The resulting classifier output
is then used to rank the remaining genes.

3 EXPERIMENTAL SETUP

3.1 Networks

We use exactly the same STRING-derived PPI network as in the
benchmarks in Picart et al. [19] (based on STRING 10, where the
edges for STRING are filtered by removing any edge that has a
combined score less than 600, and that is not labeled as an "ex-
perimental" or "database" association.) The characteristics of the
benchmarked network are described below:

Graph Properties l Values
# Nodes 11748
# Edges 236963
Average Degree 40.34

Average Clustering Coeff. | 0.51
Table 1: Graph Properties of STRING-E

3.2 Disease Gene Lists

The benchmark of [19] provides 22 diseases, listed in Tables 6 and
7. For each disease, the benchmark provides two different sets of
disease genes, one set derived using Genome-Wide Association
Studies (GWAS) and the second from evidence provided from clini-
cal drug studies. Both the GWAS and the drug-target associations
for all the diseases are aggregated from Open Targets [10].

3.3 Evaluation

As recommended in the benchmark, the evaluation of all prioritiza-
tion algorithms was done through 3-fold cross-validation, where the
benchmark randomly split the gene-list (which is either GWAS or
drug-based) into three equal-sized blocks and in each CV iteration,
two blocks (i.e. ~ 66.6% of the dataset) were used for training and
the remaining block (~ 33.3% of the dataset) for testing (resulting
in 3 CV runs). We report both the mean and the standard deviation
from the CV runs, and use the Area Under the Precision Recall
Curve (AUPRC), Area Under the Receiving Operating Characteris-
tic (AUROC) and truncated AUROC (t-AUROC). We also introduce
a modified variant of Picart et al’s [19] Top-K metric where we
normalize the score by the size of the testing set. The mathematical
formulation of Top-K and the Witness Analysis is provided below.
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3.3.1 Top-K. Given a parameter k, the Top-K metric is proportional
to the number of true-positive (¢p) genes the gene-prioritization
algorithm was successfully able to recall in the first k positions of
its predicted ranked list. Let tp(k) represent the number of true
positives at the position k, and T represent the total number of true
positives. Then the Top-K score for the prediction is given as
k) 6
T

Top-K evaluates the strength of the prioritization algorithm by
only observing the top section of its predicted gene-list, making it
more focused and sensitive than methods like AUROC and AUPRC,
which use the complete gene-list for evaluation.

We used two values of k (k = 100, 250) for our evaluations, and
report both the obtained means and the standard deviations from
the CV runs. Tables 6 and 7 report ADAGIO and competitor algo-
rithms’ under the Top-K metric where k = 100, which we assume is
the most informative and practically relevant amongst all the met-
rics measured. In the supplement we also report this measurement
for k = 250. Comparative results using the other scoring metrics
show similar trends and can be found in the supplement.

We describe the other evaluation metrics next:

Top-K(k) =

3.3.2 AUPRC. Let RECALL(k) be the ratio of the number of true

positives between positions 1 through k (i.e. tp(k)) to the total

positives P:

tp(k)
p

RECALL(k) = (4)

Also, define the precision at position k as PRECISION(k) = #

Then we can construct a graph by tracing the curve c(k) = (RECALL(k)

,PRECISION(k)) for each position k. The Area Under the Precision
Recall Curve (AUPRC) is then the area of c(t).

3.3.3 AUROC. Describe the false positive rate FP(k) as the ratio
of all false positives between positions 1 through k to P:
k —tp(k)

7 (5)
Then, as in the precision curve described in Section 3.3.2, we can
create a curve ¢’(k) = (FP(k), RECALL(k)) by varying k, which
we call the Receiving Operating Characteristics (ROC) curve. We
now calculate the AUROC score by simply measuring the area of
this ROC curve.

FP(k) =

3.3.4 tAUROC. Let V be the total number of genes. If we only
want to look at the performance of prioritization algorithms up to
a certain fraction ¢, we can truncate the ROC curve by varying k
from 1 to tV. The corresponding area of this truncated ROC curve
is called tAUROC. In the Picart et al. benchmark, the value of t was
set to 0.05 and 0.1.

4 RESULTS

4.1 ADAGIO Outperforms Benchmarked
Methods or is Competitive

Considering the recovery of known disease genes in the top 100

ranked genes (according to the TopK measure of Section 3.3.1),

ADAGIO performs the best across both the drug- and GWAS-based
gene lists. On drug-based gene lists, ADAGIO outperforms other
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ADAGIO EGAD RWR SVM Degree
1. UBC 2077 2 2 4364
2. GABARAP 65 3 52 35
3. GPHN 30 4 36 23
4. PLCL1 21 9 72 14
5. TRAK2 23 8 69 15
6. GABARAPL2 63 6 66 33
7. NSF 68 5 34 41
8. GABARAPL1 64 7 73 34
9. CHRNA3 57 13 303 12
10. CHRNB4 55 12 156 12
11. CHRNB3 52 20 1080 11
12. CHRNA2 50 14 226 11
13. CHRND 62 19 376 12
14. CHRNB1 88 15 225 18
15. SCN4B 106 33 209 19

Table 2: Top 15 ADAGIO predictions For Alzheimer’s Dis-
ease on the Open Targets drugs gene list alongside predic-
tion ranks for the same genes using EGAD, RWR and SVM,
alongside the degree of the gene within the benchmark net-
work.

methods for 14 of the 22 diseases (Table 6). The next best method,
SVM, performs best on 6 of the 22 diseases. On GWAS-based gene
lists, ADAGIO performs the best on 9 of the 22 diseases, while
the next best method, RWR, performs best on 8 of the 22 diseases
(Table 7). When we consider the top 250 ranked genes, ADAGIO’s
competitive performance becomes even better on the drug lists,
but decreases on the GWAS lists. On the drug lists, ADAGIO be-
comes the best method for 18 of the 22 diseases (see Supplement).
However, on the GWAS gene lists, RWR outperforms ADAGIO (see
Supplement). In general, we find that ADAGIO performs better
than competing methods on the top 1% of gene lists, and as we
consider a larger and larger subset of the top-ranked genes to be
disease genes, RWR starts to match (or exceed) ADAGIO’s perfor-
mance. This is reflected in the comparative performance of the
global AUROC and AUPRC, where RWR and ADAGIO show nearly
identical performance, demonstrating again that the advantage of
ADAGIO is at the top of the list. SVM also sometimes does well in
AUROC and AUPRC, but is never competitive in TopK measures
(see Supplement for full results on AUROC, AUPRC and tAUROC).
An enriched top-of-rank list may be useful to biologists with limited
experimental bandwidth.

We present the top 15 ranked ADAGIO predictions for Alzheimer’s
and Parkinson’s diseases (removing the known disease gene sets) in
Tables 2, 3, 4, and 5, along with their ranks using the other methods.
The top 50 ADAGIO predictions for all 22 diseases can be found in
the Supplement.

4.2 ADAGIO is Robust to Network Noise

ADAGIO introduces the top-scoring GLIDE links centered around
seed disease genes. The main argument for the addition of these
edges is to compensate for existing noise from the generation of the
network. Combined with the GLIDE-based edge re-weighting, new
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ADAGIO EGAD RWR SVM Degree
1. UBC 2511 2 8647 4364
2. CTNNB1 1359 3 8644 359
3. ACSF3 6966 10487 222 1
4. TP53 1890 4 8215 538
5. ARMT1 8829 10488 223 1
6. CACUL1 9022 10485 212 1
7. OTUD3 9538 10486 253 1
8. DDI2 10950 9558 760 1
9. ANKRD13A 4531 9567 762 1
10. RAC1 1973 6 8679 392
11. GFM2 5871 10483 231 1
12. TOR4A 8393 10484 259 1
13. ORMDL2 3860 10481 246 1
14. DNPEP 5184 10482 257 1
15. ATXN10 4117 9577 761 1

Table 3: Top 15 ADAGIO predictions For Alzheimer’s Disease
on the Open Targets GWAS gene list alongside prediction
ranks for the same genes using EGAD, RWR and SVM, along-
side the degree of the gene within the benchmark network.

ADAGIO EGAD RWR SVM Degree
1. KCNAB1 19 4 19 42
2. KCNAB3 18 5 4 41
3. KCNAB2 21 3 101 46
4. UBC 1436 2 917 4364
5. GPHN 27 7 282 23
6. PLCL1 16 12 2 14
7. GABARAP 50 6 144 35
8. TRAK2 20 11 10 15
9. NSF 54 8 365 41
10. GABARAPL2 52 9 202 33
11. KCNE4 23 513 77 4
12. DPP10 14 683 11 2
13. KCNIP2 24 543 30 3
14. GABARAPL1 48 10 163 34
15. KCNE2 6 753 150 2

Table 4: Top 15 ADAGIO predictions For Parkinson’s Dis-
ease on the Open Targets drugs gene list alongside predic-
tion ranks for the same genes using EGAD, RWR and SVM,
alongside the degree of the gene within the benchmark net-
work.

links should be able to reach more functionally enriched neighbor-
hoods as opposed to being dispersed into hub genes or areas of the
network that are not captured by the original network’s edges. To
test this hypothesis, we randomly introduced noise to the network.
Specifically, the original benchmark network was augmented by re-
moving 20% and 40% of the existing edges at random. Additionally,
we ran experiments by adding 20% and 40% new edges at random.
These modifications were done in order to simulate a noisy net-
work. We re-ran experiments on these new networks, comparing
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ADAGIO EGAD RWR SVM Degree
1. UBC 1018 2 10190 4364
2. ACSF3 6360 10274 642 1
3. ARMT1 8458 10275 643 1
4. CACUL1 8687 10270 648 1
5. OTUD3 9338 10271 614 1
6. GFM2 5099 10267 629 1
7. TOR4A 7921 10268 607 1
8. ORMDL2 2604 10265 615 1
9. DNPEP 4275 10266 609 1
10. ATP8B3 5923 10262 630 1
11. DALRD3 7564 10263 616 1
12. TARS3 7165 10260 645 1
13. ESR1 971 8 9480 274
14. HSPAS8 312 9 9538 199
15. DDI2 11028 9321 117 1

Table 5: Top 15 ADAGIO predictions For Parkinson’s Disease
on the Open Targets GWAS gene list alongside prediction
ranks for the same genes using EGAD, RWR and SVM, along-
side the degree of the gene within the benchmark network.

ADAGIO with the top performing competitors: RWR, SVM and
DADA. Figures 2a, 2b, 2c, and 2d show the performance of these
methods at varying levels of noise. In the case where new edges
are added at random to the network (2c, 2a), ADAGIO is uniquely
able to maintain its performance over other methods, whereas we
find that all methods continue to perform well when we remove
edges at random (note that for RWR in 2d, removing 40% of edges
at random actually improves performance).

4.3 All methods are better at recovering the
drug-based disease gene lists than the
GWAS gene lists

The performance of all the prioritization algorithms varies signif-
icantly between drug based gene lists and GWAS gene lists. In
particular we see that across every disease, correctly recovering
GWAS disease genes is much harder (see Tables 6 and 7). The only
disease where prioritization algorithms’ performance is on par with
that of the drug based gene list is Parkinson’s disease.

We do not know why GWAS genes seem much harder to re-
cover using any prioritization algorithm. One reason might be
that drugs targeted by clinical studies are often associated with
well-understood disease pathways, making their organization in
the underlying network more localized. In comparison, the GWAS
genes may be distributed more uniformly across the network.

4.4 Finding new Parkinson’s and Alzheimer’s
genes using ADAGIO

We chose two of the brain diseases, Parkinson’s and Alzheimer’s
and performed a deeper analysis of the top scoring genes. Table 8
shows the top 15 ADAGIO predictions for Alzheimer’s and Parkin-
son’s disease, using both the Open Targets drug and GWAS gene
lists. We also list the network degrees of the predicted genes, and
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their corresponding placement in the ranked list using competing
algorithms (for this, we used EGAD, RWR and SVM).

The tables show that the ADAGIO predictions are mostly com-
posed of low-degree genes in Parkinson’s diseases, for both GWAS
and drug gene lists. The same is not true for Alzheimer’s, where we
notice a significant number of top predictions are genes of degree
> 10. This is likely due to the common weighted neighbor portion
of GLIDE introducing edges to more hub genes.

For Alzheimer’s disease, we noticed that the ADAGIO predictions
are often also ranked highly by the competing algorithms. This is
more evident in Table 8a (Alzheimer’s with drug gene list), where
we see all of the top 8 ADAGIO predictions occupying positions 2 to
9 in RWR rankings. In order to summarize the difference between
ADAGIO and competing methods, and also to have a rigorous
definition of novel genes found by our method and not others, we
introduce a new measure called the "Witness Measure", which we
describe next.

4.5 Witness Measure

Define M as the ranked list of preferred genes predicted by ADAGIO
(i.e. M(i) represents the gene placed by ADAGIO at position i).
For the k competing algorithms, let Ry, ..., Ry be the mapping
that associates each gene with its corresponding positioning (i.e.
Ri(g) denotes the rank of the gene g for the competing method
i). Then, we regard a gene g at position p in M (or g = M(p)) to
be "witnessed" or "unique" if, for any competing algorithm Ry, the
following inequality is satisfied

Ri(g) = ap+b (6)

where in this paper we set a = 2 and b = 10 as defaults. If the
expression in (6) is satisfied for all the competing algorithms for
a given gene g, this indicates that ADAGIO is uniquely ranking g
with higher preference compared to other methods, making the
placement of g more surprising. Define I(g) as 1 if g satisfies (6)
and 0 otherwise.

Now we define the witness measure W (k) for a position k, as
the ratio
S I(M() ,
B — @

W (k) finds the proportion of the "witnessed" genes ranked at
positions 1 to k by ADAGIO. Its value being close to 1 implies that
the significant proportion of the top ranked predictions are unique
to ADAGIO. The graphical description of the witness measure is
shown in Figure 4.

w(k) =

Figure 3 shows the variations in W (k) for Parkinson’s and Alzheimer’s

diseases, for both GWAS and drug-based gene lists. A more detailed
breakdown of the witness analysis results are provided below.

4.6 Witness Analysis Case Study

The Witness Measure, described in Section 4.5, devises a princi-
pled way of finding high-confidence ADAGIO genes that are not
equivalently predicted with high certainty by competing methods.
The graphs in Figures 3a and 3b, which plot the variation in W (k)
with position k for Alzheimer’s, indicate that approximately 10%
of the genes produced by ADAGIO on the drug-based gene list are
considered novel by our Witness Measure. The plot for the GWAS
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Top 100
ADAGIO SVM EGAD DADA gm mc RWR GLIDE Reweighted

allergy 0.27+0.09 0.23+0.1 0.14+0.08 0.22+£0.06 0+0 0.23+0.08 0.21£0.07  0.24£0.09
Alzheimer’s disease 0.35+0.09 0.33£0.11  0.13£0.06  0.34+0.1 0.04£0.03  0.2£0.07  0.29+£0.08  0.32+0.09
arthritis 0.3+0.06 0.29+0.05  0.06+0.02 0.26£0.05 0.01+0.01 0.16£0.03 0.17+£0.06  0.21+0.06
asthma 0.38£0.06  0.33+0.07  0.11£0.05 0.22£0.07 0.01£0.02 0.24+£0.08 0.41+0.07 0.39+0.07
bipolar disorder 0.52+0.09 0.49+0.07  0.14£0.05 0.49+0.06 0.03+0.03  0.28+0.07 0.38+0.12  0.42+0.11
cardiac arrhythmia 0.61+0.06 0.6+0.07 0.56£0.07  0.59£0.07 0.45%£0.05 0.44+0.08 0.58+0.06  0.61+0.05
chronic obstructive pulmonary disease | 0.29£0.08  0.25+0.06  0.13+0.07 0.25£0.06 0.03£0.02 0.31+0.07 0.31+0.06  0.33+0.08
coronary heart disease 0.42+0.08  0.43+0.07 0.15+£0.04 0.4£0.07  0+0.01 0.25£0.06  0.32£0.07  0.35+0.06
drug dependence 0.35+0.07 0.34+£0.05  0.19+£0.06 0.33£0.04 0.04+0.03 0.31+0.09 0.32+£0.05  0.32+0.05
hypertension 0.22+0.07  0.28+0.06 0.09+0.04 0.25%£0.07 0.02+0.02 0.18+0.05 0.18+0.06  0.22+0.07
multiple sclerosis 0.53+0.07 0.48+0.07  0.39+0.06 0.46+0.07 0.36+£0.06 0.33+£0.06 0.5+0.06 0.51+0.07
obesity 0.41+0.11  0.43+0.06 0.16+£0.04 0.41+0.06 0.02+0.02 0.26+0.07 0.25+0.08  0.29+0.08
Parkinson’s disease 0.53+0.06 0.51+£0.06  0.43+£0.06 0.52+0.06 0.34+0.04 0.37+0.08 0.5+0.06 0.52+0.05
psoriasis 0.32+0.08 0.24+0.06  0.14+0.05 0.25+0.05 0+0.01 0.15£0.05 0.31£0.09  0.32+0.09
rheumatoid arthritis 0.39+0.08 0.32+0.06  0.05+£0.04 0.31+£0.06 0+0 0.2+0.05 0.36+0.08  0.37+0.07
schizophrenia 0.43+0.07 0.43+0.08 0.36+£0.09 0.33+0.1 0.04+£0.03 0.31£0.08 0.37+£0.07  0.4+0.08
stroke 0.57+0.05 0.52+0.1 0.46+0.1 0.52+0.1 0.4+0.09 0.37+£0.07 0.54+£0.07  0.53+0.07
systemic lupus erythematosus 0.27+0.14 0.27+0.09 0.13+0.05 0.27+£0.09 040 0.16+0.1 0.22+0.11  0.26%0.13
type I diabetes mellitus 0.21£0.07  0.08+0.05  0.07+0.05 0.1+0.06 0+0 0.18+£0.06 0.23+0.07 0.22+0.09
type II diabetes mellitus 0.4+0.09 0.41+0.09 0.14+0.05 0.38+0.08 0.02+0.02 0.26+0.07 0.28+0.08  0.31+0.08
ulcerative colitis 0.4+0.14 0.31+0.1 0.23+£0.09  0.31£0.08 0+0 0.28+0.13  0.32+0.1 0.36+0.13
unipolar depression 0.33£0.06 ~ 0.32+0.07  0.11+£0.04 0.23£0.05 0.04+0.03 0.28+0.07 0.34+0.07 0.33+0.07

Table 6: Benchmarking results on 22 Open Targets gene lists originated from drug studies. The left half of the table are the
results for the Top 100 Normalized score. Bolded cells indicate the best performing method for that scoring metric. ADAGIO
outperforms in 15 of the 22 disease gene lists for the Top 100 Metric.

Top 100
ADAGIO SVM EGAD DADA gm mc RWR GLIDE Reweighted

allergy 0.09£0.06 0.04+0.04  0.03+0.04  0.03£0.03 0+0 0.09£0.06 0.09+0.06 0.09+0.06
Alzheimer’s disease 0.12+£0.07  0.05+0.05 00 0.01£0.02 0+0.01 0.04£0.05  0.15+0.06 0.14+0.06
arthritis 0.1+0.03  0.02+0.02  0.05+0.03  0.02+0.02 0+0.01 0.09£0.03  0.09+0.03  0.08+0.03
asthma 0.08+0.06  0.01£0.02  0.01+0.02  0+0.01 0+0 0.18+0.09  0.1£0.05 0.08+0.04
bipolar disorder 0.06+0.04  0.02+0.02  0.04+0.06  0.02+0.02 0+0 0.08£0.06 0.06+0.03  0.05+0.03
cardiac arrhythmia 0.46+0.11  0.52+0.06 0.33+0.16  0.47+0.13 0.02£0.02 0.43+0.15  0.44%0.11  0.46+0.11
chronic obstructive pulmonary disease | 0.04+0.03  0.01+0.01  0+0 0.01+0.01  0+£0.01 0.05+0.07 0.04£0.03  0.04+0.03
coronary heart disease 0.08+0.04 0.04£0.05  0.04+0.04  0.05%0.04 0£0.01 0.05£0.04  0.07+£0.04  0.06+0.03
drug dependence 0.07£0.03  0.05+0.04  0.01£0.01  0.06£0.05 0+0.01 0.04£0.03  0.05+0.03  0.08+0.04
hypertension 0.09£0.04  0.03+0.03  0.04+0.02  0.03+0.02 0+0 0.06£0.04  0.11+0.04  0.12+0.04
multiple sclerosis 0.06+0.03 0.05+0.03  0.03+0.03  0.04+0.02 0+0.01 0.06£0.04 0.05+0.03  0.05+0.03
obesity 0.07+0.03  0.07£0.04  0.17£0.09 0.05:0.03 0+0 0.12£0.06  0.07+0.03  0.08+0.04
Parkinson’s disease 0.01£0.01  0.01£0.01  0.01+0.01  0.01%£0.01 0+0 0.02+0.01  0.02+0.02 0.02+0.02
psoriasis 0.08£0.04 0.02+0.02  0.02+0.02  0.01£0.02 0+0 0.05£0.03  0.08+0.04 0.07+0.04
rheumatoid arthritis 0.13+0.04  0.04£0.03  0.06+0.05  0.05£0.03 0.01£0.01 0.12+0.04  0.14+0.04 0.12+0.03
schizophrenia 0.02+0.03  0.03£0.04  0+0.01 0.03£0.04 0+0 0.09£0.06 0+0.01 0.01+0.03
stroke 0.04+0.02 0.01+0.02  0.02+0.02  0.01+0.02 0+0.01 0.02£0.02  0.04+0.02 0.03+0.02
systemic lupus erythematosus 0.14+0.08 0.04+0.05  0.01+0.02  0.03%£0.05 0%0 0.13£0.07  0.13+0.07  0.12+0.08
type I diabetes mellitus 0.21£0.07  0.09+0.07  0.04+0.06  0.06+0.04 0+0 0.21£0.09  0.21+0.08  0.24+0.1
type II diabetes mellitus 0.05+0.03 0.01£0.02  0.01+0.01  0.02+0.02 0+0 0.04£0.05  0.05+0.04 0.05+0.04
ulcerative colitis 0.15+0.08  0.05+0.05  0.06+0.05  0+0.01 0+0 0.14£0.08  0.17+0.08 0.15+0.08
unipolar depression 0.09+0.05 0.08+0.03  0.05+0.04  0.07£0.03 0+0.01 0.08+£0.05  0.08+0.05  0.1£0.05

Table 7: Benchmarking results on 22 Open Targets gene lists originated from GWAS studies. The left half of the table are the
results for the Top 100 Normalized score. Bolded cells indicate the best performing method for that scoring metric. ADAGIO
outperforms in 8 of the 22 disease gene lists for the Top 100 Metric.
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(a) Top 250 Normalized score for Parkinson’s with ADAGIO,
Dada, RWR, and SVM where random edges were introduced into
the benchmark network. Edge addition of 0 indicates the origi-
nal network
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(c) Top 250 Normalized score for Alzheimer’s with ADAGIO,
Dada, RWR, and SVM where random edges were introduced into
the benchmark network. Edge addition of 0 indicates the origi-
nal network
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(b) Top 250 Normalized score for Parkinson’s with ADAGIO,
Dada, RWR, and SVM where random edges were removed from
the benchmark network while maintaining a spanning tree.
Edge removal of 0 indicates the original network
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(d) Top 250 Normalized score for Alzheimer’s with ADAGIO,
Dada, RWR, and SVM where random edges were removed from
the benchmark network while maintaining a spanning tree.
Edge removal of 0 indicates the original network

Figure 2: Top 250 Normalized Scores when simulating network noise on Alzheimer’s Disease and Parkinson’s Disease on the
drug gene list. Figure 2c and 2a examines noise when adding edges, and figure 2d 2b examines noise when removing edges. We
find that ADAGIO is robust to missing edges and edge addition. Many of the comparable methods are not as robust as ADAGIO

to edge addition as seen in Tables 2c,2a

gene list, however, shows that W (k) has a sharp rise and fall at
k =~ 0, but starts growing again when k > 150.

The graphs in Figures 3¢ and 3d show the variations of W (k) with
k, with only DADA and RWR used as the competing algorithms.
ADAGIO, DADA, and RWR are all similar to one another given that
they all rely on RWR to function. We see that for drug gene lists
on Alzheimer’s the ratio of novel genes is effectively zero until we
reach k = 70 where it spikes to 10% after which falling to 4%. In
Parkinson’s disease we see even less of a spike. When we compare
against figures 3a and 3b it becomes clear that ADAGIO is able to
pick up genes in the DADA list. Our results in Table 6, however,
show that DADA consistently performs on par with RWR. We
hypothesize that despite having similar gene predictions, DADA
struggles with finding genes that are higher in degree that are not
hub genes.

4.6.1 Case Analysis: Parkinson’s and Alzheimer’s Disease. We now
take a deeper look into genes that meet the criteria for novel witness
by ADAGIO.

KCNC3 ranks highly among the top 15 genes witnessed by ADA-
GIO in Parkinon’s disease on the GWAS Open Targets gene list.
KCNC3 allows ions to pass over neural membranes in response
to voltage differences across the membrane; this helps with the
recovery of deactivated sodium channels [13]. Two variations of a
mutant KCNC3 both result in nonfunctional channels, one affect-
ing the amino acid that detects a change in membrane potential,
and the other decreasing the channel’s ability to open and close
its pores in response to voltage sensory information [26]. Alter-
ations in the function of these potassium channels are linked with
neurodegenerative diseases such as Parkinson’s [26].

Another gene that appears ranked highly in Tables 8a,8b, and 8c
is STBD1. STBD1 regulates glycophagy and intracellular glycogen
transport [22]. Although STBD1 is not explicitly related to brain
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(d) Ratio of Novel Genes as a function of k for Parkinson’s us-
ing ADAGIO compared to the gene lists produced by RWR, and
DADA

Figure 3: Graphs of the ratio of novel genes as predicted by ADAGIO, where figure 3a, and figure 3b compares ADAGIO to
RWR, SVM and EGAD for Alzheimer’s and Parkinson’s disease. Figures 3c and 3d do the same analysis comparing ADAGIO

to RWR and DADA

function, literature evidence shows that metabolic activity is closely
related with aging and neurodegenerative diseases [1, 12]. In partic-
ular experimental evidence [12] shows that mutations STBD1 im-
pair regulatory interactions with ATGS8, a well known marker [15]
for Parkinson’s. Additionally, GWAS studies claim that there is
significant evidence for the effects of STBD1 on Parkinson’s [24].
KLK6 and ATG4 are both among the top 15 novel genes witnessed
by ADAGIO on the Open Targets GWAS and the Open Targets drugs
gene lists for Alzheimer’s disease, respectively (Tables 8b, 8a).
Many studies [3, 17] find strong evidence for correlation between
the presence of KLK6 in the brain and Alzheimer’s disease. Mitsui
et al. [17] found a significant positive correlation between aging

and KLK6 levels; the same study found that the concentration of
this protein in Alzheimer’s patients was significantly depleted. The
study concluded that KLK6 is an important aging protein and that
its absence in older patients is correlated with the presence of
Alzheimer’s. Other sources [3] corroborate this; one finds that this
difference in KLK6 levels between Alzheimer’s patients and controls
is most significant in the frontal cortex of the brain.

The presence of Amyloid-f plaques is a common feature of
Alzheimer’s [11], and a significant body [5] of research targets
understanding the proteins that contribute to Amyloid-f plaque
formation. According to Barnett et al. [5], Amyloid-f plaques are a
result of the buildup and subsequent rupture of autophagosomes.
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Gene ADAGIO RWR EGAD SVM Degree Gene ADAGIO RWR EGAD SVM Degree
ARHGEF9 32 1342 3306 10345 1 SLC6A2 25 117 2511 3021 2
ATG4A 33 824 9127 10262 4 SLC6A4 26 118 3760 3022 2
GIMAP6 35 1922 11397 10662 1 SCN3A 33 95 4767 2631 3
STBD1 36 2454 2891 11600 1 SCN9A 35 99 10460 3473 2
CACNG5 50 137 248 1730 50 ARHGEF9 130 1413 3319 10256 1
ATG7 51 281 7811 300 12 ATG4A 131 904 9060 10173 4
RASGRF1 54 175 608 786 80 GIMAP6 133 1975 11292 10564 1
ATG4B 58 264 10470 8283 12 STBD1 134 2501 2910 11496 1
NROB2 61 182 212 158 54 ATG7 149 373 7761 353 12
CACNG1 64 663 1897 8945 62 ATG4B 156 356 10384 8225 12
THRA 67 167 280 451 75 CACNG1 162 750 1925 8872 62
CACNA2D1 82 655 1868 8812 62 CACNA2D1 180 743 1895 8745 62
TRPV1 111 2622 331 5837 10 SCNN1D 212 1106 9617 2976 18
SCNN1D 117 1027 9689 2947 18 CACNB1 254 720 1888 9840 65
CACNB1 159 632 1861 9925 65 KLK6 258 5769 5920 4981 1

(a) Top 15 Novel Genes as witnessed by ADAGIO on the (b) Top 15 Novel Genes as witnessed by ADAGIO on the

Open Targets drugs gene list for Alzheimer’s Disease, not Open Targets GWAS gene list for Alzheimer’s Disease,

witnessed by RWR, SVM, EGAD, and their ranks, with not witnessed by RWR, SVM, EGAD, and their ranks,

degree of the genes annotated. with degree of the genes annotated.

Gene ADAGIO RWR EGAD SVM Degree

SLC39A1 16 2073 56006 8383 1

SLC39A2 17 1891 4964 8382 1

SCNN1B 30 83 229 316 28

CACNG4 45 125 179 4266 60

ARHGEF9 53 1282 2744 8927 1 Gene ADAGIO RWR EGAD SVM Degree
ATG4A 62 802 8934 8179 KCNC3 7 36 39 56 41
CACNGI1 64 358 453 9068 62 KCNA7 9 40 38 45 41
RASGRF1 66 169 286 386 80 SLC39A1 140 2206 5714 8485 1
GIMAP6 67 1875 11352 10023 1 SLC39A2 141 2024 5071 8484 1
STBD1 68 2395 2307 10231 1 ARHGEF9 198 1420 2858 9026 1
CACNA2D1 72 340 325 9014 62 ATG4A 207 943 9024 8281

ATG7 98 522 7541 305 12 CACNG1 209 501 533 9167 62
CACNB1 105 328 352 7315 65 GIMAP6 212 2008 11441 10116 1
ATG4B 112 509 10360 5979 12 STBD1 213 2527 2421 10323 1
CACNG6 151 365 330 8992 60 ATG4B 257 651 10447 6090 12

(c) Top 15 Novel Genes as witnessed by ADAGIO on the
Open Targets drugs gene list for Parkinson’s Disease, not
witnessed by RWR, SVM, EGAD, and their ranks, with
degree of the genes annotated.

(d) Top 10 Novel Genes as witnessed by ADAGIO on the
Open Targets GWAS gene list for Parkinson’s Disease,
not witnessed by RWR, SVM, EGAD, and their ranks,
with degree of the genes annotated.

Table 8: Tables of gene’s witnessed by ADAGIO that are not witnessed by RWR, SVM, and EGAD. The ranks of each gene within
their corresponding gene list is annotated, alongside the degree of the gene within the network. Tables 8a, 8b look at novel
genes in the Alzheimer’s gene lists. Tables 8c, 8d look at novel genes in the Parkinson’s gene lists. In particular we note that
ADAGIO is able to find mostly genes that are not just hub genes but genes with degree less than 20 which other methods are
not able to discover.

5 DISCUSSION

We have presented ADAGIO, a new disease gene prioritization al-
gorithm that does well against previous methods in a 22 disease
benchmark. Additionally, we have investigated some of the novel
genes that ADAGIO finds in two of the brain diseases in greater
depth, namely Alzheimer’s and Parkinson’s diseases. One direction

ATG4 regulates the buildup of these autophagosomes [22]; when
ATG4 is inhibited (for example, by reactive oxidative species (ROS)),
autophagosomes accumulate.
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Figure 4: Graphical description of the Witness measure, cap-
turing novelty in the difference between two gene lists as
produced by prioritization algorithms.

for future work might be to instead consider tissue-specific net-
works [16] that consider the level of gene expression in, for example,
brain tissue, to modify the edge weights. We tried something very
simple, scaling edges down by an exponential factor depending on
whether or not either gene connected by the edge was brain related.
Results were underwhelming; a more sophisticated analysis with
different types of brain cells would be necessary to take advantage
of this kind of context.

The benchmark regime we used in this paper is most appropri-
ate in cases that consider each disease independently. However,
beginning with PRINCE [25], there exists a growing body of work
(e.g. [6, 23]) that considers the known relationships between dis-
eases while performing gene prioritization. For example, it is known
that there is some overlap between some pathways involved in the
pathology of Alzheimer’s and Parkinson’s diseases. In future work
we would like to adapt ADAGIO to this setting.
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