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As traditional machine learning tools are increasingly applied to science and engineering 
applications, physics-informed methods have emerged as effective tools for endowing 
inferences with properties essential for physical realizability. While promising, these 
methods generally enforce physics weakly via penalization. To enforce physics strongly, 
we turn to the exterior calculus framework underpinning combinatorial Hodge theory and 
physics-compatible discretization of partial differential equations (PDEs). Historically, these 
two fields have remained largely distinct, as graphs are strictly topological objects lacking 
the metric information fundamental to PDE discretization. We present an approach where 
this missing metric information may be learned from data, using graphs as coarse-grained 
mesh surrogates that inherit desirable conservation and exact sequence structure from 
the combinatorial Hodge theory. The resulting data-driven exterior calculus (DDEC) may 
be used to extract structure-preserving surrogate models with mathematical guarantees 
of well-posedness. The approach admits a PDE-constrained optimization training strategy 
which guarantees machine-learned models enforce physics to machine precision, even for 
poorly trained models or small data regimes. We provide analysis of the method for a 
class of models designed to reproduce nonlinear perturbations of elliptic problems and 
provide examples of learning H(div)/H(curl) systems representative of subsurface flows 
and electromagnetics.

Published by Elsevier Inc.

1. Introduction

Network models of physical systems are ubiquitous throughout the sciences and engineering. The electronic circuit 
models typically learned in first year undergraduate physics may similarly be used to describe fluid, mechanical or 
heat transfer systems in corresponding hydraulic circuit, mass-spring-damper, or thermal circuit analogies, respectively 
[68,69,29,42,13,61,22,52]. Such network models represent discrete representations of conservation laws corresponding to 
classical control volume analysis and their physical properties are intricately tied to the underlying graph topology [60,7], 
allowing modeling of a number of thermodynamic principles [19]. In contemporary machine learning (ML), graph neural 
networks (GNNs) attach a more “black-box” message passing model to a network, inferring “object-relation”/causal rela-
tionships from unstructured data to obtain data representations and model pair-wise interactions [33–35,10,21]. Generally 
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however, applications of GNNs have not focused upon preserving physical structures in their network topology, although 
some recent works have considered how the interplay between microstructure and mechanics can be encoded via graphs 
[64].

In this work we present a framework to extract efficient data-driven network models which exactly preserve desirable 
mathematical structures of the underlying physics. The framework we introduce is general, but we focus on a particular 
application in which we assume access to high-fidelity data and aim to learn a low dimensional network as an efficient 
structure-preserving surrogate model. The resulting model bears similarities to reduced-order models (ROMs), however the 
control volume analysis pursued in the current approach may provide advantages in preserving structural properties that 
have proven challenging for the variational derivation underpinning ROMs [54,53].

Solutions of PDEs generally rely upon computational meshes partitioning space into disjoint curvilinear cells. The shared 
topological structure offered by both networks and meshes allow a unified analysis in terms of the exterior calculus. For 
PDEs, the discrete exterior calculus (DEC) and related spatially compatible discretizations encapsulate a range of so-called 
mimetic discretizations providing discrete solutions mimicking physical properties of the continuous problem [27,4,3,16]. 
These methods generally preserve conservation properties and spectral representations of operators, provide a coordinate-
free means of prescribing physics on manifolds, and allow handling of the non-trivial null-spaces required in electromag-
netics. In topological data analysis, combinatorial Hodge theory has emerged as a tool for analyzing flows on graphs along 
with their spectral and homological properties, e.g., [47,39,46,8,11,45,59,63]. These techniques are supported by a graph 
calculus providing generalizations of gradient, curl, and divergence operators admitting interpretation as discrete exterior 
derivatives. As graphs are purely topological however, this graph calculus lacks any metric information, and the operators 
do not converge in a meaningful way to the familiar vector calculus necessary to model physical systems.

The key observation of the current work is that one may exploit the shared structure of graphs and meshes and use 
data to endow the graph calculus with “missing” metric information, in the process learning a data-driven exterior calculus 
(DDEC). Conservation laws are encoded onto the graph via trainable div/curl operators satisfying a Stokes theorem, while 
“black-box” DNNs may parameterize fluxes. This guarantees that the mathematical structures related to conservation and 
exact sequence properties are independent of the errors incurred during training. Consequently, this allows us to prove a 
number of properties of the resulting model, independent of the quantity of available data or particular local minimizer 
found during training.

The incorporation of physical principles into scientific machine learning tasks has surged in recent years, as it has be-
come apparent that “off-the-shelf” ML tools often fail to provide robust predictions for science and engineering applications 
[6]. Physics-informed approaches, and in particular physics-informed neural networks (PINNs), have achieved a range of suc-
cesses by introducing regularizers that penalize deviations from physical properties [56,55,44]. While simple to implement 
and effective for a range of problems, physics in these cases are only enforced to within optimization error and may hold 
to a relatively coarse tolerance (for open problems regarding their training, see e.g. [65,67]). Some applications however 
require constraints to hold to machine precision; e.g. in electrodynamics it is critical that the solenoidal constraint hold 
to machine precision to handle the involution condition [9,26], and in forward modeling contexts compatible/mimetic dis-
cretizations provide approximations guaranteeing such properties hold by construction [70,49,17,14]. We therefore propose 
that the current work constitutes structure-preserving machine learning imposing physics strongly, in contrast to physics-
informed machine learning which imposes physics weakly. Later in the manuscript, we will see that encoding physics via 
exterior calculus resolves many issues with PINNs [65,67,30]: conservation and exact sequence structure is preserved to 
machine precision; learning physics as a black-box perturbation of a Hodge-Laplacian allows a simple stability theory and 
discovery of physics without assuming a priori model form; well-posedness allows rigorous application of equality con-
strained optimizers, eliminating problematic calibration of penalty parameters; for problems with non-trivial null-spaces 
a discrete Hodge decomposition allows rigorous imposition of gauge conditions; non-oscillatory solutions are obtained in 
the presence of material discontinuities; hyperparameters are eliminated from training, apart from learning rate; and for 
linear elliptic problems, data is reproduced to machine precision. While the simplicity of PINNs makes them a powerful 
tool for inverse problems, particularly in combination with operator regression [20,66], problems such as electromagnetism 
and magnetohydrodynamics mandate a structure-preserving approach. The current work therefore targets a separate class 
of problems inaccessible to existing physics-informed approaches.

1.1. Paper organization

We first recall necessary exterior calculus fundamentals before introducing our data-driven exterior calculus. While the 
theory is abstract, we focus on applying it to learn nonlinear perturbations of div − grad and div − curl model problems as 
canonical examples of physics requiring structure preservation. We next provide numerical analysis, establishing conditions 
under which the learned model has a unique solution. We establish that the data-driven exterior calculus inherits the desir-
able properties of the graph calculus and use them to analyze the well-posedness of a class of nonlinear elliptic problems. 
A necessary implementation question is how to obtain a graph to define the model upon. We provide a specific example 
considering coarse-graining of a high-fidelity mesh, associated with either a finite element simulation or histograms binning 
experimental data, and show how the relevant commuting diagrams are preserved under coarsening. Next, we introduce 
a PDE-constrained optimizer to fit the model to data, allowing enforcement of physics exactly via equality constraint. The 
numerical analysis implies that the forward problem associated with the equality constraint is always well-posed given mild 
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conditions on the architecture. Finally, we provide several numerical results which validate the analysis for canonical elliptic 
problems involving scalar and magnetic diffusion which mandate compatibility, demonstrating how one may learn efficient 
physics-preserving surrogates from high-fidelity data.

2. The graph exterior calculus

We recall first the graph calculus, which serves as the foundation for DDEC. Let N = {ni}NN
i=1 denote a set of nodes. We 

embed N in Rd by associating with each node a unique position pi ⊂ Rd , i ∈ 1, . . . , NN . We define a k-clique as an ordered 
tuple consisting of k nodes, i.e. tk = [n1, ..., nk]. A k-clique has positive orientation if π = {i1, ..., ik} is an even permutation 
of {1, ...,k} and negative otherwise. Via the embedding of the graph, we may associate with each k-clique the (k − 1)-
simplex defined as the convex hull of the vertices sk = [p1, ..., pk], for which the k ≤ d distinct points span a k-dimensional 
hyperplane. A k-chain ck may then be defined as a linear combination of (k+1)-cliques, and we denote the set of k-chains 
by Ck . One may introduce a boundary operator ∂k : Ck+1 → Ck defined via

∂k[n1, ...,nk] =
k∑
i

(−1)i−1[n1, ...,ni−1, n̂i,ni+1,nk], (1)

where ·̂ denotes an omitted entry, and which satisfies the property ∂k−1 ◦ ∂k = 0. When the dependence upon k is clear, we 
will sometimes write the coboundary simply as ∂ - we will adopt this convention for similar operators throughout. With 
these definitions in hand we may finally introduce the chain complex as the following exact sequence pairing k-chains and 
boundary operators.

C0 C1 . . . Cd
∂0 ∂1 ∂d−1

(2)

with the standard convention that ∂−1 maps C0 to the empty set.
Note that in this graph context, the specific realization of the chain complex may be qualitatively different from the 

DEC setting. Traditionally in compatible discretizations, the complex is realized by partitioning the domain of interest into a 
collection of disjoint simplices to obtain Cd , and then deriving lower dimensional mesh entities Ck , k < d via the boundary 
operator. In contrast, for the graph setting one may obtain overlapping simplices, in the sense that given unique tk, t′k ∈ Cl , 
tk ∩ t′k 
= ∅. We will later discuss details regarding specific choice of chain complex, but for now keep the presentation 
abstract.

We next associate real numbers with the graph entities constituting the chain complex. For each set of chains Ck , we 
introduce the dual set of cochains Ck consisting of linear functionals acting on Ck . Given φ ∈ Ck , we denote the value 
associated with the k-chain ti1 i2...ik via the shorthand φi1 i2...ik := φ(ti1 i2...ik ). Note that cochains inherit the orientation of the 
underlying chains, e.g. φi j = −φ ji via the definition of π . Introducing the coboundary operator δk : Ck → Ck+1, we next arrive 
at the following cochain complex

C0 C1 . . . Cdδ0 δ1 δd−1
(3)

We will formally denote the pairing between boundary and coboundary operators via the inner product

〈φ, ∂kt〉 = 〈δkφ, t〉. (4)

In the traditional DEC setting, one would arrive at a definition of the coboundary via the generalized Stokes theorem, defined 
by the dual pairing of δk and ∂k via 

∫
∂ω w = ∫

ω δw . In the graph setting, we identify δk algebraically as the adjoint of the 
matrix representing ∂k . For example, this gives rise to the following combinatorial gradient, assigning to the 2-clique ti j the 
function

δ0φi j = φ j − φi . (5)

Similarly we may obtain the combinatorial curl by assigning to the 3-clique ti jk the function

δ1φi jk = φi j + φ jk + φki . (6)

One may easily see that δ1 ◦ δ0 = 0. For the purposes of this work, we will not require δk for k > 1, however the definition 
extends naturally to 1 < k ≤ d, and one may show that δk ◦ δk−1 = 0. In this manner, the coboundary operator inherits the 
exact sequence property of the boundary operator.

We next let (·, ·)k denote an inner product mapping Ck × Ck → R. This inner product induces a codifferential operator
δ∗
k : Ck+1 → Ck via the pairing (v, δ∗

k u)k = (δkv, u)k+1. In this manner, the careful choice of (·, ·)k will endow the codif-
ferential with desirable approximation properties, however we note that independent of the choice of inner products the 
3
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codifferential again inherits the exact sequence properties of the coboundary operator so that δ∗
k−1 ◦ δ∗

k = 0. This follows 
trivially from the definition, so that for all v ∈ Ck−2 and all u ∈ Ck

(v, δ∗
k−1δ

∗
k u)k−2 = (δk−1v, δ∗

k u)k−1 = (δkδk−1v,u)k = 0. (7)

Finally, we will contrast how the choice of inner product typically used in the graph exterior calculus precludes the use 
of graph boundary/coboundary operators in discretizing PDE. In the graph context, one selects as (·, ·)k the �2 inner-product:

(x, y)k = (x, y) :=
dim(Ck)∑

i=1

xi yi, (8)

and its induced norm is denoted by ‖ · ‖k . In this case, the codifferential δ∗
k may be identified as the transpose of the matrix 

associated with the coboundary δk . For the remainder of this work, we will assume �2 inner products in the definition of 
the codifferential unless otherwise specified, so that δ∗

0 and δ∗
1 correspond to the graph divergence and curl.

Besides the properties that δk ◦ δk−1 = 0 and δ∗
k−1 ◦ δ∗

k = 0, the Hodge-Laplacian is defined as follows

Lk = δk−1δ
∗
k−1 + δ∗

k δk. (9)

From the combinatorial Hodge theorem, the combinatorial Laplacian decomposes the space Ck as follows

Ck = im(δk−1)
⊕

ker(Lk)
⊕

im(δ∗
k ), (10)

which is the Hodge decomposition [28]. One direct consequence of the Hodge decomposition (10) is the following Poincaré 
inequalities,

‖zk‖k ≤ c‖δkz‖k+1, zk ∈ im(δ∗
k ),

‖zk‖k ≤ c∗‖δ∗
k−1zk‖k−1, zk ∈ im(δk−1).

Here c and c∗ are Poincaré constants which depend upon the topological structure of the graph. Another consequence of 
the Hodge decomposition (10) is that the Hodge Laplacian Lk is positive semidefinite and the dimension of the null space 
is equal to the dimension of the homology ker(δk)/ im(δk−1). This implies the invertibility of the Hodge Laplacian Lk on the 
orthogonal complement of the null space.

In the next section, we will introduce a data-driven exterior calculus and establish analogues of these properties.

3. The data-driven exterior calculus

We now parameterize these graph calculus operators in a manner which allows recovery of traditional DEC schemes 
for PDE discretizations as a specific instance. We consider the de Rham complex as a prototypical means of analyzing 
structure-preserving differential operators in Rd , and seek to develop its discrete approximation on a graph. In general the 
construction presented here may be used to approximate any exact sequence: we restrict our presentation to the de Rham 
complex as a single example to support later discretization of PDEs in Rd . In three dimensions, the de Rham complex for 
� ∈ R3 is given by

C∞(�) [C∞(�)]3 [C∞(�)]3 C∞(�)
grad

div∗
curl

curl∗
div

grad∗ (11)

Here, coboundary operators grad, curl, and div satisfying curl◦ grad = div◦ curl = 0; codifferential operators div∗ , curl∗ , 
and grad∗ satisfying curl∗ ◦ grad∗ = div∗ ◦ curl∗ = 0. To support later two-dimensional examples, we will also consider the 
restriction to two dimensions � ∈ R2.

C∞(�) [C∞(�)]2 C∞(�)
curl

curl∗
div

grad∗ (12)

For completeness, we recall the alternate complex in R2

C∞(�) [C∞(�)]2 C∞(�)
grad

div∗
curl

curl∗
. (13)

In this work however, we consider only (12) as the natural complex to obtain conservation properties.
4
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3.1. Data-driven coboundaries and codifferentials

Considering the general case where � ⊂ Rd , we define new coboundary and codifferential operators by associating 
learnable metric information with the graph operators as follows,

dk := Bk+1δkB
−1
k , and d∗

k = D−1
k δ∗

kDk+1. (14)

Here, Bk and Dk denote a diagonal tensor with positive entries weighting corresponding elements of Ck . These tensors 
are understood to encode metric information; in traditional DEC/covolume discretizations of PDEs, the diagonal entries 
correspond to oriented measures of mesh entities (e.g. lengths, areas, volumes) [50,51]. In this work, we treat these terms 
as abstract measures which may be learned from data. Positivity of entries may be implemented in several ways; we choose 
to parameterize each diagonal entry as the square of a trainable parameter.

For example, in R3, we have

GRAD = B1δ0B
−1
0 CU RL = B2δ1B

−1
1 DIV = B3δ2B

−1
2 (15)

DIV ∗ = D−1
0 δ∗

0D1 CU RL∗ = D−1
1 δ∗

1D2 GRAD∗ = D−1
2 δ∗

2D3 (16)

In R2, we have

CU RL = B1δ0B
−1
0 , DIV = B2δ1B

−1
1 , (17)

CU RL∗ = D−1
0 δ∗

0D1, GRAD∗ = D−1
1 δ∗

1D2, (18)

Here, we denote discrete graph operations in capital letters, and use lower case for continuum counterparts. These metric 
tensors naturally induce the following chain maps,

C0 C1 C2 C3 · · · Cd

C0 C1 C2 C3 · · · Cd

C0 C1 C2 C3 · · · Cd

d0 d1 d2 d3 dd−1

δ0

B0

δ∗
1

δ1

B1

δ∗
2

δ2

B2

δ∗
3

δ3

B3

δ∗
d−1

δd−1

δ∗
d

Bd

D0 D1

d∗
0

D2

d∗
1

D3

d∗
2 d∗

3 d∗
d−1

Dd

(19)

Based on the definitions (15) and (16), it is easy to verify that the diagram (19) is commutative, i.e.,

Bk+1δk = dkBk, and D−1
k δ∗

k = d∗
kD

−1
k+1.

In R3, we have,

B1δ0 = GRADB0, B2δ1 = CU RLB1, B3δ2 = DIV B2,

and

δ∗
0D

−1
0 = DIV ∗D−1

1 , D−1
1 δ∗

1 = CU RL∗D−1
2 , D−1

2 δ∗
2 = GRAD∗D−1

3 .

And in R2, similarly, we have

B1δ0 = CU RLB0, B2δ1 = DIV B1,

and

δ∗
0D

−1
0 = CU RL∗D−1

1 , D−1
1 δ∗

1 = GRAD∗D−1
2 .

Theorem 3.1. The discrete derivatives dk in (14) form an exact sequence if the simplicial chain complex (Ck, δk) is exact, and in 
particular dk+1 ◦ dk = 0.

Proof. Because (19) is a commutative diagram, the chain maps take cycles to cycles and boundaries to boundaries. There-
fore, if the simplicial complex is exact, then (15) forms an exact sequence. Moreover, dk+1 ◦ dk = 0 can be verified by the 
definitions (14). �
Remark 3.1. In R3, we have CU RL ◦ GRAD = DIV ◦ CU RL = 0. And in R2, we have DIV ◦ CU RL = 0.
5
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Theorem 3.2. The discrete derivatives d∗
k in (14) form an exact sequence if the simplicial cochain complex (Ck, dk) is exact, and in 

particular d∗
k ◦ d∗

k+1 = 0.

Proof. The conclusion follows from the fact that (19) is commutative and the definitions (14). The proof is essentially the 
same as the proof of Theorem 3.1 �
Remark 3.2. In R3, we have DIV ∗ ◦ CU RL∗ = CU RL∗ ◦ GRAD∗ = 0. And in R2, we have CU RL∗ ◦ GRAD∗ = 0

We will refer to this collection of operators as a data-driven exterior calculus, with the understanding that the metric 
information encoded in Bk and Dk will be learned from data. Note that in the traditional low-order compatible/mimetic 
schemes, these metric tensors contain geometric information related to the oriented measures of mesh entities, such as cell 
volumes, face moments, etc. [1]. Following from the exact sequence property, this exterior calculus structure inherits the 
following other properties of the graph calculus.

Naturally, based on the Hodge Laplacians (9) and (19), we can define generalized data-driven Hodge-Laplacians as follows,

	k = dk−1d∗
k−1 + d∗

kdk

For example, for practical applications, we consider the following Hodge-Laplacians in R2:

	1 := CU RL ◦ CU RL∗ + GRAD∗ ◦ DIV

	2 := DIV ◦ GRAD∗.

The Hodge decomposition (10) also can be generalized naturally. Here, we choose 〈v, w〉k := (v, w)DkB
−1
k

= (DkB
−1
k v, w)

and denote its induced norm as 
∥∥∣∣·∥∥∣∣k .

Theorem 3.3 (Hodge Decomposition). For Ck, the following decomposition holds

Ck = im(dk−1)
⊕

k
ker(	k)

⊕
k
im(d∗

k ), (20)

where 
⊕

k means the orthogonality with respect to the 〈·, ·〉k-inner product.

Proof. Since (19) is a commutative diagram, following from the Hodge decomposition (10), Ck can be naturally decomposed 
into three parts, im(dk−1), im(d∗

k ), and ker(	k). Next we show this decomposition is orthogonal with respect to the 〈·, ·〉k-
inner product. For uk−1 ∈ Ck−1 and uk+1 ∈ Ck+1, we have

〈dk−1uk−1,d∗
kuk+1〉k

= (Bkδk−1B
−1
k−1uk−1,D

−1
k δ∗

kDk+1uk+1)DkB
−1
k

= (δk−1B
−1
k−1uk−1, δ

∗
kDk+1uk+1)

= (δkδk−1B
−1
k−1uk−1,Dk+1uk+1)

= 0

For hk ∈ ker(	k), we have d∗
k−1hk = 0 and dkhk = 0, which implies δ∗

k−1Dkhk = 0 and δkB−1
k hk = 0. And then for uk−1 ∈ Ck−1,

〈dk−1uk−1,hk〉k
= (Bkδk−1B

−1
k−1uk−1,hk)DkB

−1
k

= (Dkδk−1B
−1
k−1uk−1,hk)

= (B−1
k−1uk−1, δ

∗
k−1Dkhk)

= 0.

On the other hand, for uk+1 ∈ Ck+1, we have

〈d∗
kuk+1,hk〉k

= (D−1
k δ∗

kDk+1uk+1,hk)DkB
−1
k

= (B−1δ∗Dk+1uk+1,hk)
k k

6
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= (Dk+1uk+1, δkB
−1
k hk)

= 0.

Thus, the decomposition is orthogonal with respect to the 〈·, ·〉k-inner product, which completes the proof. �
For example, in R3, we have the following Hodge decomposition when k = 1,

C1 = im(GRAD)
⊕

k
ker(	1)

⊕
k
im(CU RL∗),

and when k = 2

C2 = im(CU RL)
⊕

k
ker(	2)

⊕
k
im(GRAD∗).

In R2, we have the following Hodge decomposition when k = 1

C1 = im(CU RL)
⊕

k
ker(	1)

⊕
k
im(GRAD∗).

Based on the Hodge decomposition, we have the following Poincaré inequality.

Theorem 3.4 (Poincaré inequality). For each k, there exists a constant cP ,k such that∥∥∣∣zk∥∥∣∣k ≤ cP ,k
∥∥∣∣dkzk∥∥∣∣k+1, zk ∈ im(d∗

k ),

and another constant c∗
P ,k such that∥∥∣∣zk∥∥∣∣k ≤ c∗

P ,k

∥∥∣∣d∗
k−1zk

∥∥∣∣
k−1, zk ∈ im(dk−1).

Thus, for uk ∈ Ck, we have

inf
hk∈ker(	k)

∥∥∣∣uk − hk
∥∥∣∣
k ≤ C

(∥∥∣∣dkuk
∥∥∣∣
k+1 + ∥∥∣∣d∗

k−1uk
∥∥∣∣
k−1

)
,

where constant C > 0 only depends on cP ,k and c∗
P ,k.

Proof. These inequalities are a direct consequence of the Hodge decomposition (20). �
Since we are considering matrix representation, by direct computation, we can see that

cP ,k = λmin(d
∗
kdk)

−1/2,

where λmin denotes the smallest non-trivial eigenvalue. For example, in R3, when k = 0,

cP ,0 = λmin(d
∗
0d0)

−1/2 = λmin(δ
∗
0D1B1δ0)

−1/2 = λmin(DIV ∗ ◦ GRAD)−1/2.

Note that

min
i

{(D1B1)ii}λ(δ∗
0δ0) ≤ λ(δ∗

0D1B1δ0) ≤ max
i

{(D1B1)ii}λ(δ∗
0δ0).

This implies

min
i

{(D1B1)ii}λmin(δ
∗
0δ0) ≤ c−2

P ,0 ≤ max
i

{(D1B1)ii}λmin(δ
∗
0δ0),

which relates the Poincaré constant with λmin(δ
∗
0δ0), also known as the Fielder value of the graph Laplacian L0 = δ∗

0δ0. 
Classical works provide bounds upon the Fiedler eigenvalue in terms of the size and degree of a given graph, see for 
example [23].

Another consequence of the Hodge decomposition (20) is the invertibility of the Hodge Laplacian 	k once we account 
for its kernel.

Theorem 3.5 (Invertibility of Hodge Laplacian). The kth-order Hodge Laplacian 	k is positive-semidefinite, with the dimension of its 
null-space equal to the dimension of the corresponding homology Hk = ker(dk)/ im(dk−1).
7
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Proof. For uk ∈ Ck , we have

〈	kuk,uk〉k
= ((Bkδk−1B

−1
k−1 D−1

k−1δ
∗
k−1Dk +D−1

k δ∗
kDk+1 Bk+1δkB

−1
k )uk,uk)DkB

−1
k

= ((Dkδk−1B
−1
k−1 D−1

k−1δ
∗
k−1Dk + B−1

k δ∗
kDk+1 Bk+1δkB

−1
k )uk,uk)

= 〈d∗
k−1uk,d∗

k−1uk〉k−1 + 〈dkuk,dkuk〉k+1

which shows that 	k is positive-semidefinite. The second part follows directly from the Hodge decomposition (20). �
Theorem 3.5 means that the following linear system of the Hodge Laplacian

	kuk = fk, (21)

is solvable as long as fk ∈ Ck is orthogonal to ker(	k) with respect to the 〈·, ·〉k-inner product.

3.2. Nonlinear perturbation of Hodge-Laplacian problems

In many cases, it is helpful to consider the mixed form of the Hodge-Laplacian problem (21) as it naturally provides 
connections to integral balance laws and conservation principles [5,2]. To this end, let us introduce a new variable wk−1 :=
d∗
k−1uk corresponding to a generalized flux, and the mixed form of (21) as follows,

wk−1 − d∗
k−1uk = 0, (22)

dk−1wk−1 + d∗
k dkuk = fk. (23)

This class of problems describes several canonical second-order elliptic operators; for example, in R2, for k = 2 we obtain 
the Darcy flow model

F+ κ∇φ = 0 → w1 − GRAD∗u0 = 0

∇ · F = f D IVw1 = f0,

and for k = 1 we obtain the magnetostatics model, after applying a vector potential for the magnetic field and applying a 
suitable gauge condition [15,18].

∇ × J = f → w0 − CU RL∗u1 = 0,

∇ · B = 0 CU RLw0 + GRAD∗ ◦ DIV u1 = f1.

J = μB

While this model form is appropriate for learning, e.g. diffusion coefficients corresponding to second-order elliptic prob-
lems, realistic problems require accounting for nonlinearities. With this in mind, we introduce a nonlinear perturbation 
of the fluxes while leaving the relevant conservation statements untouched. This preserves the exterior calculus structure 
while incorporating data into fluxes only, which are traditionally more empirical. Any parameterization may be used for the 
nonlinearities, but we consider deep neural networks. As a result, we obtain a nonlinear perturbation of a Hodge-Laplacian 
problem in the mixed form as follows,

wk−1 = d∗
k−1uk + εNN (d∗

k−1uk; ξ), (24)

dk−1wk−1 + d∗
k dkuk = fk, (25)

where NN : Rdim(Ck−1) → Rdim(Ck−1) denotes a vector of dim(Ck−1) neural networks parameterizing a black-box generalized 
flux. The parameter ε is introduced for notational convenience and may take a value of either 1 or 0 if one wishes to include 
or not include nonlinearity, respectively. The corresponding primal form is

	kuk + εdk−1 ◦NN (d∗
k−1uk; ξ) = fk (26)

Later in this section, we will theoretically show that when the second term is sufficiently small in an appropriate norm, the 
nonlinear problem (24) and (25) remains well-posed. First, let us look at some examples. In R2, when k = 2, we have

DIV ◦ GRAD∗u0 + εDIV ◦NN (GRAD∗u0; ξ) = f0

= 	0u2 + εDIV ◦NN (GRAD∗u0; ξ) = f0
8
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and when k = 1, we have

GRAD∗ ◦ DIV u1 + CU RL ◦ CU RL∗u1 + εCU RL ◦NN (CU RL∗u1; ξ) = f1,

= 	1u1 + εCU RL ◦NN (CU RL∗u1; ξ) = f1.

3.3. Well-posedness

Next we investigate the well-posedness of the perturbed Hodge-Laplacian problem (24)-(25). Consider the space V =
Ck/ ker(	k), we introduce the following weak formulation of (26),

a(uk,v) + ε〈NN (d∗
k−1uk),d∗

k−1v〉k−1 = 〈f,v〉k, v ∈ V , (27)

where

a(u,v) := 〈d∗
k−1u,d∗

k−1v〉k−1 + 〈dku,dkv〉k+1, ∀u, v ∈ V ,

and its induced norm is ‖u‖a := √
a(u,u) =

√∥∥∣∣d∗
k−1u

∥∥∣∣
k−1 + ∥∥∣∣dku∥∥∣∣2k+1. We assume Lipschitz continuity of the nonlinear 

perturbation, i.e. that there exists a constant LN > 0, such that,∥∥∣∣NN (vk−1) −NN (wk−1)
∥∥∣∣
k−1 ≤ LN

∥∥∣∣vk−1 −wk−1
∥∥∣∣
k−1, ∀vk−1, wk−1 ∈ Ck−1. (28)

In addition, we also assume that

NN (0) = 0, (29)

which means that the nonlinear perturbation reduces to a linear gradient closure in the limit as the gradient becomes small.
The main tool we use is the Leray-Schauder fixed point theorem [32]. We define T : V �→ V such that for each w ∈ V , 

ũ := T (w) ∈ V is given as the solution of the following linear problem,

a(̃u,v) + ε〈NN (d∗
k−1w),d∗

k−1v〉k−1 = 〈f,v〉k, ∀v ∈ V . (30)

The map T is clearly continuous and, therefore, compact in the finite dimensional space V . The solvability of (27) is thus 
equivalent to the solvability of the equation uk = T (uk) in V , which is a fixed point problem.

If λ > 0 and w satisfies T (w) = λw, then

λa(w,v) + ε〈NN (d∗
k−1w),d∗

k−1v〉k−1 = 〈f,v〉k, ∀v ∈ V .

By choosing v = w, we obtain

λ‖w‖2a ≤ ‖f‖−a‖w‖a + ε
∥∥∣∣NN (d∗

k−1w)
∥∥∣∣
k−1

∥∥∣∣d∗
k−1w

∥∥∣∣
k−1,

after application of the inequality (f, w)k ≤ ‖f‖−a‖w‖a , which follows directly from the definition of the negative norm, i.e., 

‖f‖−a = sup
v∈V

〈f,v〉k
‖v‖a . By the Lipschitz continuity assumption (28) and assumption (29), we have

∥∥∣∣NN (d∗
k−1w)

∥∥∣∣
k−1 = ∥∥∣∣NN (d∗

k−1w) −NN (0)
∥∥∣∣
k−1 ≤ LN

∥∥∣∣d∗
k−1w

∥∥∣∣
k−1.

Using the fact that 
∥∥∣∣d∗

k−1w
∥∥∣∣
k−1 ≤ ‖w‖a , we have

λ‖w‖2a ≤ (‖f‖−a + εLN‖w‖a)‖w‖a,
therefore,

λ ≤ ‖f‖−a + εLN‖w‖a
‖w‖a .

Thus, λ < 1 holds true for any w being on the boundary of the ball in V centered at the origin with radius

ρ ≥ ‖f‖−a

(1 − εLN )
.

Consequently, the Leray-Schauder fixed point theorem implies that the nonlinear map T has a fixed point in any ball 
centered at the origin with radius ρ ≥ ‖f‖−a . This fixed point is a solution of the equation (27).
(1−εLN )

9
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Theorem 3.6. Assume (28) and (29) hold. If εLN < 1, the equation (27) has an unique solution uk ∈V satisfies

‖uk‖a ≤ ‖f‖−a

(1− εLN )
. (31)

Proof. The existence has been discussed before the theorem. Let uk be the solution and v = uk in (27), we have

‖uk‖2a ≤ (‖f‖−a + εLN‖uk‖a)‖uk‖a,
which implies (31).

Next we prove uniqueness of (27) under the same assumptions. Let uk and ūk be two solutions of (27). Denoting 
e = uk − ūk , we have,

a(e,v) + ε〈NN (d∗
k−1uk),d∗

k−1v〉k−1 − ε〈NN (d∗
k−1ūk),d∗

k−1v〉k−1 = 0.

Letting v = e and using the Lipschitz continuity (28), we arrive at,

‖e‖2a ≤ εLN
∥∥∣∣d∗

k−1e
∥∥∣∣2
k−1 ≤ εLN‖e‖2a

which implies the uniqueness of the solution since εLN < 1. This completes the proof. �
We finally consider design of an architecture which satisfies this condition to ensure the extracted model is solvable, 

considering multilayer perceptrons as canonical architectures [57].

Remark 3.3. In our implementation, we consider a component-wise defined neural net which has the following structure

NN (x) :=
⎛⎜⎝NN 1(x1)

...

NN n(xn)

⎞⎟⎠ , NN i(xi) = ψ i
Li

◦ T i
Li

◦ · · · ◦ ψ i
1 ◦ T i

1(xi)

where T i
�(x

i
�) := Mi

�x
i
� + bi

� is an affine function and ψ i
� is a nonlinear activation function. If we assume ψ i

� are ci�-Lipschitz 
nonlinear functions (e.g., ReLU, Leaky ReLU, tanh, and sigmoid are 1-Lipschitz functions) and define N i

�(xi) := T i
� ◦ ψ i

�−1 · · · ◦
ψ i

1 ◦ T i
1(xi), then the Lipschitz constant LN (28) of NN can be estimated as follows,

LN ≤ sup
x∈Rn

∥∥∣∣∇NN (x)
∥∥∣∣
k−1 = sup

x∈Rn
sup
y∈Rn

∥∥∣∣[∇NN (x)]y
∥∥∣∣
k−1∥∥∣∣y∥∥∣∣k−1

= sup
x∈Rn

‖∇NN (x)‖ = sup
x∈Rn

∥∥∥∥diag(dNN 1(x1)

dx1
, · · · ,

dNN n(xn)

dxn

)∥∥∥∥
≤ max

i

{
sup
xi∈R

‖diag((ψ i
L)

′(N i
L(xi)))M

i
L · · ·Mi

2 diag((ψ
i
1)

′(N i
1(xi)))M

i
1‖

}

≤ max
i

⎧⎨⎩
Li∏

�=1

ci�‖Mi
�‖
⎫⎬⎭

Therefore, if we choose ε <

⎛⎝max
i

⎧⎨⎩
Li∏

�=1

ci�‖Mi
�‖
⎫⎬⎭
⎞⎠−1

, then the assumption εLN < 1 would be satisfied. We also note that 

a more accurate upper bound of the Lipschitz constant LN can be computed numerically using the advanced algorithms 
developed in [58], providing a tighter bound on ε .

3.4. Construction of chain complex

The model introduced in the previous section assumes access to an underlying graph to apply the DDEC to. Motivated 
by our surrogate modeling application, we assume access to a very fine polygonal mesh and access to a high-fidelity PDE 
solution defined as oriented moments of mesh entities (i.e. cell average scalar potentials, face average fluxes, edge average 
circulations). We next show how a coarsening of the underlying fine mesh preserves some structure allowing a particularly 
simple implementation; essentially, given graph grad/curl/div matrices on the fine mesh, we derive coarsening matrices that 
encode proper orientations for the coarsened complex and the desired dk and d∗

k operators. We consider here graph-cut 
coarsening available in packages such as METIS [40], which partitions the domain � into Nc disjoint volumetric subdomains 
10
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Fig. 1. The coarsening process takes a fine mesh discretizing � in d-cells, partitions them into disjoint subdomains and uses the fine scale mesh to derive 
coarsened k-cells and coboundary operators ∂k with consistent orientations. Values on the coarsened k-cells correspond to sums of the constituent fine-
grained moments with proper accounting of orientation. Top: five 2-cells coarsened into a pair of 2-cells. Bottom: a representative coarsening of a Cartesian 
mesh. Coarsened 0-, 1-, and 2-cells are each colored differently and are a formal linear sum of elements of the fine mesh.

(or d-cells), and derive appropriately oriented lower degree k-cells. For an unweighted set of partitions, specification of the 
parameter Nc in METIS fully specifies the process for generating Nc subdomains. In Fig. 1 we provide a cartoon of the 
process. While the following presentation provides a mathematical description of the process via a commutative diagram, it 
practically will provide a simple implementation of the coarse coboundary operators δk in terms of a few simple matrices, 
greatly simplifying implementation.

Remark 3.4. This is one particular construction appropriate for synthetic data which takes advantage of available adjacency 
matrices of an underlying fine mesh. We stress however that one may apply the calculus to any appropriately defined 
graph. For example, in experimental contexts the bins associated with histograms may be used instead, or the calculus 
may be applied to graphs with no associated partition of space at all (see e.g. [39]). We further comment that the graph-
cut coarsening assumed here provides a quasi-uniform partition of space that does not take advantage of the data; in 
another work we consider spectral graph partitioning strategies to obtain data-driven partitions tuned to give optimal 
representations of data [37].

We assume the high-fidelity solution is associated with a d-dimensional chain complex, with k-cells denoted by Fk for 
k < d and ∂ f ine

k : Fk+1 → Fk as defined in Section 2, and coboundary δ f ine
k : Fk → Fk+1 encoded via the adjacency matrices 

generally available in mesh data structures. Here, we use the symbol F and superscript f ine to denote fine scale objects. Our 
goal is to construct a coarse complex, denoted by the symbol C , that can be used in the DDEC framework as we discussed 
in Section 3.1-3.3. The construction contains two steps. First, we will coarsen the fine level set of the k-chain, Fk , to obtain 
the coarse level set of the k-chain, Ck . This can be done inductively by starting with coarsening the d-cells. Then we will 
define the coarse boundary and coboundary operators by relating the fine and coarse level complex properly.

Constructing Ck and Ck To inductively define Ck from Fk , we start with coarsening the d-cells. Given a partitioning of the 
N f d-cells into Nc disjoint, connected subsets, denoted by Fd = �Nc

i=1Pi . We define the space of coarse d-chain Cd as a 
subspace of Fd based on the partition {Pi}Nc

i=1 with the following natural inclusion

ιd ∈ RN f ×Nc , (ιd)i j =
{
1, f i ∈ P j,

0, f i /∈ P j.

This has a dual Cd identified as a subspace of Fd .
Now, consider the image of Cd under ∂ f ine

d−1 , consisting of the fine d-chains lying at partition interfaces. We define the 
element ci j := Pi ∩ P j (oriented consistently) for i, j = 1, 2, . . .Nc and their span as the coarse (d − 1) chains Cd−1. Then we 
can proceed inductively. With the chain and cochain spaces indexed by d − k, consider the image of Cd−k under the map 
∂
f ine . This consists of the (d − k − 1)-interfaces between the coarse d − k-chains. Define the element
d−k−1

11
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ci1 i2···id−k−1 = Pi1 ∩ Pi2 ∩ · · · ∩ Pid−k−1

The span of these elements is the space of coarse (d − k − 1)-chains Cd−k−1. As before, by identifying Cd−k−1 as a subset of 
Fd−k−1, we can define the dual cochains Cd−k−1.

Remark 3.5. It may be the case that ci1 i2···id−k−1 is disjoint. As a choice of implementation detail, each of the connected 
components can be taken as a separate chain, or their disjoint union can be taken as a single chain. What results from 
this choice is the treatment of parallel fluxes between partitions as either: a sum of individual distinct fluxes between the 
partitions, or the sum of those fluxes as a single effective quantity between the partitions. We choose the former in our 
computational examples.

By construction, we have Ck ⊂ Fk , for k = 0, · · · , d. Therefore, there is a natural inclusion ιk : Ck �→ Fk whose entries are 
1, −1, or 0 depending on the partition and orientation. Furthermore, we also have Ck ⊂ Fk and the corresponding natural 
inclusions are defined as ιk := ιd−k , for k = 0, · · · , d.

Building boundary and coboundary operators In order to define the coarse boundary and coboundary operators that connects 
Ck and Ck , we first define the linear projections πk : Fk �→ Ck as

πk =
(
ιTk ιk

)−1
ιTk ,

and πk : Fk �→ Ck as

πk =
((

ιk
)T

ιk
)−1 (

ιk
)T

.

Note that, πk = πd−k since ιk = ιd−k .
With these in hand, we define the coarse boundary operators as follows,

∂k := πk · ∂ f ine
k · ιk+1,

and the coarse coboundary operators

δk := πk+1 · δ f ine
k · ιk.

Remark 3.6. The linear projections πk and πk are least-squares projections. Since the natural inclusions ιk and ιk are con-
structed based on partitions, ιTk ιk and (ιk)T ιk are diagonal matrices with diagonal entries equal to the number of k-chains 
in the corresponding partition. Thus, in a practical implementation, we can simply use πk = ιTk and πk = (ιk)T and, based 
on the definition (14), (ιTk ιk)

−1 and ((ιk)T ιk)−1 are implicitly absorbed in Bk and Dk .

To summarize, in the case of d = 2, all of the spaces discussed are related through the following commutative diagram:

0 F 0 F 1 F 2 0

0 C0 C1 C2 0

0 F0 F1 F2 0

0 C0 C1 C2 0

δ
f ine
0

π0

δ
f ine
1

π1 π2
δ0

ι0

δ1

ι1 ι2

π0

∂
f ine
0

π1 π2

∂
f ine
1

ι0

∂0

ι1

∂1

ι2

(32)

The top-front row of this diagram corresponds to the middle row of the chain complex (19). The DDEC complex results 
from perturbing these operators as in (14).

4. PDE-constrained optimization

We finally turn toward the question of how to fit a model of the form (26) to data. We assume access to data via 
the coarsening process of the previous section, and denote by Xdata a vector concatenating the coarsened wk+1 (flux) 
and uk (potential) degrees of freedom. We may have only partial data: observations of possibly a single field wk+1 or 
uk , or observations on a subset of the chain complex. We then concisely express the boundary value problem in (26) via 
12
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the nonlinear operator Lξ [X] = f, where we have lumped all model parameters into ξ (i.e. Bk , Dk , and neural network 
weights and biases), and refer to this as the forward problem. We postpone a problem-specific discussion of how boundary 
conditions will be imposed for the following section, and assume the forward problem is prescribed such that BCs are 
imposed naturally. We seek a solution to the following quadratic program with nonlinear equality constraints

min
X,ξ

||X− Xdata||2 (33)

such that Lξ [X] = f, (34)

where || · || denotes the �2 norm.
To avoid handling the equality constraint, one could introduce a single scalar penalty parameter λ and use a gradient 

descent optimizer to solve

min
ξ

||X− Xdata||2 + λ||Lξ [X] − f||2. (35)

This approach resembles currently popular approaches such as physics-informed neural networks [56] and is simple to 
implement in machine learning libraries using automatic differentiation to implement first-order optimization schemes. 
However, λ becomes a hyperparameter introducing well-known issues with training [67,65], and ultimately results in 
Lξ [X] = f holding only to within optimization error and a subsequent loss of structure preservation. We instead enforce 
the equality constraint exactly, introducing Lagrange multipliers λ as follows.

min
ξ,X,λ

Lξ (X,λ) (36)

such that Lξ [X] = f, (37)

where Lξ (X,λ) = ||X− Xdata||2 + λᵀ (Lξ [X] − f
)

(38)

Stationarity of the Karush-Kuhn Tucker conditions requires that the gradient of Lξ (X, λ) with respect to X, λ and ξ be zero. 
This yields the following set of three necessary conditions for a minimizer of (36), which we will iteratively solve. If this 
fixed point iteration converges and all three are satisfied, then one has obtained a minimizer.

• Forward problem: The condition ∂λLξ (X, λ) = 0 requires that the forward problem is solved: Lξ [X] = f. Assuming ξ
fixed, one may solve with a Newton-Rhapson method, requiring calculation of the Jacobian of Lξ , which we denote 
Jξ,X . Following the analysis in Section 3, this problem is guaranteed to be solvable provided εLn < 1.

• Adjoint problem: Enforcing ∂XLξ (X, λ) = 0 provides the linear adjoint problem Jᵀξ,Xλ = −2(X − Xdata) for the Lagrange 
multipliers. Having solved the forward problem in the previous step, the Jacobian is already available.

• Model update: The remaining condition ∂ξLξ (X, λ) = 0 does not readily admit solution with second-order optimizers 
due to the neural networks embedded in the nonlinear perturbations of (26). It is well-known that neural networks 
admit a complex optimization landscape due to linear dependence with many suboptimal local minima. With this in 
mind, we apply a single step of a first-order gradient optimizer instead, providing a small perturbation of the model at 
each iteration.

This process ensures that the physics imposed by the carefully designed model formed in the previous sections hold 
to machine precision at each iteration, even in scenarios with limited training data. Asymptotically, the added complexity 
compared to typical gradient-descent approaches is that of solving the forward problem at each iteration, which is generally 
inexpensive for the low-dimensional models under consideration and converges rapidly. The remaining complexity lies in 
calculating the relevant derivatives for Newton, which may be simply calculated with the same automatic differentiation 
used to perform the gradient descent step.

Considering that the assumed model form is nonlinear, it is necessary to train simultaneously on a variety of boundary 
conditions to learn the nonlinear response across a range of conditions - we must therefore assimilate multiple solutions to 
the nonlinear problem simultaneously. With that in mind, we present in Algorithm 1 a batch-training strategy for handling 
training data D = {

Xdata,i
}Nbatches
i=1 consisting of Nbatches solutions.

When fitting a model to a system governed by a linear PDE, it is desirable to obtain a parsimonious representation which 
learns the metric information in a(u, v) while setting the contribution from NN to zero; by linearity, such a model will 
generalize well to different boundary conditions, whereas a nonlinear one will handle out-of-distribution inference poorly. 
While one can impose this directly by setting ε = 0, we propose a regularizer to include nonlinear terms only if necessary. 
In light of Remark 3.3, assuming 1-Lipschitz activation functions are used, one may indirectly control the magnitude of the 
Lipschitz constant relative to the Poincare inequality, by introducing the regularization of Equation (36)

Lξ (X,λ) + εL
∑
i

⎛⎝ Li∏
�=1

‖Mi
�‖
⎞⎠2

, (39)
13
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Data: Training solutions D, parameter initialization ξ0, tolerance εT O L

Result: ξ

for e ∈ {1, ..., epochs} do
X ← 0;
for Xdata,i ∈ D do

Solve forward problem;
while ||Lξ [X] − f || > εT O L do

Jξ,X ← ∇XLξ (X);
Solve 	 = −( Jξ,X )−1Lξ (X);
X ← X + 	;

end
Solve adjoint problem;
λ ← 2( Jξ,X )−ᵀ (

Xdata,i − X
)
;

Apply gradient descent update;
ξ ← GD(Lξ (X, λ), ξ);

end
end

Algorithm 1: Application of equality constrained optimizer batched over multiple solutions Xi,data . By GD(l, p) we denote 
a gradient descent update of the parameters p to minimize the loss l. For this work we apply the Adam optimizer [41].

Fig. 2. We consider a cylindrical inclusion in a 2D domain for steady diffusion problems in subsurface flow and magnetostatics (left), considering diffusion 
coefficients which vary with the boundary conditions magnitude to obtain a nonlinear response. (See Fig. 2.) The high-fidelity solution is coarsened, 
obtaining a target solution on the corresponding k-chains (center). The coarsened graph model is trained to reproduce moments on each subdomain (right). 
Pictured here is the resulting magnetic field defined on coarsened 0-chains, with nearest neighbor interpolant of surrogate solution. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

where εL > 0 is a penalty term to be calibrated, and ‖Mi
�‖ denotes the 2-norm of the weights in the �th layer of the ith

neural network. Introduction of the regularizer does not alter the forward or adjoint solves during training.

5. Numerical results

In the remainder we present results for two canonical H(div) and H(curl) problems from subsurface flow and magne-
tostatics. In both examples we consider a cylindrical inclusion of radius a embedded within the unit square centered at the 
origin, whose material properties are prescribed by

μα(x) =
{
α, if ||x|| < a

1, otherwise
(40)

Treatment of the material interface at ||x|| = a without introducing spurious oscillations is a hallmark of mimetic discretiza-
tions and stems from the exact treatment of interface conditions via Stokes theorem, namely, that the jump in flux across 
an interface be zero.

For both problems we impose boundary conditions by identifying appropriate cochains on the boundary, replacing their 
corresponding row of the Jacobian matrix with zeros and a one on the diagonal, and setting the desired value on the right 
hand side. For the introductory nature of this paper this is sufficient, but we note that the imposition of boundary conditions 
is a rich topic in the discrete exterior calculus literature, with more complex applications requiring a deeper consideration 
of the interaction between boundary conditions and the discrete exterior calculus [24,43,12].

The parameterization of nonlinear fluxes requires specification of activation function and network width/depth. We use 
small multilayer perceptron networks of O (10) parameters and varying activation functions to highlight robustness to archi-
tectural hyperparameters. Network hidden layers are initialized with the He initializer [36], the final linear layer is initialized 
to zero, and minimization is performed with Adam [41]. The only hyperparameter requiring calibration is the learning rate 
in Adam, which we calibrate by starting with a value of 0.01 and reducing until we obtain a good result. Training data is 
14
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Fig. 3. Solutions for problem D1. Top: RMS error vs number of subdomains in coarsened mesh, using learning rate of 0.05, 0.005, 0.0005 for 32, 6,2 , 122
subdomains, respectively, demonstrating ability to capture training data to machine precision. Center: piecewise constant plots of pressure for obtained 
model. Bottom: Comparison of pressure along y = 0.5 for model solution (orange) and Delaunay interpolant (blue) to training solution (dashed green) for 
increasing resolution, using coarsened subdomain centroids to compute interpolant.

generated via a high-fidelity DEC discretization on a grid of 502 cells. Accuracy is presented in terms of the root-mean-

square (RMS) error of the cochains, RMS(y) =
√

1
N

N∑
i=1

y2i .

5.1. Problem 1: Darcy

We consider as training data solutions to the system of equations

F+ μα∇φ = 0 x ∈ �

∇ · F = f x ∈ �
15
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Fig. 4. Study for problem D1. Exploring choice of bias to learn parsimonious linear operators. In light of Remark 3.3, upper bound on Lipschitz constant 
LN (top) quantifies magnitude of nonlinearity given extant of bias, with Theorem 3.6 guaranteeing well-posedness for LN < 1. Plots of corresponding error 
(bottom) demonstrate ability to achieve machine precision either by explicitly turning off nonlinearity (setting ε = 0) or penalizing operator norm of neural 
networks. Both ReLU (left) and tanh (right) activations are considered, with accuracy appearing robust to choice of εL . All runs are conducted with 9
partitions, a learning rate of 10−4, and shallow networks of width 10.

F · n̂ = g x ∈ ∂�

obtained via the scheme in [51]. Boundary conditions are imposed upon the 1-cochains encoding the fluxes of F through 
subdomain boundaries, and we stress that the resulting DEC method will guarantee that 

∫
�

∇ · Fdx = ∫
∂�

gdA. For this 
problem we will consider two scenarios.

Darcy problem 1 (D1): We take f = 0 and g = 〈1, 0〉 · 〈1, 0〉 consistent with applying a unit horizontal flux and consider 
training data associated with a fixed α. In this setting, the PDE is linear and will not require a contribution from the neural 
network, and we use this to gauge the method’s ability to recover a PDE discretization consistent with a single solution 
(i.e. Ndata = 1). In Fig. 3 we demonstrate how the scheme is able to recover the high-fidelity solution moments to machine 
precision while varying the number of partitions. In Fig. 4 we demonstrate how a parsimonious linear operator can be 
obtained either by explicitly setting ε = 0 or by calibrating the Lipschitz regularizer εL .

Darcy problem 2 (D2): We take f = 0 and g = 〈α, 0〉 · 〈1, 0〉 consistent with applying a horizontal flux which scales with the 
diffusion parameter. This corresponds to a material which becomes more conductive as the current/flux increases, and train 
over Ndata = 3 solutions corresponding to μ ∈ {1,2,4}. Capturing the nonlinear behavior of this problem requires learning 
of nonlinear fluxes which depend upon the magnitude of the potential. Fig. 5 provides a summary and discussion of results.

5.2. Problem 2: magnetostatics

We consider as training data solutions to the system of equations

∇ × J = f x ∈ �

∇ · B = 0 x ∈ �

B = μαJ x ∈ �

B · n̂ = g x ∈ ∂�

obtained via the scheme in [50]. For this 2D problem, the magnetic field may be identified with a scalar (B = 〈0,0, B(x, y)〉). 
Boundary conditions are imposed upon the 0-cochains encoding the fluxes of B through subdomain boundaries, and the 1-
cochains encoding the magnetic potential on the boundary are fixed to a value of zero. For this problem we will consider 
only the nonlinear generalization of D2, taking f = 0 and g = α to obtain a nonlinear material whose permittivity increases 
with the magnitude of applied magnetic field (Fig. 6. We take Ndata = 4 and sample μ uniformly from {1,10}. In the same 
manner as the Darcy problem, the resulting model is able to recover a range of α’s and the resulting discontinuity in the 
magnetic field.
16
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Fig. 5. Study for problem D2. A single nonlinear model is extracted which may be solved for increasing α. Top: Running minimum of RMS error over 
each batch during training for: two layer width 5 elu network (solid lines) and single layer width 10 ReLU network (dashed lines). Bottom: Comparison of 
pressure profile along y = 0.5 for increasing α. True solution given by solid line, while learned surrogate is given by dashed line. For both architectures, 
learning is performed on a chain complex of 49 subdomains using a learning rate of 5 × 10−5.

Fig. 6. Profile of magnetic field along y = 0.5 line for magnetostatics problem. The trained model reproduces the coarsened moments of the problem 
and avoids introduction of any spurious oscillations at the material interface, with learned coarse solution (dashed) reproducing moments of exact coarse 
solution (solid). For this problem 25 subdomains were used with a learning rate of 10−4 and a single layer width 10 network with parametric ReLU 
activation.

6. Conclusions

We have presented a new data-driven exterior calculus which parameterizes the classical graph calculus. The resulting 
framework allows training of discrete exterior calculus operators which incorporates metric information from data while 
preserving exact sequence structure and invertibility of Hodge Laplacians - both of which are important for handling a 
range of physical systems. Analysis of the resulting system shows that when nonlinear perturbations are applied to a class 
of second-order elliptic problems the system remains well-posed under general conditions, allowing the machine learning 
of nonlinear elliptic systems. Numerical results demonstrate the practical aspects of the approach.

For the sake of introductory exposition, we have restricted ourselves to elementary elliptic problems in the current 
work. The DDEC framework however may be applied to a broad range of more sophisticated problems; for example, we are 
currently using it to discover surrogates for semiconductor physics governed by nonlinear drift-diffusion equations (using 
[48]), and where the resulting network model can be embedded within circuit simulators such as Xyce [31,38].

Abstractly, the DDEC framework provides a structure-preserving means of parameterizing Dirichlet-to-Neumann maps 
[62] governing multiscale physics, generalizing previous works restricted to resistor networks [25] while supporting machine 
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learning tasks. In future work we will provide details regarding how this may be incorporated into a workflow to develop 
provably stable multiscale models that preserve structure at both fine and coarse scales.
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