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We show that partial mass concentration can happen for stationary solutions of
aggregation-diffusion equations with homogeneous attractive kernels in the fast diffusion
range. More precisely, we prove that the free energy admits a radial global minimizer in
the set of probability measures which may have part of its mass concentrated in a Dirac
delta at a given point. In the case of the quartic interaction potential, we find the exact
range of the diffusion exponent where concentration occurs in space dimensions N > 6.
We then provide numerical computations which suggest the occurrence of mass concen-
tration in all dimensions N > 3, for homogeneous interaction potentials with higher
power.
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1. Introduction

Nonlinear aggregation-diffusion equations of the form
Op=ApT+ V- (pVW xp) , (1.1)

are ubiquitous in continuous descriptions of populations, with applica-
tions in mathematical biology, gravitational collapse and statistical mechan-
ics. 79, 15,18,25,27,28,35,41,42,44 Here, p(t) is a time-dependent probability measure
over RN, ¢ > 0 is the diffusion exponent regulating if the diffusion is slow (¢ > 1),
linear (¢ = 1) or fast (0 < ¢ < 1) for small values of the density, while W is the
aggregation kernel describing some attraction between the agents of the population.
In this work, W will be taken equal to the homogeneous potential W () := |z|*/A
with A > —N. A positive A corresponds to a bounded interaction potential at the
origin, whereas —IN < A < 0 provide locally integrable, singular interaction po-
tentials. At A = 0, the convention is to take Wy(z) = log |z| which, in dimension
N = 2, is the Newtonian potential.

The time-dependent equation (1.1) is the (formal) gradient flow of a free energy
functional®2!:39 defined for probability measures p € P(RY) by

et gz [ ey du)dut) a1 (12

Flul e

where p,. is the absolutely continuous part of pu with respect to the Lebesgue
measure. At ¢ = 1, the first term is replaced by Boltzmann’s entropy, which is
Jgn tac(x)10g prac(x) dzz when the measure y is absolutely continuous, and +oo for
measures that are not absolutely continuous. This formal structure, which can be
turned rigorous only for some particular values of the parameters,?? plays an essen-
tial role in the analysis of the dynamics in (1.1). In particular, the global minimizers
of the free energy functional F are the best candidates to be locally stable equilibria
for (1.1) and the large-time asymptotics of time-dependent solutions.

Nonlinear aggregation equations of the form (1.1) show very challeng-
ing phenomena, both with regard to their time behavior and the properties
of their steady states. They have received lots of attention in the last 20
years.” 915, 18,25,27,28,35-37,41,42,44 The form of the global minimizers depending on
the parameters is quite rich, but by now it is well understood in the case of porous
medium-like diffusion ¢ > 1 and linear diffusion ¢ = 1.2.6,8,9,11,14,18,19,23,24,28,30-32
When g > 1, for all possible values of A where global minimizers of the free energy
exist, they are given by bounded probability densities.

We mention specifically the case of the classical parabolic—elliptic Keller—Segel
(KS) system?3 2728 for cell movement by chemotaxis, which is obtained by setting
N =2,q=1and X = 0. Depending on the mass of the initial mass, it is known that
solution to KS can blow up in finite time in any LP(RY), p > 1. Several variations
of KS that avoid blow up are present in the chemotaxis modelling literature.* 26
We also mention the flux limited KS, in which the maximal aggregation velocity of
the density is bounded.? 38
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This work continues the investigation initiated by J. Dolbeault, F. Hoffmann and
the first three authors of this paper,'® who dealt with the much less understood case
of 0 < ¢ < 1and A > 0. It was shown'® that global minimizers of the free energy do
not necessarily exist, even when F is bounded-below, if we insist on requiring that
is absolutely continuous with respect to the Lebesgue measure. However, minimizers
in the form of measures exist when F is bounded-below. By rearrangement, we
can, in fact, restrict the minimization of F to radially non-increasing probability
distributions p modulo translations,'® and those can only have a singularity at the
origin in the form of a Dirac delta. For these probability measures p = Mdg + p
with p € L'(RY) a non-increasing radial function, the free energy becomes

1 M
FloM) == [ oo+ 5 [ feola)do (13)
1 q JrN A RN

1
+ 1 / / p(@)| — y*p(y) dz dy.
2A RN XRN

It was proved in'® that this free energy is bounded from below if and only if N/(N +
A) < ¢ < 1, and in this case admits at least one global minimizer p, = M,do + p«
with

ps € IRV N LY RY) N LYHRY || dx). (1.4)

The function p. is always supported on all of RY due to the singularity of the term
p? at zero, see [16, Lemma 9], and, if M, > 0, it diverges at the origin. We note
parenthetically that the minimization of the free energy F is equivalent to finding
the sharp constant in a reversed Hardy—Littlewood—Sobolev inequality.

Two important questions are whether these minimizers are unique modulo trans-
lations, and whether mass concentration occurs in the sense that M, > 0. These
questions have been solved!® for some values of the parameters, but only negatively
concerning the occurrence of concentration. For instance, it was shown'® that min-
imizers are always unique for 2 < A < 4 and that M, = 0 for

eall \>0and 5 <¢<1if N=1,2,
eall 0 <A<2+4 5 and {5 <g<1if N >3

Therefore, concentration never happens in dimensions N = 1,2, nor in higher di-
mensions for too small values of the aggregation parameter \. For example, concen-
tration never happens at A = 2 in any dimension N > 1.

We have no intuitive explanation of why concentration cannot happen in di-
mensions N = 1,2 but we notice that the same phenomenon occurs for other phase
transitions in statistical physics, by the Mermin-Wagner theorem.?#4? This is for
instance the case of Bose-Einstein condensation.*?

Our main goal in this work is to show that concentration does indeed occur
in dimensions N > 3, for large-enough values of A. First, we look at the quartic
case A = 4 which we can solve completely. We prove in Theorem 2.1 below that
concentration happens for some (but not all) values of ¢ in dimension N > 6 but
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never occurs in dimensions N < 5. However, it does occur in dimensions N €
{3,4,5} at smaller values of ¢ where the free energy is unbounded from below, if
we allow formal minimizers with an infinite free energy (see Remark 2.1). Then, we
provide numerical evidence that concentration does happen for regular minimizers
at larger values of A, starting with dimension N = 3.

Our numerical results detailed in Section 3 suggest some interesting features of
the model, which we are unfortunately not able to prove at the moment. The nu-
merical evidence indicates that the concentration region satisfies some monotonicity
in terms of our three parameters N, A and q. More precisely, if concentration oc-
curs for some (N, A, q) then it should also occur for all (N, N ¢’) so that N’ > N,
N'/(N'+ X)) < ¢ < qgand X > X Thus, for any fixed A > 0 and N € N, the
concentration region for ¢ should be an interval (NL_M,qN()\)), with gy (A) a non-
decreasing function. For instance, we think that the interval starts to be non-empty
for X slightly above 8 in dimension N = 3. Proving these observations seems chal-
lenging.

Our theoretical and numerical results are both based on the associated (first
order) Euler-Lagrange equation for the absolutely continuous part p,:

Tl =g P e [Py + L (15)
—q RN
where l%qpi_l(O) = L > 0 is a Lagrange multiplier associated with the mass
constraint

/ p(z)dz + M = 1. (1.6)
RN

A useful fact will be that (1.5) can be highly simplified when A is an even integer. In
this case we can expand |z —y|*" in terms of a polynomial in x and y and, using the
radial symmetry of p,, the convolution p, *|-|* becomes a simple polynomial in |z|?.
Thus (1.5) can be turned into a simpler equation for these finitely many polynomial
coefficients. This is how we will be able to solve completely the particular case
A = 4. This simplification will also be used to design a rather precise numerical
algorithm in the case A € 2N, and to deal with the other values of \.

We conclude this introduction with more comments about the meaning of our
findings in light of the time-dependent equation (1.1). Any minimizer p. = M,do+ps

for the free energy (1.2) is a stationary solution of (1.1), in the sense that
Apl + V- (e VW % i) =0

as distributions, due to the properties (1.4) proved in.'® We point out that the range
0 < ¢ < lisusually called “fast diffusion” corresponding to the faster diffusion (than
the heat equation) for small values of the density while the diffusion is in fact slower
for large values of the density, where concentration happens. Therefore, when ¢ gets
smaller, the diffusion of a Dirac delta at the origin is weaker. Even more, as proved
in'® by Brézis and Friedman, an initial Dirac delta is in fact a kind of stationary
solution to the fast diffusion equation for 0 < g < % More precisely, they showed
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that approximating an initial Dirac delta at the origin by mollifiers and sending the
regularization parameter to zero was not leading to a source-type strong L!-solution
(Barenblatt-type solution) as opposed to the case ¢ > % In fact, they proved
that the Dirac delta stays “stable” for all times [10, Thm. 8]. It is an open problem
to give sense to the evolution problem (1.1) with general probability measures as
initial datum. The Wasserstein gradient flow of the suitably defined extension of
the free energy (1.2) to measures as in [16, Sect. 5] is the natural candidate.

Our results show that the combined effect of the small diffusion at large densities
with the attraction due to the potential W) can lead to a partial concentration of
mass at the origin in the stationary case. Understanding the well-posedness and
long time behavior of the evolution equation (1.1) is essentially open in this regime
of parameters. The possible concentration of mass happening in finite or infinite
time for its evolution is just one of the many challenging open questions. The long
time behavior has recently been investigated in the preprint,'2 but for ¢ so close to

1 that no concentration can happen.

The paper is organized as follows. The next section is devoted to the special case
A = 4 whereas in Section 3 we present our numerical simulations for other values
of ), looking first at the special case of even integers and then general values.

2. The quartic case A =4

In the case A = 4, we are reduced to the regime

N+1 1 Ny
since it was already proved in [16, Prop. 14] that concentration does not happen for
larger values of ¢ and that the free energy is not bounded below for smaller values.
We know from [16, Prop. 20] that there is a minimizer (p., M,) and by [16, Thm. 27]
that this minimizer is unique up to translations. The question is whether M, = 0

or not. We define
N -2 4
4)i=—2(1+—
an(4) N+2(+3N>

which will be proved to be the critical exponent at A = 4 in the next statement.
For all N > 6, one has

N < (4)<N_2<7N
Nt+4 W N SNt2

whereas ¢y (4) < NL+4 for N < 5. Note that g (4) is increasing with the dimension
N.

Theorem 2.1. Let A =4 and NLH <g< NLH Then F in (1.3) admits a unique

manimizer (ps, M) with p,. a radial function satisfying (1.4).
(a) If N <5, then M, = 0.
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3qn(4) —q
(b) If N> 6 and g < qn(4), then M, = 3 x(z)_q >0
N
(¢) If N >6 and ¢ > qn(4), then M, = 0.

In dimensions N > 6 with ¢ < gn(4), we are able to compute the unique
minimizer explicitly. It is given by

ps(z) = (qu) T (el + Bulaf?) T (2.1)

for a constant B, > 0 given in the proof of Lemma 2.1. Note that p, diverges at
the origin, as it should.'® Note also that the concentrated mass M, is decreasing
with respect to ¢. One could also compute Flp., M.] explicitly for ¢ < gn(4).
See Remark 2.1 below for an interpretation of what is happening in dimensions
N € {3,4,5}.

Proof of Theorem 2.1

First, we recall that any minimizer of the form u, = M,dp + p+« solves the nonlinear
equation (1.5). Using

|z —yl* = |z|* + |y[* + 4z - y)* + 20 |y)* — 4Pz -y — 4fyfz -y

and the fact that p, is radial, we can express the convolution in the form

/ lz — yl*pu(y) dy:lw\4/ p+(y) dy+/ ly|*p.(y) dy
RN RN RN

242 )l [ WPy, 22)
(2o 51,

Thus, using the mass constraint (1.6), the Euler-Lagrange equation (1.5) for p, can
be rewritten in the form

@) = laft + Blaf + L.
—q

4
B=(2+— %p.
( +N)/RN|y| p«(y) dy,

where we recall that L > 0 is an unknown Lagrange multiplier. Our goal is to find
the values of L and B in (2.3). Of course we then have M, =1 — IRN Ds

The idea of the proof is to look at all the possible solutions of (2.3) parametrized
by L. Plugging the first formula into the second, we obtain a simple nonlinear
equation for B which we show admits a unique solution B(L) for any L > 0. A
scaling argument will also give us an exact expression of B(0). Next, we show that
the mass m(L) of this solution is strictly decreasing with L. Thus, we have two
possibilities either m(0) > 1 or m(0) < 1. If m(0) > 1, then there exists a unique
L, > 0 such that m(L,) = 1, and the minimizer is given by (p«,0), where p, is the
solution of (2.3) with this L. This conclusion follows from the uniqueness of critical
points, which is shown by a convexity argument. Alternatively, if m(0) < 1, then

(2.3)
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there exist no solution of (2.3) with mass 1 and thus there must be concentration.
From [16, Prop. 14] we then know that L = 0, that is, p,. is given by the unique
solution with L = 0 and B = B(0) and we have M, =1 —m(0) > 0.

The following contains the main properties of solutions of (2.3) that we need for
the proof.

Lemma 2.1. Let A =4 and max (0, %—Ig) <qg< NLH

(a) There is a unique differentiable function B : [0,00) — (0,00) such that for each
L>0,

pr(x) = (1qq)lq (|x|4 _|_B(L)|gg|2 _i_L)flflq

satisfies

(2 + ;) /RN ly*pr(y) dy = B(L).

(b) The massm(L) := [pn pr(z)dz € (0,+00] is continuous and strictly decreasing
with respect to L > 0. It converges to 0 when L — oo.
(¢) At L =0 we have

N—2
19— . N—2
_ 2 NJ;I;_zq qu < N
m(0) = (2.4)
+o00 otherwise.

Thus, if ¢ < %, then m(0) <1 if and only if ¢ < qn(4).

Proof. Part (a). Let us define

1

g \"° -k
pp.L(T) = <1_q) (lz[* + Bla|* + L) ™ (2.5)
for all B, L > 0 and consider the function Fy,(B) given by
1
g Y77 N oo rN+ldr
)= (72) e | — = [ Wlres) dy. 26
1-— q 0 (rél + BT‘2 + L) T—q RN

This function is well defined for all L > 0 and B > 0 under our assumptions on
q. It is strictly decreasing as a function of B and L separately. Moreover, for every
given L > 0 the limit as B — 07 is positive (infinite if L = 0) and the limit B — oo
is zero. Therefore, for every L > 0, there exists a unique B(L) > 0 such that

B(L) =k Fr(B(L)) with k=2 + % (2.7)

From the monotonicity of Fy,, we have that B is decreasing with L. From the implicit
function theorem, B is in fact a smooth function of L. Using r*+B(L)r?+L > r*+L
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and scaling out L we find

1 N+1
B(L) S/§<q> | N 1|/ d’l"
l—q 7"4+qu
1

( : ) ; N+1d7a

=K -— | )

1—q (r*+1) =

Under our assumption on ¢ we have NH < ﬁ and thus B(L) — 0 when L — co.

We will compute the exact value of B (O) below.

Part (b). Now we show that the mass m(L) of pr is decreasing in L. Similarly as
above, we write the integral in radial coordinates to obtain

m = _4q 1%.; N-1 > rN=1ldr
) <1—Q> S |/0 (T4+B(L)r2+L)1flq' (2.8)

The integral converges for all L > 0, but not necessarily for L = 0. The same
estimate as for B(L) provides

1 N 1
m(L) < (q) |SN 1|L471—/ d?"
1—gq (rt 4+ 1) ™

and shows that m(L) — 0 when L — oco. Then, taking a derivative we obtain

m/(L) = — /000(1 + B'(L)r?*)(r) dr,

where we have introduced

1gq SN—l 1
p(r) = (1qq> |1q|rd_1 (r*+BEy?+ L) =

to simplify the notation. On the other hand, we have from (2.7)

B'(L) = —/{/OOO r2(1 4 B'(L)r*)(r) dr.

Hence
Bi(r) = - >d
L+ 5[5 rie(r)dr
and thus,
0o o 9 d 2 0o d
m == [omars KO o b AOT oy,
0

1—|—/{f0 rdp(r)dr — 1—|—f£f0007‘4g0(r)dr

since

(/OOO r2(r) dr)2 < /Ooo o(r) dr/ooo rio(r) dr

by the Cauchy-Schwarz inequality. This proves our claim that the mass is a decreas-
ing function of L > 0.
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Part (c¢). For L = 0, we notice that the right side of (2.7) is homogeneous in B(0).
More explicitly, making the change of variables r = 1/ B(0)7, we see that (2.7) can
be expressed as

B(0) = (2 + Ji) Fy(Bo) = (2 + ;) eng B0) 52 (1qq) e

or equivalently

B(O)=i % = (2 + ;) N <1zq> o (2.9)

oo 7AN—&-I
:|SN_1|/ ———dr,
0o (rt+4r?2)t=
which is finite under our assumptions on ¢. Next, we turn to the mass. Since B(L) —
B(0) > 0 as L — 0", we have

1 N 1d
lim m(L) = (q ) ISV 1\/ "
L—0+ 1—¢q (rt + 2)

This is infinite for ¢ > ¥=2 due to the singularity at the origin. For ¢ < ¥=2 we
can compute the explicit value of m(0) in (2.4), using the formula (2.9) of B(0 ( ) By

with

scaling we have, this time,

m(O) = [l ay = e, BO)F (q)“q

1—g¢q
with

0 T.Nfl
) q:|SN’1|/ ———dr.
o (rt4r?)T-a

Inserting (2.9) into this expression, we obtain
cy Ng N

T

With the change of variables ¢ = 12 we can write
CNg = \SN 1|/ t2 T (14 t) T dt
and
g = SN 1|/ £ T (14 ) T dt.

Thus, by beta and gamma function identities,

o TE-TE -0 Nera- i
evg  TEF -G -2 N S g
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which proves (2.4) and concludes the proof of the Lemma 2.1. O
Note that Lemma 2.1 covers a larger range for the exponent ¢ since %—;g < NL-HU
N

see Remark 2.1. However, the free energy F is bounded-below only for ¢ > 777,
which we assume from now on. For the convenience of the reader we provide a self-
contained proof of Theorem 2.1 using Lemma 2.1, which does not use any material
from'® and solely relies on the convexity of F in the cone of radial probability
measures, in the spirit of Lopes’ work.33

There are two situations. When ¢ > ¢y (4), Lemma 2.1 implies that there is a
unique L, > 0 so that m(L.) = 1. In this case we define (p., M) := (pr,,0). On
the other hand, when ¢ < gn(4) (which can only happen in dimensions N > 6),
then the equation m(L) = 1 admits no solution. In this case we choose L, = 0
and set (p«, M) := (po,1 — f]RN po), which satisfies M, > 0. The choice L, = 0 is
dictated by [16, Prop. 14] but we will see below that this follows from the first order
Euler-Lagrange condition on M,, which we have not yet used in the argument.

We claim that the so-defined (p., M,) is the unique minimizer of F, which will
conclude the proof. To prove this claim, we notice that for p = M§y + p with p a
radial function, we can use (2.2) to write

2
2 1
Fonr)= [ leloera (145 ) ([ taPotwac) - 2 [ oty
RN N RN 1-— q JrN
(2.10)
From this, it is apparent that F is strictly convex in p. Let us now prove that

Flp, M) > Flps, M.] for every / p+M=1,
RN

with equality if and only if (p, M) = (p«, M.). Using (2.10) and the definition (2.5)
of p, we obtain after a calculation

Fot) = Flpedtl = [ (o= p@ass (143 ) ([ 1o pw dx>2

- % (p? = ap?™ (p = pu) — p?) () dz. (2.11)
—4q JrN

Let us distinguish cases here. If M, = 0, then fRN px = 1 and the first term on the
right side is certainly non-negative. If M, > 0, then the integral can have either
sign, but the term vanishes since we have chosen L, = 0. Hence in both cases, the
first term is non-negative. This is how the two conditions L, = 0 for fR ~ P« < land
f]RN px = 1 for L, > 0 appear to be necessary for minimizers. The other solutions
(pr,1— fRN pr) cannot be minimizers. On the other hand, by concavity of a — a?
on Ry we have a? — qb?"(a — b) — b? < 0 with equality if and only if a = b. Thus
we have proved, as we claimed, that F[p, M| > F|p., M,] with equality if and only
if p = ps. This implies M = M, due to the mass constraint and concludes the proof
of Theorem 2.1.00
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Remark 2.1 (Concentration for 3 < N < 5). For %—13 < q< NLH we can
still define (p., M) by the same procedure. The right side of (2.11) makes sense
and is non-negative. Thus (p., M,) is a formal minimizer of the free energy, but
the corresponding value is infinite: F[p., M,] = —oo. This is due to the first and
third integrals in (2.10) which diverge at large . With this formal definition of
a minimizer, we see that concentration indeed happens at A = 4 for all N > 3,
since gy (4) > %7_;3
quantities as a tool to quantify the basin of attraction to equilibria similarly to the

case of the Barenblatt solutions in the very fast diffusion range even if their second
5,20,29

in this case. This fact can allow one to use relative free energy

moment or their mass becomes infinite leading to infinite free energy.

Remark 2.2 (Concentration is independent of mass). Notice that we have
chosen to work with probability measures and with interaction potential |x|*/).
Assuming a different mass normalization u(RY) = m and an interaction potential
C|z|* with C' > 0, the minimizer i, ,, ¢ of the free energy (1.2) is given by

fox,m,C = V1 s (Y2T)
175 N =m
Cxy Iy AN = m,

with g, the minimizer of the free energy (1.2) of mass 1.

3. Numerical results for other values of A

For A = 4, we have shown in Lemma 2.1 that the mass m(L) of the unique so-
lution py, to the simplified Euler-Lagrange equation (2.3) is monotone decreasing
with respect to the parameter L. Therefore, when m(0) < 1 we can conclude that
concentration occurs. We think that the same strategy applies to other values of
A. Namely, the idea is to look for a radial solution of the Euler-Lagrange equa-
tion (1.5) imposing L = 0, and compute its mass m(0). Should the latter be less
than 1, we would have found a stationary state with concentration, which is a good
candidate for being a global minimizer. If the mass is monotone with L there exist
in fact no solution of the Euler-Lagrange equation with mass one. If on the contrary
m(0) > 1, this proves that a minimizer has to have L > 0 and thus it cannot display
concentration, by [16, Prop. 14].

To make this strategy work, we would have to show the existence and unique-
ness of solutions to (1.5) for every L > 0 and prove that the corresponding mass
m(L) is decreasing. We are not able to show this fact analytically. However, we have
numerically investigated this question thoroughly for a large range of A\. The numer-
ical evidence supports the conjecture that these claims hold. We present here our
numerical results, dealing first with the simpler case of even integers. The python
scripts and their outputs can be found in the GitHub repository ‘Concentration’?
together with a list of the cases investigated.
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3.1. The case of even integers

When \ = 2n is an even integer, we can expand |z — y|?" in terms of a polynomial
in z and y. Using the radial symmetry of p., we obtain that only the even terms
contribute to the convolution p, * | - | in the Euler-Lagrange equation (1.5):

a .
——p 1(%)Z/ \x—ylAp*(y)dyﬂLM*lw\k—/ ly*ps(y)dy + L
RN RN

1—-¢"" :
.
e+ 0 ([ ay el + 1,
i=1 RN

where we have used the fact that the coefficient of |z|* simplifies due to the mass
constraint, and where ¢} are positive coefficients that depend on A and N. The
values of cf‘ can be computed explicitly and are provided in the appendix for A\ €
{2,4,6,8,10} for completeness. For instance, we have ¢} = 2 + 4/N, § = ¢§ =
3+ 12/N, etc. Note that the unknown mass M, has disappeared from the equation
but it of course still appears in the mass constraint (1.6).

The new form (3.1) of our Euler-Lagrange equation implies that we can restrict

our attention to densities

(3.1)

1

1—iq n—1 _ =
pol) = (1) <x|* n mePwL) 7 (32)

q i=1

with 8;, L > 0. The equation (3.1) then reduces to a system of n — 1 nonlinear
equations for the parameters ;:

b= [ W00 ) dy = BB o), (33)
R
with ¢ =1,...,n — 1. The gradient of F; ; equals

a C'Z\ n—20 ] —
5 Pt By ) = = [ P )2y,
BBJ q JRN

We have implemented in Python an algorithm which solves the nonlinear equa-
tions (3.3). We used the BFGS algorithm on the auxiliary functional

n—1

2
1B, Bne1) = (Bi = Fin(B1, s Bn1))
i=1
with the integrals computed by the quadrature method, both from the Python
library SciPy.*5

In Figure 1 we provide the result of the computation of the mass m(0) for

A€ {4,6,8,10} as a function of the parameter
2N —q(2N + )

N (3.4)

This parameter (already used in'®) is useful since the critical value ¢ = NLH simply
becomes o = 1 and thus does not depend on N and A. The interval of interest is then
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A=4

A=6
2.00 2.00
1.751 1.751
1.50 1.50
1.25 1.25
1.00 A 1.00 A

0.75 1 \ 0.75

— N=3
0.50{ —— N=4 0504 — N=3
— N=5 — N=4
0.25{ — N=6 0.25{ — N=5 \
— N=7 — N=6 —_—
0.00 = . . . . . 0.00 14— . . .
07 08 09 10 11 12 13 14 15 05 06 07 08 09 10 11 12
141 144
1.2 124
1.0 1.0
0.8 0.8
061 0.6
04{ — N=3 044 — N=3
— N=4 — N=4 \
02{ — N=5 M~ 024 — N=5
— N=6 — — N=6 —
001~ : . . . . . . 0.0 . .
03 04 05 06 07 08 09 10 11 02 0.4 0.6 0.8 1.0

Fig. 1. Mass m(0) of the solution of (3.3) found at L = 0, in terms of the parameter « in (3.4),
for the indicated values of A.

a € (0,1) but, similarly as in Lemma 2.1, one can in fact go up to a = 2 — % + ﬁ
which corresponds to ¢ = %—;5 In the case 1 < «, we know that the free energy
is not bounded below, still the constructed candidate is a minimizer in the relative
free energy sense, see Remark 2.1. From the figure we see that the mass m(0) is
smaller than 1 for some a < 1 in all dimensions N > 4 for A € {6,8,10}. We also
recover the results of Theorem 2.1 at A = 4. In dimension N = 3 the mass barely
misses 1 at A = 8 but concentration happens at A = 10. In Table 1 we provide
an approximation of the corresponding critical gy (d) below which concentration
occurs, which clearly illustrates the monotonicity in N and A.

We have also found numerically that the mass m(L) of the solution was always
decreasing with L as pointed out earlier. Should this be confirmed, then we would
have a clear picture of the situation for A an even integer. The final conclusion would
be that concentration occurs for all N > 3 starting at A = 10 and for all N > 4 for
A € {6,8}. We have already proved in Theorem 2.1 that it happens for all N > 6
for A = 4, and it was shown in'® that there is never concentration for A = 2. Of
course we expect the true critical values of A to be in between these special cases
of even integers. For instance, we think that concentration happens in N = 3 for A
just slightly above A = 8, as is suggested by Figure 1.
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N=3 N=4 N=5 N=6
A=4 X X X 11~ 0.61 (0.95)
A= X 0.42 (0.90) | 0.52 (0.72) | 0.58 (0.62)
A= X 0.40 (0.66) | 0.48 (0.50) | 0.54 (0.41)
A =10 | 0.26 (0.81) | 0.38 (0.49) | 0.45 (0.35) | 0.51 (0.29)

Table 1. Numerical value of the critical diffusion exponent gn (X) below which concentration occurs.
The corresponding an(A) in (3.4) is provided in parenthesis (these are the points at which the
curves of Figure 1 cross the horizontal axis m = 1). The value of ¢y (M) for A = 4 and N = 6
is from Theorem 2.1. An ‘X’ means that concentration does not occur for minimizers of the free
energy in this combination of parameters.

3.2. The general case

For A\ ¢ 2N, the convolution p * | - |* is not a polynomial in |z|2, hence the Euler-
Lagrange equation cannot be reduced to a nonlinear equation involving finitely
many parameters as in (3.3). However, we can still restrict our attention to radial
functions and write the convolution in the form

prl-Pa) = 8V / Kna(l2], s)p(s)s™ds,

with the slight abuse of notation p(|z|) := p(z), where the kernel Ky (7, s) is the
spherical average

1
KN,)\(T, 5) = W /\/SN,lst,l ‘T‘LL) — sw’\)‘dw dw/.

Its explicit formula in terms of Hypergeometric functions is provided later in the
appendix for completeness. Our goal is to solve the nonlinear equation (1.5) at
L = 0. A Taylor expansion as in [16, Lemma 18] gives

C’riﬁ(l +0o(1)) for r — 0,

p(r) = (qu)ﬁr_l%q(lJrO(l)) for r — oco.

This prompts us to make the ansatz

pf(r)q_1 =r2(1+ ) 2f(r), (3.5)

where f is a positive continuous function on Ry tending to a positive limit at 0 and
infinity. The Euler-Lagrange equation (1.5) can be expressed in terms of f as

f(r) = ®(f)(r) == {SN 1|/ CN” Oraalris)y, (3.6)

N1 [ N-1-1% A2
+ [1-[S7 / —ds ,
57 0 (L+s)i=if(s)=a ) (L+r))=2
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where

We used again the mass condition (1.6) to remove M from the equation. Our goal
is to find a numerical approximation of the solution f to (3.6). We approximate f
by

2

(3.7)

f(s):‘P<1-:r>

where P is a (complex) polynomial of finite degree d. This choice is motivated by
the fact that when A = 2n € 2N, the exact solution takes exactly this form with
d =n—1. For A ¢ 2N there will probably be no solution to the nonlinear equation
f = ®(f) in the class (3.7) and we rather aim at minimizing a certain distance
between f and ®(f). In our algorithm we minimized the L? (square) distance

_2

I <1N+> ()™ — o)) ™) ds (39

with respect to the coefficients of the polynomial P. By Jensen’s inequality, the L?
norm in (3.8) controls the L' norm of the corresponding densities in (3.5)

1

¢ "7 N
les = pas) ”Ll(]RN) - (1—q> ISV

%) SNflfﬁ e e
«f e e e 69

and it is a smoother function of the polynomial coeflicients.

We used again the BFGS method of SciPy to minimize (3.8) with respect to
the coefficients of the polynomial P in (3.7). This provides an approximate solution
to (3.6). We then computed the mass of this solution in terms of ¢ and obtain curves
which look very much like those of Figure 1. The point at which the mass crosses 1
provides an approximation of the critical exponent gy (A) below which condensation
happens.

We provide in Figure 2 the result of the calculation of gx(A) in dimension
N = 5. The curve suggests that concentration starts to appear for A slightly above
4. This curve was obtained by taking for P a complex polynomial of degree 10 and
discretizing the integrals in (3.8) and (3.6) by a simple Riemann sum with 1000
regularly spaced points on [0, 20]. With this choice of discretization parameters, the
L' error (3.9) was found to be at most of the order 1075 for all the points of the
curve.
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0.55 -

0.50 -
= 0.45
&

0.40 -

0.35 -

4 5 6 7 8 9 10
A

Fig. 2. Numerical value of g5(\) below which condensation occurs. The dashed line is the curve
A= % which is a lower bound to ¢q. The dots are the points computed with the algorithm
from Section 3.1 when X is an even integer. This suggests that concentration happens in dimension
N =5 for X slightly above 4.

4. Discussion

We have studied free energy minimizers of the nonlinear aggregation-diffusion equa-
tion (1.1) and found that these can have part of their mass concentrated in a Dirac
delta at the origin. This complements the literature on variants of the KS model
and their possible blow-up behavior® for recent developments. We rigorously proved
this property in the case of the quartic attraction A = 4 in all space dimensions
N > 6 and provided numerical results which suggest the same phenomenon in all
space dimensions N > 3 for A = 10. Our analysis is based on the study of the in-
tegral m(L) of (the regular part of) solutions to the Euler-Lagrange equation with
Lagrange multiplier L, and mass concentration means that m(0) < 1. Numerical
evidence supports that m(L) is decreasing with respect to L. It is an interesting
problem to show that these candidates are the unique minimizers of the free energy
(1.2) for A > 4. Unlike previous results'® which proved that the Dirac delta is an
unstable equilibrium for the fast diffusion equation with 0 < ¢ < %, we expect
that the minimizers exhibiting concentration are attractors of the dynamics (1.1).
It is an interesting open problem if an appropriate notion of solution to (1.1) can
develop singularities in finite or infinite time. A result in this direction in the case
of an external potential instead of the interaction potential as in (1.1) has recently
been obtained.!”
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Appendix: Computation of Ky (7, s)

Passing to radial coordinates, we obtain

SN2 s o 3 N2
Kna(r,s) = V1] (r? 4 s* — 2rscos ) 2 sin™ () dy
0
B ‘SN72| 1 % Nos

= W . (7,2 —+ 82 — 27"St) (]. — t2) 2 dt

In dimension N = 3 we have the explicit formula
T (r+s) M2 —|r— M2
(A+2) rs
while, in other dimensions, this can be expressed as
2—X AN 4r2s?
4 7 4727 (r2 4 s2)2

Ks\(r,s) = 5

A
KN7)\(T, 5) = (T2 + 82) 2 ok <
where o F is the Hypergeometric function. In the case of even integers we find

Kna(r,s) =r? 4+ 2,
4
Kna(r,s) =r* +s* + <2 + N) r?s?,

12
Ky g(r,s) =0+ 50+ (3 + N> (r1s? 4 r2st),

Kys(r,s) =r® + s° + 32+ §8J/FJ\]7V+ AN
60 + 144/N + 6N ,
24+ N ’
50 + 80/N + 5N
2+ N
140 + 480/N + 10N
24+ N

This provides the coefficients ¢ appearing in (3.3).

(7,652 4 867“2)

Knao(r,s) =r'®+5'0+ (r8s% 4 s512)

(r634 + 5.
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