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We show that partial mass concentration can happen for stationary solutions of
aggregation-diffusion equations with homogeneous attractive kernels in the fast diffusion

range. More precisely, we prove that the free energy admits a radial global minimizer in

the set of probability measures which may have part of its mass concentrated in a Dirac
delta at a given point. In the case of the quartic interaction potential, we find the exact

range of the diffusion exponent where concentration occurs in space dimensions N ≥ 6.

We then provide numerical computations which suggest the occurrence of mass concen-
tration in all dimensions N ≥ 3, for homogeneous interaction potentials with higher

power.
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1. Introduction

Nonlinear aggregation-diffusion equations of the form

∂tρ = ∆ρq + ∇ · (ρ∇W ∗ ρ) , (1.1)

are ubiquitous in continuous descriptions of populations, with applica-

tions in mathematical biology, gravitational collapse and statistical mechan-

ics.7,9, 15,18,25,27,28,35,41,42,44 Here, ρ(t) is a time-dependent probability measure

over RN , q > 0 is the diffusion exponent regulating if the diffusion is slow (q > 1),

linear (q = 1) or fast (0 < q < 1) for small values of the density, while W is the

aggregation kernel describing some attraction between the agents of the population.

In this work, W will be taken equal to the homogeneous potential Wλ(x) := |x|λ/λ
with λ > −N . A positive λ corresponds to a bounded interaction potential at the

origin, whereas −N < λ < 0 provide locally integrable, singular interaction po-

tentials. At λ = 0, the convention is to take W0(x) = log |x| which, in dimension

N = 2, is the Newtonian potential.

The time-dependent equation (1.1) is the (formal) gradient flow of a free energy

functional1,21,39 defined for probability measures µ ∈ P(RN ) by

F [µ] :=
1

q − 1

∫
RN

µac(x)q dx+
1

2λ

∫∫
RN×RN

|x− y|λ dµ(x) dµ(y) q 6= 1, (1.2)

where µac is the absolutely continuous part of µ with respect to the Lebesgue

measure. At q = 1, the first term is replaced by Boltzmann’s entropy, which is∫
RN µac(x) logµac(x) dx when the measure µ is absolutely continuous, and +∞ for

measures that are not absolutely continuous. This formal structure, which can be

turned rigorous only for some particular values of the parameters,22 plays an essen-

tial role in the analysis of the dynamics in (1.1). In particular, the global minimizers

of the free energy functional F are the best candidates to be locally stable equilibria

for (1.1) and the large-time asymptotics of time-dependent solutions.

Nonlinear aggregation equations of the form (1.1) show very challeng-

ing phenomena, both with regard to their time behavior and the properties

of their steady states. They have received lots of attention in the last 20

years.7,9, 15,18,25,27,28,35–37,41,42,44 The form of the global minimizers depending on

the parameters is quite rich, but by now it is well understood in the case of porous

medium-like diffusion q > 1 and linear diffusion q = 1.2,6, 8, 9, 11,14,18,19,23,24,28,30–32

When q ≥ 1, for all possible values of λ where global minimizers of the free energy

exist, they are given by bounded probability densities.

We mention specifically the case of the classical parabolic–elliptic Keller–Segel

(KS) system23,27,28 for cell movement by chemotaxis, which is obtained by setting

N = 2, q = 1 and λ = 0. Depending on the mass of the initial mass, it is known that

solution to KS can blow up in finite time in any Lp(RN ), p > 1. Several variations

of KS that avoid blow up are present in the chemotaxis modelling literature.4,26

We also mention the flux limited KS, in which the maximal aggregation velocity of

the density is bounded.3,38
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This work continues the investigation initiated by J. Dolbeault, F. Hoffmann and

the first three authors of this paper,16 who dealt with the much less understood case

of 0 < q < 1 and λ > 0. It was shown16 that global minimizers of the free energy do

not necessarily exist, even when F is bounded-below, if we insist on requiring that µ

is absolutely continuous with respect to the Lebesgue measure. However, minimizers

in the form of measures exist when F is bounded-below. By rearrangement, we

can, in fact, restrict the minimization of F to radially non-increasing probability

distributions µ modulo translations,18 and those can only have a singularity at the

origin in the form of a Dirac delta. For these probability measures µ = Mδ0 + ρ

with ρ ∈ L1(RN ) a non-increasing radial function, the free energy becomes

F [ρ,M ] =− 1

1− q

∫
RN

ρ(x)q dx+
M

λ

∫
RN
|x|λρ(x) dx (1.3)

+
1

2λ

∫∫
RN×RN

ρ(x)|x− y|λρ(y) dx dy.

It was proved in16 that this free energy is bounded from below if and only if N/(N+

λ) < q < 1, and in this case admits at least one global minimizer µ∗ = M∗δ0 + ρ∗
with

ρ∗ ∈ Lq(RN ) ∩ L1(RN ) ∩ L1(RN , |x|λ dx). (1.4)

The function ρ∗ is always supported on all of RN due to the singularity of the term

ρq at zero, see [16, Lemma 9], and, if M∗ > 0, it diverges at the origin. We note

parenthetically that the minimization of the free energy F is equivalent to finding

the sharp constant in a reversed Hardy–Littlewood–Sobolev inequality.

Two important questions are whether these minimizers are unique modulo trans-

lations, and whether mass concentration occurs in the sense that M∗ > 0. These

questions have been solved16 for some values of the parameters, but only negatively

concerning the occurrence of concentration. For instance, it was shown16 that min-

imizers are always unique for 2 ≤ λ ≤ 4 and that M∗ = 0 for

• all λ > 0 and N
N+λ < q < 1 if N = 1, 2,

• all 0 < λ ≤ 2 + 4
N−2 and N

N+λ < q < 1 if N ≥ 3.

Therefore, concentration never happens in dimensions N = 1, 2, nor in higher di-

mensions for too small values of the aggregation parameter λ. For example, concen-

tration never happens at λ = 2 in any dimension N ≥ 1.

We have no intuitive explanation of why concentration cannot happen in di-

mensions N = 1, 2 but we notice that the same phenomenon occurs for other phase

transitions in statistical physics, by the Mermin–Wagner theorem.34,40 This is for

instance the case of Bose–Einstein condensation.43

Our main goal in this work is to show that concentration does indeed occur

in dimensions N ≥ 3, for large-enough values of λ. First, we look at the quartic

case λ = 4 which we can solve completely. We prove in Theorem 2.1 below that

concentration happens for some (but not all) values of q in dimension N ≥ 6 but
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never occurs in dimensions N ≤ 5. However, it does occur in dimensions N ∈
{3, 4, 5} at smaller values of q where the free energy is unbounded from below, if

we allow formal minimizers with an infinite free energy (see Remark 2.1). Then, we

provide numerical evidence that concentration does happen for regular minimizers

at larger values of λ, starting with dimension N = 3.

Our numerical results detailed in Section 3 suggest some interesting features of

the model, which we are unfortunately not able to prove at the moment. The nu-

merical evidence indicates that the concentration region satisfies some monotonicity

in terms of our three parameters N , λ and q. More precisely, if concentration oc-

curs for some (N,λ, q) then it should also occur for all (N ′, λ′, q′) so that N ′ ≥ N ,

N ′/(N ′ + λ) < q′ ≤ q and λ′ ≥ λ. Thus, for any fixed λ > 0 and N ∈ N, the

concentration region for q should be an interval
(

N
N+λ , qN (λ)

)
, with qN (λ) a non-

decreasing function. For instance, we think that the interval starts to be non-empty

for λ slightly above 8 in dimension N = 3. Proving these observations seems chal-

lenging.

Our theoretical and numerical results are both based on the associated (first

order) Euler-Lagrange equation for the absolutely continuous part ρ∗:

q

1− q
ρq−1
∗ = ρ∗ ∗ | · |λ +M∗|x|λ −

∫
RN
|y|λρ∗(y) dy + L, (1.5)

where q
1−qρ

q−1
∗ (0) = L ≥ 0 is a Lagrange multiplier associated with the mass

constraint ∫
RN

ρ(x) dx+M = 1. (1.6)

A useful fact will be that (1.5) can be highly simplified when λ is an even integer. In

this case we can expand |x−y|2n in terms of a polynomial in x and y and, using the

radial symmetry of ρ∗, the convolution ρ∗∗|·|λ becomes a simple polynomial in |x|2.

Thus (1.5) can be turned into a simpler equation for these finitely many polynomial

coefficients. This is how we will be able to solve completely the particular case

λ = 4. This simplification will also be used to design a rather precise numerical

algorithm in the case λ ∈ 2N, and to deal with the other values of λ.

We conclude this introduction with more comments about the meaning of our

findings in light of the time-dependent equation (1.1). Any minimizer µ∗ = M∗δ0+ρ∗
for the free energy (1.2) is a stationary solution of (1.1), in the sense that

∆ρq∗ + ∇ · (µ∗∇Wλ ∗ µ∗) = 0

as distributions, due to the properties (1.4) proved in.16 We point out that the range

0 < q < 1 is usually called “fast diffusion” corresponding to the faster diffusion (than

the heat equation) for small values of the density while the diffusion is in fact slower

for large values of the density, where concentration happens. Therefore, when q gets

smaller, the diffusion of a Dirac delta at the origin is weaker. Even more, as proved

in10 by Brézis and Friedman, an initial Dirac delta is in fact a kind of stationary

solution to the fast diffusion equation for 0 < q < N−2
N . More precisely, they showed
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that approximating an initial Dirac delta at the origin by mollifiers and sending the

regularization parameter to zero was not leading to a source-type strong L1-solution

(Barenblatt-type solution) as opposed to the case q > N−2
N . In fact, they proved

that the Dirac delta stays “stable” for all times [10, Thm. 8]. It is an open problem

to give sense to the evolution problem (1.1) with general probability measures as

initial datum. The Wasserstein gradient flow of the suitably defined extension of

the free energy (1.2) to measures as in [16, Sect. 5] is the natural candidate.

Our results show that the combined effect of the small diffusion at large densities

with the attraction due to the potential Wλ can lead to a partial concentration of

mass at the origin in the stationary case. Understanding the well-posedness and

long time behavior of the evolution equation (1.1) is essentially open in this regime

of parameters. The possible concentration of mass happening in finite or infinite

time for its evolution is just one of the many challenging open questions. The long

time behavior has recently been investigated in the preprint,12 but for q so close to

1 that no concentration can happen.

The paper is organized as follows. The next section is devoted to the special case

λ = 4 whereas in Section 3 we present our numerical simulations for other values

of λ, looking first at the special case of even integers and then general values.

2. The quartic case λ = 4

In the case λ = 4, we are reduced to the regime

N

N + 4
< q <

N

N + 2
,

since it was already proved in [16, Prop. 14] that concentration does not happen for

larger values of q and that the free energy is not bounded below for smaller values.

We know from [16, Prop. 20] that there is a minimizer (ρ∗,M∗) and by [16, Thm. 27]

that this minimizer is unique up to translations. The question is whether M∗ = 0

or not. We define

qN (4) :=
N − 2

N + 2

(
1 +

4

3N

)
which will be proved to be the critical exponent at λ = 4 in the next statement.

For all N ≥ 6, one has

N

N + 4
< qN (4) <

N − 2

N
<

N

N + 2
,

whereas qN (4) < N
N+4 for N ≤ 5. Note that qN (4) is increasing with the dimension

N .

Theorem 2.1. Let λ = 4 and N
N+4 < q < N

N+2 . Then F in (1.3) admits a unique

minimizer (ρ∗,M∗) with ρ∗ a radial function satisfying (1.4).

(a) If N ≤ 5, then M∗ = 0.
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(b) If N ≥ 6 and q < qN (4), then M∗ =
3

2

qN (4)− q
N−2
N − q

> 0.

(c) If N ≥ 6 and q ≥ qN (4), then M∗ = 0.

In dimensions N ≥ 6 with q ≤ qN (4), we are able to compute the unique

minimizer explicitly. It is given by

ρ∗(x) =

(
q

1− q

) 1
1−q (

|x|4 +B∗|x|2
)− 1

1−q (2.1)

for a constant B∗ > 0 given in the proof of Lemma 2.1. Note that ρ∗ diverges at

the origin, as it should.16 Note also that the concentrated mass M∗ is decreasing

with respect to q. One could also compute F [ρ∗,M∗] explicitly for q ≤ qN (4).

See Remark 2.1 below for an interpretation of what is happening in dimensions

N ∈ {3, 4, 5}.

Proof of Theorem 2.1

First, we recall that any minimizer of the form µ∗ = M∗δ0 +ρ∗ solves the nonlinear

equation (1.5). Using

|x− y|4 = |x|4 + |y|4 + 4(x · y)2 + 2|x|2|y|2 − 4|x|2x · y − 4|y|2x · y

and the fact that ρ∗ is radial, we can express the convolution in the form∫
RN
|x− y|4ρ∗(y) dy = |x|4

∫
RN

ρ∗(y) dy +

∫
RN
|y|4ρ∗(y) dy

+

(
2 +

4

N

)
|x|2
∫
RN
|y|2ρ∗(y) dy . (2.2)

Thus, using the mass constraint (1.6), the Euler-Lagrange equation (1.5) for ρ∗ can

be rewritten in the form
q

1− q
ρ∗(x)q−1 = |x|4 +B|x|2 + L,

B =

(
2 +

4

N

)∫
RN
|y|2ρ∗(y) dy,

(2.3)

where we recall that L ≥ 0 is an unknown Lagrange multiplier. Our goal is to find

the values of L and B in (2.3). Of course we then have M∗ = 1−
∫
RN ρ∗.

The idea of the proof is to look at all the possible solutions of (2.3) parametrized

by L. Plugging the first formula into the second, we obtain a simple nonlinear

equation for B which we show admits a unique solution B(L) for any L ≥ 0. A

scaling argument will also give us an exact expression of B(0). Next, we show that

the mass m(L) of this solution is strictly decreasing with L. Thus, we have two

possibilities either m(0) ≥ 1 or m(0) < 1. If m(0) ≥ 1, then there exists a unique

L∗ ≥ 0 such that m(L∗) = 1, and the minimizer is given by (ρ∗, 0), where ρ∗ is the

solution of (2.3) with this L∗. This conclusion follows from the uniqueness of critical

points, which is shown by a convexity argument. Alternatively, if m(0) < 1, then
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there exist no solution of (2.3) with mass 1 and thus there must be concentration.

From [16, Prop. 14] we then know that L = 0, that is, ρ∗ is given by the unique

solution with L = 0 and B = B(0) and we have M∗ = 1−m(0) > 0.

The following contains the main properties of solutions of (2.3) that we need for

the proof.

Lemma 2.1. Let λ = 4 and max
(

0, N−2
N+2

)
< q < N

N+2 .

(a) There is a unique differentiable function B : [0,∞)→ (0,∞) such that for each

L ≥ 0,

ρL(x) :=

(
q

1− q

) 1
1−q (

|x|4 +B(L)|x|2 + L
)− 1

1−q

satisfies (
2 +

4

N

)∫
RN
|y|2ρL(y) dy = B(L).

(b) The mass m(L) :=
∫
RN ρL(x) dx ∈ (0,+∞] is continuous and strictly decreasing

with respect to L ≥ 0. It converges to 0 when L→∞.

(c) At L = 0 we have

m(0) =


1
2

q−N−2
N+2

N−2
N −q if q < N−2

N ,

+∞ otherwise.

(2.4)

Thus, if q < N−2
N , then m(0) ≤ 1 if and only if q ≤ qN (4).

Proof. Part (a). Let us define

ρB,L(x) =

(
q

1− q

) 1
1−q (

|x|4 +B|x|2 + L
)− 1

1−q (2.5)

for all B,L ≥ 0 and consider the function FL(B) given by

FL(B) :=

(
q

1− q

) 1
1−q

|SN−1|
∫ ∞

0

rN+1dr

(r4 +Br2 + L)
1

1−q
=

∫
RN
|y|2ρB,L(y) dy. (2.6)

This function is well defined for all L ≥ 0 and B > 0 under our assumptions on

q. It is strictly decreasing as a function of B and L separately. Moreover, for every

given L ≥ 0 the limit as B → 0+ is positive (infinite if L = 0) and the limit B →∞
is zero. Therefore, for every L ≥ 0, there exists a unique B(L) > 0 such that

B(L) = κFL
(
B(L)

)
with κ := 2 +

4

N
. (2.7)

From the monotonicity of FL, we have that B is decreasing with L. From the implicit

function theorem, B is in fact a smooth function of L. Using r4+B(L)r2+L ≥ r4+L
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and scaling out L we find

B(L) ≤ κ
(

q

1− q

) 1
1−q

|SN−1|
∫ ∞

0

rN+1dr

(r4 + L)
1

1−q

= κ

(
q

1− q

) 1
1−q

|SN−1|L
N+2

4 −
1

1−q

∫ ∞
0

rN+1dr

(r4 + 1)
1

1−q
.

Under our assumption on q we have N+2
4 < 1

1−q and thus B(L)→ 0 when L→∞.

We will compute the exact value of B(0) below.

Part (b). Now we show that the mass m(L) of ρL is decreasing in L. Similarly as

above, we write the integral in radial coordinates to obtain

m(L) =

(
q

1− q

) 1
1−q

|SN−1|
∫ ∞

0

rN−1dr

(r4 +B(L)r2 + L)
1

1−q
. (2.8)

The integral converges for all L > 0, but not necessarily for L = 0. The same

estimate as for B(L) provides

m(L) ≤
(

q

1− q

) 1
1−q

|SN−1|L
N
4 −

1
1−q

∫ ∞
0

rN−1dr

(r4 + 1)
1

1−q

and shows that m(L)→ 0 when L→∞. Then, taking a derivative we obtain

m′(L) = −
∫ ∞

0

(1 +B′(L)r2)ϕ(r) dr,

where we have introduced

ϕ(r) :=

(
q

1− q

) 1
1−q |SN−1|

1− q
rd−1

(
r4 +B(L)r2 + L

)− 1
1−q−1

to simplify the notation. On the other hand, we have from (2.7)

B′(L) = −κ
∫ ∞

0

r2(1 +B′(L)r2)ϕ(r) dr.

Hence

B′(L) = −
κ
∫∞

0
r2ϕ(r) dr

1 + κ
∫∞

0
r4ϕ(r) dr

and thus,

m′(L) = −
∫ ∞

0

ϕ(r) dr +
κ
(∫∞

0
r2ϕ(r) dr

)2
1 + κ

∫∞
0
r4ϕ(r) dr

≤ −
∫∞

0
ϕ(r) dr

1 + κ
∫∞

0
r4ϕ(r) dr

< 0,

since (∫ ∞
0

r2ϕ(r) dr

)2

≤
∫ ∞

0

ϕ(r) dr

∫ ∞
0

r4ϕ(r) dr

by the Cauchy-Schwarz inequality. This proves our claim that the mass is a decreas-

ing function of L > 0.
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Part (c). For L = 0, we notice that the right side of (2.7) is homogeneous in B(0).

More explicitly, making the change of variables r =
√
B(0)r̄, we see that (2.7) can

be expressed as

B(0) =

(
2 +

4

N

)
F0(B0) =

(
2 +

4

N

)
cN,q B(0)

N+2
2 −

2
1−q

(
q

1− q

) 1
1−q

,

or equivalently

B(0)
2

1−q−
N
2 =

(
2 +

4

N

)
cN,q

(
q

1− q

) 1
1−q

, (2.9)

with

cN,q = |SN−1|
∫ ∞

0

rN+1

(r4 + r2)
1

1−q
dr ,

which is finite under our assumptions on q. Next, we turn to the mass. Since B(L)→
B(0) > 0 as L→ 0+, we have

lim
L→0+

m(L) =

(
q

1− q

) 1
1−q

|SN−1|
∫ ∞

0

rN−1dr

(r4 +B(0)r2)
1

1−q
.

This is infinite for q ≥ N−2
N due to the singularity at the origin. For q < N−2

N we

can compute the explicit value of m(0) in (2.4), using the formula (2.9) of B(0). By

scaling we have, this time,

m(0) =

∫
RN

ρ0(y) dy = c′N,q B(0)−
N
2 + 2

1−q

(
q

1− q

) 1
1−q

with

c′N,q = |SN−1|
∫ ∞

0

rN−1

(r4 + r2)
1

1−q
dr.

Inserting (2.9) into this expression, we obtain

m(0) =
c′N,q
cN,q

N

2(N + 2)
.

With the change of variables t = r2 we can write

cN,q =
1

2
|SN−1|

∫ ∞
0

t
N
2 −

1
1−q (1 + t)−

1
1−q dt

and

c′N,q =
1

2
|SN−1|

∫ ∞
0

t
N−2

2 −
1

1−q (1 + t)−
1

1−q dt.

Thus, by beta and gamma function identities,

c′N,q
cN,q

=
Γ(N2 −

1
1−q ) Γ( 2

1−q −
N
2 )

Γ(N+2
2 − 1

1−q ) Γ( 2
1−q −

N+2
2 )

=
N + 2

N

q − N−2
N+2

N−2
N − q

,
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which proves (2.4) and concludes the proof of the Lemma 2.1.

Note that Lemma 2.1 covers a larger range for the exponent q since N−2
N+2 <

N
N+4 ,

see Remark 2.1. However, the free energy F is bounded-below only for q > N
N+4 ,

which we assume from now on. For the convenience of the reader we provide a self-

contained proof of Theorem 2.1 using Lemma 2.1, which does not use any material

from16 and solely relies on the convexity of F in the cone of radial probability

measures, in the spirit of Lopes’ work.33

There are two situations. When q ≥ qN (4), Lemma 2.1 implies that there is a

unique L∗ ≥ 0 so that m(L∗) = 1. In this case we define (ρ∗,M∗) := (ρL∗ , 0). On

the other hand, when q < qN (4) (which can only happen in dimensions N ≥ 6),

then the equation m(L) = 1 admits no solution. In this case we choose L∗ = 0

and set (ρ∗,M∗) := (ρ0, 1 −
∫
RN ρ0), which satisfies M∗ > 0. The choice L∗ = 0 is

dictated by [16, Prop. 14] but we will see below that this follows from the first order

Euler-Lagrange condition on M∗, which we have not yet used in the argument.

We claim that the so-defined (ρ∗,M∗) is the unique minimizer of F , which will

conclude the proof. To prove this claim, we notice that for µ = Mδ0 + ρ with ρ a

radial function, we can use (2.2) to write

F [ρ,M ] =

∫
RN
|x|4ρ(x) dx+

(
1 +

2

N

)(∫
RN
|x|2ρ(x) dx

)2

− 1

1− q

∫
RN

ρ(x)qdx,

(2.10)

From this, it is apparent that F is strictly convex in ρ. Let us now prove that

F [ρ,M ] ≥ F [ρ∗,M∗] for every

∫
RN

ρ+M = 1,

with equality if and only if (ρ,M) = (ρ∗,M∗). Using (2.10) and the definition (2.5)

of ρ∗ we obtain after a calculation

F [ρ,M ]−F [ρ∗,M∗] =L∗

∫
RN

(ρ∗ − ρ)(x) dx+

(
1 +

2

N

)(∫
RN
|x|2(ρ− ρ∗)(x) dx

)2

− 1

1− q

∫
RN

(
ρq − qρq−1

∗ (ρ− ρ∗)− ρq∗
)

(x) dx. (2.11)

Let us distinguish cases here. If M∗ = 0, then
∫
RN ρ∗ = 1 and the first term on the

right side is certainly non-negative. If M∗ > 0, then the integral can have either

sign, but the term vanishes since we have chosen L∗ = 0. Hence in both cases, the

first term is non-negative. This is how the two conditions L∗ = 0 for
∫
RN ρ∗ < 1 and∫

RN ρ∗ = 1 for L∗ > 0 appear to be necessary for minimizers. The other solutions

(ρL, 1−
∫
RN ρL) cannot be minimizers. On the other hand, by concavity of a 7→ aq

on R+ we have aq − qbq−1(a− b)− bq ≤ 0 with equality if and only if a = b. Thus

we have proved, as we claimed, that F [ρ,M ] ≥ F [ρ∗,M∗] with equality if and only

if ρ = ρ∗. This implies M = M∗ due to the mass constraint and concludes the proof

of Theorem 2.1.
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Remark 2.1 (Concentration for 3 ≤ N ≤ 5). For N−2
N+2 < q ≤ N

N+4 we can

still define (ρ∗,M∗) by the same procedure. The right side of (2.11) makes sense

and is non-negative. Thus (ρ∗,M∗) is a formal minimizer of the free energy, but

the corresponding value is infinite: F [ρ∗,M∗] = −∞. This is due to the first and

third integrals in (2.10) which diverge at large x. With this formal definition of

a minimizer, we see that concentration indeed happens at λ = 4 for all N ≥ 3,

since qN (4) > N−2
N+2 in this case. This fact can allow one to use relative free energy

quantities as a tool to quantify the basin of attraction to equilibria similarly to the

case of the Barenblatt solutions in the very fast diffusion range even if their second

moment or their mass becomes infinite leading to infinite free energy.5,20,29

Remark 2.2 (Concentration is independent of mass). Notice that we have

chosen to work with probability measures and with interaction potential |x|λ/λ.

Assuming a different mass normalization µ(RN ) = m and an interaction potential

C|x|λ with C > 0, the minimizer µ∗,m,C of the free energy (1.2) is given by
µ∗,m,C = γ1µ∗(γ2x)

γ1γ
−N
2 = m

Cλγ3−q
1 γ−λ−2N

2 = m,

with µ∗ the minimizer of the free energy (1.2) of mass 1.

3. Numerical results for other values of λ

For λ = 4, we have shown in Lemma 2.1 that the mass m(L) of the unique so-

lution ρL to the simplified Euler-Lagrange equation (2.3) is monotone decreasing

with respect to the parameter L. Therefore, when m(0) < 1 we can conclude that

concentration occurs. We think that the same strategy applies to other values of

λ. Namely, the idea is to look for a radial solution of the Euler-Lagrange equa-

tion (1.5) imposing L = 0, and compute its mass m(0). Should the latter be less

than 1, we would have found a stationary state with concentration, which is a good

candidate for being a global minimizer. If the mass is monotone with L there exist

in fact no solution of the Euler-Lagrange equation with mass one. If on the contrary

m(0) > 1, this proves that a minimizer has to have L > 0 and thus it cannot display

concentration, by [16, Prop. 14].

To make this strategy work, we would have to show the existence and unique-

ness of solutions to (1.5) for every L ≥ 0 and prove that the corresponding mass

m(L) is decreasing. We are not able to show this fact analytically. However, we have

numerically investigated this question thoroughly for a large range of λ. The numer-

ical evidence supports the conjecture that these claims hold. We present here our

numerical results, dealing first with the simpler case of even integers. The python

scripts and their outputs can be found in the GitHub repository ‘Concentration’13

together with a list of the cases investigated.
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3.1. The case of even integers

When λ = 2n is an even integer, we can expand |x− y|2n in terms of a polynomial

in x and y. Using the radial symmetry of ρ∗, we obtain that only the even terms

contribute to the convolution ρ∗ ∗ | · |λ in the Euler-Lagrange equation (1.5):

q

1− q
ρq−1
∗ (x)=

∫
RN
|x− y|λρ∗(y)dy +M∗|x|λ −

∫
RN
|y|λρ∗(y) dy + L

= |x|λ+

n−1∑
i=1

cλi

(∫
RN
|y|2n−2iρ∗(y) dy

)
|x|2i + L,

(3.1)

where we have used the fact that the coefficient of |x|λ simplifies due to the mass

constraint, and where cλi are positive coefficients that depend on λ and N . The

values of cλi can be computed explicitly and are provided in the appendix for λ ∈
{2, 4, 6, 8, 10} for completeness. For instance, we have c41 = 2 + 4/N , c61 = c62 =

3 + 12/N , etc. Note that the unknown mass M∗ has disappeared from the equation

but it of course still appears in the mass constraint (1.6).

The new form (3.1) of our Euler-Lagrange equation implies that we can restrict

our attention to densities

ρβ,L(x) =

(
q

1− q

) 1
1−q
(
|x|λ +

n−1∑
i=1

βi|x|2i + L

)− 1
1−q

, (3.2)

with βi, L ≥ 0. The equation (3.1) then reduces to a system of n − 1 nonlinear

equations for the parameters βi:

βi = cλi

∫
RN
|y|2n−2iρβ,L(y) dy =: Fi,L(β1, ..., βn−1), (3.3)

with i = 1, . . . , n− 1. The gradient of Fi,L equals

∂

∂βj
Fi,L(β1, ..., βn−1) = −c

λ
i

q

∫
RN
|y|2n−2i+2jρβ,L(y)2−q dy.

We have implemented in Python an algorithm which solves the nonlinear equa-

tions (3.3). We used the BFGS algorithm on the auxiliary functional

I(β1, ..., βn−1) :=

n−1∑
i=1

(
βi − Fi,L(β1, ..., βn−1)

)2
,

with the integrals computed by the quadrature method, both from the Python

library SciPy .45

In Figure 1 we provide the result of the computation of the mass m(0) for

λ ∈ {4, 6, 8, 10} as a function of the parameter

α :=
2N − q(2N + λ)

N(1− q)
. (3.4)

This parameter (already used in16) is useful since the critical value q = N
N+λ simply

becomes α = 1 and thus does not depend on N and λ. The interval of interest is then
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Fig. 1. Mass m(0) of the solution of (3.3) found at L = 0, in terms of the parameter α in (3.4),

for the indicated values of λ.

α ∈ (0, 1) but, similarly as in Lemma 2.1, one can in fact go up to α = 2− λ
4 + λ

2N

which corresponds to q = N−2
N+2 . In the case 1 ≤ α, we know that the free energy

is not bounded below, still the constructed candidate is a minimizer in the relative

free energy sense, see Remark 2.1. From the figure we see that the mass m(0) is

smaller than 1 for some α < 1 in all dimensions N ≥ 4 for λ ∈ {6, 8, 10}. We also

recover the results of Theorem 2.1 at λ = 4. In dimension N = 3 the mass barely

misses 1 at λ = 8 but concentration happens at λ = 10. In Table 1 we provide

an approximation of the corresponding critical qN (d) below which concentration

occurs, which clearly illustrates the monotonicity in N and λ.

We have also found numerically that the mass m(L) of the solution was always

decreasing with L as pointed out earlier. Should this be confirmed, then we would

have a clear picture of the situation for λ an even integer. The final conclusion would

be that concentration occurs for all N ≥ 3 starting at λ = 10 and for all N ≥ 4 for

λ ∈ {6, 8}. We have already proved in Theorem 2.1 that it happens for all N ≥ 6

for λ = 4, and it was shown in16 that there is never concentration for λ = 2. Of

course we expect the true critical values of λ to be in between these special cases

of even integers. For instance, we think that concentration happens in N = 3 for λ

just slightly above λ = 8, as is suggested by Figure 1.
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N = 3 N = 4 N = 5 N = 6

λ = 4 X X X 11
18 ' 0.61 (0.95)

λ = 6 X 0.42 (0.90) 0.52 (0.72) 0.58 (0.62)

λ = 8 X 0.40 (0.66) 0.48 (0.50) 0.54 (0.41)

λ = 10 0.26 (0.81) 0.38 (0.49) 0.45 (0.35) 0.51 (0.29)

Table 1. Numerical value of the critical diffusion exponent qN (λ) below which concentration occurs.

The corresponding αN (λ) in (3.4) is provided in parenthesis (these are the points at which the
curves of Figure 1 cross the horizontal axis m = 1). The value of qN (λ) for λ = 4 and N = 6

is from Theorem 2.1. An ‘X’ means that concentration does not occur for minimizers of the free

energy in this combination of parameters.

3.2. The general case

For λ /∈ 2N, the convolution ρ ∗ | · |λ is not a polynomial in |x|2, hence the Euler-

Lagrange equation cannot be reduced to a nonlinear equation involving finitely

many parameters as in (3.3). However, we can still restrict our attention to radial

functions and write the convolution in the form

ρ ∗ | · |λ(x) = |SN−1|
∫ ∞

0

KN,λ(|x|, s)ρ(s)sd−1ds,

with the slight abuse of notation ρ(|x|) := ρ(x), where the kernel KN,λ(r, s) is the

spherical average

KN,λ(r, s) :=
1

|SN−1|2

∫∫
SN−1×SN−1

|rω − sω′|λ dω dω′.

Its explicit formula in terms of Hypergeometric functions is provided later in the

appendix for completeness. Our goal is to solve the nonlinear equation (1.5) at

L = 0. A Taylor expansion as in [16, Lemma 18] gives

ρ(r) =

Cr
− 2

1−q (1 + o(1)) for r → 0,(
q

1−q

) 1
1−q

r−
λ

1−q (1 + o(1)) for r →∞.

This prompts us to make the ansatz

ρf (r)q−1 = r2(1 + r)λ−2f(r), (3.5)

where f is a positive continuous function on R+ tending to a positive limit at 0 and

infinity. The Euler-Lagrange equation (1.5) can be expressed in terms of f as

f(r) = Φ(f)(r) :=
1− q
q

{
|SN−1|

∫ ∞
0

CN,λ,q(r, s)

f(s)
1

1−q
ds (3.6)

+

(
1− |SN−1|

∫ ∞
0

sN−1− 2
1−q

(1 + s)
λ−2
1−q f(s)

1
1−q

ds

)
rλ−2

(1 + r)λ−2

}
,
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where

CN,λ,q(r, s) =
KN,λ(r, s)− sλ

r2(1 + r)λ−2

sN−1− 2
1−q

(1 + s)
λ−2
1−q

.

We used again the mass condition (1.6) to remove M from the equation. Our goal

is to find a numerical approximation of the solution f to (3.6). We approximate f

by

f(s) =

∣∣∣∣P ( r

1 + r

)∣∣∣∣2 (3.7)

where P is a (complex) polynomial of finite degree d. This choice is motivated by

the fact that when λ = 2n ∈ 2N, the exact solution takes exactly this form with

d = n− 1. For λ /∈ 2N there will probably be no solution to the nonlinear equation

f = Φ(f) in the class (3.7) and we rather aim at minimizing a certain distance

between f and Φ(f). In our algorithm we minimized the L2 (square) distance

∫ ∞
0

sN−1− 2
1−q

(1 + s)
λ−2
1−q

(
f(s)−

1
1−q − Φ(f)(s)−

1
1−q

)2

ds (3.8)

with respect to the coefficients of the polynomial P . By Jensen’s inequality, the L2

norm in (3.8) controls the L1 norm of the corresponding densities in (3.5)

∣∣∣∣ρf − ρΦ(f)

∣∣∣∣
L1(RN )

=

(
q

1− q

) 1
1−q

|SN−1|

×
∫ ∞

0

sN−1− 2
1−q

(1 + s)
λ−2
1−q

∣∣∣f(s)−
1

1−q − Φ(f)(s)−
1

1−q

∣∣∣ds (3.9)

and it is a smoother function of the polynomial coefficients.

We used again the BFGS method of SciPy to minimize (3.8) with respect to

the coefficients of the polynomial P in (3.7). This provides an approximate solution

to (3.6). We then computed the mass of this solution in terms of q and obtain curves

which look very much like those of Figure 1. The point at which the mass crosses 1

provides an approximation of the critical exponent qN (λ) below which condensation

happens.

We provide in Figure 2 the result of the calculation of qN (λ) in dimension

N = 5. The curve suggests that concentration starts to appear for λ slightly above

4. This curve was obtained by taking for P a complex polynomial of degree 10 and

discretizing the integrals in (3.8) and (3.6) by a simple Riemann sum with 1000

regularly spaced points on [0, 20]. With this choice of discretization parameters, the

L1 error (3.9) was found to be at most of the order 10−5 for all the points of the

curve.
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Fig. 2. Numerical value of q5(λ) below which condensation occurs. The dashed line is the curve

λ 7→ N
N+λ

which is a lower bound to q. The dots are the points computed with the algorithm
from Section 3.1 when λ is an even integer. This suggests that concentration happens in dimension

N = 5 for λ slightly above 4.

4. Discussion

We have studied free energy minimizers of the nonlinear aggregation-diffusion equa-

tion (1.1) and found that these can have part of their mass concentrated in a Dirac

delta at the origin. This complements the literature on variants of the KS model

and their possible blow-up behavior4 for recent developments. We rigorously proved

this property in the case of the quartic attraction λ = 4 in all space dimensions

N ≥ 6 and provided numerical results which suggest the same phenomenon in all

space dimensions N ≥ 3 for λ = 10. Our analysis is based on the study of the in-

tegral m(L) of (the regular part of) solutions to the Euler-Lagrange equation with

Lagrange multiplier L, and mass concentration means that m(0) < 1. Numerical

evidence supports that m(L) is decreasing with respect to L. It is an interesting

problem to show that these candidates are the unique minimizers of the free energy

(1.2) for λ > 4. Unlike previous results10 which proved that the Dirac delta is an

unstable equilibrium for the fast diffusion equation with 0 < q < N−2
N , we expect

that the minimizers exhibiting concentration are attractors of the dynamics (1.1).

It is an interesting open problem if an appropriate notion of solution to (1.1) can

develop singularities in finite or infinite time. A result in this direction in the case

of an external potential instead of the interaction potential as in (1.1) has recently

been obtained.17
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Appendix: Computation of KN,λ(r, s)

Passing to radial coordinates, we obtain

KN,λ(r, s) =
|SN−2|
|SN−1|

∫ π

0

(
r2 + s2 − 2rs cosϕ

)λ
2 sinN−2(ϕ) dϕ

=
|SN−2|
|SN−1|

∫ 1

−1

(
r2 + s2 − 2rst

)λ
2 (1− t2)

N−3
2 dt.

In dimension N = 3 we have the explicit formula

K3,λ(r, s) =
1

2(λ+ 2)

(r + s)λ+2 − |r − s|λ+2

rs

while, in other dimensions, this can be expressed as

KN,λ(r, s) =
(
r2 + s2

)λ
2

2F1

(
2− λ

4
,−λ

4
,
N

2
,

4r2s2

(r2 + s2)2

)
where 2F1 is the Hypergeometric function. In the case of even integers we find

KN,2(r, s) =r2 + s2,

KN,4(r, s) =r4 + s4 +

(
2 +

4

N

)
r2s2,

KN,6(r, s) =r6 + s6 +

(
3 +

12

N

)
(r4s2 + r2s4),

KN,8(r, s) =r8 + s8 +
32 + 48/N + 4N

2 +N
(r6s2 + s6r2)

+
60 + 144/N + 6N

2 +N
r4s4,

KN,10(r, s) =r10 + s10 +
50 + 80/N + 5N

2 +N
(r8s2 + s8r2)

+
140 + 480/N + 10N

2 +N
(r6s4 + s6r4).

This provides the coefficients cλi appearing in (3.3).
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7. A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel
model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential
Equations 35 (2009) 133–168.

8. A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical
Patlak-Keller-Segel model in R2, Comm. Pure Appl. Math. 61 (2008) 1449–1481.

9. A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: op-
timal critical mass and qualitative properties of the solutions, Electron. J. Differential
Equations (2006) No. 44, 32.
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