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1. Introduction

In this short note we would like to show that one can use Davies’s Hardy inequality to

rederive well-known results of Lieb [8] and Rozenblum [10]. Throughout the following

we fix an open set Ω ⊂ Rd and define, for ω ∈ Sd−1,

δ(x) :=

(
d
∣∣Sd−1

∣∣−1
∫
Sd−1

dω(x)−2 dω

)−1/2

where dω(x) := inf{|t| : x+ tω /∈ Ω}

(with the convention that inf ∅ = 0). Then Davies’s Hardy inequality [1] states that∫
Ω

|∇u|2 dx ≥ 1

4

∫
Ω

δ−2|u|2 dx for all u ∈ H1
0 (Ω) . (1)

The following simple lemma is key to our argument.

Lemma 1. For any x ∈ Ω and any ρ > 0,

|Ω ∩Bρ(x)| ≥ (1− d−1ρ2δ(x)−2)|Bρ(x)| .

Proof. We have

|Ω ∩Bρ(x)| =
∫
Sd−1

∫ ρ

0

1Ω(x+ tω) td−1 dt dω

and clearly, for any ω ∈ Sd−1 with dω(x) > ρ, we have x + tω ∈ Ω for all t ∈ (0, ρ).

Thus,

|Ω ∩Bρ(x)| ≥ |{ω ∈ Sd−1 : dω(x) > ρ}|d−1ρd . (2)

On the other hand, clearly,

ρ−2|{ω ∈ Sd−1 : dω(x) ≤ ρ}| ≤
∫
Sd−1

dω(x)−2 dω = d−1|Sd−1| δ(x)−2 ,
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or, equivalently,

|{ω ∈ Sd−1 : dω(x) > ρ}| ≥
(
1− d−1ρ2δ(x)−2

)
|Sd−1| .

Inserting this bound into (2) implies the lemma. �

2. A theorem of Lieb

Let −∆D
Ω be the Dirichlet Laplacian in L2(Ω) and

λΩ := inf spec(−∆D
Ω ) = inf

{∫
Ω

|∇u|2 dx : u ∈ H1
0 (Ω) ,

∫
Ω

|u|2 dx = 1

}
. (3)

It is well-known that if Ω is mean-convex, then λΩ is bounded from below by a constant

times the inverse square of the radius of the largest ball contained in Ω and that this

is not true for general open Ω. It is a theorem of Lieb [8] that this remains true for

general open Ω, provided ‘the largest ball contained in Ω’ is replaced by ‘a ball that

intersects Ω significantly’. Here we give a simple alternative proof of this result using

(1) (albeit with a worse constant)1.

Theorem 2. Let Ω ⊂ Rd be open. Then for any ρ > 0,

λΩ ≥
d

4ρ2

(
1− sup

x∈Ω

|Ω ∩Bρ(x)|
|Bρ(x)|

)
.

Clearly, this theorem implies for all 0 < θ < 1,

λΩ ≥
d(1− θ)

4ρ2
θ

, where ρθ := inf

{
ρ > 0 : sup

x∈Ω

|Ω ∩Bρ(x)|
|Bρ(x)|

≤ θ

}
.

Proof. Inserting (1) into (3), we obtain

λΩ ≥
1

4
inf

{∫
Ω

δ−2|u|2 dx : u ∈ H1
0 (Ω) ,

∫
Ω

|u|2 dx = 1

}
≥ 1

4
inf
Ω
δ−2 .

Inserting the lower bound on δ−2 from Lemma 1 we obtain the theorem. �

Remarks. (1) The theorem remains valid for the principal eigenvalue of the p-

Laplacian with 1 < p < ∞. This follows from the validity of the analogue of (1) for

1 < p <∞. Lieb’s proof works also in the case p = 1.

(2) If λ is an eigenvalue of −∆Ω, then there is an x ∈ Ω such that for all ρ > 0,

λ ≥ d(4ρ2)−1(1 − |Ω ∩ Bρ(x)|/|Bρ(x)|). This follows from the same method of proof,

by noting that in this case the inequality λ ≥ (1/4)
∫

Ω
δ−2|u0|2 dx for a normalized

eigenfunction u0 implies that there is an x ∈ Ω with λ ≥ 1/(4δ(x)2).

(3) Lieb’s result was improved upon in [9] in the sense that the overlap between Ω and

Bρ(x) is quantified in terms of capacity instead of measure. It would be interesting to

investigate whether there is a strengthening of (1) that implies this result.

1Davies’s result [1, Theorem 1.5.11] and Lieb’s [8] are superior if the supremum in Theorem 2

becomes very small.
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3. A theorem of Rozenblum

We denote by N≤(λ,−∆D
Ω ) the total spectral multiplicity of −∆D

Ω in the inter-

val [0, λ]. It is well-known [10] that for Ω of finite measure, one has Weyl asymp-

totics N≤(λ,−∆D
Ω ) ∼ (2π)−dωd|Ω|λd/2 as λ → ∞, as well as a universal bound

N≤(λ,−∆D
Ω ) ≤ Cd|Ω|λd/2 for all λ > 0. A theorem of Rozenblum [10] implies, in

particular, that sets Ω that satisfy the reverse inequality N(λ,−∆D
Ω ) ≥ ε|Ω|λd/2 for

some λ > 0 have a substantial ‘well-structured’ component at spatial scale λ−1/2.

Theorem 3. For any θ ∈ (0, 1] there are constants c1(θ), c2(θ, d) > 0 with the fol-

lowing property. For any open set Ω ⊂ Rd and any λ > 0 there are disjoint balls

B(1), . . . , B(M) ⊂ Rd of radius c1λ
−1/2 such that

|Ω ∩B(m)| ≥ (1− θ)|B(m)| for all m = 1, . . . ,M

and

M ≥ c2N≤(λ,−∆D
Ω ) .

Note that choosing λ = λΩ we obtain again Theorem 2, up to constants.

Proof. We begin by giving the proof in dimension d ≥ 3, where we have

N≤(λ,−∆D
Ω ) ≤ Ld

∫
Ω

(
λ− 1

4δ(x)2

) d
2

+

dx . (4)

This appears in [6], but a weaker version with 1/4 replaced by a smaller constant

follows easily by (2) and the CLR inequality (see [4] for references).

Let E := {x ∈ Ω : δ(x) ≥ (4λ)−1/2}. Then, by Lemma 1,

|Ω ∩Bρ(x)| ≥ (1− 4d−1ρ2λ)|Bρ(x)| for all x ∈ E and all ρ > 0 .

For ρ = (θd/(4λ))1/2 the claimed density condition is satisfied for each such ball.

Let Bρ(xm) be a maximal disjoint subcollection of Bρ(x), x ∈ E. Then E ⊂⋃
mB2ρ(xm) (since for any x ∈ E there is an xm such that Bρ(x) intersects Bρ(xm),

so |x− xm| < 2ρ, so x ∈ B2ρ(xm)). In case there are infinitely many xm we are done.

If there are finitely many xm, say M , then∫
Ω

(
λ− 1

4δ(x)2

) d
2

+

dx =

∫
E

(
λ− 1

4δ(x)2

) d
2

dx ≤ λ
d
2 |E| ≤ λ

d
2

∑
m

|B2ρ(xm)|

= ωd 2d λ
d
2 ρdM = d

d
2 ωd θ

d
2M .

Together with (4) this gives the claimed lower bound on M for d ≥ 3.

For d = 2 (the case d = 1 is easy) we bound N≤(λ,−∆D
Ω ) ≤ λ−γ Tr(−∆D

Ω − 2λ)γ−
for any γ > 0 and use the fact [6] that

Tr(−∆D
Ω − µ)γ− ≤ Lγ,2

∫
Ω

(
µ− 1

4δ(x)2

)γ+1

+

dx .

The claimed bound now follows similarly as before. �
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Remarks. (1) In Rozenblum’s formulation, the balls are required to be centered on

(cλ−1/2)Zd. This can also be achieved by a minor modification of our proof.

(2) In fact, Rozenblum proves a stronger theorem where the overlap between Ω and

Bρ(x) is quantified in terms of capacity instead of measure. It would be interesting to

investigate whether there is a corresponding strengthening of (4).

(3) A related result for Schrödinger operators was proved in [3].

(4) Theorem 3 might be useful in the problem of maximizing Tr(−∆Ω − λ)γ− among

sets Ω of given measure; see [7, 5] for partial results for γ ≥ 1.
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