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1. INTRODUCTION

In this short note we would like to show that one can use Davies’s Hardy inequality to
rederive well-known results of Lieb [8] and Rozenblum [10]. Throughout the following
we fix an open set 2 C R? and define, for w € S9!,

~1/2
i(z) = (d ‘Sd1|1/ d(x)™? dw) where dy(x) == inf{|t| : z+tw ¢ Q}
Sd—-1
(with the convention that inf () = 0). Then Davies’s Hardy inequality [1] states that
1
/ |Vu|? de > 1 / 6 2|ul? dx for all u € Hy(Q). (1)
0 Q
The following simple lemma is key to our argument.
Lemma 1. For any x € 2 and any p > 0,
QN By(2)] = (1 —d"p*(2)7)|By()].
Proof. We have
P
2N B,(x)| :/ / lo(x + tw) 7 dt dw
si-1 Jo

and clearly, for any w € S*! with d(z) > p, we have z + tw € Q for all t € (0, p).
Thus,

QN By(x)] > {w € ST du(x) > p}d"p". (2)
On the other hand, clearly,

P Hw e ST du(a) < )l < / do(w) 2 dw = d78*] 5(x) 2,

Sd—1

(© 2020 by the authors. This paper may be reproduced, in its entirety, for non-commercial pur-
poses.
U.S. National Science Foundation grants DMS-1363432 and DMS-1954995 (R.L.F.) and Knut and
Alice Wallenberg Foundation grant KAW 2018.0281 (S.L.) are acknowledged.
In March 2022, Yi Huang made us aware of the fact that Theorem 2 and its derivation from Davies’s
Hardy inequality are known and appear as [2, Theorem 1.5.11]. Moreover, he pointed out a typo-
graphical error in the definition of §(x), which propagated through the paper and which is corrected

here. We thank Yi Huang for these comments.
1



2 R. L. FRANK AND S. LARSON

or, equivalently,
{we S dy(x) > p} > (1 —d'p*(x) %) [ST].

Inserting this bound into (2) implies the lemma. O

2. A THEOREM OF LIEB

Let —AL be the Dirichlet Laplacian in L*(€) and

A\q = infspec(—AL) = inf {/ |Vul*dr : u € Hy(Q), / |ul? dz = 1} .3
Q Q

It is well-known that if €2 is mean-convex, then \g is bounded from below by a constant
times the inverse square of the radius of the largest ball contained in €2 and that this
is not true for general open Q. It is a theorem of Lieb [8] that this remains true for
general open (), provided ‘the largest ball contained in €2’ is replaced by ‘a ball that
intersects () significantly’. Here we give a simple alternative proof of this result using
(1) (albeit with a worse constant)!.

Theorem 2. Let Q C R? be open. Then for any p > 0,
d QN B,(x
w2 (- )
Clearly, this theorem implies for all 0 < § < 1,
d(l—0)
4pj
Proof. Inserting (1) into (3), we obtain

1 1
A > —inf{/52]u|2da:: u € Hy(), / u|? do = 1} > —inf 2.
4 Q Q 4 Q

Inserting the lower bound on =2 from Lemma 1 we obtain the theorem. 0

Ao

v

QNB
: where  pg = inf{p>0: supwgé}.
ve | By(x)]

Remarks. (1) The theorem remains valid for the principal eigenvalue of the p-
Laplacian with 1 < p < co. This follows from the validity of the analogue of (1) for
1 < p < 00. Lieb’s proof works also in the case p = 1.

(2) If A is an eigenvalue of —Ag, then there is an # € Q such that for all p > 0,
A > d(4p*) 11— |Q N By(x)|/|B,(z)]). This follows from the same method of proof,
by noting that in this case the inequality A > (1/4) [, 0 *|uo|* dx for a normalized
eigenfunction ug implies that there is an z € Q with A > 1/(46(z)?).

(3) Lieb’s result was improved upon in [9] in the sense that the overlap between €2 and
B,(x) is quantified in terms of capacity instead of measure. It would be interesting to
investigate whether there is a strengthening of (1) that implies this result.

!Davies’s result [1, Theorem 1.5.11] and Lieb’s [8] are superior if the supremum in Theorem 2
becomes very small.
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3. A THEOREM OF ROZENBLUM

We denote by N<()\, —AL) the total spectral multiplicity of —AL in the inter-
val [0, A]. It is well-known [10] that for €2 of finite measure, one has Weyl asymp-
totics N<(\, —AL) ~ (2m)7%wy|QIAY2 as A — oo, as well as a universal bound
Neo(\, —AR) < Gy %2 for all A > 0. A theorem of Rozenblum [10] implies, in
particular, that sets 2 that satisfy the reverse inequality N(\, —AL) > ¢|Q\%? for
some A > 0 have a substantial ‘well-structured’ component at spatial scale \~'/2.

Theorem 3. For any 0 € (0,1] there are constants ¢1(0),c2(0,d) > 0 with the fol-
lowing property. For any open set Q C R% and any N\ > 0 there are disjoint balls
BW ... BM < R? of radius c; A\™Y? such that

QN BM™| > (1-0)B™|  forallm=1,....M

and
M > cy Ne(\, —AF) .

Note that choosing A = A we obtain again Theorem 2, up to constants.

Proof. We begin by giving the proof in dimension d > 3, where we have

No(A, —AR) < Ld/Q ()\ - Wﬂ:y) d. (4)

+
This appears in [6], but a weaker version with 1/4 replaced by a smaller constant
follows easily by (2) and the CLR inequality (see [4] for references).
Let E:={x € Q: §(z) > (4\)"*/2}. Then, by Lemma 1,

QN B,(z)| > (1 —4d 'p*\)|B,(z)| forall x € F and all p > 0.

For p = (Ad/(4)))"/? the claimed density condition is satisfied for each such ball.

Let B,(z,,) be a maximal disjoint subcollection of B,(x), + € E. Then E C
U, B2p(®m) (since for any = € E there is an z,, such that B,(z) intersects B,(zy,),
SO | — | < 2p, 50 © € Byy(x,,)). In case there are infinitely many x,,, we are done.
If there are finitely many x,,, say M, then

A (A‘ ﬁ)d: /. (A‘ ﬁ)d <M <M By ()

= w29 N2 pt M = d% w02 M .
Together with (4) this gives the claimed lower bound on M for d > 3.
For d = 2 (the case d = 1 is easy) we bound N<(\,—AL) < A7 Tr(—-Af§ — 2\)”
for any v > 0 and use the fact [6] that

1 y+1
Tr(—AD — 1) < L - — .
I'( Q /“’L)f — %2/9 (,U 45($)2)+ dx

The claimed bound now follows similarly as before. O
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Remarks. (1) In Rozenblum’s formulation, the balls are required to be centered on
(cA™1/2)Z¢. This can also be achieved by a minor modification of our proof.
(2) In fact, Rozenblum proves a stronger theorem where the overlap between ) and
B,(x) is quantified in terms of capacity instead of measure. It would be interesting to
investigate whether there is a corresponding strengthening of (4).
(3) A related result for Schrodinger operators was proved in [3].
(4) Theorem 3 might be useful in the problem of maximizing Tr(—Agq — \)~
sets 2 of given measure; see [7, 5] for partial results for v > 1.
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