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ABSTRACT. We consider the optimization problem corresponding to the sharp con-
stant in a conformally invariant Sobolev inequality on the m-sphere involving an
operator of order 2s > n. In this case the Sobolev exponent is negative. Our results
extend existing ones to noninteger values of s and settle the question of validity of a
corresponding inequality in all dimensions n > 2.

1. INTRODUCTION AND MAIN RESULTS

We are interested in sharp constants in conformally invariant Sobolev inequalities.
The classical version of this inequality concerns powers (—A)?® of the Laplacian in R”
with a real parameter 0 < s < 7 and it reads

[(=2)2U 3 > SonllU|2s, forall U € H*(R") (1)

with

Ssn = (4m)°

n+2s ny\ 2s/n nt2s

L(=52) \T'(n) - T(25®)

2 2
This inequality was proved in an equivalent, dual form by Lieb in [38], where also the
cases of equality were characterized. Moreover, in that work a fundamental property
of (1), namely its conformal invariance, was discovered and exploited. This result
extends the earlier result in the local case s = 1 going back to [44, 45, 2, 47].

Since R"™ (or rather R™ U {oco}) and S™ are conformally equivalent, there is an
equivalent version of (1) on S™. This form was found explicitly by Beckner in [5,
Eq. (19)], namely,

2
HA;EU ‘2 > Sallulls forall u e H(S") (3)
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with the same constant S;,, as in (2) and with

[(B+1i+s) >
Pt ek R - S A NS =T 4
*TTB+i-s O A @

Note that the operators B and A, act diagonally in any basis of spherical harmonics,
and on spherical harmonics of degree ¢ € Ny = {0, 1,2,...}, the operator B acts by

multiplication with ¢ + "T’l and, consequently, Ao, acts by multiplication with

L+ %5 +s)
S e

The operators Ay, can be thought of as (—Agr)® perturbed by lower order terms. For

()

integer s, they are related to the GJMS operators in conformal geometry [30].

Note that as s * 2, the integrability exponent —22- in (1) and (3) tends to +oo.
In [5] Beckner derived a conformally invariant endpoint inequality for s = %, which
extends [36, 42, 43]; see also [10] for an equivalent, dual inequality. In passing, we

bR

mention that in [4] Beckner also proved a conformally invariant endpoint inequality
for s = 0.
Our goal in this paper is to investigate the range

.7
s> —.

2

Note that in this case the integrability exponent NZ_"QS in (3) is negative, and therefore

we will restrict ourselves to functions that are positive almost everywhere. It is be-
cause of this sign change that we call the inequalities in this paper ‘reverse’ Sobolev
inequalities.

The operators Ay are well-defined in the whole range s > 0, provided one sets
Q251 (£) = 0 when the denominator in (5) has a pole. Note, however, that the operators
Ag are no longer positive definite and therefore we define

ags[u] := Z Qs (0) || Poutl)3 for all w € H*(S"),
LNy
where P, is the projection onto spherical harmonics of degree £. Note that when s < £,
then ass[u] = || AYul|? for all u € H*(S™).
In the following we will study inequalities of the type

2s—n

ags[u] > Sspn (/ u_z’ffndw) ’ for all 0 < u € H*(S"). (6)
Sn

We are interested in whether such an inequality holds with some finite constant S;,,
(not necessarily positive) and, if so, what the optimal value of this constant is.
A first inequality of this type, corresponding to s = 1 in n = 1, is shown in [23] and

reads
T 1 T -1
/ ((u’)2 — ZUQ) do > —r? </ u? d0> for all u € H'(R/277Z).
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An independent proof of this inequality and a characterization of the cases of equality
appears in [1]. The case s = 2 in n = 3 is analyzed in [48]; see also [33]. The
paper [32] by Hang treats all cases s € NN (%, 00) in general dimensions n > 1 (here,
N ={1,2,3,...}); for the cases s = 1,2 in n = 1, see also [41]. All these cases treated
so far correspond to integer s, when A, is a differential operator.

In the above mentioned works it was established that inequality (6) is valid, with

ntl
2
when n is odd and s = § + Ny when n is even. For odd n equality is achieved

the constant given by (2), when restricted to positive functions, provided that s =
nt3
2
exactly for the constant function, modulo conformal transformations, and for even
n exactly for positive linear combinations of spherical harmonics of degree < s — .
Moreover, a rather surprising result in [32] is that for odd n and s € 22 + N, the

infimum

2s—n

[25,71 = inf (/ u_ngndw) ’ QQS[U] (7)
0<UEH5(STL) n

is not achieved and, in fact, there is not even a local minimum. As far as we know,

this is one of the very few instances of conformally invariant functional inequalities on
S™ without minimizers.

While the fundamental works [23, 1, 48, 33, 32] answer many questions concerning
the family of inequalities (6), two natural ones remain open. (a) Do these results
extend to all real values of the parameter s > ¢ and, if so, where does the transition
between existence and nonexistence of a minimizer occur? (b) If there is no minimizer
for (7), what is the value of the infimum?

In this paper we completely answer question (a) and, in dimension n > 2, also
question (b).

The following two theorems are our main results.

Theorem 1. Letn > 1 and s € (%, 4)U (% +N). Then for all 0 < u € H*(S") with
w e e LHSM),

2

(8)

For s € (%, ™)\ {22}, equality is attained if and only if

25—n

uw)=c(l—-C -w)

for some ¢ > 0 and ¢ € R*"! with || < 1. For s € 2 + N, equality is attained if and
only if u is in the linear span of spherical harmonics of degree < s — 3.

Note that the constant on the right side of (8) coincides with S, in (2). It is
negative for s € (2, 2£2), positive for s € (*£2, %4) and zero for s € 2 + N.

Theorem 2. Let n > 1 and s € (%42, 00) \ (% + N). Then the infimum (7) is not
attained. If, in addition, n > 2, then Iy, = —o0.
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Theorem 1 for s € § + N is almost immediate from the definition of ay,. In order
to prove the theorem for s € (2,24)\ {%2} we follow closely the strategy of Hang
[32]. Namely, first we prove existence of a minimizer and then we apply a result of Li
[37] characterizing all solutions to the corresponding Euler-Lagrange equation. In the
proof of existence of minimizers one has to deal with the noncompact symmetry group
of conformal transformations. To rule out loss of compactness modulo symmetries, an
important role is played by the fact that ags[u] > 0 if w vanishes at a point (together
with its gradient if s € (22, %2)). Similar results already appeared in [23, 48, 33, 32],
where the authors dealt with local operators and could exploit integration by parts.
In Proposition 5 we prove the corresponding fact for general s € (3, ";4). We also
proceed by going to R™, but the proof for noninteger s is quite a bit more involved.

The first part of Theorem 2 follows again closely the strategy of Hang [32] and also
uses the result of Li [37]. The second part answers a question that was left open in
[32] even in the integer case. The idea is to find a function u € H*(S™) such that
unm ¢ L'(S™) and ags[u] < 0. Then using u + ¢ as trial functions for the infimum
(7) yields the assertion in Theorem 2. The function u that we choose vanishes to
sufficiently high order on the equator {w,+1 = 1}. Showing that the quadratic form
is negative on this function, requires some rather explicit analysis involving spherical
harmonics. The seemingly simpler question of whether Iy, ; is finite or not for n = 1,
remains open.

Background and open problems. We end this introduction by putting our results
into perspective and by mentioning some open problems.

The work of Dou and Zhu [22] spiked a lot of interest in reversed Hardy-Littlewood—
Sobolev (HLS) inequalities. The conformally invariant case of these inequalities states
that for ;o > 0 and nonnegative functions F, G on R",

[ Pele-srcw =, ©

The optimal constant H,, > 0 and all optimizing functions F,G were obtained in

[22]; see also [40, 16]. By conformal invariance, (9) has an equivalent version on S",
namely,

_ 1" / /
lM%n|ww|HmmzmﬂmmMﬂf (10)

For open questions in a non-conformally invariant case motivated by aggregation-
diffusion equations, see [11, 12].

While the (usual) HLS inequality studied in [38] is equivalent to the Sobolev in-
equality (1), there seems to be no relation between (10) and the inequality (6). This is
despite the fact that the integral kernel |w — w'|* appearing in (10) is a multiple of the
Green’s function of the operator As, with u = 2s — n; see the proof of Lemma 3. The
fundamental difference between the (usual) HLS inequality and the reverse one is that
the kernel is positive definite in the former case, but not in the latter. For inequalities
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(9) and (10) optimizers exist for all p > 0 and one does not have an analogue of the
nonexistence phenomenon in our Theorem 2.

As we mentioned before, in our proof of Theorem 1 for s € (%,%)\ {%2} we
apply a result of Li [37] and to do so, we use a relation between the Euler-Lagrange

equations corresponding to (10) and (6). Interestingly, the analogue of this relation

n+2.

5, for an example with n = 2

on Euclidean space may fail in the excluded case s =
and s = 2, see [49].

Besides finding optimal constants and characterizing optimizers, a natural problem
is to characterize all positive solutions of the corresponding Euler-Lagrange equation.
For the Sobolev inequality (1) or, equivalently, for the corresponding HLS inequality,
this was accomplished in [18]; see also [37]. The latter paper also contains a character-
ization of solutions to the Euler-Lagrange equation corresponding to (9) and, in fact,
just as in [32] this will be a major ingredient in our proof of Theorem 1. For related
classification results, see [19, 35, 21, 26] and references therein. In connection with
this we emphasize that our Theorem 2 does not exclude that for s € (2,00) \ (5 +N)
in n = 1, the infimum in (7) is attained for v € H*(S) with w71 € L'(S) and
minu = 0. We find it unlikely that such u exist, but we cannot exclude their existence
via [37] since the Euler-Lagrange equation then only holds in S\ {u = 0}.

After the works of Brezis and Lieb [8] and Bianchi and Egnell [6] and, in particular,
in the last decade there has been an immense body of work concerning the quantitative
stability of Sobolev and isoperimetric inequalities; see, e.g., [29, 17, 9, 28, 24, 7, 25|
and references therein. It is natural to ask whether there are such stable versions
of Theorem 1. The computations with the linearization in the proof of Theorem 2
suggest that the answer is affirmative for s € (%, %)\ {%£2}, but the precise form of
such a purported inequality is unclear since the form as,[u] is not positive semidefinite.

Finally, we would like to mention the relation between the problem studied in this
paper and conformal geometry. The sharp constant in the Sobolev inequality (1)
with s = 1 appears as a compactness threshold in the Yamabe problem on general
manifolds [2]. The latter concerns the scalar curvature. Similarly, the case s = 2
is related to the @Q-curvature [34] and generalized ) curvatures were introduced in
[31] for 0 < s < §; see also [14, 13, 15]. While (generalized) @-curvature problems
were originally considered for s < 7, they are also meaningful for s > 7 and, in
fact, this was the original motivation for [48, 33]. Our Theorem 1 says that for

s € (2,%*) U (2 + N), within the conformal class of the standard metric gs. on

S™ and under the volume constraint vol,(S™) = |S"|, the standard metric maximizes
the total generalized Q)-curvature, defined by
2 254n . 4
QQs,g - _2 Uzs—n AZsu if g=mu ?ngsn.
s—n

Our Theorem 1 plays the same role for the fractional order problems in [14, 13, 15] as
the results in [48, 33| do in the @-curvature problem on three-dimensional manifolds.



6 RUPERT L. FRANK, TOBIAS KONIG, AND HANLI TANG
2. PRELIMINARIES

2.1. Conformal invariance. In this subsection n > 1 and s > 7 are fixed. Let ¢ be
a conformal transformation of S™ and, for a function u on S", set

_2s—n

mou(P(w)).

ugp(w) = Jo(w)

Clearly, if u is nonnegative and measurable, then

__2n on
Up " dw = | u Zndw.
n n

Lemma 3. Ifu € H*(S"), then ue € H*(S™) and

ass|ue] = agslul .

Proof. We prove the lemma under the assumption s ¢ 7 + N, which implies the

general result by a limiting argument. This assumption implies that ag,,(¢) # 0 for

all £ € Ny. Moreover, by Stirling’s formula, ag,(¢) grows like ¢*¢. Thus, Ayy =

['(B+ 3+ s)/T(B+ 3 — s) is invertible as an operator from H*(S") to H*(S"). The

Funk—Hecke formula implies that if Y is a spherical harmonic of degree ¢ € Ny, then
2273 T(s) 1

w—w*Y (W) d = Y(w);
Snl | (w') IY%—S)a%m@)< )

see [5, Eq. 17] and also [27, Cor. 4.3]. Consequently, A, is an integral operator with
integral kernel

L5 -9

12 77
22572 ['(s)

|w o w/|23—n

Using this formula, together with the fact that
Ta(w)rlw — o P Io(w)r = |(w) — B,
we easily see that for any v € H*(S")
Aziv® = (A3 0)e,

where we set

2s+n

v? (W) 1= Jp(w) 2 v(d(w)).
This is equivalent to
A25u<p = (AQSU)(} .

Multiplying this formula by ue and integrating we obtain the claim. 0
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2.2. Stereographic projection. In the previous subsection we considered the be-
havior of Ay, under a conformal transformation of S”. In this subsection we consider
its behavior under stereographic projection. Throughout this subsection we fix n > 1
and s € (0,00) \ (5 + No).

We introduce the (inverse) stereographic projection S : R" — S" by

21, 1—|x|?
Si(z)=—2—,j=1,...,n, Spii(x) = ——.
(@) = 2l = TP
Given a function u on S”, we define two functions us and ©® on R" by

2s4+n

us(@:(”TW)%?u(sm), o = (P T sy,

Note that, since (2/(1 + |z|*))™ is the Jacobian of S, these formulas are similar to

those appearing in Lemma 3 and its proof.

Lemma 4. Let s = N + 0 with N € Ny and o € [0,1). If n > 2, then

(=A)7 (Agu)® = (=AY Nus  for all u € C®(S"), (12)
The same identity holds if n =1 and o € [0,3). Ifn=1 and o € (,1), then
(— dd22) ot l (Agsu)® j;v—NTluS for allu € C™(S), (13)

where H is multiplication in Fourier space by i&/|&].

The proof will show that both sides of (12) and (13) are continuous functions and
that the identities hold pointwise.
We note that (12) and (13) are precise versions of the ‘heuristic formula’

(Apsu)® = (—A)*us, (14)

which is analogous to the formula in the proof of Lemma 3. When trying to directly
prove (14), we ran into technical problems concerning the convolution of two tempered
distributions. This can be circumvented by proving the less elegant formulas (12) and
(13), which are just as good for our purposes.

Proof. Step 1. As a preparation we prove the following assertion, still assuming s €
(0,00) \ (5 + Ng). If n > 2, then, for any measurable f on R" such that |f(z)] <
<I>—25—n7
o 22515 (s Y
Y [ e ar = SR oy,

R™ 2

For n =1 and o € [0, 3), the same assertion is true, while for o € (3,1) one has

dci;\]f\:l/‘x 221 () d’ = (71T2F() << d(fQ) o+l Hf)( ).

T'(L—s)
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We prove this by induction on N. For N =0 and, ifn =1, s < %, this is a standard
result; see, e.g., [39, Theorem 5.9 and Corollary 5.10]. For n =1 and % < s < 1, using
dominated convergence one easily sees that z +— [, |z —2/|*7! f(2") d2’ is C' and

d
o /R |z — 2|7 f(2)) da’ = (25 — 1) /]R |z — 2|27 (2 — o) f (') do’ .

Note that the integral kernel on the right side is locally integrable. The claimed
identity then follows from the identity

2 F
(25 — 1] e = 2 / €2 ige de

where the right side exists as an improper Riemann integral. This identity can either
be proved directly by moving the integration contour to the positive imaginary axis
and using identities for the Gamma function, or by analytic continuation from the
identity implicit in the above proof for 0 < s < %

Now let us assume N > 1. Using dominated convergence, one easily verifies that
T [ou |z — 2?7 f(2') da’ is C? and that

Al =P fa)de' =4(s = 2)(s = 1) | |o—a "2 f(a)) da’
Rn Rn
By induction, one concludes that, if either n > 2 orif n =1 and 0 < %,
(=) [ =T f(al) da’ = —A(s = §)(s = (=N [ o — 2P f(af) daf
R™ 13
226=U7r3 (s — 1)
(s=3)s—1) T —s+1)
225731 (s)
= ——=((—A)° .

o (A @)

2

((=4)77f)(x)

The proof for n =1 and % < 0 < 1 is similar. This proves the claimed formula.

Step 2. It remains to prove (12) and (13). Let v € C*(S"). Then Agsu € C*(S")
(indeed, for any o > 0, u € H°(S"), so Aysu € H°725(S")) and, using the explicit
integral kernel of A5 from the proof of Lemma 3,

['(5—s)

_ 2 _,J|25—n / /
u(w) = 2 T () /Sn lw — W |* 7 (Agsu) (W) dw' .
Thus, using
1 2 1 /2
o s@) - 8@ S = -

and changing variables, we obtain

F(% - S) 2s—n S/ /
us(z) = Wr(s) . |z — 1'/| (Agsu)”(2) da’.
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Note that |(Agsu)®(z)] < || Agsti|loo(2/(1 + |2]?))25F™/2 50, in particular, the integral
on the right side converges absolutely. Now the result from Step 1 is applicable and
we obtain (12) and (13). This concludes the proof of the proposition. O

2.3. Positivity under a vanishing condition. A crucial role in our proof of exis-
tence of a minimizer is played by the following

Proposition 5. Let n > 1 and s € (%,%*). For all u € H*(S™) with u(S) = 0 and,
if s> ™2 Vu(S) =0, one has
asslu] > 0.
Moreover, if s € (3, "T“), then equality holds if and only if for some c € R,
u(w) =c(1+ wn+1)237_n for allw e S".
and if s € [i, %) then equality holds if and only if for some c € R, b € R,
uw) = c(l+wnn) 2 + (14 wni1)

Here S = (0, —1) denotes the south pole.

sn2

b-w'  foralw= (W, w,1)€S".

Proof. If s = "T”, then ag,,(€) > 0 for all £ € Ny with equality if and only if £ < 1.
This proves immediately the claimed inequality as well as the characterization of the
cases of equality. Thus, in the following we assume that s # "TH
First, let u € C*(S™\ {S}), so that us € C*(R"). If n > 2, or if n = 1 and
se[l,2)U[2,2), we multiply (12) by (—A)%us and integrate to obtain
[P = [ (Carus-a)us) e = [ us(an®ds = [ utuds
R™ n

= ags[ul , (15)

where the Fourier transform is defined by

n

~

flo=ent [ eewa

Forn=1and s € (3,1) U (2,2) we multiply (13) by (—= ) ~2Hug and obtain the
same identity (15). Since the left side in (15) is nonnegatlve we obtain the inequality
in the first part of the proposition for u € C(S" \ {S}).

We abbreviate

_ {ue H*(S") : u(S)=0} if s € (%,242),
{fue H(S"): u(S)=0, Vu(S) =0} ifse (22, 2.

2

MIS

Our goal is to extend the identity (15) to u € Q and use this extension to characterize
the cases of equality. It is well-known that the set C°(S™ \ {S}) is dense in Q with
respect to the norm in H*(S"™). Moreover, as, is continuous with respect to the norm
in H*(S™). This immediately implies that ags[u] > 0 for all u € Q.

Let u € Q and let (u;) C C°(S™\ {0}) be a sequence that converges to u € Q in
H*(S™). In particular, (u;) converges to u in L*(S™) and, by a change of variables,
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((uj)s) converges to us in L*(R™, (2/(1+ |z|?))?* dz). In particular, ((u;)s) converges
to us in the sense of tempered distributions, and therefore (@9) converges to Us
in the sense of tempered distributions. On the other hand, the fact that (u;) is a
Cauchy sequence in H*(S™), the identity (15) and the H*-continuity of ass imply
that (@g) is a Cauchy sequence in L*(R™, |£|** d¢) and therefore convergent. A
standard argument (namely, interlacing two Cauchy sequences) shows that the limit is
independent of the approximating sequence. We deduce from this that the restriction
of the distribution ug to R™ \ {0} coincides with a function and that this function
belongs to L?(R", |£]** d€). Moreover, identity (15) remains valid for u € Q, provided
the integral on the left side is restricted to R\ {0} and ug on the left side is interpreted
as the restriction of the corresponding distribution to this set.

In particular, if ags[u] = 0 for some u € Q, then the distribution us vanishes on
R™ \ {0} and therefore, by a well-known theorem about distributions, us coincides
with a finite sum of derivatives of a Dirac delta distribution at the origin. Thus, us is
a polynomial.

By Morrey’s inequality we have u € C*~2(S") if s € (2, 242) and u € C* =137 (Sm)
if s € (242, ™) and therefore in either case, the vanishing conditions imply that

lu(w)| < Jw—S*2 for all w € ™,
that is,

1 2 87% n 1 s—n1
lus ()] < (#) S(@) — SIF = (14222 forallzeR". (16)

If s < ”T“, then the right side grows sublinearly and therefore ug, being a polynomial,
is equal to a constant c. Now us(z) = c is equivalent to u(w) = (1 4+ wpy1) @/
as claimed. If s € (%52, 1), then the right side in (16) grows subquadratically and
therefore ug is affine linear, that is, us(x) = ¢ + b - . This is equivalent to the form
given in the proposition. 0

3. PROOF OF THEOREM 1

In this section, we prove our first main theorem, whose nontrivial part says that
for s € (%,%4) \ {%2} the infimum I, in (7) is achieved precisely by the constant
function and its images under the group of conformal transformations. Similarly as in
[32] we proceed in two steps, namely first showing that the infimum is achieved and
then characterizing the functions where the infimum is achieved.

3.1. Existence of a minimizer.

Proposition 6. Let n > 1 and s € (2, =)\ {22}, Let (u;) C H*(S") be a sequence

of nonnegative functions with u, “nn e L'(S") and

25—n

__2n n
lim ags[u;] (/ w, dw) = Iyen .
Jj—0 n
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Then there is a sequence (®;) of conformal transformations of S™ and a sequence
(cj) C Ry such that, after passing to a subsequence, the functions cj(u;)e, converge
in H*(S™) to an everywhere positive function that minimizes Iy, .

Proof. Step 1. After multiplying u; by a positive constant and after a rotation (which
can be implemented as a conformal transformation), we may assume that for all j,
max u; = 1 and  u;(S) = Héyi}l u;j .
Here S = (0,...,0,—1) denotes the south pole and later N = (0,...,0,1) will denote
the north pole
Let us show that (u;) is bounded in H*(S™). By the minimizing property, there is
a C' > 0 such that for all j,

25—n

ags|u;] (/ uj_%f" dw) ' <C. (17)

Thus, by our normalization,

__2n_ _QS;n sen
ass|u;] < C (/ u; " dw) < C]S"[’ZT :

On the other hand, by Stirling’s formula, ag,,,(¢) grows like £%*. Since ag,,(f) > 0

for all £ > 1if s € (%,252) and for all £ > 2 if s € (“£2, %) and since the remaining

finite rank terms are bounded in L?(S"), we see that for all v € H*(S"),

%{s(gn) - C,HUH%Z(S") (18)

with ¢ > 0 and C" < co. Combining these inequalities we obtain

ags[v] 2 cf[v]

25—

25—n n
n
Y

ism < C'llugl ey + CIST|77 < C'I8™ + CIS"|

cfuyl

which proves the claimed boundedness.

Thus, after passing to a subsequence, we may assume that (u;) converges weakly
in H*(S"™) to some u. By Morrey’s inequality and the Arzela-Ascoli lemma, (u;)
converges strongly to u in C'(S™). As a consequence, u > 0 and

maxu = 1 and  u(S)=minu.
sn sn

We note that ags is lower semicontinuous with respect to weak convergence in H*(S").
Indeed, this is clear for the positive part of the functional as, and its negative part is
finite rank and therefore continuous. As a consequence of lower semicontinuity,

lim inf agg[u;] > agsful .
j—oo

Step 2. If we have u > 0 on S”, then uj’l — u~! uniformly on S™ and consequently

—2n __2n
u; 7 dw — u - dw.
n Sn
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This, together with the lower semicontinuity of ass implies that u is a minimizer.
Moreover, setting r; := u; — u and using weak convergence in H*(S"), we find
Ags[u;] = ags[u] + agslr;j] + o(1)

and therefore

25—n 25—n 25—n

ass|u;] (/S uj%n"dw) ' = ags[u] (/ u_232nndw> ' + ags[r] (/S u‘?fnndw) '
+o(1).

Since the left side converges to Is,, and the first term on the right side is equal to
s, we find that ags[r;] — 0. By (18) and the strong convergence of r; in L*(S"), we
infer that r; — 0 strongly in H*(S"), that is, u; — u in H*(S"), as claimed.

Step 3. Thus, in what follows we assume that minu = 0. Our goal will be to show
that after a conformal transformation and multiplication by a constant we can make
the u; converge to a positive limit, which will be a minimizer.

We observe that

agslu) <0. (19)

In fact, for s € (3, ”T“) the infimum Iy, is negative, as can be seen by taking a

constant trial function, and therefore ass[u;] is negative for all sufficiently large j.

Thus, (19) follows by lower semicontinuity. On the other hand, for s € (%2, ) we
n+2

2072
have by Morrey’s inequality u € C'~ "2 (S"). Since u(S) = minu = 0 and v > 0 we

have Vu(S) = 0 and consequently,
u(w) < Cylw — S~ 2 for all w € S".

Thus, by Fatou’s lemma,

__2n_ __2n — —
lim mf/ w; > dw > / u Zndw > Cy > lw— S| dw = 0,
sn sn

J—o0 sn
that is, [, u;ﬁ dw — oo. Inserting this into (17) we obtain limsup;_,  assu;] <0
and then (19) follows again by lower semicontinuity.
On the other hand, by the first part of Proposition 5, the fact that u(S) = 0 (and
Vu(S) = 0 if s > 22) implies that ag[u] > 0 and therefore, in view of (19), the

2
second part of Proposition 5 implies that

25—n 25—n

uw)=2""2 (14+wy41) = for all w € S".

(Here we used the normalization maxwu = 1 to determine the constant and, in case
s > 2 we use positivity of u to deduce that b = 0.)

With a sequence ();) C (0,00) to be determined later, we now consider the confor-
mal transformation ®; of S" given by ®; := 8D, .S ~1 where D,, is dilation on R" by
Aj, that is (D, )(x) = Ajz, and S is the (inverse) stereographic projection. We set

() = Ja ()

_25—mn

2 (P (w))
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and
- Uj

'LL]'.

maxuv; '

By conformal invariance (Lemma 3) and homogeneity, (%;) is a minimizing sequence
for I, and it is normalized by maxu; = 1. We argue as before and, after passing to
a subsequence, we may assume that (@;) converges weakly in H*(S") and strongly in
C(S™) to some .

Note that @ depends on the choice of the sequence ();). We claim that, for an
appropriate choice of (\;) (where for each j, A; only depends on u;), we have u > 0.
Once this is shown, we obtain in the same way as before that @ is a minimizer and
that the convergence is strong in H*(S"), so we are done.

We argue by contradiction and assume that there is a £ € S™ such that @(§) = 0.
Then, still arguing as before, but with a rotated version of Proposition 5,

2s—n
2

iw) =27 (1-¢-w) 7" forallweS". (20)

We now compute explicitly
2

J . frd
@](w) (1+wn+1 +)\]2(1 _wn+1)>
and, using ®;(N) = N and ®,(S) = S, we obtain

2 u;(N) and  v(S)=A

Thus, if we choose

>
<
|
R
S
—~|
L=
N——
by
|
3

then @;(S) = @;(N) and, in the limit, a(S) = a(N). By (20), this implies that
ns1 =0 and @(N) =27 "2" > 0.

Since minu; = u;(,S), we have for any w € S",

' 1 ) )\2 1 — w, 2.92—n
SRITCNEES ()
max v, 2
A 214+ wpst) + 1 — wy, a

Since u;(N) — a(N) = 2-%2" and since A;j = 400 (because u;(S) = u(S) = 0 and
u;j(N) = u(N) = 1), we infer that in the limit

2s—n

(w) = 227" (1 = Woa1) 7

In particular, @(£) > 2%~ > 0, a contradiction. This completes the proof. O

A variation of part of the above argument allows us to show the following.
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Lemma 7. Letn > 1 and s € (%, $)\{%2}. Assume that u € H*(S™) is nonnegative
with u”Tn € L'(S™) and

25—n

G,QS[U] </ u- 2527:” dw) ' = ]23,71 .

Then u 1s everywhere positive.

Proof. We argue by contradiction and assume that minu = 0. Then, by a rotated

version of Proposition 5, ags[u] > 0. Since ay,[1] < 0 for s € (%, %£2), we immediately

obtain a contradiction in that case. On the other hand, if s € (%32, 2£4), then similarly

as in the previous proof u(w) < |w — &*72 for all w € S" and some ¢ € S™ and
2n
consequently u~z-» ¢ L'(S™), which is again a contradiction. O

3.2. Proof of Theorem 1. First, let s € § + N. Then ay,,(f) > 0 for all £ € Ny
with equality if and only if £ < s — 2. This immediately proves the inequality and the
characterization of cases of equality.

In the remainder of this proof, let s € (%,25%)\ {#2}. Then, according to
Proposition 6, there is a minimizer u for the infimum I ,. Conversely, assume that
0 <wu € H*S™) with uEw € L'(S™) realized equality in (8). Then by Lemma 7
u > 0 and using this, it is easy to derive the Euler-Lagrange equation

2s+n a/2 u
fS" u 2s—n dw

(The form of the Euler-Lagrange multiplier follows by integrating the equation against
u.) The equation holds a-priori in H~*(S"), but since the right side is square-integrable
(in fact, Holder continuous) a standard bootstrap argument yields that u € C*(S").
Applying the inverse A, to both sides as in the proof of Lemma 3, we find
s+n F 2 _ S
w= Ay u o = #

225721(s) Js
Taking into account the sign of I‘(E — s), we see that A < 0 if s € (2,22) and A > 0
if s € (%42, 25). Defining us and v as in (11) and arguing as in Step 2 of the proof

lw — w/|23_”u(u}')7§§t2 dw' .

of Lemma 4, we obtain

F z_ 2s4n
us(m) —\ (2n 5) / ’$ . x/|2s—n<u—23fn)5(x/) de’

F E - S n
—\ (2n 5) / |:L" . x/|25—n<u8(x/)) e dr
S R™

Applying [37, Theorem 1.5] to a suitable multiple of us (at this point we use the sign
of \), we find that, for some a € R", b,c¢ > 0,

ws(@) o (Pl = el
SV 2b




REVERSE SOBOLEV INEQUALITIES — October 28, 2021 15
This means that, with ¢ := (29 — 0*(1 4+ Dni1)ens1) /(2 + 6*(1 + 1,41)) and 5 := S(a),
25—n
1—-¢- ’
ww) = ¢ 1-¢uw 7
V1=

which is of the form claimed in the theorem.

CJ(I:(2s—n)/(2n) .

Conversely, if u is of the form in the theorem, then u =
for some conformal transformation ® of S* and some ¢ > 0. (This follows, for in-
stance, by reversing the above computation, namely by showing that ugs is a mul-
tiple of a translation and dilation of ((1 + |z|?)/2)?*=™/2)) Then [~/ dw =
¢=2n/(2s=n) [11720/(2s=n) diy and, by Lemma 3, ass[u] = c2ag,[1]. In particular, the value
of the left side of (8) is independent of ¢ and ¢ and since, according to what we showed
before, the left side is minimal for some ¢ and c, it is in fact minimal for every ¢ and

c. This concludes the proof of Theorem 1.

4. PROOF OF THEOREM 2

In this section we prove our second main result, which says that for s € (”TH, +00)\
(5 +N) there is no minimizer for the infimum I, , in (7) and that, at least for n > 2,
one has Iy, , = —00. These two assertions are proved in the following two subsections.

4.1. Local instability. We prove more than what is stated in Theorem 2, namely
that the quantity in (7) does not even have a local minimizer 0 < v € H*(S"). Indeed,
if such a local minimizer would exist, we could repeat the argument in the proof of
Theorem 1 and would infer that this minimizer is necessarily of the form clg for a
conformal transformation ® of S” and a constant ¢ > 0. Since the minimization
problem is homogeneous and conformally invariant (Lemma 3), it therefore suffices to
show that the constant function 1 is not a local minimizer. We do this by showing
that the second variation is not positive semidefinite.
A simple computation shows that for every ¢ € H*(S"), as t — 0,

olt+t6] ([ (o)) = a8 4 £ A + o)
N
with
25 +n ags[1] / 9 4(s —n) ags[1] / ?
Hlop| := ay, d d
)= az [¢]+23—n |S| 7 v 2s —n |S"|? Sngo “
(125[17@]/
-4 ——— pdw.
S Jgn
Here ags-, -] is the natural bilinear form associated to ags[-]. This can be rewritten as
25s+mn

Hlp] = ags[p) +

4s 2
2 —_—
55 —n a251,(0) /n o dw 55— 7 Q25.1(0) (/n gpdw) :
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If 2k < s—2% < 2k+1 for some k € N, we choose ¢ to be an L?*-normalized spherical
harmonic of degree two and obtain

2s+n (0) F2+4+s) 2s4+nl(5+s) L(1+35+s)

aosn(0) = =2s .

2 T2+2—5) 2s—nT(2—s) T(2+2—s)
Since I'(2 + § — 5) < 0, we have H[p] < 0, which shows the instability of 1.

If 2k +1 < s—% < 2(k+ 1) for some k € N, we choose ¢ to be an L*-normalized

spherical harmonic of degree three and obtain

2 '+35+s) 2 I'(5 +s
S+n0425,n(0): ( i )+ s+n (i )
FB+45—5) 2s—nl(5—s)

H = sn2 P
[p] = azsn( )+25_n

Hlp| = ag (3
[p] = arzgn )+25—n

L(I+5+s)
I3+ %—s)
Since I'(3 + § — s) < 0, we have H{[p| < 0, which shows again the instability of 1.

= 2s(n + 3)

4.2. Global instability. We now complete the proof of Theorem 2 by showing that

Iy = —00 ifn>2 and se (% o00)\ (2+N). (21)

We will give a separate proof for the following two subcases
2K<s—g<2K+1 for some K € N, (22)
2K+1<s—g<2K+2 for some K € N. (23)

Note that in the first case, we have ag;,(2k) < 0 for all k =0,..., K and ag,s,(¢) > 0
for all other ¢. In the second case, we have ag,s,(2k+1) <0 for all k =0,..., K and
Q251 (€) > 0 for all other /.

For both cases, we will give a test function u > 0 such that

—00 < ags[u] <0 and / W dw = +00. (24)

This essentially proves (21), except that the function may not satisfy the strict in-
equality v > 0. But we can simply take u+ ¢ with a constant € > 0 as a trial function
for the infimum and let ¢ — 0.

The case (22). Let K € N be asin (22). We shall show that (24) holds for the function

u(w) = wfffl.

The integral condition is simple. Using spherical coordinates with w,,; = cos#,
0 € [0, 7], and changing variables t = cosf € [—1, 1] we obtain

T 1
/u-zf”ndw:@“\/ |cose|—fﬁsinnled9:|gnly/ S (1= )"
n 0 -1

This integral is divergent if and only if 24:51 > 1. In view of (22), this is the case if
and only if n > 2.
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Next, we show that ass[u] < 0. We claim that
K n—l)
u(w) = 3 aCy®  (wni). (25)

k=0

where C’éa) are the Gegenbauer (or ultraspherical) polynomials and where ¢, € R. It
n—1
is well known (see, for instance, [46, Thm. IV.2.14]) that the function C’é 2 )(wnH) is
a spherical harmonic of degree ¢, namely a so-called zonal harmonic.
Note that we claim that in the spherical harmonic expansion (25) of u there are only

terms of even degree at most K. As noted above, the condition (22) then guarantees
that o, (2k) <0 for all k=0, ..., K and thus

K
azs[u) = Z Q25 (2F) Cz”Y%H%Q(S") <0,
k=0

as desired.
We recall two standard facts about the Gegenbauer polynomials. First, Céa) is a

polynomial of exact degree ¢ and second, C’éa) has the same parity as ¢, see [20, Eq.
18.5.10]. That is, for every k,

n—1
Cék;Q )(t) = ak,kt% + ak7k,1t2k’2 + ..t ak

with ayr # 0. Thus, the desired expansion

K
n—1
2K =" 047 (1) forallte[-1,1]. (26)
k=0
can be equivalently rewritten, with respect to the basis {#* 1252 . 2 1} of even

polynomials on [—1, 1] of order at most 2K, as

aK K 0 0 CK 1
agxK-1 Og-1k-1 - 0 ck-1 | _
aK0 AK—-1,0 -e Qoo Co 0

Since the matrix on the left side is of lower-triangular form with non-zero diagonal
entries, its determinant is non-zero. Hence there are (unique) numbers cy, ...,cx € R
such that (26), and hence (25), holds. This completes the proof in the case (22).

The case (23). In this case, the above argument becomes a bit more involved because
we need to work with the more complicated test function

u(w) == wiﬁ — wfffil,

where K is as in (23). Indeed, since as,,(¢) < 0 if and only if £ = 1,3, ...,2K + 1, the

test function needs to contain an ‘odd’ component like w2i;! to achieve ag,[u] < 0.

On the other hand, the ‘even’ term w2%, is necessary to ensure u > 0.
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Let us verify divergence of the integral. With the same change of variables as before
we obtain

™
/ W dw = ]Snll/ ]cos@ﬁ%(l —COSQ)_% sin"' 6 df
sn 0

1
= |S™ /1 |2 (1 — ¢) 2n (1 — £2) "2 dt.

The integral is divergent (at ¢ = 0) if and only if 225 > 1. In view of (23), this is the
case if and only if n > 2.
Next, we show that ags[u] < 0. By using the properties of Gegenbauer polynomials
as in the case (22), we find
K
n—1 n,
B3 acl ) and PR Z (U
k=0
for suitable coefficients ¢, d, € R. (In fact, in this case we shall need to find ¢; and
dy. explicitly, see (29) and Lemma 8 below.) Therefore
= (%51 (%)
u(w) = Z (Ckczkz (Wnt1) — deCoi 2, (Wn+1)> .
k=0
Since as, is diagonal with respect to spherical harmonics, we thus obtain
= 211 ~(255) 2 211 ~(255) 2
s nlu] :Z<O‘28,n(2k)clc”02k2 (wn+1)||L2(Sn)+ Q25 n (2K + 1>dk”C2kj-1 (wnJrl)HB(S”))'
k=0
By (5), we have the relation g, (2k +1) = 3?;‘*3’;0@5 »(2k), where % > 0 for
all k =0, ..., K, thanks to (23). Hence
25 +n + 4k (sl
250 U Z%sn (2k)(GlCh. (wn+1)||%2(sn) — s il Oy (Wi ) 72(sm) ) -
2s —n — 4k
(28)
In view of ags,(2k) > 0 for all k£ =0, ..., K by (23), the desired inequality ass[u] < 0
follows if we can show that the difference in brackets is strictly negative for every

k=0,..., K. To do so, we claim that the coefficients ¢, and d are related by
2K+ 1)(4k+n+1)

d, = 29
FTMQK f 2k +n+ 1)@k +n— 1) (29)
and the L?-norms of the spherical harmonics by
(n=1) 5 (n=1) 5 2k+n—-1)4k+n—-1)

chkil (WnJrl)HB(Sn) = [|Cy,” (WnJrl)Hm(Sn) Qk+ DAk +n+1) (30)

We defer the details of these computations to Lemma 8 below.

Inserting (29) and (30) into (28), the inequality we need to verify reduces to
2 4k 2K +1)%(2k —1)(4k 1

| Zstntdk 2K +1)?2k+n—-1)4dk+n+1) <0 (31)

2s —n —4k (2K +2k+n+1)2(2k+1)(dk+n—1)
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Since 2s —n < 4K + 4 by (23), and since ¢t — % is strictly decreasing, we can

25 +n+ 4k - 4K +4+2n+4k 2K +2+n+2k
25 —n — 4k AK +4—4k 2K +2-2k
Hence to show (31), it suffices to prove
2K+2+n+2k (2K+1)22k+n-1)4k+n+1) .- (32)
2K +2—-2k (2K +2k+n+122k+1)4dk+n—1) —
for all integers n > 2, K > 1and 0 <k < K.
The rest of the proof will be devoted to establishing (32) by considering several

cases separately.
Let us first assume that £ < K — 1. We write the left side of (32) as

(dk+n+1)2K+2+n+2k) 2k+n—1 (2K +1)?
(2K +2k+n+1)? dk+n—-1 (2K +2-2k)(2k+1)

and notice that the first factor is a decreasing function of n > 2 (see Lemma 9 below;

estimate

here is where the assumption k& < K — 1 enters) and the second factor is a decreasing
function of n > 2. Thus, if k¥ < K — 1, it suffices to prove (32) for n = 2, which we
write as
F(K,k) :4k‘+3. 2K +1 ‘ 2K +1 .2K+2kz+4>1 (33)
G(K,k)  4k+1 2K +2k+3 2K —2k+2 2K +2k+3 ~

If k=0, then for all K > 1
(2K +1)? K +2 3?2

F<K’O)—3 >3- —=-1>1

G(K,0) ~ (2K+3)2 K+1~~ 52 ’
so we may assume k£ > 1 in the following. To solve this case, we resort to explicit
calculation. We compute

1
§F(K, k) = (16k+12) K®+ (16k* + 60k +36) K* + (16k> + 48k +27) K + (4k +3) (k+2)

and

1
5G(K, k) = (16k + 4)K? + (16k* 4+ 68k + 16) K2 + (—16k> + 28k* + 92k + 21)K
— (k—1)(2k + 3)*(4k + 1).

Hence for every k > 1, dropping the positive constant term and using £ < K — 1, we

get
1
R(F(K, k) — G(K,k)) > 4K?* 4 (10 — 4k) K + (8k* — 6k* — 22k + 3)

> 8k* — 6k% — 12k + 13 =: P(k).

We have P(k) > 0 for all 1 < k < K — 1 because P'(k) = 24k? — 12k — 12 > 0 for
k > 1 and P(1) = 3 > 0. This finishes the proof of (33), and hence of (32), in the
case kK < K — 1.
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Let us finally give the proof of (32) when k = K. If K > 2, we estimate the left
side of (32) by
2K+1 2K+n—1 4K +n+2 S 2K+1 1 S 5)

: : —>—>1 34
2 4K +n—-1 4K +n+1— 2 274 (34)
If K =1andn > 3, since igigj is increasing in n, the left side of (34) can be

estimated by
§'2+n—1.4—|—n+2 §.§_1
2 d4n—1 4+ntl 26
Finally, if K = 1 and n = 2, by a direct calculation the left side of (34) equals > 1.
The proof of Theorem 2 is now complete. U

We finally prove the two lemmas that we referred to in the proof.

Lemma 8. The coefficients ¢, and dy, in (27) are given by

B 272K (2k + O (2K + 1)T(%51)
O T(K+k+2(K —k+1)
272K (2k + "L (2K +2)0("5Y)

DK +k+"B2)(K—-k+1)

(25t 9\ n=2 722" (n—1+10)
/\c )T = G (35)

2

d, =

Moreover,

In particular, identities (29) and (30) hold.

Proof. Formula (35) is the special case o = 251 of the following general formula [20,
Table 18.3.1]
7217207 (20 + ()

’C (OFQ -3 dt = Z T

Observing that by change of variables t = w1,

(ns1) 5 netr [ AEY) e 9\ n=2
1CE) (@) ey = 1577 / ST P - ) ar,
-1

identity (30) follows readily from (35) by a direct computation.
To obtain the expression for ¢, recall that, at fixed «, the Gegenbauer polynomials
C{*) are pairwise orthogonal on the space L? ((—1 1), (1 =222 dt>, see e.g. [20,

n 1

Table 18.3.1]. Integrating t2% = % ¢,C 2z )(t) against C’Qk )(t)(l —2)"2", we thus
find

1 n—1 e 1 et -

The integral on the right side is given in (35) and the integral on the left side is [20,
Eq. 18.17.37]

! n-1 92-n=2KT(9L —DI2K +1
-1

(2k)!F(”T‘1)F(K +k+2NOT(K —k+1)
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The expression for dj, follows analogously, using again (35) and [20, Eq. 18.17.37].
Finally, a direct computation gives identity (29). O

Lemma 9. Suppose that 0 < k< K —1. Thenn — MH&}B%ﬁZﬁ;HR) is increasing
mn > 2.

Proof. More generally, let f(n) := % with a,b,¢ > —1, a < ¢ < b. We claim
that if
c—a>b—ec, (36)
then f(n) is increasing in n > 2, unless when a = b = ¢. Applying this claim with
a=4k+1,b=2K+2k+2 and ¢ = 2K + 2k + 1, condition (36) becomes k < K—%
and the lemma follows.
To prove the claim, write

f(n) = (1— Z;Z) (1+i:;) —~ 1+“ti;2c_ (Czcéi(z);@‘

The last summand is nonpositive by assumption, hence nondecreasing in n. The second
summand is nondecreasing in n if a + b — 2¢ < 0, which is just (36). If a = b = ¢ does
not hold, then one of the summands is increasing. ([
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