LOGARITHMIC ESTIMATES FOR MEAN-FIELD MODELS IN
DIMENSION TWO AND THE SCHRODINGER-POISSON SYSTEM
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ABSTRACT. In dimension two, we investigate a free energy and the ground state energy
of the Schroédinger-Poisson system coupled with a logarithmic nonlinearity in terms of
underlying functional inequalities which take into account the scaling invariances of the
problem. Such a system can be considered as a nonlinear Schrédinger equation with a
cubic but nonlocal Poisson nonlinearity, and a local logarithmic nonlinearity. Both cases
of repulsive and attractive forces are considered. We also assume that there is an external
potential with minimal growth at infinity, which turns out to have a logarithmic growth.
Our estimates rely on new logarithmic interpolation inequalities which combine logarith-
mic Hardy-Littlewood-Sobolev and logarithmic Sobolev inequalities. The two-dimensional
model appears as a limit case of more classical problems in higher dimensions.

1. THE SCHRODINGER-POISSON SYSTEM WITH A LOCAL LOGARITHMIC NONLINEARITY

The standard Schrodinger-Poisson (SP) system is a nonlinear Schrodinger equation with
cubic but nonlocal nonlinearity. As for the nonlinear Schrodinger (NLS) equation with a
local nonlinearity, scaling properties play a crucial role in the analysis of the solutions and
depend on the dimension d of the Euclidean space. The fact that the nonlinearity in (SP)
involves the Poisson convolution kernel makes existence results easier to study than for (NLS)
because of the compactness properties induced by the convolution, but adds difficulties due
to the non-locality of the mean field potential. We consider primarily the case d = 2.

Our purpose is to focus on the underlying functional inequalities and study the interaction
of the Poisson term with other terms in the energy (external potential, local nonlinearities)
with similar scaling properties: we shall consider quantities which are all critical for (SP) in
the two-dimensional case. This is quite interesting from the mathematical point of view, as it
is a threshold case for (SP) systems and involves a non sign-defined logarithmic kernel. The
d = 2 case complements the results of [17, 18] in the limit regime involving logarithmic local
nonlinearities. For related questions for d = 3, we refer to [17] and references therein. In
higher dimensions, the problem is sub-critical if d < 5 and critical for d = 6: see Section 3.2.

The (SP) system is used in quantum mechanics to represent a large number of particles
by a single complex valued wave function. The local nonlinear term arises from local effects
or thermodynamical considerations while the non-local Poisson potential accounts for long
range forces which are either of repulsive nature (charged particles) or attractive (in case of
gravitational and related models). Most models in the physics literature are justified only on
an empirical basis as thermodynamical limits but are difficult to establish rigorously. This
issue is anyway out of the scope of this paper.
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The Schrodinger equation with a logarithmic nonlinearity is a remarkable model in physics,
with interesting mathematical properties: see [5, 12, 34]. The equation has soliton-like
solutions of Gaussian shape (called Gaussons in [5]). We shall refer to [16, 14, 15, 20] for
some additional contributions in mathematics. Schridinger-Poisson systems are commonly
used in charged particles transport and particularly in semiconductor physics, in the repulsive
case. In this direction, a classical reference for mathematical properties is [13] and we also
quote [4, 36] for examples of applications. The mean-field attractive case (Newton equation)
reflects gravitational forces instead of electrostatic forces. It is not studied as much as
the repulsive case and it is mathematically more difficult: see for instance [36, Section 4].
As a side remark, we may notice that stationary solutions of (SP) share many properties
with stationary solutions of two-dimensional models of chemotaxis, and the same functional
inequalities are involved: see [24]. We can however handle the two cases, attractive and
repulsive; in a common framework. We primarily focus on variational results, in relation
with some interesting functional inequalities and their scaling properties.

For any function v € H'(R?), let us consider the Schridinger energy

Elu] ::/ |Vul|? dx—i—a/ V |ul? dac+27r6/ W\u|2dac+”y/ lul? log |ul*dz (1)
R2 R2 R2 R2

where a, 3, v are real parameters and the self-consistent potential W is obtained as a solution
of the Poisson equation

— AW = |ul?.
The solution W of (1) is defined only up to an additive constant: we make the specific choice
W = (—A)~"!ul? given by the Green kernel as follows. Let us recall that on R? the standard
Green function Gy, associated with (—A), that is, the solution of —A,G = d,(z), is given by

1
G(z,y) = — o log|lz —y| V(z,9) € R* x R?.
T
Our choice amounts to take W(z) = [zo [u(y)|* G(z,y) dy. As a consequence, we have

2
W(z) ~ — H;:”f log|z| as |z| — 400,

and also z- VW (x) < 0 for large values of |z| if, for instance, u is compactly supported. The
cases 8 > 0 and 8 < 0 correspond to two very different physical situations. The case 8 < 0 is
the attractive case of a Newton-Poisson coupling for gravitational mean-field models. With
B > 0, the model represents the two-dimensional case of repulsive electrostatic forces, i.e., a
mean field version of a quantum Coulomb gas of interacting particles in dimension d = 2.

The function V is an external potential, and we shall assume that it has a critical growth.
The parameter o € R is a coupling parameter, whose value has to be discussed depending

on the other terms. Without much loss of generality, we can assume that
V(z) =2log (1 +[z]*) VzeR2. (2)

Concerning the local nonlinearity, the case v < 0 corresponds to a focusing local nonlinearity
while v > 0 is the case a defocusing local nonlinearity. It is standard to observe that any
critical point of £ under the mass constraint

/ lu|? dz = M
R2
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determines a standing wave of the nonlinear Schréidinger-Poisson system
; oV
iSs =Av+aVe+ WY+ yloglyl*y.
In this paper we shall focus on finding conditions on «, 3, v € R insuring that the functional £
is either bounded or unbounded from below on

Hap = {u e H'(R?) : [lu|? = M} .

This paper is organized as follows. We establish in Section 2 several new functional in-
equalities which generalize the logarithmic Hardy-Littlewood-Sobolev inequality, with an
application to a free energy functional in dimension two: see Theorem 3. Section 3 is de-
voted to the boundedness from below of the Schrédinger energy £, with main results in
Theorem 10.

2. NEW LOGARITHMIC INEQUALITIES AND FREE ENERGY ESTIMATES

1. Generalized logarithmic Hardy-Littlewood-Sobolev inequalities. The logarith-
mic Hardy-Littlewood-Sobolev inequality

/ plog( d:c+// y) log |z —yldedy+ M (1 +1logm) >0  (3)
R2 R2><R2

has been established in optimal form in [11] by E. Carlen and M. Loss, and in [1] by W. Beck-
ner for any p € Li_(Rz) such that fR2 pdx = M > 0. Equality is achieved by p = p, with

o M 2
px(z) = 0 P Ve R, (4)
and also by any function obtained from p, by a multiplication by a positive constant (with
the corresponding mass constraint), a scaling or a translation. Alternative proofs based on
fast diffusion flows have been obtained in [10, 21, 23]. Also see |2, 7, 22, 35] for further related
results and considerations on dual Onofri type inequalities and 28] for a rearrangement-free
proof of (3) using reflection positivity. Inequality (3) provides us with a useful lower bound
on the free energy in the case of an attractive Poisson equation corresponding to the Keller-
Segel model: see |6, 25], or in the case of a mean-field Newton equation in gravitational
models. In presence of the potential V given by (2), we have

/RQplog<]\i[>dx+27/R210g(1+|:c2)pda:+M(1—T+log7r)

7'—1// y) log |z —y|dxdy (5)
R2xR2

for any 7 > 0 and for any function p € L! (R?) with M = Jgz pdx > 0, according to [24].
Compared to [24], the discrepancy in the coefficient of M in the last term of the r.h.s. in (5)
is due to the normalization of V as defined by (2). Equality again holds if p = p, given
by (4). When 7 = 0, (5) is nothing else than (3) while the case 7 = 1 is easily recovered by
Jensen’s inequality. Notice that the sign of the coefficient in front of the convolution term in
the r.h.s. of (5) becomes positive if 7 > 1.

Let us divide (5) by 7 > 0 and then take the limit as 7 — +o00. By doing this, we obtain
a new inequality, which differs from (3) and is of interest by itself.
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Lemma 1. For any function p € Li_(R2) such that [po pdx = M, we have
2
2/ log (14 |z|*) pdx — M > M// p(x) p(y) log|z — y| dx dy . (6)
R2 R2ZxR2

Moreover equality in (6) is achieved if and only if p = ps.

Proof. We give a direct proof of (6), which does not rely on (5). A preliminary observation
is that (6) makes sense, i.e., that

p»—)/ 10g(1+|ac] pdm—// y) log |x — y| dx dy
R2 R2xR2

is bounded from below. We may indeed notice that, for any z, y € R%,
o —y? =l + [y =22y < |2 + [y + L+ [P y?) = (L +[2?) (L+ [y) .
so that, after multiplying by p(x) p(y) and integrating with respect to = and y, we obtain

2 ([ o) plw) toglo — gl dwdy
R2xR2
< // p(x) p(y) (10g (1+|2|%) +log (1 + [y[?) ) dx dy < 2M/ log (1 + |z|*) pdz.
R2xR? R2

As a consequence, the problem is reduced to proving that the largest constant C' such that

2
2/ log (1 + []*) pdz — C > // p(z) p(y) log |z — y| dz dy
R? M J Jr2 g2

isC=M.

At heuristic level, if we admit that p, realizes the equality case, this equality can be
established as follows. The potential V' given by (2) is such that u, = fe S = isa
probability measure and we have

AV =87 iy .
One can also check that
(~8) e = = [ logle =yl puly) dy = — o= = — - log (1 + o)
21 Jgr2 8w 4

which requires a careful analysis of the integration constants. Indeed, in radial coordinates,
by solving the ordinary differential equation
_8r
(1472)’
a couple of integrations shows that

1 4 " 4s

!
V(r):; <1+r2 —4> and V(r)—Vg:/O T 5 ds =2log (1+717)

so that 8 (—A) 1y, = —(V + Vp) with Vg = 0. Alternatively, a direct proof is obtained by

observing that
T logr
V:4/ lo d:8/ ————dr =0,
0 - g |yl 1e(y) dy 0 (1127

(rv) = V'/(0)=0, V(0)=W,
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where the last equality is a consequence of the change of variables r — 1/r. Taking into
account the identity

+o0 27 log (1 + 12
/ log (1 + |z[?) ,u*(x)dx:/ wdrzl,
R2 0 (1+7r2)

this is consistent with the fact that p, = M p, corresponds to the equality case in (3),
according to [11]. Altogether, we have C' = M, meaning that (6) is an equality if p = p,.

After these preliminary considerations, which are provided only for a better understanding
of the functional framework, let us give a proof. With no loss of generality, we may assume
that M = 1 because of the 1-homogeneity of (6). Let us notice that

2/ log (1+:c\2)pdx—1—2// p(x) p(y) log |z — y| dx dy
R2 R2 xR?2

= _2//1%1@2 (p(x) = () (p(y) — px(y)) log |z — y| dz dy.

We recover that the equality case in (6) is achieved if p = .. With W = —(—=A) " (p — 1),
we obtain

_ 2//%11{2 (p(x) = pu(2)) (p(y) — kx(y)) log | — y| da dy
- 4”/ (p— p1e) (=) (p — p1) da
R2

:—47r/ (AW)de:47r/ VW |*dz >0,
R2 R2

where the last equality is obtained by a simple integration by parts. This can be done only
because fRQ (p — py) dx = 0, a necessary and sufficient condition to guarantee that VIV is
square integrable (for a proof, one has to study the behavior of the solution of the Poisson
equation as |z| — +00). At this point it is clear that [, [VW|*da = 0 if and only if p = p,.
The general case with an arbitrary M > 0 is obtained by writing p, = M puy, which concludes
the proof. O

The equality case in (6) is achieved among radial functions. It is classical that the Lh.s. is
decreasing under symmetric decreasing rearrangements, while the r.h.s. is increasing. The
strict rearrangement inequality for the logarithmic kernel is proved in [11, Lemma 2|. As a
limit case of [[go, e (P(2) — () (p(y) — ps(y)) |z — y|* dz dy when A — 0_, according
to [30, Theorem 4.3| (also see [33] for interesting consequences), this is indeed expected. Jus-
tifying the square integrability of VW has therefore to be done only among radial functions,
which is elementary using, e.g., a compactly supported function p and a density argument.

Also notice that one can now recover (5) as a simple consequence of (3) and (6). Next,
we turn our attention to an inequality which is a consequence of convexity and Jensen’s
inequality. Let

nlp) = / p log <'0> dx + 77/ log (1 + |z[*) pdz Vp € LL(R?).
R2 el R2

Lemma 2. Let n >0, M >0 and Xy := {p € LL(R?) : ||p||, = M }.
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i) If n > 1, then J, is bounded from below on Xy; and
(i) Ifn>1, n

-1
/ p log (ﬁ) dz —l—n/ log (1 + ]33\2) pdx > M log (L> VpeXy. (7)
R2 M R2 T
For any n > 1, equality in (7) is achieved by p = M p,), where
n—1 2
="V R*.
Pn(x) 7_‘_(1 + |x|2)77 T e

(ii) Ifn € (0,1], then infx,, J, = —o0.

If n = 2, then py = p,, while (7) amounts to J,[p] > J,[M p,] for any n > 1. If 7 is
restricted to the range [0, 1], we notice as in [24]| that (5) is a simple convex combination,
with coefficients (1 — 7) and 7, of (3) and (7) written with n = 2.

Proof. A direct computation based on £ (1 + 7’2)1_77 =—2(n—1)r (1 +r2)"" shows that

r

+oo
/ pndzc—2(17—1)/ r(1+r%) Tdr=1
R? 0
for all n > 1 and

Inlp] :/RQplog(Mppn>dx+Mlog (TIT_1> VpeXy.

Using that u — u logu — u + 1 is a convex function whose minimum is 0, we get

p p p p
1 ( )d :/ 1 ( )M d>/< —1>M dz =0
/]RQp o8 M py, ! r2 M py o8 M py, Pt = rz \M py Pt

by taking u = p/(M py) and then integrating against M p, dz. This proves (7) for any n > 1,
where equality holds as a consequence of J,[M p,] = M log (77”;1)

Let us consider the case n € (0,1] and take p = M p¢ with { > 1 as a test function. With
a few integrations by parts, we obtain

+o00 e
/ log (14 |2|?) p¢(x)dz =2 (¢ — 1)/ rlog (L+7%) (1+7%) " dr
R2 0

B +ood o 1—C 5 _ +oo o —C B 1
__/0 %<(1+r) )log(1+r)dr—2/0 r(1+1r7) dr—cj,

/ p¢ log pe dx
R2

— ¢ -1 _ 2 _ -1y ¢
= log (T) /Rg pe dx C/]R2 log (1 + || ) Pc(ﬂﬁ) dz = log (T) ﬁv
so that lime_,;, J,[M p¢] = —o0 because
! _ ) IS AN
MJW[MPC]—/RQPQInggda:—FT]/RQlOg(l—i-m)pg(x)dx—log< - ) 1
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2.2. Boundedness from below of the free energy functional. Let us consider the free
energy functional defined by

- v 2) ) dw— 2 _
Fapblp) := /RZplog<M)dx+a/RQ log (1 + |2|°) pda M//sz p(x) p(y) log |z —y| dx dy

for any p € L! (R?) such that Jg2 pdx = M. We look for the range of the parameters a and b
such that

Faplp] > C(a,b) M VpeLL(R?) suchthat ||p|, =M, (8)
for some constant C(a,b). Inequality (5) with 7 > 0 is obtained as the special case a = 27
and b = 2 (7 — 1), with C(a,b) = M (1 — 1 — log7), according to [24]. As a consequence,
we also know that (8) holds for some C(a,b) > —oc if a > 27 and b = 2 (7 — 1), that is,
0 < b+ 2 < a. This range can be improved. For instance, if b = 0, it is clear from Lemma 2
that the threshold is at a = 1 and not a = 2. Our result (see Fig. 1) is as follows.

Theorem 3. Inequality (8) holds for some C(a,b) > —oco if either a =0 and b= -2, or
a>0, —2<b<a-1 and b<2a-2.
If either a <0 or b < —2 or b > min{a —1,2a — 2} or (a,b) = (1,0), then

plél/{;l Faplpl = —00.

If0<a<1andb=2a—2, then

C(a,2a—2) = — log <1e_ﬂa> :

Moreover, if a > 0 there is no mgnimazer for C(a,2a—2).

b=min{a—1,2a —2}

.
-
.
-
.
-

.

.
-
-
-
-
-
-
-
.®
.

a

FIGURE 1. White (resp. grey) area corresponds to the domain in which (8) holds for
some finite constant C(a, b) (resp. C(a,b) = —00). We also know thatC(a,2(a—1)) =
—log(em/(1 —a)) if0 <a<1and(C(1,0) = —o0, while the boundedness from below
of Fap is not known in the threshold case b =a —1 > 0. On the dotted half-line
b=a—22> —2, optimality is achieved by p, and Inequality (8) corresponds to (5)
witha=27,b=2(r—1), and 7 > 0.

The boundedness from below of F,p is unknown only in the case b = a—1 > 0. If
b=2a—2 <0, we do not only show the semi-boundedness of F, j,, but we actually compute
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the infimum C(a, b). The infimum is also known if b = a—2 > —2 and in that case optimality
is achieved by p, according to (5). Note that for a = 0, the inequality F,sn_1)[p] >
C(a, 2(a— 1)) M is the sharp logarithmic Hardy-Littlewood-Sobolev inequality (3) and as
a — 1 the infimum diverges to —oo consistently with the result of Lemma 2. For the

convenience of the reader, we divide the proof of Theorem 3 in several intermediate result.

Lemma 4. Inequality (8) holds for some C(a,b) > —oo if either a =0 and b = -2, or

a>0 and —2<b<min{a—1,2a-2}.

The proof for —2 < b < 0 and a > 1 — b/2 follows from the case a = 1 — b/2, which is
treated in Lemmas 6 and 7 below, but we give the argument here nevertheless, since it is
simpler.

Proof. The case a =0 and b = —2 corresponds to (3). The case a=mn > 1and b =0 is (7).
If b < 0, the condition b < 2a — 2 arises by combining (3) and (7), respectively multiplied
by —b/2 and 1+ b/2, with a = (14 b/2) n for any > 1. In that case, (8) holds with

C(a,b) :M(l—i—logﬂ)g—i—M log (17;1) (1+ g)

b 2a—2—-b\b+2
:M(1+log7r)2+Mlog< 2 > +

m(b+2) 2
If b > 0, we sum (6) with a coefficient b/2 and (7) with coefficient 1 and n=a—b > 1. In
that case, (8) holds with

b ~1 b —b-1
C(a,b)—M2+Mlog(”> —M2+Mlog(a) .
T

s

With M =1, notice that

.7:37b[p]—/ plogpdx—i—a/ log(1+\x|2)pda:+27rb/ p(=A)pdx.
R2 R2 R2

Lemma 5. If eithera <0 orb < —2 or b > min{a —1,2a — 2} or (a,b) = (1,0), then

inf F,plp] = —00.
Jnf, blp] = —o0

In Lemma 5, there is no loss of generality in assuming that M = 1. Under the assumptions
on (a,b) of Lemma 5, Inequality (8) does not hold for some C(a,b) > —oo. In that case, we
shall simply write C(a,b) = —oco. See Fig. 1.

Proof. For an arbitrary p € X, i.e., p € L1 (R?) such that [|p||; =1, let pg(x) := p(z — ).
Since

/ log (1 + [x]?) pa () dz ~ 2 log ]a:o|/ pdr as |zo| = +00
R2 R2

and all other integrals are unchanged, the conclusion is straightforward if a < 0.
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Assume now that p € A} is such that p logp and log (1 + |l‘|2) p are integrable, and let
oxa(x) = A2 p(Az), for any x € R2. We have

/pAlogpAdx:/ plogpdx + 2 log A,
R2 R2

/ log (1 + |z|*) padz = / log (14+ A% |z|?) pdz,
R2 R2

_ _ log A
[onaytpde= [ p(-a)tpds+ 552
R2 R2 ™
As A — +o00, we obtain that F, p[pa] ~ (b + 2) log A, which proves our statement if b < —2.
Assume additionally that p(z) = 0 if || ¢ [1,2]. Since on any compact set of R?\ {0}, we

have that 1+ A72 |z ~ A72|z|? as A — 0 and deduce that

/ log (1 + [z]?) pa(z) dz = / log (1+ A% |2|?) p(x) dv ~ —2 log A.
R? R?

As A — 04, we obtain that F,p[px] ~ (b + 2 — 2a) log A, which proves our statement if
b+2-2a>0.
Now, still assuming that p(x) = 0 if |z| & [1,2], let

pea(®) = (1— £) pla) + Ne p(Aa)
with parameters (¢, \) € (0,1)2. Using that the supports of p and py decouple if A < 1/2,
we have, for any given € € (0,1), as A — 04

/RZ/)E,A logpe’,\da::/RZplogpdx—i-E loge + (1 —¢) log(l —¢) +2¢ log A,

/RQ log (1+ |[?) pendz = (1 — 5)/

log (1 + |z|*) pdx + 25/ log |x| pdx
R2 R2

—2¢elogA+o(log ),

_ _ log A
/R2 e (—A) perdr = (2 + (1 —5)2)/ p(~A) pdr + 2 220

R2
(1—¢)

1—
5(5)/ 1og|ac|p(:n)d:v+5 log A+ o (log\) .
™ R2

Thus,
[ pertogperdota [ dog (14 oP) perde+2mb [ pn(-8) piado
R2 R2 R2

~25<<1—§>b+1—a> logh as A— 04 .

This again proves our statement if b+ 1 —a > 0, because (1 —¢/2)b+ 1 — a can be made
positive for € > 0, small enough. O

The proof of Theorem 3 in the case b = 2(a — 1) € [-2,0) is based on two ingredients
exposed in Lemma 6 and Lemma 7. The first ingredient relates the minimization of F; 5 (5-1)
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to a simpler, scale-invariant minimization problem. Let

1
Galp] := / p logpdx + Za/ log |z| pdx +2(a —1) // p(x) log — p(y) dx dy
R2 R2 R2xR?2 [z —yl
and

K(a) := inf{ga[p] :p>0, /Rdele}.

Lemma 6. Let 0 <a < 1. Then
C(a,2(a—1)) =K(a).
Moreover, if a > 0 there is no minimizer for C(a,2(a — 1)).
Proof. Since log (1 + |z|?) > 2 log ||, we immediately obtain F, 5(,_1)[p] > Ga[p] whenever
p # 0 (and the functionals are finite). This implies that C(a,2(a — 1)) > K(a) and that, if
a> 0 and if 7, 5(,_1) has a minimizer, then C(a,2(a — 1)) > K(a).
We show now the opposite inequality C(a, 2(a— 1)) < K(a), which will complete the proof.

Let ¢ > 0 with fRQ odx = 1 and with compact support not containing the origin. Consider
px(r) = A20(x/)\) with A > 1. Then, as in the proof of Lemma 5,

Faplora] = (=2+2a —b)log A

+/ o logodr + a/ log (A2 + |z[?) o(2) dx
R? R?

1
+ b// o(x) log——o(y)dzdy.
R2xR?2 |z -yl

If b=2(a—1), then the coefficient of log A vanishes and we obtain
C(a7 2 (a - 1)) < h)\nl)inffa,Z (a—1) [p)\] = ga [U] :

Taking the infimum over all o (and removing the support assumptions by an approximation
argument), we obtain C(a,2(a — 1)) < K(a), as claimed. O

Lemma 7. Let 0 <a< 1. Then
em
K(a) = -1 .
@ =tz (1)
For a > 0 the infimum K(a) is achieved if and only if, for some X\ > 0,

() 1-a A2
plz) = .
T jz2a (A2 + ’35|2(1—a))2

The idea of the proof is to apply a change of variables and to reduce the result to the case
a=0.

Proof of Lemma 7. By symmetric decreasing rearrangement it suffices to bound G,[p] from
below for radial decreasing p. In fact, in the following we only use that p is radial, and we
use this in order to apply Newton’s theorem. We set p(z) := |2|?? p(x) and then we define
a radial function 7 on R? by 7(z) = (|z]1/(1_a)) (with an obvious abuse of notation for the



LOGARITHMIC ESTIMATES FOR 2-DIMENSIONAL MEAN-FIELD MODELS 11

radial function p). We have

/RQT(Z)CZZ_QW/OOOﬁOl/(la)>rdr—27r(1_a)/oooﬁ(s)312ads
:271(1—3)/000p(s)sd52(1—a)/RQp(x)dx:1—a.

Moreover, by a similar computation,

o0
/plogpdx+2a/ 10g|:1:|pd:r:/ ﬁlogﬁ|x|_23dx:27r/ p(s) log p(s) s' 722 ds
R2 R2 R2 0

_ 2 /OOOT(T) log 7(r)rdr =

T 1-a

/RQT(Z) log 7() d

1—-a
Finally, by Newton’s theorem,

1
p(x) log p(y) dx dy
//RQXRQ (=) |z — y )

1 1
2// p(z) min{log,log}p(y) dx dy
R2xR2 || Yl
~ . 1 1] . de dy
= p(x) min log,log}py
[ rmin s o 4t s
0 oo ) 1 1) . ds ds’
= (2’]’[’)2/0 /0 p(S) min {log g,log S,}p(sl) FW
(27r)2 /00/00 . 1 1 / W,
= log —, log — drr'd
a-a0 ), J, 7(7) min og —log T(r'")rdrr'dr

1 1
= (1—23)3//R2xR2 7(z) log P T(w) dz dw .

To summarize, we have

Galp| = . i . /R2 7(2) log7(2) dz — (1_23)2//R2XR2 7(2) log B _1 o T(w) dz dw .

By the logarithmic Hardy-Littlewood-Sobolev inequality (3), taking the normalization of 7

into account, we deduce that
em
> —1
G.l7) > ~ox (7))

with equality if and only if, for some A > 0,

() 1—a A2
T(2) = .
T (A2 [2[?)?
Translating this in terms of p, we obtain the claim of the lemma. O

2.3. Additional remarks on the free energy and some open questions. In Lemma 4,
Inequality (8) holds for some finite constant C(a,b) if (a,b) = (0,—2) . We also know from
Lemma 2 that lim, 1, C(a,0) = —oo. If b=a—1 > 0, it is so far open to decide whether (8)
holds for some C(a,b) > —oo. See Fig. 1.

The free energy F,p[p] is a natural Lyapunov functional for the drift-diffusion equation

%zAp+V-(p(3VV—|—47T%VW)), W= (—A)"1p. 9)
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Indeed we can write that Ap = V - (pVlogp) so that, for any smooth and sufficiently
decreasing function p solving (9), we obtain using an integration by parts that

d
dt
Concerning the the long time behavior of the solution of (9), we expect that F,p[p(t, )]
converges to C(a,b) as t — 400 by analogy, e.g., with the Keller-Segel system (see |6,
Section 4]), but it is an open question to deduce global decay rates of F, p[p(t, -)], for instance
in a restricted class of solutions of (9), or even asymptotic decay rates as in [8]. Another issue

Faplp(t,")] = —/ p ‘Vlogp—l—aVV+47T%VW‘2daj.
R2

is to understand the counterpart on S? of the results on R? using the inverse stereographic
projection, as in [11, 21, 23|.
For any M > 0, the boundedness from below of

Filp) = a/ log (1 + || pd:c—// y) log |x— y\dxdy—FC/ p log (ﬁ) dx
’ R2 szRz 2 M

on the set Xy arises for any ¢ > 0 as a straightforward consequence of Lemma 4 under the
obvious condition —2c¢ < b < min{a—c,2a—2c}, by homogeneity. The case c = 0 is covered
by Lemma 1. It is therefore a natural question to inquire what happens if ¢ < 0.

Proposition 8. For any (a,b) € R? and M > 0, with the above notations, if c < 0, then

inf Frplp] = —c0.
pEXM

Proof. The key point of the proof is that p +— chg plogpdr with ¢ < 0 is a concave
functional. Let p € &} be a function supported in the unit ball. For any € € (0,1/4) and
n € N\ {0}, let

Zs —(k,0))) Yz eR2.

k(=1

In order to investigate the limits ¢ — 04 and n — 400, we compute
/ R. ,, log R. ;, dx = — log (n2 52) + / plogpdx =—2log(ne)+ O(1),
R2 R2

/ log (1 + |x!2) Repndz Slog (1+ 2n2) =2logn (1+o(1)),

|log 5| log (14 2n?)
n n 1 —yldxd
‘//RZXIRQRE (2) Ren(y) log |z — y do y] o o

| log(e/n)|
=3 (1+0(1)).
With the choice ¢ = n~4 for some A > 0 large enough, we find that c fW R, , log R, dv ~
(A—1)|c| logn — —o0 as n — +oo and this term dominates the other ones. This concludes
the proof. 0

3. LOGARITHMIC INTERPOLATION INEQUALITIES AND SCHRODINGER ENERGY ESTIMATES

We are now going to study the Schrodinger energy £ defined by (1). As we shall see,
the kinetic energy ng |Vu|? dx completely changes the picture and considering ¢ < 0 makes
sense.
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3.1. A new logarithmic interpolation inequality. Here we combine logarithmic Hardy-
Littlewood-Sobolev inequalities with the logarithmic Sobolev inequality to produce a new
logarithmic interpolation inequality. This new inequality is more directly connected with the
Schrodinger-Poisson system (SP).

In dimension d = 2, with the Gaussian measure defined as du = p(z) dx where p(z) =
(27)~! exp(—|z|?/2), the Gaussian logarithmic Sobolev inequality reads

1
/ Vol du > / [o[? log [of? du (10)
R2 R2

for any function v € H'(R?,du) such that [, |v|>dp = 1, and there is equality if and only
if v =1 (see |9, Theorem 4|). With u = v/, it is a classical fact that Inequality (10) is
equivalent to the standard Euclidean logarithmic Sobolev inequality established in [29] (also
see [27] for an earlier related result) which can be written in dimension d = 2 as

1 2
/ |Vu|? de > / lul? log [l 5 | dz+ - log (27re ) ||u|]§ (11)
R2 2 Jre [[ully

for any function v € H'(R?,dx). This inequality is not invariant under scaling. By apply-
ing (11) to the scaled function uy(z) = Au(Az), we obtain

Jul?

1 u
2 [Vl = og A ful} = 5 [ Juf log< ;
R? [[wlly

for any A > 0. The scaling parameter A can be optimized in order to obtain the Fuclidean

) d:v+ log (27e?) |3 (12)

logarithmic Sobolev inequality in scale invariant form

1 [||[Vu 2 2
o2 log (””2> > [ P log<’ u )d (13)
e a2 ) = e ul

for any function v € H'(R? dz), that can be found in [40, Theorem 2|, [37, Inequal-
ity (2.3)], [19, Appendix B| or [9, Inequality (26)]. See [38, 26] for further references and
consequences. Of course, (11) can be deduced from (13), so that (10), (11) and (13) are
equivalent, and none of these inequalities is limited to d = 2, but constants in (11) and (13)
have to be adapted to the dimension if d # 2.

It is possible to combine (3) and (11) with p = |u|? into

[ e = 25 o T [P (-8) M ul? do + 5 log(2e) ful} (14)
2
where
2 [l (-8 oo = - [ / 2 log | — | lu(y)|? dy
By applying (14) to the scaled function uy(z) = )\u()\ x), we obtain that

21
z2 / IVl de — ful} log A 2 s / P (~2) P de + 3 log(2¢) Jul} (15)
2

for any A > 0. By optimizing on A, we obtain the following scale invariant inequality.

Proposition 9. For any function u € H'(R?), we have

2 [ (=) ol e < [l tog (”V“”2) . (16)
R2 HUHz
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Since (3) and (11) admit incompatible optimal functions, respectively the function p = p,
given by (4) and the Gaussian function u(z) = (27)~Y2V/M e 1#*/4 = /M pu(z), up to
multiplications by a constant, scalings and translations, equality is not achieved in (16) by a
function u € H!(R?).

3.2. Interpolations inequalities in higher dimensions. For comparison, let us briefly
consider the case of higher dimensions, that is, the case of the Euclidean space R? with d > 3.
We can refer for instance to [3] for more detailed considerations on scalings in absence of an
external potential. The Gagliardo-Nirenberg inequality

9 1—9
Can [Vaully llully™ = flull, VueH' (R?) (17)
holds with 6 = d% for any p € (2,2*], where 2* = dQng is the critical Sobolev exponent.
Optimality is attained by the so-called Lommel functions, which are radial functions according
to, e.g., [39], and are defined by the Euler-Lagrange but have no explicit formulation in terms

of the usual special functions: see [31, 32]. This can be combined with the critical Hardy-
Littlewood-Sobolev inequality,

2
1 p(z) p(y) / . / bu N\ 12
T oNIQd—11 T 7 a pu— —_ < —_—
(d—2)[S% //]Rdx]Rd |z — y|d—2 du dy Rd p(=A)""pdr < Curs i |pld+2 dx
(18)

for any function p € L%(Rd), to establish for p = |u|? that
Ca [ Tl (=) fuP do < [Vl 2 ful Ve GRS, (19)

under the condition that % < dedQ, that is, for
3<d<6.

Let us notice that the inequality is critical if d = 6 in the sense that [p [u? (—A)u|? dz
and ( fRG |Vul|? dav)2 have the same homogeneity and scaling invariance, which is a standard

source of loss of compactness along an arbitrary minimizing sequence satisfying a given [Ju/|,
constraint. From (17) and (18), we find out that

Ca = Cox Cris -
The above estimate is strict because optimal functions do not coincide in (17) and (18) if

3 <d < 5. In dimension d = 6, we have that Cg = Céﬁ Cﬁﬁs is sharp, with equality in (19)
achieved by the Aubin-Talenti function o — (1 + |z|?)72.

3.3. Bounds on the Schrodinger energy. Let v, := max{v,0} and consider £ as in (1).

Theorem 10. Let «, 3, v be real parameters and assume that M > 0. Then
(i) € is not bounded from below on Hys if one of the following conditions is satisfied:
(a) a<0,
(b) >0 and MpB>min{2a—~v,4a—2v}.
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(ii) &€ is bounded from below on Hyy if either a« =0, <0 and M B+2v <0, ora>0
and one of the following conditions is satisfied:
(a) v<0 and Mp<2a,
(b) v>0, MpB<4a—-2v and MpB<2a-—7.

Two cases covered by Theorem 10 are shown in Fig. 2.

FIGURE 2. White (resp. dark grey) area corresponds to the domain in which & is
bounded (resp. unbounded) from below with oo = 0 on the left and o = 1 on the right.
Whether £ is bounded in the light grey domain or not is open so far.

Proof. Let us start by the proof of (i), i.e., the cases for which inf{E[u] : u € Hy} = —o0.
Case (a) corresponds to a < 0 and can be dealt with using translations as in the proof of
Lemma 5: lim, 400 E[u(- — m0)] = —00. Next let uy(z) := Au(Ax) and notice that

/ |Vuy|? dz = \? / |Vu|? dz = o(log\) as A — 04,
R2 R2
so that, with py = |uy|?,

E[U,\]NQQ/ 10g(1—|—|:£\2)p,\d:1:+2776/ pA(—A)_lpAdm—l—v/ px log py dz .
R2 R2 R2

By arguing as in Lemma 5, we obtain that limy_,o, £[uy] = —oo in case (b).
Concerning (ii), the boundedness from below of £ is as follows. From (12) and (15), we
learn that ) ( ) 2)
1 |ul log (27 e” A}
Vul?dz > —— 2log |+ ) do+ ——5—~ 20
Ve 2 g [ Og(M) SR PY: (20)
and

27 _ log (2 e A3
/RQ \Vu|? de > By /RQ lu2 (—=A) 1u|2dx+§)\22)M (21)
2 2

with |lul|3 = M. Here A; and )y are two arbitrary positive parameters. Let us distinguish

various cases:

(1) If a =0, 8 <0 and v <0, the boundedness from below of £ is a direct consequence
of (20) and (21). The case « =0, 5 < 0 and v > 0 can be reduced to the case a = 0
and v =0 using (3) if M B+2~ <0.
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(2) If either « >0, 8 <0and vy <0,ora>0,8>0,v<0and MB+2v <0, we
conclude as above.

(3) If « >0, 8> 0 and v < 0, the boundedness from below is a direct consequence of
Lemma 1if M —2a <0.

(4) If > 0,7 >0and M B+ 2~ > 0, we notice that E[u] > v F, p[|ul?] with a =2a/~y
and b = M /~. The result of Lemma 4 applies and the condition b < min{a—1,2a—
2} can be rewritten as M < min{2a —v,da — 27}. The case M = 4a — 27y
corresponds to b = 2a — 2 and it is covered by Lemmas 6 and 7.

(5) fa>0,v>0and M B+ 2v <0, we conclude by observing that

2
£l =y Facal[u?] + [ [VuPdo 37 (M B+29) [ Jul? (~8) ! fuP da,
R2 R2

where, because M 5 + 2+ < 0, the sum of the last two terms is bounded from below
in view (21) and where Lemma 4 guarantees that 7, _o [ ]u\Q] is bounded from below.
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