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Covariant constancy of quantum Steenrod operations

Paul Seidel, Nicholas Wilkins

ABSTRACT. We prove a relationship between quantum Steenrod operations and the quantum
connection. In particular there are operations extending the quantum Steenrod power opera-
tions that, when viewed as endomorphisms of equivariant quantum cohomology, are covariantly
constant. We demonstrate how this property is used in computations of examples.

1. INTRODUCTION

Quantum Steenrod operations, originally introduced by Fukaya [§], have recently appeared in
a variety of contexts: their properties have been explored in [23] (which also contains the first
nontrivial computations); they can be used to study arithmetic aspects of mirror symmetry [19];
and in Hamiltonian dynamics, they are relevant for the existence of pseudo-rotations [21], 3] 22].
Nevertheless, computing quantum Steenrod operations remains a challenging problem in all but
the simplest cases. Using methods similar to [23], this paper establishes a relation between
quantum Steenrod operations and the quantum connection. As a consequence, the contribution
of rational curves of low degree (very roughly speaking, of degree < p if one is interested in
quantum Steenrod operations with F,-coefficients) can be computed using only ordinary Steenrod
operations and Gromov-Witten invariants. This is consonant with other indications that the
geometrically most interesting part of quantum Steenrod operations may come from p-fold covered
curves. Even though our method does not reach that part, it yields interesting results in many
examples (some are carried out here, and there are more in [19]).

la. Throughout this paper, M is a closed symplectic manifold which is weakly monotone [9]
(in [14] Definition 6.4.1], this is called semi-positive). Fix an arbitrary coefficient field F. The
associated Novikov ring A is the ring of series

(11) VZZA CAqAa

where the exponents are A € H3P""(M;Z) = im(my(M) — Hy(M;Z)) such that either A = 0
or [ 4wy > 0; and among those A such that / 4w is bounded by a given constant, only finitely
many ¢ may be nonzero. We think of this as a graded ring, where |¢?| = 2¢;(A) (the notation
being that ¢;(A) is the pairing between ¢; (M) and A). Write I,,,0, C A for the ideal generated
by ¢* for nonzero A, so that A/I,,., = F.
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For each a € H?(M;Z) there is an F-linear differentiation operation 9, : A — A,
(1.2) Daq? = (a-A)q™.

Write Igyp C Ipmae for the ideal generated by q?, where A # 0 lies in the kernel of the map
H3Phe" (M Z) < Hy(M;Z) — Hom(H?(M;Z),F). In other words, the generators are precisely
those nontrivial monomials whose derivatives are zero. (If F is of characteristic zero and
HSPhere (M;Z) is torsion-free, then Iy = 0; but that’s not the case we’ll be interested in.)

Remark 1.1. Clearly, 8, only depends on a ® 1 € H?*(M;Z) ® F. One could define such
operations for all elements in H?(M;F), and prove a version of our results in that context. We
have refrained from doing so, since it adds a technical wrinkle (having to represent classes in
H?(M;F) geometrically) without giving any striking additional applications.

1b.  We will exclusively consider genus zero Gromov-Witten invariants. The three-pointed
Gromov-Witten invariant in a class A € H5""*(M;Z) can be written as a bilinear operation

st H*(M;F)®2 — H* 20 (ML),
(1.3)
/ (c1 %4 c2) c3 = {(c1,¢,¢3) 4.
M

One extends this to H*(M;A), and then packages all the * 4 into the small quantum product

(1.4) Moxye =Y (1 %av2) g
A

Let ¢ be another formal variable, of degree 2. The quantum connection on H*(M; A)[[t]] consists
of the operations

(1.5) Vay = tay + a7,

where * has been extended t-linearly. By the divisor axiom in Gromov-Witten theory, we have
that for any ay,as € H?(M;Z) and ¢y, co € H*(M;F),

(16) (a1 A)/ (a2 *A 61)02 = <a1,a2,81,82>,4 = (agA)/ (a1 * A 01)62.
M M
This implies that the operations (1.5 for different @ commute: the connection is flat.

We will consider endomorphisms ¥ of H*(M; A)[[t]] which are A[[¢]]-linear and covariantly con-
stant, which means that they satisfy

(1.7) V.S - ¥V, =0.

This is a system of linear first order differential equations. By looking at the equations for each
g coefficient of ¥, one sees that:

Lemma 1.2. For covariantly constant endomorphisms, the constant term determines the be-
haviour modulo 145 . More formally, if ¥ satisfies (1.7), then we have

(1.8) S € End(H*(M;F)) ® Inao[[t] = ¥ € End(H*(M;F)) ® Lyg[[t]-
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lc. From now on, we restrict to coefficient fields F = [, for a prime p. Our arguments involve
(Z/p)-equivariant cohomology with F,-coefficients. For a point, that is

(1.9) Hy,,(point; Fy) = H™ (BL/p; Fp) = Fp[[t,0]], [t] =2, 0] = 1.

The notation requires some explanation. For p = 2, we have 62 = ¢, so F[[t, 0]] is actually a ring
of power series in a single variable f. For p > 2, we have t6 = 0t and 6% = 0, so that F|[[t, ]] is
a ring of power series in two supercommuting variables.

For any A € H3?"“™(M;Z) and any class b € H*(M;F,), one can use (Z/p)-equivariant Gromov-
Witten theory to define an operation

(1.10) QXpa: H(M;F,) — (H*(M;]Fp)[[t,0]])**’)‘5'*201(1“)_
For the trivial class A = 0, this is a form of the classical Steenrod operation St, more precisely
(1.11) Q%p0(c) = St(b)c.

Remark 1.3. Our notational and sign conventions follow [19] (except that we suppress the prime
p), which differ from the classical conventions for Steenrod operations. In particular, for p > 2,

(1.12) St(b) = (—1)= s (et Mt
where - -+ is the part involving cohomology classes of degree > |b|. For |b| even, this simplifies to
(1.13) St(b) = (—1) '35 lp 4 ...

At the other extreme, settingt =6 = 0 in St(b) still yields the p-fold (cup) power bP. The Cartan
relation says that

(1.14) St(B) St(b) = (—1)P11B1 =2 Gy ().

Note that many coefficients of St(b) vanish, because this operation comes from the cohomology
of the symmetric group. Concretely, if |b| is even, all the potentially nonzero terms in St(b) are
of the form t*®P=1 or t*e=1=10: and if |b| is odd, of the form t(*F+1/2P=1) o $(k+1/2)(p=1)~1p
That is no longer true for quantum operations.

As usual, one adds up (I.10) over all A with weights ¢**. The outcome is denoted by
(1.15) QX : H*(M;F,) — (H*(M; A)[[t, 0]]))" 1.

The non-equivariant (¢t = 6 = 0) part is the p-fold quantum product with b:

/—/pg
(1.16) QRYp(c) =bx - xbxc+ (terms involving t, ).
The case b =1 is trivial:
(1.17) Q% = id.

The relation with the more standard formulation of the quantum Steenrod operation is that

(1.18) QSt(b) = QTy(1).
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It is convenient to formally extend (1.15). First, turn it into an endomorphism of H*(M; A)([[¢, 0]],
linearly in the variables ¢ and (¢, 0) (with appropriate Koszul signs). Next, extend the b-variable
to € H*(M;A), by setting

(1.19) QEgzqupA QYy, forp=> 4, bagt.

Then, the composition of these operations is described by

(1.20) Q%50 Q% = ()PP Ty

Note that for b =1, (1.16) implies that Q% is an automorphism of H*(M; A)[[¢, 6]], and ((1.20)
that it is idempotent. Hence, it must be the identity, so those two properties imply (1.17).

1d. The quantum connection can be extended to H*(M;A)[[t,0]] by making it -linear. Our
main result is:

Theorem 1.4. For any b € H*(M;F,), the operation QX is a covariantly constant endomor-
phism (of degree p|b|), meaning that it satisfies (1.7)).

Lemma still applies (the presence of the additional #-variable makes no difference). Hence,
the classical part (1.11)), together with the quantum connection, determine Q¥; modulo 4.

Remark 1.5. Covariant constancy also means that QX is related to the fundamental solution
of the quantum differential equation (see e.g. [15]). To explain this, let’s temporarily switch
coefficients to Q, and write A for the associated Novikov ring. The fundamental solution is a
trivialization of the quantum connection,

(1.21) V¥ =0,

whose constant (in the q variables) term is the identity endomorphism. U is multivalued (has
log(q?) terms), and is also a series in t='. It is uniquely determined by those conditions, and
one can write down an explicit formula in terms of Gromov- Witten invariants with gravitational
descendants. Given 8 € H*(M;Z), write

(1.22) Es(v) = ¥(BY (7).
By construction, this is a covariantly constant endomorphism, whose constant term is cup-product
with B. It is single-valued; more precisely,

(1.23) =5 € End(H*(M;A)[[t™1]).

For simplicity, suppose that H*(M;Z) is torsion-free. One can look at the denominators in EB,
order by order in the covariant constancy equation. The upshot is that factors of 1/p appear for
the first time in terms ¢, A € ijpheTe(M;Z). As a consequence, =3 has a well-defined partial
reduction mod p, which we denote by

(1.24) =5 € Bnd(H* (M; A Lug [t
and which only depends on 8 € H*(M;F,). Let’s extend linearly to B € H*(M;F,)[t,0],

in which case Zg can have both positive and negative powers of t. The case we are interested in
is 8 = St(b). Because of the uniqueness property from Lemma we then have

(125) ESt(b) = sz modulo Idiﬁ'-
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Example 1.6. Consider M = S2%, with the standard basis {1,h} of cohomology. Take p > 2 (the
case p = 2 is straightforward, but requires slightly different notation). Using Theorem one
can compute that QX = —tP~'S, where

011 = — 21(913:711)/2 (kl()%lz;;_l)ll)m qktl_ka

- (p+1)/2 2k—2)! _
(1.26) ¥ = ("11 Ul?) 012 = = YL st emd P,
021 022 o1 = 5:;—01)/2 %qkt*%’
022 = —O011-

In particular,
(1.27) QSt(h) = —tP" oy 1 — P Loy h.

Note that after multiplying with t*?=1, all the powers of t in (1.26) become nonnegative. More
precisely,

1.28 g — (0 AT L erms invotving ¢
(1.28) — = | o2 0 + (terms involving t),

in agreement with (L.16) and the fact that the p-th quantum power of h is ¢P~/2h. This is
proved in Section[q

Example 1.7. Let M be a cubic surface in CP3 (this is CP? blown up at 6 points, with its
monotone symplectic form). Take p =2, and let h € H*(M;Fy) be the Poincaré dual of a point.
Then

(1.29) QSt(h) = St(h) = t*h.

This is interesting because of its implications for Hamiltonian dymanics: by the criterion from
[3, 22], it means that M cannot admit a pseudo-rotation. We refer to Section @ for further
discussion.

The proof of Theorem [I.4] goes roughly as follows. We introduce another operation, depending
on a € H*(M;Z) as well as b € H*(M;F)),

(1.30) Qllyp : H*(M;Fp) — (H*(M;A)Ht,g]])*+|a|*2+plbl.

Geometrically, this is obtained from (|1.15)) by equipping the underlying Riemann surface with an
additional marked point, which can move around (we insert an incidence constraint dual to a at
that point). A localisation-type argument yields

(1.31) t QI p(c) = Qp(axc) —ax QE(c).
We also have an analogue of the divisor equation:
(1.32) QIlap(c) = 0aQ3s(c).

Theorem follows immediately by combining (1.31]) and (1.32]).

Remark 1.8. Fven though we have no immediate need for it here, it is worth while noting that
QIl,» can be defined more generally for a € H*(M;F,), and still satisfies (1.31)), with suitable
added Koszul signs (see Remark .
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FIGURE 2.1. The first cells from (2.3), (2.4)).

Remark 1.9. The argument above is closely related to the Cartan relation for quantum Steenrod
squares. Namely, let’s set a = QSt(b1), b="by, c =1 in (1.31). Then, using (1.20]) one sees that

t QU 51612 (1) = (=)@, (QSE(b1)) — QSt(br)  QSt (Do)
(1.33) = (=)l Pe=D2AN QR Ly (1) — QSt(by) * QSt(by)
= (—=1)l0al1b2lP(r=1)/2 QG (by % by) — QSt(by) * QSt(bs).

In view of that, it is not surprising that in applications, computations based on covariant constancy
closely resemble those from [23], where the Cartan relation was the main tool.

Acknowledgments. Both authors were partially supported by a Simons Investigator award from
the Simons Foundation. Additional support for the first author was provided by the Simons
Collaboration for Homological Mirror Symmetry, and by NSF grant DMS-1904997. The second
author was additionally supported by a Heilbronn Research Fellowship.

2. A BIT OF EQUIVARIANT (CO)HOMOLOGY

This section introduces some of the algebra and topology underlying our construction. Even
though this is elementary, it is helpful as a guiding model for the later discussion.

2a. Write

(2.1) 8 = {w = (wp, w1, ws,...) € C® : wy =0 for k>0, |w||* = |wo|® + |wi|® +--- =1}
Fix a prime p, and consider the Z/p-action on S°° generated by

(2.2) T(wo,wy,...) = (Cwo, Cwy,...), ¢=e*/P

Take the following subsets:

(2.3) Ao, ={w € S : wg >0, wi1 = Wiy =--- =0},

(2.4) Agjy1 = {w e 8% : e Pwy, > 0 for some 6 € [0,27/p], Wry1 = Wyyo =--- = 0}.

Each of them is homeomorphic to a disc, of the dimension indicated by the subscript. More
precisely, Aoy is a submanifold with boundary,

(2.5) OAop = {wp = wyyq = --- = 0} = §2k~1
and Asggy1 a submanifold with two boundary faces, whose intersection forms a corner stratum,

(26) 8A2k+1 = {wk >0, Wgt1 = Wigo =+ = 0} U {672ﬂ—i/p11)1c >0, Wgy1 = Wggo =+ = 0}



Quantum Steenrod 7

The subsets (2.3), and their images under the Z/p-action form an equivariant (and regular)
cell decomposition of S*°. The tangent space of Agy at the point where wy = 1 (and where all
the other coordinates are therefore zero) can be identified with C* by projecting to the first &
coordinates; we use the resulting orientation. The tangent space of Ay, 1 at the same point can
be similarly identified with C* x iR; we use the orientation coming from the complex orientation
of C¥, followed by the positive vertical orientation of iR. For those orientations, the differential
in the cellular chain complex is

(2.7) ODoj, = Noj_1 4+ TAo_1 + -+ + 7P Agy_q,
(28) 6A2k+1 = TAQk - Agk.

Here and below, the convention is to ignore terms with negative subscripts.

We adopt the quotient S /(Z/p) as our model for the classifying space B(Z/p). If we use F,-
coefficients, the A; become cycles on the quotient, and their homology classes form a basis for
H(point;F,) = H.(S*/(Z/p);Fp). (Moreover, from one sees that the Bockstein sends
Ag to Agk_l.)

2b. Consider the diagonal embedding 6 on S°°/(Z/p), and the induced map
(2.9) 0u + Hi (S /(Z/p);Fy) — (H(S/(Z/p); Fp))?.
Lemma 2.1. In homology with F,-coefficients,
Z A, @A, ifiis odd orp =2,
i1 +in=i

Z A, ®A;, ifiis even and p > 2.

11+1i2=1
1) even

(2.10) 5. A =

Proof. For p = 2, this is clear: from the relation between diagonal map and cup product, and the
ring structure on the cohomology of RP>* = 5§ /(Z/2), we can see that §,A; must have nonzero
components in all groups H** @ H*?, and each of those is a copy of Fs.

For p > 2, the same argument shows that exactly the terms in (2.10) must occur, but possibly
with some nonzero IF-coefficients, which have to be determined by looking a little more carefully.
Choose generators 6 € H(S*/(Z/p);Fp) and t € H?(S*/(Z/p);F,) so that

(2.11) 0,01) =1, (t,Ap) = —1.

Because Ay was defined using the complex orientation, this means that ¢ is the pullback of
the (mod p) Chern class of the tautological line bundle S* — CP* under the quotient map
S /(Z/p) — S°° /St = CP>°. Looking at the orientations of the higher-dimensional cells yields

(2.12) (%0, Aopi1) = (%, Agi) = (1)

For k = k1 + ko, we have

(2.13) (" @72 5, Agr) = (6% (1" @ t72), Agi) = (t*, Aas),

(2.14) ("0 @ t*2 5, Agpyi1) = (*(t*10 @ t72), Aoi 1) = (70, Agii1),

and that implies that the coefficients in ([2.10) are all 1, as desired. ]
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FIGURE 2.2. The cells from (2.16)—(2.18).

What does this mean on the cochain level? For each k, take a smooth triangulation of S?*=1/(Z /p).
Pull that back (taking preimages of the simplices) to a triangulation of dAsk, and then extend
that to a triangulation of Ag,. The outcome is an explicit smooth singular chain in S*°/(Z/p),
denoted by Ay, which becomes a singular cycle when the coefficients are reduced modulo p, and
which represents the homology class of Ay, in H,(S*/(Z/p);F,). A version of the same process
produces corresponding singular chains Asi_1. With that in mind, let’s look at the relations

underlying (2.10):
Z A;, x A, ifiisoddorp=2,

- i14iz=1
(2.15) 08 ~ Z Ay, x A;, ifiis even and p > 2.

11 +i2=1
i) even

On the right hand side, one decomposes the products into simplices. After that, the relation
means that there is a singular chain whose boundary (mod p) equals the difference between the
two sides. That chain can again be chosen to be smooth. One could in principle try to spell all
of this out using explicit chains, but that is not necessary for our purpose.

2c.  Consider the two-sphere S = C = C U {oo}, again with a Z/p-action o(v) = (v, and the
subsets

(2.16) Py={v=0}, Qo= {v=o0},
(2.17) Ly ={v>0}U{v = o0},
(2.18) By = {e "y > 0 for some 6 € [0,27/p]} U {v = o0}.

We use the real orientation of L, and the complex orientation of By. Let’s denote the associated
cellular chain complex simply by C.(S). Its differential is

(2.19) 0Py = 0Qo =0,
(2.20) oL = Qo — Py,
(221) GBQ = Ll - O'Ll.

Now look at S Xz, S, which means identifying

(2.22) (w,ov) ~ (Tw,v).
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This inherits a cell decomposition. The associated differential, which we denote by 0¢, is

0% (Aqgy, X O'ng) = —Ag X (0’j+1L1 — O'le) + Agp_1 X (Bg + -4 Up_lBg),

0% A2k+1 X O’ng) = A2k+1 X (O’j+1L1 — O'le) + Azk X (O—j+lBQ — JjBQ).

(2.23) 0%(Agy, X Py) =0, 9°(Agpy1 x Py) =0,

(2.24) % (Ag X Qo) =0, 9°(Agpyi1 X Qo) =0,

(2.25) 0% (Agp, X 09 L1) = Aop x (Qo — Po) + Aoy X (L1 + 0Ly + -+ +0P71Ly),
(2.26) 9°U(Aagpy1 X 0/ L1) = —Aopy1 x (Qo — Po) + Agi, x (67T Ly — 07 Ly),
(2:27) (

(2.28) (

Lemma 2.2. Take coefficients inF,,. In the cellular complex of S x7z,,S, the following homology
relationships hold:

(229) Agk X (QO — Po) ~ Agk_g X (BQ + UBQ + -+ O'pilBg),
(2.30) Agji1 X (Qo — Po) ~ Agj—1 X (By + 0Bz + -+ + 0P By).

Proof. (2.29) is obtained by subtracting (2.25)) from the following, which comes from ([2.28):
0%l (A2k+1 X (O’BQ + 20’232 + -+ (p - 1)0.10—132))
= —Aop1 X (Ly+ -+ 077 L1) — Ao X (B + -+ 077 ' By).

The second relation (2.30)) is a combination of ([2.26]), (2.27]). O

(2.31)

To fit this into the general framework of equivariant homology, note that as an application of the
localisation theorem, the map induced by inclusion of the fixed point set,

(2.32) H{(point; Fp) @ Po ©@ H(point; Fy) @ Qo — HL(S;Fy) = H(S™ Xz, S;Fp)

must be an isomorphism in sufficiently high degrees. Using the computations above, one can see
how that works out concretely: (2.32) is surjective, and it fails to be injective only in degrees 0
and 1, where the kernel is generated by Ay ® (Qo — Po) and A1 ® (Qo — Fy), respectively.

More generally, take any (homologically graded) chain complex, carrying a (Z/p)-action. Its
equivariant homology is defined by taking the tensor product with the previously considered
cellular complex of S°°, and then passing to coinvariants for the combined action in the same
sense as in (2.22). The resulting equivariant differential is

(2.33) O (Ao @E) = Nop—1 @ (E+ 0+ -+ +0P71E) + Mgy, ® O,
(2.34) 0 (Agp1 ®E) = —Agpy1 ® O+ Agp ® (€ = §).

Here, £ is an element of the original chain complex, and ¢ is the automorphism which generates
its (Z/p)-action. These formulae generalize the ones we’ve previously written down for C,(S5).

2d. Dually to our previous construction, one can start with a cohomologically graded complex
C with a (Z/p)-action, and define an equivariant complex

(2.35) Ceq = C[[t,6]]
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where the formal variables are as in , with differential

(2.36) deg(2t?) = dz t* + (=1)l(0x — z)t"0,

(2.37) deg(xt*0) = dz t*0 + (—1)1*N(z + oz 4 - - - + P La)th L.
Write H}, (C) = H*(C¢q) for the resulting cohomology.

Lemma 2.3. On C.,, the operations t and ot are homotopic.
Proof. The desired homotopy is h(zt*) = 0, h(ztk0) = (—1)=lxtk+1, O

From now on, we work with F,-coefficients. In that case, the equivariant complex (2.35) car-
ries a degree 1 endomorphism 6, which one can informally think of as a corrected version of
multiplication with 6 (acting on the left):

(2.38) 0(xt®) = (—=1)l=lxt*0,
(2.39) 0(xt*0) = (—1)*!(ox + 2022 + - - + (p — 1)oP ta)th+L.

The second part ([2.39)) contains the kind of expression we’ve seen previously in (2.31). It is
helpful to keep in mind that modulo p,

(2.40) id+o+o*+---FoP l=(0—id)P ' =0(c—id)P =,
(2.41) o+20% 4+ +(p—1o? ! = —o(c —id)P 2.
Using that, one sees that the map 6 is a chain map (of degree 1) with respect to de4:
deg0(2t®) = dog(—1)1"12t*0) = (=1)*ldz t%0 + (id + o + - - - )z t*+!
= (-1)l*ldzt*0 — (0 + 20 + -+ ) (0 — id)at" !
= 0(—dxtt — (—1)I*l(o — id)x t"0) = —0d .y (xt®),

(2.42)

and similarly
degB(xt"0) = dog(—1)"! (0 + 207 + - - - )ath+1)
(2.43) = (=Dl + 202 + - )dzt" Tt — (id + o + - )at* 0
= —0(dzt"0 + (—1)"I(id + o + - - )at*T) = —0d,, (2t"6).

Lemma 2.4. Up to homotopy, 62 is multiplication by t if p =2, and 0 for p > 2.

Proof. In terms of (2.41)), 62 is the action of —o (o — id)P~2t on the equivariant complex. But the
action of (¢ — id)t is nullhomotopic by Lemma and that implies the desired statement. O

A classical application of equivariant cohomology (basic to the definition of Steenrod operations)
is to start with a general cochain complex C (without any (Z/p)-action), and consider its p-fold
tensor product C®P with the action that cyclically permutes the tensor factors. The equivariant
complex (C®?),, is a homotopy invariant of C'. We recall the following:
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Lemma 2.5. Taking a cocycle x € C to x®P € (C®P),, yields a map
(2.44) H*(C) — HEX(C®P),

which becomes additive after multiplying by t.

Proof. Since z®P is a (Z/p)-invariant cocycle in C®? (note that the Koszul signs here are always
trivial), it is also a dq-cocycle.

The next step is to show that if we have two cohomologous cocycles, 1 — xo = dz, then ac(lg’p and
a:?p are cohomologous in (C®P),,. It is enough to consider the case where C' is three-dimensional,
with basis (21,2, 2); the general case then follows by mapping this C' into any desired complex.
Take a one-dimensional complex D with a single generator y, and the map C' — D which takes
both xj, to y (and maps z to zero). This is clearly a quasi-isomorphism, and therefore induces a
quasi-isomorphism (C®?),, — (D®P),,. Under that quasi-isomorphism, both z£” and z5” go to
y®P. Therefore, they must be cohomologous in (C%P),,.

The additivity statement can be proved by an explicit formula: if we take
(2.45) (21 + 22)%P — 2P — &P

and expand it out, we get 2P — 2 monomials, which occur in free (Z/p)-orbits. Take one repre-
sentative for each orbit, add them up, and multiply the outcome by 8. This yields a cochain in
(C®P) ., whose boundary is ¢ times ([2.45)), up to sign. O

Finally, we return to the example of S. Take the cellular chain complex and reverse its grading,
to make it cohomological. Then, on C_,(S)., we have

(2.46) deg(Pot®) =0, deg(Pyth0) =0,

(2.47) deg(Pot®) =0, deg(Pot"0) =0,

(2.48) deq(UJLl tk) = (Qo — Po)tk — (O’j+1L1 — ale)th,

(2.49) deg(0? L1 t70) = (Qo — Po)t"0 — (Ly + - -+ + 0P~ Ly )th T,

(250) deq(J]BQt ) = —(O'j+1L1 - U’le)tk + (U'j+1BQ - Jng)th,

(2.51) deq(O'ng tkﬁ) = —(O'j+1L1 — ale)tkO + (BQ + -4 Up_lBg)tk+1.

With F,-coefficients, we have the following analogue of Lemma proved in the same way:

Lemma 2.6. The following cohomology relations hold in C_.(S)eq:
(252) (PO —Qo)tk ~ (BQ +JBQ +"'+O'p_1BQ)tk+1,
(2.53) (PO — Qo)tke ~ (BQ +o0By+---+ O‘p_lBg)tk—He.

3. BASIC MODULI SPACES

This section introduces the relevant moduli spaces of pseudo-holomorphic curves, in their most
basic form. This means that we look at a version of the small quantum product, and one of its
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properties, the divisor equation. Like the previous section, this should be considered as a toy
model which introduces some ideas that will recur in more complicated form later on.

3a. Let M?" be a weakly monotone closed symplectic manifold. Choose a Morse function f and
metric g, so that the associated gradient flow is Morse-Smale. Our terminology for stable and
unstable manifolds is that dim(W?(x)) = |z| is the Morse index, whereas dim(W*"(z)) = 2n — |z|.

Definition 3.1. Fiz some compatible almost complex structure J. A J-holomorphic chain of
length | is a set of maps

ul,...,u : CPt - M
such that 0 yu = 0, and such that
(3.1) up(00) = up41(0) fork=1,...,01—1.

We call such a chain simple if each of the maps is simple (non-multiply-covered and non-constant)
and no two of the maps are reparametrisations of each other. Two simple chains are called
equivalent if they are related by reparametrisations (P1,...,¢1) of each component, such that
¢x(0) = 0 and ¢p(c0) = 0o. The moduli space of simple chains representing some class A €
Hy(M;Z) is denoted by M4(chain,l). It comes with evaluation maps at the “endpoints of the
chains”, which send (uq,...,u;) to u1(0) and u;(c0), respectively.

Assumption 3.2. We fix some compatible almost complex structure J with the following prop-
erties.

(i) All spaces M4 (chain,l) are regular.

(ii) On those spaces, the evaluation maps (u1,...,u;) — u1(0) are transverse to the stable
and unstable manifolds of our Morse function.

Assumption [3.2] is satisfied for generic choice of J. The simplest aspect is the [ = 1 case of
(i), which is just generic regularity of simple J-holomorphic spheres (because of the weak mono-
tonicity condition, this also implies the absence of spheres with negative Chern number). The
general form of (i) is a version of [14] Definition 6.2.1] (using chains rather than general trees),
and is generically satisfied by [I4, Theorem 6.2.6]. The transversality theory for evaluation maps
developed there also yields the genericity of (ii).

Our main moduli space uses a specific (p+2)-marked sphere as the domain. We introduce specific
notation for it: taking (/2 = e™/? set

C =CP!,

3.2
( ) z2C,0 = 07 zZc1 = <1/27 zZCc2 = 43/27 sy RCp = C

(2p-1)/2 _ <71/2

; 2C,00 = OO.

An inhomogeneous term is a J-complex anti-linear vector bundle map v : TC — TM, where
both bundles involved have been pulled back to C x M, such that v¢ is zero near the marked
points (3.2). The associated inhomogeneous Cauchy-Riemann equation is

u:C — M,

(3.3) )
(07u)z = Ve 2 u(z))-
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Given critical points xg, ..., Zp, Too of f, we consider solutions of (3.3]) with incidence conditions
at the (un)stable manifolds:
(3.4) u(zc) € W (xo), ..., u(zcp) € W4 (xp), u(2c,00) € W(Zoo).
It is maybe better to think of this as having gradient half-flowlines
Yos -5 Yp 1 (—00,0] — M, Yoo : [0,00) —> M,
k. = V), Yoo = VI (Ys0),
(3.5) and
yk(0) = u(zc,k), Yoo (0) = u(20,00);
hms—)—oo yk(s) = Tk hme—)oo yoo(s) = Too-

Assumption 3.3. We impose the following requirements:

(i) The moduli space of solutions of (3.3)), (3.4) is regular.

(ii) Take an element in the same space, with a simple J-holomorphic bubble attached at an
arbitrary point. This means that we have a pair (u,ug) with u as in , , a point
z € C, and a simple J-holomorphic ug : CP* — M with u(z) = uo(0). We want this
moduli space to be reqular as well.

(iii) Consider solutions with a simple holomorphic chain attached at each of a subset of the
(p + 2) marked points, and incidence constraints transferred accordingly. For simplicity,
let’s spell out what this means only in the case of a single chain, attached at zc . In
that case, we have a solution of , and a simple holomorphic chain (uq,...,u;), with
the conditions

u(zc,0) € W*(xo), ..., u(zep) € W (xp),

(36) U(2c,00) = ©1(0), ui(00) € W (zso).

We require that the resulting moduli space should be regular. In the general case where
there are several marked points with a chain attached to each, we transfer the adjacency
condition involving (un)stable manifolds to the end of the respective chain.

This assumption are satisfied for a generic choice of inhomogeneous term (where J is assumed
chosen as in Assumption , following the argument from [I4] Chapter 8]. A few comments
may be appropriate. In (ii), the bubble may be attached at one of the marked points. Let’s say
that this point is z¢ 0, in which case we have

(3.7) U(20,00) = up(0) € W (zoo).

Assumption [3.2)(ii), for I = 1, says that the subspace of maps ug satisfying uo(0) € W?¥(zs) is
regular. What we want to achieve is that the evaluation map on that subspace is transverse to
u — u(2¢,00). This is clearly satisfied for generic v¢. In the same way, genericity of (iii) depends
on Assumption ii), but this time for arbitrary [.

Given A € Ho(M;Z), let M4 (C, o, ..., 2p, Too) be the space of solutions of (3.3)), (3.4) such that
u represents A. Given our regularity requirement, this is a manifold of dimension

(3.8) dimMa(C, zo, ..., Tp, Too) = 2¢1(A) + |Zoo| — |o| — - -+ — |2p]-
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We denote by M4 (C, o, ..., T, Too) the standard compactification. On the pseudo-holomorphic
map side, this involves the stable map compactification, and on the Morse-theoretic side one
allows the flow lines to break. Details are in [I7), Section 5] (for illustration, see Figure 3 there).
To make the exposition more self-contained, we recall here that a point of the compactification
consists of:

e A genus zero nodal Riemann surface C with (p+2) smooth marked points z4 ), . .., 26 0o
One of the irreducible components of that surface is distinguished, and identified with C
in a preferred way. Moreover, if one collapses all the other components (usually called
bubble components), and transfers the marked points along with the collapse, then those
marked points will end up in the same positions as in . In other words, if 26 does
not lie on the distinguished component, then it must lie on a bubble tree attached to that
component at zc k.

e A map 4 : C > M which, on the distinguished component, is a solution of , and
on the other components, is a J-holomorphic map. Moreover, those J-holomorphic maps
must be stable (if they are constant on some non-distinguished component, then that
component must have at least three special points). Finally, the map @ still represents
the homology class A.

e Foreachk € {0, ...,p}, afinite sequence of gradient flow lines Jr 0 : R — M, ..., Jkm,—1 :
R — M, Jkm, : (—00,0] = M (all but the last should be non-constant). These should
satisfy

limg oo gk 0( )
lims s oo Uk, (8) =
Uemy, (0) = a(z¢ )

e Similarly, gradient flow lines §oc0 : [0,

Here, the conditions are that

ms—> ooyk,]—i-l( )

00) > M, Joo1 : R—=> M, ..., Joom., : R = M.

Ge0(0) = @26,
limg 4 o0 goo,j(s) =lim, _ ?joo,j+1(5)7
lims—>+oo yoo,moo (5) = Too-

Lemma 3.4. (i) If the dimension (3.8)) is 0, we have
(3.9) Ma(C, 20,y Tpy Too) = Ma(C, 20, - -+, Tpy Too),

which means that the moduli space is a finite set.

(ii) If the dimension is 1, the compactification is a manifold with boundary, with the interior
being the space M (- --); the boundary points involve no bubbling, and only once-broken gradient
flow lines.

Sketch of proof. The proof is in [I7, Theorem 3.4] for the 0-dimensional case, and [I7, Section
3.3] for the 1-dimensional case. We will summarize it here. Recall that when compactifying
the moduli space, what can occur is a mixture of Gromov compactification and breaking of
Morse flowlines. Take a limit point in the form discussed above, assuming for simplicity that
there is no breaking of Morse flow lines (mg = -+ = my, = me = 0). Collapse all the bubble
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components which carry constant J-holomorphic maps (called ghost components). Then carry
out the following further simplifications:

e Suppose that after that initial collapse of constant components, all marked points come
to lie on the distinguished component. In that case, we forget all bubbles except for
one, which carries a nonconstant J-holomorphic map that intersects the image of the
distinguished component at some point (these must be such a bubble). Finally, we also
replace the map on that bubble component by its underlying simple map. That puts us
in the situation of Assumption ii), where (u,ug) represents some class whose Chern
number is less than equal that of A.

e Take the other case (after the initial collapse, at least one marked point does not lie on the
distinguished component). In that case, we forget any bubble tree that carries no marked
points. This leaves only the distinguished component and at most one holomorphic chain
attached at each of its (p + 2) marked points; the component of that chain which is
furthest from the distinguished component will carry the marked point. As before, we
replace all multiply covered bubbles with the underlying simple maps. Moreover, if two
holomorphic maps u;, u; with ¢ < j in one chain are reparametrisations of each other, we
remove the bubbles carrying u;, ..., u;—1. After this, all attached holomorphic chains are
simple, and we are in the situation of Assumption iii), with at least one nontrivial
bubble chain, and where again the Chern number has not increased from that of the
original A.

All these simplified limits have codimension > 2, hence cannot occur in the moduli spaces under
consideration. The case that includes Morse-theoretic breaking is similar, and we will not discuss
it further.

O

Given some coefficient field F, we denote by F, the one-dimensional vector space generated by
orientations of W*(z), where the sum of the two orientations is zero. The Morse complex is

(3.10) CM*(f) = B F..

|z|=k
A choice of orientations of W#(x), ..., W*(x,), W*(2s) determines an orientation of the moduli
space M4 (C,xo, ..., Tp,Teo). In particular, every point in a zero-dimensional moduli space gives

rise to a preferred isomorphism (an abstract version of a +1 contribution) F,, ® - - ®F,, 2F, .
One adds up those contributions to get a map

(3.11) ma(C,zo,...,Tp, Too) : gy @ -+ @Fy, — Fa,
and those maps are the coefficients of a chain map
(3.12) Sa: OM*(f)%PHt — oM*—2a (A (),

Up to chain homotopy, this map is independent of the choice of almost complex structure and
inhomogeneous term, by a parametrized version of our previous argument. Of course, the outcome
is not in any sense surprising:
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those maps have the same image

keep this constant map (ghost)
1 replace by underlying simple map
0

FIGURE 3.1. Simplification process from the proof of Lemma[3.4] for p = 3. The
stable map at the top (with 7 components, and where the principal component
is shaded) yields a solution of (3.3) with a length 1 simple chain attached.

Lemma 3.5. Up to chain homotopy, Sa(xo,x1,...,xp) is the A-contribution to the (p + 1)-fold
quantum product To * T1 * -+ * Tp.

Proof. This is a familiar argument, which involves degenerating C to a nodal curve each of
whose components has three marked points, one option being that drawn in Figure i); each
component will again carry a Cauchy-Riemann equation with an inhomogeneous term. In our
Morse-theoretic context, there is an additional step, familiar from the proof that the PSS map is
an isomorphism, such as in [I2, Theorem 6] (see Fig 2), [I Section 4] (see Fig 6), [13] Section 4],
or for more details [IT]. Namely, one adds a length parameter, and inserts a finite length flow line
of our Morse function at each node. As the length goes to infinity, each of the flow lines we have
inserted breaks, see Figure ii); and that limit gives rise to the Morse homology version of the
iterated quantum product. The parametrized moduli space (consisting of, first, the parameter
used to degenerate C'; and then in the second step, using the finite edge-length as a parameter)
then yields a chain homotopy between those two operations. O

Remark 3.6. Our use of inhomogeneous terms means that the moduli space could be nonzero
for classes A € Hy(M;Z) which do not give rise to monomials in A (because [, wyr is either
negative, or it’s zero but A # 0). However, by choosing the inhomogeneous term small and using
a compactness arqgument, one can rule out that undesired behaviour for any specific A. Since
the outcome is independent of the choice up to chain homotopy, the resulting cohomology level
structure is indeed defined over A.

3b. Fix an oriented codimension 2 submanifold €2 C M. When choosing an almost complex
structure, there are additional restrictions:
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1 1
O‘OO (i) | O oo
<

(i)

1

FIGURE 3.2. A schematic picture of the proof of Lemma [3.5] with p = 3.

Assumption 3.7. In the situation of Assumption|3.2, we additionally require that the evaluation
map on the space of simple J-holomorphic chains should be transverse to €.

We equip the Riemann surface (3.2]) with “an additional marked point which can move freely”
(and which will carry an Q-incidence constraint). Formally, this means that we consider a family
of genus zero nodal curve with sections

C— 5,

(3.13)
ZC,0y--+32C,ps RC,007 BC,x ' S —C

where the parameter space S is again a copy of CP', and such that the following holds:

e The critical values of are precisely the marked points from . If v is a regular
value, the fibre €, is canonically identified with C; that identification takes the points
2@,.0- -+ 2C,.p) 2C,,00 arising from to their counterparts in , and the remaining
point ze, « to v.

e If v is a singular value, C, = €, 4 U C, _ is a nodal surface with two components. The first
component C,  is again identified with C, and the second component C, _ is a rational
curve attached to the first one at v. The first component carries all the marked points
that C' does, with the exception of the one which is equal to v; and the second component
carries the two remaining marked points, considered to be distinct and also different from
the node (so, the second component has three special points, which identifies it up to
unique isomorphism).

Explicitly, (3.13)) is constructed by starting with the trivial family C' x S — S, and then blowing
up the points (v, v), where v is one of the marked points in ([3.2)). One takes the proper transforms
of the constant sections and of the diagonal section, which yield the ze’s from (3.13]).
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Denote by €59 C @ the set of (p+2) nodes, and by €™ its complement. We write T(€"9/S) for
the fibrewise tangent bundle, which is a complex line bundle on €™9. A fibrewise inhomogeneous
term on C is a complex anti-linear map ve : T(€™9/S) — T'M, where both bundles involved have
been pulled back to €™ x M, and with the property that ve is zero outside a compact subset
(meaning, in a neighbourhood of €59 x M C € x M). Suppose that we have chosen such a term.
One can then consider the moduli space of pairs (v,u), where

veS, u:C, — M,
(3.14) _
(Ogu)z = ve, 2 u(z)-
In the case where C, has a node, the second equation is imposed separately on each of its
components (with the assumption that both preimages of the node must be mapped to the
same point, so as to constitute an actual map on C,). This makes sense since, near each of the
preimages of the node, the equation reduces to the ordinary J-holomorphic curve equation. The
incidence conditions are

(3.15) u(ze,,0) € W4 (o), ..., ulze,.p) € W*(zp), u(ze,,00) € W (o), u(ze, ) € Q.

Assumption 3.8. We impose the following requirements:

(i) The space of all solutions of (3.14), (3.15]) should be regqular. This should be understood
as two distinct conditions: on the open set of reqular values v, reqularity holds in the
parametrized sense; and for each singular value v, it holds in the ordinary unparametrized
sense.

(ii) Take an element (v, u) in the same space, with a simple J-holomorphic bubble attached at
an arbitrary point, in the same sense as in Assumption (zz) (the attaching point can
be a marked point, or even the node if v is singular). Then, that moduli space should be
regular as well. As in (i), this should be interpreted as two different conditions, depending
whether v is reqular or not.

(iii) Consider solutions for regular v, which have a simple holomorphic chain attached at a
subset of the (p+3) marked points, and where the incidence constraint has been transferred
to the end of that chain, as in Assumption (m) Then, the resulting moduli space
should again be regular.

(iv) Take a singular v, We look at a situation similar to (i), but where additionally, there
may be a simple holomorphic chain separating the two components of C,. Let’s spell out
what that means (ignoring the possible existence of chains at the marked points). Write
z+ € @y 4+ for the preimages of the node. In the definition of the moduli space ,
the €, 1 carry maps uy which necessarily satisfy u—(z—) = ui(zy). However, in our
limiting situation, we instead have a simple chain (u1,...,u;) such that

(3.16) u(22) = ur(0), ws(z4) = ug(o0).

Again, we require that the resulting space should be regular.

As before, given A € Hy(M;Z), we write M4(C, zo, ..., T, ) for the space of solutions of
(3.14), (3.15]) representing A. The added parameter v € S compensates exactly for the evaluation
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constraint at ze ., so that we get the same expected dimension as before,
(3.17) dimMa(C, zg, ..., Tp, Too, ) = 2¢1(A) + |Too| — |To| — -+ — |2p|.

Concerning the analogue of the stable map compactification, we have a version of Lemma (3.4
(with essentially the same proof):

Lemma 3.9. (i) If the dimension (3.17) is 0, we have a finite set
(3.18) Ma(C, 2o, ..y Tpy Too, Q) = Ma(C, 0, . .., Tp, Too, Q).

(i) If the dimension is 1, the compactification is a manifold with boundary, with the boundary
points only involving once-broken gradient flow lines.

In both cases (i) and (ii), the moduli space and its compactification contain only points where v
s a reqular value.

We define m4(C, xo, . . . , Tp, Too, §2) to be the signed count of points in the zero-dimensional moduli
spaces. As before, one can assemble these into a chain map
(3.19) Paq: CM*(f)®PHE — oM =20 (),

Up to chain homotopy, this is independent of the choices of J and ve, and also depends only on
Q] € H?(M;Z).

3c. The remaining topic in this section is the analogue of the divisor axiom. As one would
expect, this is not particularly difficult, but requires a bit of technical discussion around forgetting
a marked point. For the submanifold €2, we want to assume that it is transverse to the stable
and unstable manifolds of the Morse function.

Lemma 3.10. In the situation of Lemmal[3.4) the following holds generically: any map u in a
zero-dimensional space Ma(C, o, ..., Tp, Too) intersects Q transversally, and moreover, all those
intersections happen away from the marked points. The same is true within the smaller space of
those ve which vanish close to the marked points.

This is standard (transversality of evaluation maps). The only wrinkle specific to our case is
that the intersections avoid the marked points: but if they didn’t, we would have an incidence
constraint with Q N W*(x) or @ N W*(z), and those can be ruled out for dimension reasons.

Proposition 3.11. Fiz some A. For suitable choices made in the definitions, the maps (3.12))
and (3.19) are related by Paq = (A-Q)Sa. (For arbitrary choices, the same relation will
therefore hold up to chain homotopy.)

Proof. Even more explicitly, our statement says that one can arrange that
(3.20) ma(C,xo,. .., Tp, Too, ) = (A- Q) ma(C,x0,...,%p, Too)-

We start with J as in Assumption and a v¢ as in Lemma[3.10] Because the inhomogeneous
term is zero near the marked points, it can be pulled back to give a fibrewise inhomogeneous
term ve. To clarify, if C, is a singular fibre, then ve, is supported on €, 4 = C, and zero on the



20 PAUL SEIDEL, NICHOLAS WILKINS

other component C, _. Let’s consider the structure of the resulting moduli spaces. Given a point
in the compactification M4 (C, zg, ... ,Tp, Too, §2), one can forget the position of the s marked
point, and then collapse unstable components (components which are not C, and which carry a
constant J-holomorphic map and less than three special points). The outcome is a (continuous)

map
(3.21) Ma(C, 0,y Tpy Too, Q) —> Ma(C, 20, .., Tp, Too)-
Now suppose that the dimension is zero. Then, the target in (3.21)) is Ma(C, zo, ..., Zp, o), and

consists only of maps v : C' — M whose intersection points with € are not marked points. The
preimage of v under is necessarily an element of M 4(C, zo, . . ., Zp, Too, 1), with v a regular
value; such preimages correspond bijectively to points in u~1(Q), hence form a finite set, and
(because of the transversality condition in Lemma are regular points in the parametrized
moduli space. Finally, the sign of their contribution to ma(C, xo,...,%p, 2e0, ) is given by
multiplying the contribution of u to ma(C,xo,...,Zp, ) with the local intersection number
(sign) of w and 2 at the relevant point.

We have now shown that M4 (€, zo, ..., Tp, T, 2) = Ma(C,z0,...,Tp, Too, ) is regular, and
that counting points in it exactly yields the right hand side of . The ve used for this
purpose may not satisfy Assumption [3:8 so this setting is not strictly speaking part of our
general definition of m4(C, z,...,Zp, Too,2). However, we can find a small perturbation of ve
which does satisfy Assumption [3.8) and points in the associated zero-dimensional moduli spaces
will correspond bijectively to those for the original ve, because of the compactness and regularity
of the original space. |

4. QUANTUM STEENROD OPERATIONS

This section concerns the operations (1.15) and ((1.30). We first set up the various equivariant
moduli spaces, then define ()3, and discuss its properties. Then we proceed to do the same for

QII, 5, and go as far as establishing (1.32)).

4a. We equip C = CP! with the (Z/p)-action generated by the same rotation as in Section
but here denoted by o¢. Fix a compatible almost complex structure J. An equivariant
inhomogeneous term v is a smooth complex-antilinear map TC' — T'M, where both bundles
have been pulled back to 5% xz,, C' x M, and with the same condition of vanishing near the
marked points as before. More concretely, one can think of it as a family ng,w of inhomogeneous

terms (in the standard sense) parametrized by w € S°°, with the property that
(4.1) ngr(w),z,w = ng,w,ac(z),a: oDo,: TC, — TM, for (w,z,x) € S® x C x M.
Such equivariant data always exist, because the Z/p-action on the space S® x C x M is free.
Consider the following parametrized moduli problem:
weS®, u:C— M,

(12) ; e
(a‘]u)z = VC({w,z,u(z))'
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Note that this inherits a (Z/p)-action, generated by
(4.3) (w,u) — (t(w),uoo0¢).

Fix critical points z, ..., Zp, Too, and impose the same incidence constraints as in (3.4) or equiv-
alently (3.5). Moreover, we fix an integer ¢ > 0 and use that to restrict the parameter w to one
of the cells from (2.3), (2.4)). More precisely, the condition is that

(4.4) we A\ dA; C 5.
Take solutions of (4.2)), (3.4), (4.4) that represent some class A € Ho(M;Z), and denote the
resulting moduli space by M4 (A; x C, g, ..., Zp, Too). The expected dimension increases by the

number of parameters,
(4.5) dimMa4(A; x Cozo, ..., Tpy Too) = @ + 2¢1(A) + |Zoo| — 20| — - - — |2p]-

Note that while one could define such moduli spaces for more general cells 77(4A;), that is re-
dundant because of (4.3). To express that more precisely, write (zgj ) ,a:;(f )) for the p-tuple

obtained by cyclically permuting (x1,...,x,) j times (to the right, so M = zp). Then,

MA(Tj(Ai) X C,xo,...,Tp, Loo) = Ma(A; x C,xo,xgj),...,xéj),xoo),

(4.6) , ,

(w,u) — (7 (w), w0 a5?).
There is also a natural compactification, denoted by Ma(---) as usual. This combines the
(parametrized) stable map compactification, breaking of Morse flow lines, and instances where
the parameter w reaches the boundary of A;.

Lemma 4.1. For generic J and v}, the following properties are satisfied.

(i) If the dimension (4.5) is zero, we get a finite set
(4.7) Ma(A; X Cy20, ., Tp, Too) = Ma(Ai X C, 20, ..., Tp, Too)-

(ii) If the dimension is 1, the moduli space is reqular, and its compactification is a manifold
with boundary. Besides the usual boundary points arising from broken Morse flow lines, one has
solutions (w,u) where w € dA;. Using (4.0)), the set of such boundary points can be identified
with a disjoint union
(4.8) UMA(A x C, xg, " ) x50) over §=0.p =1 i even,
. i—1 » L0 PR s
- ' ! P j=0,1 i odd.

In (ii), note that the only points w € 9A; that occur lie in the interior of the cells of dimension
(¢ = 1). In particular, the fact that the even-dimensional A; have corners can be disregarded.
The proof of Lemma [4.1] is simply a parametrized version of that of Lemma [3.4 one imposes
Assumption on J, and the parametrized analogue of Assumption on v, where the
parameter space is taken to be each A; \ 0A;. We will not discuss the argument further, and
move ahead to its implications.

As usual, we count points in zero-dimensional moduli spaces, and collect those coefficients into

(4.9) Sa(As, ... ) CM*(f) @ CM*(f)®? — CM* 72 (),
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Lemma [4.1fii), with the orientations of the A; taken into account as in (2.7), (2.8), shows that,
d being the Morse differential,

p
ASA(Ai, w0, . wp) — (—1)7 Y (=Dt sy (A g, day, )
j=0

(4.10) Z(—l)*ZA(Ai,l,xo,xgj)7...,acl(,j)) i even,
=9 J
(_1)*2A(Ai—1; xo,mgl), ‘e ,xél)) — EA(Ai—I; Loy L1y - ,l‘p) 1 odd.
Here, (—1)* is the Koszul sign associated with permuting (z1,...,xp).

Remark 4.2. Our sign conventions for parametrized pseudo-holomorphic map equations are as
follows. Consider, just for the simplicity of notation, operations induced by a Cauchy-Riemann
equation on the sphere, with one input and one output. If we have a family of such equations
depending on a parameter space A which is a manifold with boundary, then the resulting endo-
morphism of CM™(f) satisfies

(4.11) dpa — (—1)Plpad = goa.

Note that this differs from the convention in [I8, Section 4c|; one can translate betwen the two
by multiplying ¢a with (—1)A1UAI=1),

From now on, we will exclusively work with coefficients in F = IF),.

Lemma 4.3. Suppose that b is a Morse cocycle. Then, for each i and A,

(4.12) z— ()P (A, 2, b, ..., b)

is a chain map (an endomorphism of the Morse complex) of degree p|b] —i — 2¢1(A).

This is immediate, by specializing (4.10)) to 21 = --- = x, = b. In particular, in this case the
Koszul signs in (4.10) are 1: so for odd ¢, the expression on the right hand side vanishes, whereas
for even i that expression is p¥4(A;_1,20,b,...,b), which vanishes modulo p.

We combine these operations into a series, which is a chain map
Sap: OM(f) —> (CM()[[t, 0] +7PI-2e1(),

4.13 - -
(413) o (—1)let=l s~ (EA(Agk,x,b,...,b) + (—1)lel+ \zA(A%H,x,b,...,b)e)tk,
k

One can also sum formally over all A and extend the outcome A-linearly,
(4.14) S =Y q*Tap: OM*(f;A) — CM*TPPI(f;A).
A

Lemma 4.4. Up to homotopy, (4.13) depends only on cohomology class [b], and moreover, that
dependence is linear.
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Proof. Take CM™(f)®?, with the Z/p-action given by cyclic permutation, and form the associated
equivariant complex as in (2.35)). Consider the ¢-linear map
S5 OM(f) © (CM™(£)7)eq — (CM(f)[[t,0]))7 >,

2o ® (11 ® - ®ap) —

3 (zA(AQMO, )+ (D) (A 2o, ,xp)(?)tk,
(4.15) k
$o®($1®-~-®aﬁp)9'—>z (2A<A2k7x07~-'7$p)9

k
— (=1l el N (1) 8 A (Mg, 20, 2 ,x;ﬂ)t)tk,
J

where (—1)* is again the Koszul sign. The equation (4.10)), along with (2.7) and (2.8]), amounts
to saying that (4.15) is a chain map with respect to deq. As an elementary algebraic consequence,

one has the following: if ¢ is any cocycle in (CM*(f)®?).,, then
(4.16) zr— (~)s% (@ c)

is an endomorphism of the chain complex CF*(f) of degree |c| — 2¢1(A). The homotopy class of
that endomorphism depends only on the cohomology class of ¢. Moreover, they are additive in
c. Applying that construction to ¢ =b® - -- ® b yields precisely (4.13).

From Lemma we know that the cohomology class [b®---®@b] € Hj, (CM*(f)®P) only depends
on that of [b], which proves our first claim. By the same Lemma, if we use t(b® --- ® b) instead,
the associated operation becomes linear in [b]. But that operation is just ¢ times , so it
follows that itself must be linear in [b]. O

Definition 4.5. For b € H*(M;F,) and A € Ho(M;Z), we define the operation QX4 from

(1.10) to be the cohomology level map induced by (4.13). Correspondingly, (4.14) is the chain
map underlying Q.

Here, we are implicitly using the fact that the chain level operations are independent of all choices
up to chain homotopy. The proof is standard, using moduli spaces with one extra parameter, and
will be omitted. Among the previously stated properties of QX, concerns the contribution
of the cell Ag, which is the operation from Section hence is exactly Lemma The next

two Lemmas correspond to (|1.11)) and (1.18].

Lemma 4.6. For A=0, QX4 is the cup product with St(b).

Sketch of proof. It will be convenient for this purpose to allow a slightly larger set of choices in
the construction. Namely, we choose s-dependent vector fields for s in the relevant half-line given
below, parametrising either an “incoming” or “outgoing” flowline respectively

Zoaw,ss -1 Lpaw,s € CC(TM) for w e S, s <0, with Zp,, s =Vfif s <0,
Zoow,s € CC(TM) for we 8§, s >0, with Zo s =Vfif s> 0.

These are used to replace the gradient flow equations in (3.5)) by dyx/ds = Zy, k,s. The effect is
that in the incidence conditions (3.4)), the (un)stable manifolds are replaced by perturbed versions.

(4.17)
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only this part depends on w € S°°

FIGURE 4.1. A schematic picture of the proof of Lemma [£.6]

In particular, the transversality of those incidence conditions imposed on pseudo-holomorphic
curves can then be achieved by choosing generically. This strategy (with minor technical
differences) goes back to the Morse-theoretic definition of ordinary Steenrod operations in [2]
Section 2]. In [23] Appendix B.1], the iterative procedure to choose such Z ., s in a way that one
obtains a moduli space cut-out transversely is given in detail, in addition to the fact that such a
choice is generic.

We impose an additional symmetry condition, which ensures that (4.6) still holds:
(4.18) Zettw,s = Lir(w),s fork=1,...,p—1

Considering just A = 0, this means that we can take the inhomogeneous term to be zero through-
out, so that all maps u are constant (and of course regular). The resulting moduli spaces are
purely Morse-theoretical, see Figure i) for a schematic representation. Without violating the
symmetry property , we can deform our moduli spaces as indicated in Figure ii). This
separates the coincidence condition at the endpoints of the half-flow lines into two parts, joined
by a finite length flow line of some other auxiliary s-dependent vector field. More precisely, we
use the length as an additional parameter, and all vector fields involved may depend on that.
One can arrange that as the length goes to co, the limit consists of split solutions as in Fig-
ure iii), where the vector fields on the bottom part are independent on w € S*. It is now
straightforward to see that this limit is the combination of the Morse-theoretic cup product and
the Morse-theoretic version of the Steenrod operation [2, []. O
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Lemma 4.7. QX 4 (1) agrees with the A-contribution to the quantum Steenrod operation QSt(b),
as defined in [8, 23] (for p=2) or [19] (all p).

Sketch of proof. Morse-theoretically, 1 is represented by the sum of local minima of the Morse
function. Hence, the associated incidence condition requires «(0) to lie in an open dense set,
and is generically satisfied on every zero-dimensional moduli space. In other words, ¥4 4(1) can
be computed by forgetting the zero-th marked point and its incidence condition. The outcome is
exactly the definition of the quantum Steenrod operation, generalizing the p = 2 case from [23]
in a straightforward way; compared to the slightly more abstract formulation in [19] Section 9],
the only difference is that we stick to a specific cell decomposition of BZ/p = S /(Z/p). O

4b. The final piece of our discussion of QY. operations concerns ([1.20). We assume that the
underlying cochain level map ¥, has been extended to b € CM™(f) ® A, as in (1.19).

Proposition 4.8. Fiz Morse cocycles b and b, and write b x b € CM*(f) ® A for a cochain
representative of their quantum product. Then, there is a chain homotopy

[b] 5] 2251
7 g

Sketch of proof. We introduce a family of Riemann surfaces with (2p + 2) marked points, which
depends on an additional parameter n € (1,00). Each of those surfaces C,, is a copy of C, and
the marked points are 2¢, x = zok, k € {0,...,p, 00}, from (3.2) together with

(4.20) 20,1 =205 -5 2Cyp = N2C,p-

There are natural degenerations at the end of our parameter space: as n — 1, each point Zg,
collides with its counterpart z¢, x, and one can see this as each pair bubbling off into an extra
component of a nodal curve C1. As 1 — oo, all the Z¢,  collide with z¢, ~, and one can see as
degeneration of ), into a nodal curve C', with two components, each of which is modelled on

the original (3.2) (see Figure .

We choose an equivariant inhomogeneous term z/gqn on each of our curves, which is well-behaved
under the two degenerations (and is zero in a neighbourhood of the nodes and marked points; the
details are similar to our previous definition of fibrewise inhomogeneous terms). Given critical
points xo, 1,21, ..., Tp, Tp, Too Of the Morse function f, and a cell A;, we define a moduli space
of triples (n,w,u), where: 1 € (1,00), w is as in , and v : C;, = M is a map, representing
the given homology class A, which satisfies the n-parametrized version of 7 and the incidence
conditions as well as

(4.21) w(Ze, 1) € Wh(i), ..., u(ic, p) € W(i,).

To understand the algebraic relations which this parametrized moduli space provides, we have
to look at the contributions from limits with n = 1 or = co. The 1 = 1 contribution is given
by a suitable moduli space of maps on C7, and is fairly easy to interpret. Namely, one follows
the proof of Lemma[3.5] and separates the components of C; by finite length gradient trajectories
(to preserve the Z/p-symmetry, all the lengths must be the same, so there is only one length
parameter). As the length goes to infinity, the Morse flow lines split, and we end up with a
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FIGURE 4.2. The family underlying the proof of Proposition for p = 2.

composition of quantum product (of z; and z},) and a remaining component where we have the
previously defined operation . We can apply the same strategy to the n = oo limit, inserting
a finite length gradient flow line between the two pieces. As the length goes to infinity, we end
up with two separate components carrying equations of the kind which underlies . However,
the two equations are coupled because they carry the same parameter w € S°°. In other words,
the resulting moduli spaces end up being

(4.22) U MAl(Ai X C,Jjo, AN ,asp,x) X Goo MAQ(Ai X C,.T,i‘l, AN ,jip,xoo),

where the (disjoint) union is over A; + A; = A and all critical points x.

In the same spirit as in (4.9, we denote the operations obtained from (4.22)) by
(4.23) Ea(0(A:),...) : CM*(f) ® CM*(f)®% — OM*~ 2 (A (f).

We also find it convenient to add up over all A, with the usual ¢? coefficients. Fix cocycles b and
b and insert them into (#.23)) at the marked points labeled (1,...,p) and (1,...,{), respectively,
with signs as in (4.13)). This yields a chain map

*+p|b|+p|b]

(4.24) Z54(0(A3), ) : CM™(f) — (CM(f) © A)
The outcome of the parametrized moduli space argument outlined above is a chain homotopy
(4.25) E55(0(A0), 1) = X, (A, ).

We will be somewhat brief about the final step, since that is a general issue involving equivariant
cohomology, and not really specific to our situation. One can construct chain maps like
not just for §(A;), but for other F,-coefficient cycles in S /(Z/p) x S*° /(Z/p), such as A;; X A,.
In that case, there is a simple decomposition formula

— 7| p(p—1) —
(426) ‘:‘B (A XAlza ) ( 1)‘b|‘b| 2 ‘:E(Aim:‘b(Aiz,'))
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where the Koszul sign arises from reordering (l;7 b,b,b, .. .) into (5, ...,bb,.. .,b). Finally, ho-
mologous cycles give homotopic maps. One can use that, and the decomposition of §(A;) into
product cycles from Section to obtain a further homotopy

> (A x Ay,,0) ifids odd or p =2,

i1+i0=1
(4.27) . (0(R4), ) = Z Ep Qs x Aygy,0) ifids even and p > 2.
i even
The combination of (4.25)), (#.26) and (4.27) then completes the argument. ]

4c.  We now merge ideas from Sections and by which we mean that we take moduli
spaces parametrized by cells in S*°/(Z/p), and add an additional freely moving marked point
to the domain. The starting point is, once more, the family . From its construction as a
blowup of C' x S — S, this inherits a (diagonal) (Z/p)-action, which we denote by oe.

Fix an almost complex structure J. An equivariant fibrewise inhomogeneous term is a complex
anti-linear map

(4.28) vhg : T(E™/S) — TM,

where both bundles have been pulled back to S x7,,C"™ x M. When restricted to any G§2k—1 X7/p
€™ x M, it should vanish outside a compact subset (meaning, it’s zero in a neighbourhood of
§2k—1 X7/p @%™"9 x M the restriction to S~ follows our usual process of treating S as a
direct limit of finite-dimensional manifolds). As before, one can think of it more explicitly as

a family ug‘j Sw of fibrewise inhomogeneous terms parametrized by w € S°°, and satisfying a
(Z/p)-equivariance property as in (4.1f):

(4.29) Véq/SJ'(w),Z,I = Vg;S,w,Ue(z),w oDoe:T(C™/S), - TM,.

The associated moduli space consists of triples (w, v, u), where the parameters are (w,v) € S®° xS,
v being a regular value of (3.13), and u : €, — M is a solution of the inhomogeneous Cauchy-
Riemann equation given by vg’ . These inherit a (Z/p)-action as in ([4.3):

(4.30) (w,v,u) — (T(w),o0 " (v),uo0e).

We impose the usual incidence conditions, given by the (un)stable manifolds of critical points
20, -+ -, Tp, Too, and by a codimension 2 submanifold €2 at the * marked point. Finally, we restrict
to the interior of cells ({.4]). Denote the resulting moduli spaces by Ma(A; x €, zg, ..., ZTp, Too, §2).
Their expected dimension remains as in .

We omit the discussion of transversality and of the compactifications, which is simply a combina-
tion of those in Sections [3b] and The outcome of isolated-point-counting in our moduli space
are maps

(4.31) Ha(A,...): CM*(f) ® CM*(f)®? — OM*—i—zcl(A)(f)

which, due to the structure of the compactified one-dimensional moduli spaces, satisfy the same
equation as the ¥ 4(A,,...), see (4.10). Specializing to coefficients in F,, and fixing a Morse
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cocycle b, one can therefore use (4.31) to define a chain
(4.32) My : OM*(f) — (CM(f)[[t, 6]])* tPIPI=2e1(A)

exactly as in (4.12)). Moreover, up to homotopy that map depends linearly on [b], as in Lemma
44 Again up to homotopy, it is also independent of all choices, including that of  within its
cohomology class a = [Q] € H*(M;Z).

Definition 4.9. Fora € H*(M;Z), b € H*(M;F,) and A € Hy(M;Z), we define QIla 4 to be
the cohomology level map induced by [4.32)). Adding up those maps with weights ¢ yields (1.30]).

Proposition 4.10. Fix some A and integer i. For suitable choices made in the definition, we
have TTo(A;,...) = (A- Q)X a(A,,...). As a consequence, we have QIIg 4 = (A-Q)QX 4y for
all i and A, which is equivalent to (1.32)).

Proof. The geometric part of this is exactly as in Proposition [3.11} for suitably correlated choices
of inhomogeneous terms, the underlying moduli spaces bear the same relationship. Since that
argument involves making a small perturbation, we can only apply it to finitely many moduli
spaces at once, and that explains the bound on 7 in the statement. As a consequence, we get
equality of the i-th coeflicient in QII4 . and (A-Q)QX 4. a

Remark 4.11. Both in Section[3Y and here, we have used an evaluation constraint at a codimen-
sion two submanifold Q C M, which limits QU to a € H*(M;Z). One can replace that by a
pseudo-cycle of arbitrary dimension d (see e.g. [24]) and then, the definition goes through without
any significant changes for a € H*(M;7Z). In fact, one could even take a mod p pseudo-cycle.
This consists of an oriented manifold with boundary N, such that ON carries a free (Z/p)-action,
and a map f: N — M such that f|ON is (Z/p)-invariant, with the following properties: the limit
points of f are contained in the image of a map from a manifold of dimension (d —2), and the
limit points of f|ON are contained in the image of a map from a manifold of dimension (d — 3).
While we do not intend to develop the theory of mod p pseudo-cycles here, this should allow one
to define Qll, for all a € Hd(M;IFp). The proof of given in the next section extends to
such generalizations in a straightforward way, but of course, there is no analogue of mn
codimensions d > 2.

5. PROOF oF THEOREM [L.4]

This section derives (1.31]). Together with the previously established (1.32]), that completes our
proof of Theorem

5a. We decompose the moduli spaces underlying QII, ; into pieces, where the position of the
additional marked point is constrained to lie in one of the cells from Section 2¢ This means that
instead of using A; x S C S x S as parameter spaces, we look at the subspaces A; x W, where

(5.1) W € {Py, Qo; 07 (L1),07(B2)}.

Within the framework of Section [dd it is unproblematic to ensure that all the resulting moduli
spaces, denoted by M4 (A; x C|W, xq, ..., Zp, Too, §1), satisfy the usual regularity and compactness
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properties. Point-counting in them gives rise to maps
(5.2) TA(A; x W,...): CM*(f) @ CM*(f)®P — CM* = 2ea(O)=IWiH2( gy,

As in (4.10), adjacencies between cells determine relations between the associated invariants. In

our case, these are governed by (2.7)—(2.8)) and (2.19)—(2.21). Explicitly, the relations are
(5.3)

P
dTA(Ai x W, o, ... ap) — (1) IWEN “(—pylrolttlonln (A x Wag, ... dag,, - 2p)
k=0

Z(—l)*HA(Ai_l xajﬂ/,xo,xgj),...,xz()j)) i even,
= J

(—1)*HA(Ai_1 X aVV,xo,xgl),. . .,131(71)) — HA(Ai_1 X VV,ZE(),Il,. .. ,.Tp) i odd

+ (extra term depending on W).
The last-mentioned term is zero if W € {Py, Qo}, with the remaining cases being
(extra term for W = 07 L;)
= (—1)i(HA(Ai x Qmmo,xgj), . ,xéj)) —TIA(A; x _P(],.’E(),xgj), . xz()j))),

(extra term for W = o7 By)

(5.5) "

= (—1)i+1 (HA(AZ X O'jJrlLl,JI(),QL‘ll goon ,.73;1)) — HA(Ai X O'le,.II(),l‘l, ey xp))
As usual, we now specialize to coefficients in I = IF,,. The relations above immediately imply the

following:

Lemma 5.1. Fix a cocycle b€ CM*(f). Then, the t-linear map
5, : C—(S)eg @ CM*(f) — (CM(f)[[t, 0]])HPIPIm2(+2,
W@z (—1)M (Wlla) $ (HA(A% x W,z,b,...,b)
k

(5.6) + (=)W ) (Agg iy x Wb, .,b)6‘>tk,

WO ®x—s (1)U W) §° ((_1)\EIHA(A2k X W,z,b,...,b)0
k

- (71)|b|+|W\ ZjHA(A2k+1 X UjWa z, ba ceey b)t) tka
J

s a chain map.

Following (4.15)), one can think of (5.6)) as a special case of a more general structure, which would
be a t-linear chain map

51 (C—a(8) © CM(f) © CM*(f)P)eq — (CM (F)][t, 6)))" 2042,

Here, the group Z/p acts on C_.(S), as well as on CM*(f)®P by cyclic permutations. As in
the previous situation, would be useful in order to prove that only depends on the
cohomology class of b, and is additive. For our purposes, however, we can work around that,
since all necessary computations can be done using a fixed cocycle b.
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FIGURE 5.1. A schematic picture of the proof of Lemma [5.3] with p = 3.

5b. At this point, everything we need can be extracted from an analysis of the chain map (5.6)).

Lemma 5.2. Suppose that we specialize (5.6) to usingW = By+0Ba+---+0P 1By € C3(9)eq-
Then, the resulting chain map CM*(f) — (CM (f)[[t, 0]])*TPIPI=2¢1(A) is equal to T4 4.

Proof. This is essentially by definition. We are considering the map
s (~1) S (HA(A% x 09(By), z,b, ..., b)
(5.8) ik .
! 4 (=), (Agysy X 07 (Ba), b, .. .,b)e)tk.

The regularity of the spaces M (A x C|W, zo, ..., Tp, Too, 2) for cells W of dimension < 2 implies
that in a zero-dimensional space M4 (A X €, g, ..., Tp, Too, §2), none of the points arises from a
parameter value v € S which belongs to one of those cells. In other words, that space M4 (A x
C,Z0, - .., Tp, Too, ) is the disjoint union of Ma(A x €lo? B, xy, . .., Tp, Too, 2). O

Lemma 5.3. Suppose that we specialize (5.6 to using W = Py € Cy(S)eq, and pass to co-
homology. Then, the resulting map is equal to the following: take all possible decompositions
A=Ay + Az, and add up

* )
(5.9) H*(M;F,) BN H 220 () (0 F) Q% 4,

where a = [Q) € H*(M;Z).

(H (M T, )[[t, 0]))* P22 (),

Proof. This time, the reason is geometric. Using Py means that we are restricting to a particular
fibre of , which is the nodal surface from Figure i). Recall that each component of
that surface carries an inhomogeneous term, which additionally depends on parameters in S°°.
However, without violating regularity or other restrictions, one can arrange that the inhomoge-
neous term on the component which is a three-pointed sphere (Cg _ in the notation from Section
is independent of those parameters. After that, one inserts a finite length Morse flow line
between the two components, as in Figure ii). In the same way as in Lemma the resulting
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(varying length) moduli space gives a chain homotopy between our operation and the chain map
underlying the composition (5.9)), in its Morse-theoretic incarnation. O

Lemma 5.4. Suppose that we specialize (5.06) to using W = Qo € Co(S)eq, and pass to cohomol-
ogy Then, the resulting map is equal to the following: take all possible decompositions A = A1+ As,
and add up

(5.10)
H*(M;F,) 220 (M)t 0)]) =240 2225 (0 ) [, 6]]) 21 H2=2e0(4),

where a = [Q] as before.

The proof is the same as for Lemma Note that the operations in appear in the opposite
order from (5.9). The reason is that over v = 0, the component €, _ is attached to €, . at the
point 0 € C, which serves as input of the 3 operation; whereas for v = oo, it is attached at the
output point co € C. Finally, we have the following, which establishes :

Proposition 5.5. tQIl, ; equals the difference between (5.9)) and (5.10).
Proof. By Lemma 14t is obtained by specializing (5.6) to (Bs + --- 4+ 0P~ By)t. From

(2.52) and (2.53]), we see that this is chain homotopic to specializing the same map to (Py — Qo).
Using Lemma [5.3] and [5.4] then yields the desired result. O

6. COMPUTATIONS

In this section, we explore the power of Theorem as a computational tool.

6a. Our first task is to work out the details of Example [I.6] where M is the two-sphere. We
use the standard generator of Ho(M;Z), and correspondingly write A as a power series ring in
one variable q. The quantum connection is

_ 0 ¢
(6.1) V =1q0, + (1 O) .
Let’s temporarily use Q-coefficients, and allow inverses of ¢. If £ satisfies
(6.2) (tqaq)2§ = q&,

then the following endomorphism is covariantly constant with respect to (6.1)):
_ (—f(tqaqf) _(tqaqf)Q) '
£ £(tq04€)
It is straightforward to write down an explicit solution of (6.2)):
— - 1 ky—2k
(6.4) £=> O 2k,

=0

(1]

(6.3)

Pick a prime p > 2. Take (6.3) with (6.4), and truncate it by dropping all powers ¢P or higher.
The remaining denominators are coprime to p, so we can reduce coefficients to F,,. The outcome,
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using some elementary combinatorics to simplify the formulae, is the matrix ¥ from (1.26]). For
example, the ¢¥t~2% term of the 051 coordinate of (6.3)) is

Y. mrrmy = (k1!)2 2 <:1> (:2) - (kl')QGf)

k=ki+ko k=ki+k2

the second equality being the Chu-Vandermonde identity. We notice that this is the g9; compo-
nent Ei%)i of (1.26). Similarly, the coefficient of ¢*#>~2* in the 015 component of (6.3)) is

and by using the Chu-Vandermonde identity on

k—1\/k—-1
1
(k=11 2 ( k1 )( ko )’
k=ki+k2

one obtains the coefficient of ¢¥t2=2* in the o5 component of (1.26). A similar application of
this identity can be used for the o717 component.

By construction, this endomorphism is covariantly constant modulo ¢?; and the constant term (in
q) of —tP~1% matches the cup product with St(h) = —tP~1h (see for the sign convention).
Therefore, —tP~'Y and Q¥ must agree modulo ¢?. But for degree reasons, Q¥ can’t have
terms of order ¢P or higher. The consequence is that Q¥;, = —tP~!'%, as previously stated.

Remark 6.1. It is worthwhile spelling out the comparison with the fundamental solution of the
quantum differential equation, mentioned in Remark . For S?, the fundamental solution is
[10, Section 28.2] (note the differences in notation and conventions: our t is their —h; our q is
their et; our t is their H)

_ (—tadqn  —tq0q€
(65) Y- ( 1 3 > ’
where & is as in (6.4), and
=1 "1
(6.6) n= Z (k!)2qkt—2k—1( —log(q) + 2 Z ;)
k=0 j=1

is a multivalued solution of the same equation (6.2) as &. By forming (1.23)) with 8 = h, one gets
exactly the matrixz from (6.3)):
0 0
=U gt

(6.7)
6b. Following ideas from [23], let’s look at the following situation:

[1]

Assumption 6.2. The second cohomology group H?*(M;F,) generates H*(M;A) as a ring, with
the quantum product.

This implies that H*(M;F,) is zero in odd degrees. It also implies that each class in H(M;F,)
can be lifted to H2(M;Z), as one sees by looking at

(6.8) = H¥(M;Z) — H*(M;F,) — H*(M;2) & H*(M;Z) — H*(M;F,) — - --
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Lemma 6.3. Suppose that Assumption holds. Then, the quantum product and QSt(b), for
be HQ(M;IFP), determine all the quantum Steenrod operations.

Proof. Write the covariant constancy property as
(6.9) QX (axc) =19,Q5,(c) +ax QX,(c), a€ H*(M;Z), b,c€ H*(M;F,).
This shows that QX (c) and the quantum product determine Q¥ (a * ¢). Therefore, if one knows

QSt(b) = Q%p(1) and Assumption holds, the entire operation QY can be computed from
that. By (1.20)),

(6.10) QSt(b+c) = QL,(QSt(c)).

If we know QSt(b) and QSt(c), for some b € H?(M;F,) and ¢ € H*(M;F,), then our previous
argument determines Q¥;, and we can get QSt(bxc) from that by (6.10). In view of Assumption
this implies the desired result. O

Here is a concrete class of examples to which this strategy applies.

Proposition 6.4. Suppose that M is a monotone symplectic manifold, satisfying Assumption
[634 Then the quantum Steenrod operations can be computed in terms of the quantum product
and classical Steenrod operations.

Proof. Take b € H*(M;F,). Then QSt(b) has degree 2p. The monomials in it that can have
nonzero coefficients are /¢4, where j + ¢;(A) < p. The terms with j = 0 and ¢;(A) = p are part
of . The remaining terms are determined by covariant constancy, since any monomial ¢g*
that lies in I4;5 must necessarily have ¢;(A) > p. Having determined QSt(b), Lemma does
the rest. |

As a concrete illustration, let’s consider a cubic surface M C CP3, which is a del Pezzo surface,
and hence a monotone symplectic manifold. For simplicity, instead of the whole Novikov ring,
we will work with a single Novikov variable ¢, which counts the Chern number of holomorphic
curves. Let’s first take coefficients in Z. Take hy to be the first Chern class of M, and hy4 to be
the Poincaré dual of a point. Computations in [ [6] show that

ho * hy = 3hy + 9q hy + 108¢?,

6.11
(6.11) ho % hy = 36¢° ho + 252¢°.

At one point we will use another class in H?(M), the Poincaré dual of a Lagrangian sphere,
denoted by ly. This satisfies

(6.12) ly % lg = —2hy + 4q ho + 12¢°.

Example 6.5. Take the cubic surface with p =2 (this computation is of the same kind as those
in [23], only expressed in slightly different language). First of all,
(6.13) QSt(c) = c*c+tc for all c € H*(M;Fy).

A priori, QSt(c) could also have a tq term, which would lie in H°(M;F3). This would come
from classes with c1(A) = 1. To get a nonzero output in H°(M;Fy), one would need to have a
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stable A-curve going through every point of M. But each A is represented by a unique embedded
(—1)-sphere, hence the term must vanish, leaving (6.13)).

By combining , , and , one gets
QSt(h2) = hy + (q + t)ha,
(6.14) QSh, (ha) = tqdg QSt(ha) + ha * QSt(ha) = (g + t)ha + ¢*hs,
Qs (ha * ho) = tq04Q%n, (ha) + ha + QE, (h2) = (tq + ¢*)ha + ¢*ho.
Using , we get the result announced in Fxample :
QSt(hs) = QSt(hg * ha + qha) = Q¥n, (QSt(h2)) + ¢* QSt(hs)

(6.15) , ,
= QE}Q (h2 * hg —+ thg) +q QSt(hg) =1 h4.

Example 6.6. Let’s again look at the cubic surface, but now with p = 3. Here, the fact that we
work with a single Novikov variable g will limit the effectiveness of our computation, leading to an
incomplete result. As explained in Proposition[6.4, we can use covariant constancy to determine
the quantum Steenrod operations on H?(M;F3). In the same way, one can compute Q¥ (c) for
b,c € H*(M;F3) except for the ¢t term, which lies in H°(M;F3). We will only describe the
outcome (code that carries out this computation is available at [20] ):

QSt(hy) = —t?ha,
(6.16) QSt(ly) = —t3l,,

QL (Io) = —t?hy + (term lying in H°(M;Fs)q’t).
From that one gets, using (6.12)),
(6.17) QSt(ha) = QSt(ly * Iz — qhs) = QX1 (QSt(l2)) — ¢° QSt(hs)
' = t*hy + @Pt2hy + (term lying in H°(M;F3)g3t).

Note that, unlike the p = 2 case, QSt(hy) contains a non-classical (quantum) term.

6¢c. We conclude our discussion with a higher-dimensional case: the intersection of two quadrics
in CP®, which is a monotone symplectic 6-manifold. Let’s first work with Z-coefficients. The
even degree cohomology has a basis {1, ha, hy, he}, where the subscript denotes the dimension.
There is also odd degree cohomology, H3(M;Z) = Z*, but that will play no role in our argument.
We can identify the Novikov ring with Z[[g]], but since ¢, (M) is twice the positive area generator
of H?(M;Z), the formal variable ¢ has degree 4. The quantum product, as computed in [7],
satisfies

ho * hy = 4(hg + q),

ho x hy = hg + 2qho,

ho % he = 4qhs + 442,

hyg *x hy = 2qhy + 3q2.

(6.18)

Example 6.7. Taking our intersection of quadrics, let’s set p = 2. The classical Steenrod
operations are

(6.19) Sq(hi) = t*/%hy,.
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For hy, this is because h3 = 0 € H*(M;Fs), which one can read off from the classical term in
(6.18)). For hy4, its Poincaré dual of is represented by a line CPY C M. The normal bundle
of that line has first Chern class 0; by the geometric description of Steenrod squares through
Stiefel-Whitney classes, this implies vanishing of Sq2(h4).

Since the quantum product with ho agrees with its classical counterpart, the cup product with any
element of H*(M;Fs) is a covariantly constant endomorphism for the quantum connection. From

that, Theorem and (6.19), one gets

(6.20) QXh, (c) = thaoc + (terms lying in H*(M;Fy) with k < |c| — 4),
6.20
QXh, (¢) = t?hac + ¢*c + (terms lying in H* (M;Fq) with k < |c|).

Therefore,
QSt(ha) = tha,
(6.21) QSt(hg) = t2hy + ¢,
QSt(he) = Qpyun, (1) = Q1 (QSt(hy)) = QXp, (2hy + ¢%) = t3he + ¢*ths.

Example 6.8. Still for our intersection of quadrics, take p = 3. Then, the quantum product and
covariant constancy completely determine QXp,, for degree reasons (in fact, the same is true for
any p > 2). Explicitly (see again [20] for code), the action on H*™(M;F3) is

qt ¢ ¢t ¢
—t2 qt 0 ¢’
6.22 Y, =
( ) Q ha 0 42 +q —qt q2
1 0 —t2  —qt

From that, we get
QSt(he) = Q¥p,(1) = gt 1 — t* ho + hg,
Q5St(ha) = Q%n, (1) = QT hyuny—q1 (1) = QX7 (1) — ¢*1
= qt(q +1*) ha + (q + 1) ha,
QSt(he) = QSne(1) = QT nyenysens (1) = Q5 _ (1)
= *t(¢® — qt* —tY 1+ Pt  ha + qt®(q + t2) ha + (¢ — ¢*1% + qt* — %) hs.
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