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Abstract
Conventional advice discourages controlling for postoutcome variables in regression
analysis. By contrast, we show that controlling for commonly available postoutcome (i.e.,
future) values of the treatment variable can help detect, reduce, and even remove omitted
variable bias (unobserved confounding). The premise is that the same unobserved
confounder that affects treatment also affects the future value of the treatment. Future
treatments thus proxy for the unmeasured confounder, and researchers can exploit these
proxy measures productively. We establish several new results: Regarding a commonly
assumed data-generating process involving future treatments, we (1) introduce a simple
new approach and show that it strictly reduces bias, (2) elaborate on existing approaches
and show that they can increase bias, (3) assess the relative merits of alternative
approaches, and (4) analyze true state dependence and selection as key challenges. (5)
Importantly, we also introduce a new nonparametric test that uses future treatments to
detect hidden bias even when future-treatment estimation fails to reduce bias. We
illustrate these results empirically with an analysis of the effect of parental income on
children’s educational attainment.
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Hidden bias from unobserved confounding is a central problem in the social sciences. If
unobserved variables affect both the treatment and the outcome, then conventional
regression and matching estimators cannot recover causal effects (e.g., Morgan and
Winship 2015; Rosenbaum 2002). One set of strategies for mitigating confounding bias
that has been used in scattered contributions in sociology and economics involves future
treatments, that is, values of the treatment that are realized after the outcome has
occurred. The basic intuition behind these strategies is that the same unobserved
confounder that affects the treatment variable before the outcome often also affects a
future value of the treatment variable, measured after the outcome. If so, future values of
the treatment are proxy measures of the unmeasured confounder and may help remove
bias.

A few authors have previously appealed to this intuition and proposed a variety of different
estimators. For instance, prior research has exploited future treatments in structural
equation models (SEM) (Mayer 1997), used future treatments to measure and subtract
unobserved bias (Gottschalk 1996), and employed them as instrumental variables

(Duncan, Connell, and Klebanov 1997).1

We posit that future-treatment strategies hold significant promise for social science
research for several reasons. First, future treatments can help detect, reduce, and even
remove bias from unobserved confounding. Second, future values of the treatment are
routinely available in panel data. Third, since future-treatment strategies require only that
the treatment variable varies over time (i.e., not the outcome), they are available even
when individual-level fixed-effects panel estimators are not. Fourth, since different future-
treatment strategies impose different assumptions about the data-generating process
(DGP), they are applicable across a wide range of different substantive settings.

In this article, we analyze several prior future-treatment strategies and propose a new and
simpler, but more robust, new strategy. We discuss the conditions under which future
values of the treatment can reduce or fully remove confounding bias. We also highlight the
conditions under which future-treatment strategies introduce more bias than they remove.
Specifically, we show that future-treatment strategies are vulnerable in two scenarios:
where the outcome affects future treatment (selection) and where past treatment affects
future values of the treatment (true state dependence). Yet, even when future-treatment
strategies fail to reduce bias, they can still be used for detecting the presence of bias.
Thus, we develop a new nonparametric test for hidden bias.

We investigate the performance of future-treatment strategies across a range of data-
generating processes, and we assess their relative performance compared to regular Privacy
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regression estimates without corrections for unobserved confounding. We present our
analysis in two complementary formats. First, we present our analysis graphically to assist
empirical researchers in determining quickly whether a future-treatment strategy is
appropriate for their substantive application. Second, we assume linearity to link our
graphical results to familiar regression models and to quantify biases. (Online Appendices
discuss related approaches, instrumental variables estimation, and provide proofs.)
Finally, we illustrate the application of future-treatment strategies with an empirical
example that estimates the effect of parental income on children’s educational attainment.
The analysis rules out that conventional treatment effect estimates are unbiased and
underlines the attractiveness of our control estimate, which implies a smaller causal effect
of parental income and children’s educational attainment than that yielded by traditional
regression.

Preliminaries: Directed Acyclic Graphs (DAGs), Linear Models, and
Identification

In this section, we describe the tools of our formal identification analyses, following Pearl
(2013). Since the causal interpretation of statistical analyses is always contingent on a
theoretical model of data generation, we first review DAGs to notate the assumed DGP.
Second, we state Wright’s (1921) rules, which link the causal parameters of the DGP to
observable statistical associations (covariances and regression coefficients) in linear

models.2 Readers familiar with DAGs and Wright’s rules may skip this section.

We use DAGs to notate the causal structure of the analyst’s presumed DGPs (Elwert
2013; Pearl 2009). DAGs use arrows to represent the direct causal effects between
variables. We mostly focus on DAGs comprising four variables: a treatment, T, an
outcome, Y, a future (postoutcome) value of the treatment, F, and an unobserved
variable, U. In keeping with convention, we assume that the DAG shows all common
causes shared between variables, regardless of whether these common causes are
observed or unobserved. For example, in the DAG , U represents the
unobserved common cause between T and Y.

DAGs empower the analyst to determine whether the observed association (e.g., a
regression coefficient) between treatment and outcome identifies the causal effect or is
biased. The observed association between treatment and outcome is said to identify the
causal effect if the only open path connecting treatment and outcome is the causal
pathway, . The association between treatment and outcome is spurious, or biased
for the causal effect, if at least one open path does not trace the causal pathway (e.g., 

T ← U → Y

T → Y
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). Whether a path is open (transmits association) or closed (does not transmit
association) depends on what variables are, or are not, controlled in the analysis, and
whether the path contains a collider variable. A central rule of working with graphical
models states that a path is closed if it contains an uncontrolled collider or a controlled
noncollider and is open otherwise. A collider is a variable that receives two inbound
arrows, such as C in  (Elwert and Winship 2014).

For most of this article, we assume a linear DGP with homogenous (constant) effects, the
conventional workhorse of social science. The assumption of linearity may not always be
terribly realistic, but it has the advantage of convenience, as it links DAGs directly to
ordinary least squares (OLS) regression and conventional SEM methodology. Under
linearity and homogeneity, DAGs become linear path models, and every arrow in a linear
path model is fully described by its path parameter, p, which quantifies its direct causal

effect. Since path parameters are causal effects, they cannot be observed directly.3 Later,
we also consider fully nonparametric models when developing a new test for unobserved
confounding.

We work with standardized variables (zero mean and unit variance) throughout for ease of

exposition. Standardized path parameters cannot exceed 1 in magnitude.4 To prevent
model degeneracies, we assume that all path parameters lie strictly inside the interval 

 and differ from zero, . We discuss implications of standardization when
they make a practical difference below. Wright’s (1921) path rules link the unobserved
path parameters of the presumed linear DGP to observable covariances.

Wright’s ( 1921 ) path rule: The marginal (i.e., unadjusted) covariance between two
standardized variables A and B,  equals the sum of the products of the path
parameters along all open paths between A and B.

That is, to calculate the marginal covariance between two variables A and B, first compute
the product of the path parameters for each of the open paths between A and B and then
sum these products across all open paths. Next, we link the marginal covariances to OLS
regression coefficients (with or without control variables). The OLS regression coefficient
on T in the unadjusted regression  with standardized variables equals the
marginal covariance between Y and T,

1

We call  the unadjusted OLS coefficient on T. The partial regression coefficient on T
after controlling for F in the regression  is given by,

T ← U → Y

A→ C ← B

−1 < p < 1 p ≠ 0

σAB

Y = T + ubYT

= .bYT σYT

bYT

Y = T + F + ubYT .F bYF.T
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2

We call  the F-adjusted coefficients on T. Analogously, the T-adjusted coefficient on
F is given by,

3

We omit observed control variables (other than F) from the analysis because they do not
contribute to intuition. All of our results generalize to the inclusion of pretreatment control

variables.5

Putting these elements together, the subsequent analyses proceed in four steps. First, we
draw the DAG for the DGP we wish to analyze. Second, we use Wright’s rule to express
the marginal covariances between observed variables in terms of the true path
parameters. Third, we plug these covariances into equations (1)–(3) to obtain the
regression coefficients. Finally, we investigate whether any of these regression
coefficients, or functions of regression coefficients, equal (or “identify”) the desired causal
effect of the treatment on the outcome, and we quantify possible biases.

The Problem: Unobserved Confounding

Figure 1 highlights the problem of unobserved confounding and illustrates our running
example. The DAG shows the DGP for an observational study to estimate the total causal
effect of a treatment, T (e.g., parental income), on an outcome, Y (e.g., children’s years of
completed education). Since treatment is not randomized, the effect of T on Y is likely
confounded by one or more factors, U, that jointly affect T and Y (e.g., parental ambition).
If so, the unadjusted association between T and Y will be biased for the causal effect of T
on Y, because the association will be a combination of the association transmitted along
the open causal path  and the open noncausal path . (If all confounding
variables U are measured, then controlling for them removes all bias by closing the
noncausal path .) Henceforth, we assume that at least one confounding
factor, U, is unobserved. This mimics the main predicament of most observational studies
in the social sciences. If Figure 1 represents a linear and homogenous DGP, then, by
equation (1) and Wright’s path rule, the unadjusted OLS regression coefficient on T equals

4

= .bYT .F
−σYT σYFσFT

(1− )σ2
FT

bYT .F

= .bYF.T
−σYF σYT σFT

(1− )σ2
FT

T → Y T ← U → Y

T ← U → Y

= = b+ ac.bYT σYT
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Figure 1. Directed acyclic graph for an observational study of parental income, T, on children’s years of
education, Y, with unobserved confounder(s), U, for example, parental ambition.

This regression coefficient is obviously biased for the true causal effect of T on Y, b. The
bias equals  and increases in magnitude with the effects , a
and , c. Removing this bias from unobserved confounding is the central task of
observational causal inference in the social sciences.

Strategies of Bias Correction With Future Treatments

Future treatments can be used to reduce and even fully remove bias from unobserved
confounding, depending on both the analytic strategy (e.g., the chosen regression
specification) and the assumptions of the DGP. In this section, we introduce two future-
treatment strategies under the assumptions of the DGP shown in Figure 2. This model
represents a best-case scenario for future-treatment strategies and is commonly assumed
in the literature (e.g., Mayer 1997). The model assumes that the causal effect of T on Y is
confounded by one or more unobserved variables, U, and that all unobserved factors, U,
that confound T and Y also affect the future value of the treatment, F. In other words, F is

a proxy measure for the unobserved confounder U.6

= − b = acBOLS bYT U → T

U → Y
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Figure 2. A confounded study where the future value of the treatment, F, is a proxy for the unobserved
confounder(s), U.

The assumption that all unobserved confounders of T and Y also affect F is central for
future-treatment strategies. Because the assumption cannot be tested empirically, it has to
be defended on theoretical grounds. In many applications, it is eminently credible. For
example, if parents’ unmeasured ambition, U, affects parental income, T, prior to the child
completing education, Y, it likely also affects parental income after the child has
completed education, F.

Control Strategy of Future Treatments

Most future-treatment strategies in one way or another exploit the fact that F is a proxy for
U. Here, we propose a simple estimator that exploits this fact directly: Since F is a proxy
that carries information about U, controlling for F in the regression 

 partially controls for U and hence reduces bias in the treatment-
effect estimate. We call the strategy of bias reduction by outright controlling for F the
control strategy of future treatments.

Definition 1 (control-strategy estimator): The control-strategy estimator, bC, for the

causal effect of T on Y, b, is given by the F-adjusted regression coefficient on T,

5

Result 1 evaluates the control-strategy estimator for data generated by the DGP in
Figure 2:

Result 1 (bias of the control-strategy estimator in the best case): In data generated by
the DGP in Figure 2, the control-strategy estimator evaluates to:

Y = T + F + ubYT .F bYF.T

= = .bC bYT .F
−σYT σYFσFT

(1− )σ2
FT
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6

Clearly, the control estimator remains biased because . Result 2, however, states
that the control-strategy estimator always improves on the unadjusted OLS estimator.

Result 2 (strict bias reduction of the control-strategy estimator in the best case): In data
generated by the DGP in Figure 2, the control-strategy estimate is strictly less biased
than the unadjusted OLS estimate.

To see this, note that the control-strategy estimator multiplies the unadjusted OLS bias, 

, by the factor , which we call the bias multiplier of the control

strategy. Since all path parameters are standardized, the control-bias multiplier is always 
 and hence deflates the unadjusted OLS bias, . Strict bias

reduction is the key advantage of the control strategy.

Figure 3 illustrates bias reduction in the control-strategy estimator compared to the
unadjusted OLS estimator by graphing the absolute value of the bias multiplier of the
control strategy,  (dashed line), against the horizontal reference line of no bias
reduction, , as a function of the strength of the effect of U on F, d, for a moderately

strong effect of U on T, .7 Clearly, the control-bias multiplier  is always between
0 and 1 and hence guarantees bias reduction regardless of sign or size of the path
parameters.

= b+ ac = b+ .bC
(1− )d2

(1− )a2d2
BOLSMC

≠ bbC

= acBOLS =MC

(1− )d2

(1− )a2d2

0 < < 1MC | | < | |BOLSMC BOLS

| |MC

|M | = 1

a = .4 | |MC
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Figure 3. Absolute bias multiplier, , for the control estimator (dashed line) and Mayer’s estimator (solid
line) as a function of the effect, , d.  indicates no change compared to the unadjusted OLS
bias.  indicates bias amplification,  indicates bias reduction. Graphed for a moderate effect 

, .

The stronger the effect of U on F, , the more bias is removed. This makes intuitive
sense: the stronger the effect of U on F, the better F proxies for U. In the extreme case,
where F is perfectly determined by , controlling for F amounts to controlling for
U itself, thus removing all bias, such that .

The control strategy gives empirical researchers a straightforward tool for reducing bias
from unobserved confounding. All it takes is adding F as a regressor to the regression of
Y on T. Controlling for F would also work if researchers additionally included pretreatment
covariates, X, in the regression. The bias formulas would have to be adjusted somewhat,
but the logic would remain the same. To return to our running example, under the model
assumptions of Figure 2, bias in the estimated effect of parental income measured before
children complete education would be strictly reduced by controlling for future parental
income measured after children complete their education.

Mayer’s Strategy

Mayer (1997) takes a different approach to bias reduction with future treatments. Instead
of simply controlling for F in a regression model, she solves the structural equations of the
DGP in Figure 2 under the additional assumption that the unobserved confounder, U,
affects the future treatment, F, exactly like it affects the treatment, T, . This
assumption may be defensible in some circumstances. In our running example, one might
hypothesize that parental ambition is relatively time-invariant and affects parental income,
T and F, similarly at all times. Under the assumption that , the three observable
covariances between T, Y, and F in Figure 2, by Wright’s rule, are functions of three
unknown path parameters,

7

This system is solved uniquely for the desired causal effect,8

8

|M|
U → F |M| = 1

|M| > 1 |M| < 1
U → T a = .4

|d|

U ,   |d| = 1

= bbC

a = d

a = d

= b+ acσYT

= b+ acσYF a2

= .σTF a2

= = = b.−σYT σYF

1−σTF

b+ac−ac− ba2

1−a2

b(1− )a2

1−a2
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Definition 2 (Mayer’s [ 1997 ] estimator): Mayer’s estimator for the causal effect of T on
Y, b, is given by,

9

The advantage of Mayer’s estimator is that it removes all bias under the assumptions that
the data are generated as in Figure 2 and that U affects T exactly as it affects F, .
However, when U affects T and F differently, , then Mayer’s estimator has two

disadvantages. First, as Mayer (1997) notes, the estimator is biased.9 Result 3 evaluates
the bias.

Result 3 (bias of Mayer’s [ 1997 ] estimator in the best case): In data generated by the
DGP of Figure 2, Mayer’s estimator evaluates to

10

Second, in contrast to the control-strategy estimator, Mayer’s estimator can increase the
unadjusted OLS bias, as shown in result 4.

Result 4 (bias amplification in Mayer’s [ 1997 ] estimator in the best case): In data
generated by the process of Figure 2, Mayer’s estimator increases bias compared to
the unadjusted OLS estimate when . This occurs (1) when  or

(2) when .

In other words, bias amplification occurs either (1) when U affects T and F in opposite
directions or (2) when U affects T and F in the same direction, but the magnitude of the
effect , d, substantially (roughly more than twice) exceeds the magnitude of the
effect , a.

The solid line in Figure 3 illustrates bias reduction and bias amplification of Mayer’s
estimator by graphing the absolute value of the bias multiplier,  across values of d for

. When a and d share a sign (here, ) and d is not much larger than a, then 
, and Mayer’s estimator reduces bias. But if a and d have opposite signs (here, 

), or if , then  and Mayer’s estimator amplifies the unadjusted OLS
bias.

The possibility of bias amplification in Mayer’s estimator has not been noted previously.
Whether bias amplification occurs depends on the empirical setting and must be carefully
evaluated based on subject matter knowledge. We believe that bias amplification can be
excluded in many settings. First, in many applications, U will not affect T and F in opposite

= .bM
−σYT σYF

1−σTF

a = d

a ≠ d

= b+ ac = b+ .bM
a−d

a− da2
BOLSMM

| | = | | > 1MM
a−d

a− da2
< 0a

d

| | < |d|2a
1+a2

U → F

U → T

| |MM

a = .4 d > 0

| | < 1MM

d < 0 d≫ a | | > 1MM
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directions. In our example, it is not generally plausible that parental ambition, U, increases
parental income early on, T, but decreases it later, F. Second, since the shared
unobserved confounder U is by assumption a baseline characteristic that is temporally
closer to T than to F, the effect of U on T will likely exceed the effect of U on F, that is, 

. In our example, we are cautiously optimistic that the effect of early parental
ambition is more pronounced on parent’s early income, T, than on later income, F,
because other determinants of income, such as experience and seniority, may grow in
importance as time passes.

On the other hand, we cannot entirely rule out the possibility of bias amplification, even in
our running example. Suppose, for example, that we analyze the effect of parental income
on children’s educational outcomes among young parents. Young parents with high
ambition may still be enrolled in college and hence earn little compared to their less
ambitious counterparts who already have jobs. Later, however, these highly ambitious
parents may become high-earning professionals, whereas their less ambitious
counterparts remain stuck in lower paying jobs. Hence, the effects  and 
could have opposite signs, such that Mayer’s estimator would increase rather than
decrease bias. And even if the effects share the same sign, U → F may still strongly
exceed . That is, using our example, if the returns to parental ambition compound
as employees climb up the corporate ladder, early ambition may have a relatively modest
effect on early income but a large effect on later income via successive promotions. If the
effect of early ambition on later income sufficiently exceeds its effect on early income, then
Mayer’s estimator would also increase rather than decrease bias.

Implementing Mayer’s Strategy as a Difference Estimator

The original presentation of Mayer’s estimator required customized programming. Next,
we show that Mayer’s estimator straightforwardly equals the difference between two OLS
regression coefficients. This enables estimation via all standard statistical software
packages and provides additional intuition.

Definition 3 (difference estimator): The difference estimator for the effect of T on Y is
the difference between the coefficients on T and F in the regression 

,

11

Result 5 (equivalence of the difference and Mayer’s estimators):

|a| > |d|

U → T U → F

U → T

Y = T + F + ubYT .F bYF.T

= − = − .bD bYT .F bYF.T
−σYT σYFσFT

(1− )σ2
FT

−σYF σYT σFT

(1− )σ2
FT
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The equivalence between Mayer’s estimator and the difference estimator holds for all
DGPs—not just the DGP of Figure 2—because the definition of the estimators only draws
on empirical covariances and not on the structure of the DGP.

Equating Mayer’s estimator with the difference estimator provides additional insight: The
idea behind the difference estimator is to use future treatments first to measure and then
to remove the spurious association between T and Y.

This fact is best appreciated by investigating the difference estimator under the
assumption that the effect of U on T equals the effect of U on F,  in data generated
by Figure 2. First, the coefficient  is biased for b by the confounding path 
, less whatever part of confounding is removed by controlling for F (recall that F is a proxy

for U). Specifically, , where  is the deflation factor by

which confounding along ,  is diminished by controlling for F. Second, the
coefficient  captures the association flowing along the path , less
whatever part of this association is removed by controlling for T (like F, T is a proxy for U).

Specifically, , equals the association flowing along ,

diminished by the same deflation factor  due to controlling for T. Third,

clearly,  equals the bias in ; hence, subtracting one from the other yields an
unbiased estimate for b.

Expressing Mayer’s estimator as a difference estimator helps explicate the properties that
we claimed for it above. First, the Mayer/difference estimator removes all bias only if 
, because only then does  exactly measure the bias in . More generally, by
result 3, the estimator equals  and is biased to the extent that a and

d differ. Second, if , the estimator is biased because  understates the bias in 
: The association captured by the path  understates the bias flowing

along . Third, if , the estimator is biased because  overstates the
bias in : The association captured by the path  overstates the bias
flowing along . Fourth, if d is more than twice as large as a, then  may
overstate the bias in  more than twofold, so that the Mayer/difference estimator 

 first subtracts all bias and then more than adds it back, resulting in absolute
bias amplification. Fifth, if a and d have different signs, then  measures the negative

= −bD
−σYT σYFσFT

(1− )σ2
FT

−σYF σYT σFT

(1− )σ2
FT

= = = .  □
(1+ )( − )σFT σYT σYF

(1+ )(1− )σFT σFT

( − )σYT σYF

(1− )σFT
bM

a = d

bYT .F T ← U → Y

= b+ acbYT .F
(1− )a2

(1− )a4
0 < < 1

(1− )a2

(1− )a4

T ← U → Y ac

bYF.T Y ← U → F

= acbYF.T
(1− )a2

(1− )a4
Y ← U → F

0 < < 1
(1− )a2

(1− )a4

bYF.T bYT .F

a = d

bYF.T bYT .F

= = b+ acbM bD
a−d

a− da2

a > d bYF.T

bYT .F Y ← U → F

Y ← U → T a < d bYF.T

bYT .F Y ← U → F

Y ← U → T bYF.T

bYT .F

−bYT .F bYF.T

bYF.T
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of the bias in  such that the difference estimator  adds rather than
removes bias, also resulting in bias amplification.

We note that the difference estimator for future treatments has some history in social
science methodology. Versions of this differencing logic are discussed by Gottschalk
(1996), who explicitly uses future treatments, and by DiNardo and Pischke (1997) and
Elwert and Christakis (2008), who analyze structurally similar models without future
treatments. Online Appendix A evaluates Gottschalk’s (1996) estimator.

The Difference Strategy of Future Treatments Is Different From Difference-in-
differences (DiD)

Despite superficial similarities, the Mayer/difference strategy of future treatments differs
from conventional DiD, or gain score, estimation. While both approaches assume the
same qualitative causal structure for the DGP, shown in Figure 2, they impose different
parametric constraints on this structure and hence derive different estimators. Mayer’s
approach interprets F as a future (postoutcome) value of the treatment and assumes that
U affects T and F equally, . By contrast, DiD interprets F as a lagged (pretreatment)
value of the outcome and assumes that U affects Y and F equally,  (Kim and Steiner
2019). As a result of these different constraints on the path parameters, the two methods
employ different estimators. As is easily verified against the graph, with F as future
treatment, the spurious association between Y and T is measured and removed by the
conditional covariance between Y and F given T. Hence, the Mayer/difference estimator is

. With F as lagged outcome, the spurious association between Y and T
equals the marginal covariance between F and T, and the DiD estimator is .

Choosing Between Future-treatment Estimators

Next, we compare the performance of the two future-treatment strategies and provide
guidance for choosing between them. We continue to assume that the data are generated
by the DGP of Figure 2. Obviously, maximally cautious analysts should always prefer the
control estimator, because, in contrast to the Mayer/difference estimator, it guarantees
bias reduction when the data are produced by the DGP in Figure 2 regardless of the
relative size of the path parameters. Bias reduction with the control estimator, however, is
often quite modest. For most values of the effect , a, the control estimator will
remove less than half of the unadjusted OLS bias unless the effect , d is large, 

. In many cases, Mayer’s estimator will thus remove more bias than the control
estimator.

bYT .F = −bD bYT .F bYF.T

a = d

c = d

b = −bYT .F bYF.T

b = −bYT bTF

U → T

U → F

d > 0.7
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Analysts can sometimes decide between the two future-treatment estimators by
comparing the relative positions of the unadjusted OLS, control, and Mayer/difference
estimates. Figure 4 illustrates the decision process. Since the control estimate, in
expectation, is closer to the true treatment effect than is the unadjusted OLS estimate, the
difference between the control estimate and the unadjusted OLS estimate reveals the
direction of the unadjusted OLS bias. For example, if the unadjusted OLS estimate is 

 and the control estimate is , then the true treatment effect should be no
larger than the control estimate, . The first decision rule thus states that if the control
and Mayer/difference estimates change the unadjusted OLS estimate in different
directions (Figure 4, scenario 1), then the analyst should choose the control estimate as
bias reducing and eschew the Mayer/difference estimate as bias increasing. Second, the
control estimator is preferred as long as the Mayer/difference estimator does not differ
more strongly from the unadjusted OLS estimator in the same direction. For example, if
the unadjusted OLS estimate is , the control estimate is , and the
Mayer/difference estimate is  (Figure 4, scenario 2), then the control estimate is
preferred.

Figure 4. Illustration of the heuristic for choosing between estimates. The relative position of the control (C),
difference (D), and unadjusted OLS (O) estimates can help the analyst decide between alternative estimates.
In data generated by Figure 2, the location of the control estimate indicates the direction of unadjusted OLS
bias (in this example, upward bias). In scenarios (1) and (2), the control estimate is preferred. In scenario (3),
additional assumptions are needed to decide between the control and difference estimates.

If the control and Mayer/difference estimators change the unadjusted OLS estimate in the
same direction, but the Mayer/difference estimator is farther away from the unadjusted
OLS estimate than is the control estimate (Figure 4, scenario 3), then it does not follow
that the Mayer/difference estimator is automatically preferred. For example, with 

, , and , the true effect could be closer to either the control
estimate or the Mayer/difference estimate. Thus, the analyst would require additional
knowledge about the relative size of effects , a and , d to decide between

= .5bOLS = .3bC

b ≤ .3

= .5bOLS = .3bC

= .4bM

= .5bOLS = .3bC = .2bM

U → T U → F Privacy



the control and Mayer/difference estimates. Two rules from result 4, illustrated in Figure 3,
help with this decision. First, if the analyst can argue that a and d share the same sign and
that the magnitude of a does not considerably exceed the magnitude of d, then the analyst
should choose the Mayer/difference estimator because it is expected to remove more bias
than the control estimator. Second, if  or if d and a have opposite signs, then the
Mayer/difference estimator is expected to increase the unadjusted OLS bias, and the
analyst should chose the control estimator.

Challenges to Bias Correction With Future Treatments

The DGP of Figure 2, analyzed so far, provides a best-case scenario for future-treatment
strategies to reduce confounding bias in unadjusted OLS regressions because it
guarantees bias reduction for the control estimator and even complete bias removal with
the Mayer/difference estimator if . In this section, we explain that both future-
treatment strategies can increase bias in the presence of either (1) true state dependence,
where past treatment causally affects future treatment, or (2) selection, where the
outcome causally affects future treatment, or both. We demonstrate this failure by showing
that both future-treatment strategies can produce bias even when the unadjusted OLS
estimate is unconfounded and hence unbiased. With either true state dependence or
selection, choosing the best future-treatment strategy becomes a matter of carefully
weighing prior knowledge about the underlying path parameters in the DGP.

True State Dependence: When Treatment Affects Future Treatment

Past and future values of the treatment are typically correlated over time. One reason for
this association could be mutual dependence of T and F on the unmeasured confounder
U along the path , as in Figure 2, which would justify the future-treatment
strategies discussed above. Another reason for a correlation between T and F could be
true state dependence, where past states of the treatment cause future states of the

treatment (Bates and Neyman 1951; Heckman 1981a, 1981b).10 True state dependence
is captured by the arrow  in Figure 5. Sociologists are amply familiar with
cumulative advantage and cumulative disadvantage as important special cases of true
state dependence. DiPrete and Eirich (2006:272) explain that cumulative (dis)advantage
“becomes part of an explanation for growing inequality when current levels of
accumulation have a direct causal relationship on future levels of accumulation.” For
instance, individuals with higher incomes accumulate more financial assets, which in turn
generate asset income returns that grow at a higher rate than earnings (Piketty 2014). In
this example, as in others, a causal story of true state dependence involves a causal

|d| ≫ |a|

a = d

T ← U → F

T → F
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mediator (here: income → financial asset acquisition → income), and the strength of state
dependence may be quite limited (e.g., for most people, asset income plays no
appreciable role in determining total income).

Figure 5. An unconfounded study with true state dependence of treatment, .

To isolate the problem of true state dependence, we first analyze the performance of
future-treatment strategies when the effect of T on Y is not confounded (no arrow ),
as in Figure 5. Here, the marginal association between T and Y identifies the causal effect
of T on Y because the causal effect  is the only open path between them. Hence,
the unadjusted OLS estimate equals the true causal effect, , and the
unadjusted OLS estimator is unbiased.

Future-treatment strategies are vulnerable to true state dependence because needlessly
controlling for F would introduce bias. Since F is a collider variable on the noncausal path 

, controlling for F in the regression of Y on T opens this path and induces
a spurious association between T and Y. Controlling for F would therefore create bias
where none existed before. This intuition is confirmed algebraically using Wright’s rules.
The control estimator for data generated by Figure 5 (with true state dependence but
without confounding) evaluates to

13

Note that the control estimator in this scenario is biased even though the unadjusted OLS
estimator is not. As expected, the bias in the control estimator under true state
dependence is a function of the path parameters on the noncausal path ;

T → F

U → T

T → Y

= = bbOLS bYT

T → F ← U → Y

= = b− .bC bYT .F
cdf

(1− )f 2

T → F ← U → Y Privacy



 and . The bias in bC increases with the strength of confounding between Y and F, 

, in the numerator of the bias; and the bias increases especially strongly with the
strength of state dependence, f, which increases the numerator and decreases the
denominator of the bias. The Mayer/difference estimator for data generated by Figure 5,
with true state dependence and without confounding, evaluates to

14

The Mayer/difference estimator is also biased in this scenario, even though the
unadjusted OLS estimator is not. Comparing equations (13) and (14) shows that true state
dependence introduces less bias into the control-strategy estimator than into the
Mayer/difference estimator, unless true state dependence is strongly positive, . In
sum, both future-treatment estimators can increase bias under true state dependence, but
the control estimator will be less biased as long as true state dependence is not too large.

Next, we analyze the empirically more interesting DGP of Figure 6, which combines
Figure 2 with Figure 5 to form a scenario of true state dependence with unobserved
confounding. Here, U is a confounder of T and F, which motivates the use of F as a proxy
control to reduce bias in the unadjusted OLS estimator, but T also directly causes F via
true state dependence, thus introducing bias into both future-treatment estimators.
Without further restrictions, the analytic expressions for the control and difference
estimators are unwieldy and scarcely informative (not shown). Depending on the exact
parameter constellation, both future-treatment strategies could reduce bias or increase
bias in the unadjusted OLS estimator. Hence, analysts must carefully consider existence,
direction, and size of true state dependence in their empirical applications.

f,  d,    c

cd

=  b− .bM/D
cd(f−1)

(1− )f 2

f > 0.5
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Figure 6. A confounded study with true state dependence of treatment (combination of Figures 2 and 5).

Nonetheless, future-treatment strategies remain promising if the analyst can defend
certain parametric restrictions on the relative size of the path parameters. Consider, for
example, the restriction that U affects T to the same extent as it affects F, , as Mayer
(1997) proposed for the effect of parental income on child outcomes.

Result 6 (bias of the control estimator with true state dependence): In data generated
by the model in Figure 6 with the constraint , the control estimator evaluates to

15

Result 7 (bias of the Mayer/difference estimator with true state dependence): In data
generated by the model in Figure 6 with the constraint , the Mayer/difference
estimator evaluates to

16

The bias multipliers of the control and Mayer/difference estimators, RC and RM, are

obviously closely related, though their behavior is somewhat surprising. Explorations of
the parameter space (see Online Appendix E) reveal several facts, summarized in
Table 1:

Table 1. Performance of the Control Estimator and the Mayer/Difference
Estimator in the Presence of State Dependence and Assuming .

Result 8 (relative performance of the control and Mayer/difference estimators under
confounding and true state dependence): In data generated by the model in Figure 6
with the constraint , the following five facts hold approximately:

With (often unrealistic) negative11 state dependence, ,

1. The Mayer/difference estimator is strictly bias reducing, , and strictly
dominates the performance of the control estimator, .

2. The control estimator is strictly bias amplifying, and the bias increases as true state
dependence becomes more negative.

With (often realistic) positive state dependence, ,

a = d

a = d

= b+ ac = b+ .bC
−f− − f− +1f 2 a2 a2

1−(f+ )a2
2 BOLSRC

a = d

= b+ ac = b+ .bM/D
−f− − ff 2 a2

1−(f+ )a2
2 BOLSRM

a = d

a = d

f < 0

0 < < 1RM

<RM RC
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(3) The Mayer/difference estimator reduces bias up to moderate positive state
dependence, 0 ≤ f ≤ .05 for up to moderately strong confounding, |a| < 5. It strictly
amplifies bias above f > 05.

(4) The control estimator reduces bias for most values of positive state dependence, 0
≤ f ≤ 0.78, for up to moderately strong confounding, |a| < 0.5. It strictly amplifies bias
above f ≥ 0.78.

(5) The control estimator is less biased than the Mayer/difference estimator above f =
0.37, and more biased otherwise.

Table 1 underlines that true state dependence, which is a common concern in sociology,
ruins the strict bias-reduction property of the control estimator. To muddy matters further,
judging the size of the standardized path parameters in this scenario is not easy in
practice. The difficulty is that the variances of T and F almost certainly differ when true
path dependence is present. Hence, it is difficult to assert the equality of  because
equality in the standardized parameters does not imply equality of the effects of U on T

and F, respectively, in their natural scale.12

Nonetheless, under realistic values of moderate positive true state dependence, both the
control and the Mayer/difference estimators are likely bias reducing. And for moderate and
strong positive state dependence, the control estimator outperforms the Mayer/difference
estimator and remains (strongly) bias reducing as long as the effects of U on T and F are
not too large.

Selection Bias: When the Outcome Affects Future Treatment

Selection also complicates future-treatment strategies for unobserved confounding. We
say that selection is present when the outcome exerts a causal effect on the future value
of the treatment, as captured by the arrow Y → F in Figure 7. Selection is a concern in
many situations. For example, in a study of the effect of parental income on educational
attainment, college enrollment might affect parents’ income if parents adjust their labor
supply to the financial needs of the child. In other scenarios, selection may be absent. For
example, when studying the effect of parental income on children’s test scores, it is
implausible to believe that children’s test scores affect future values of parental income
(except, perhaps, when a child’s abysmal test scores inspire a parent to quit their job to
tutor the child).

a = d
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Figure 7. An unconfounded study with selection, .

Figure 7 isolates the problems of selection. Since the effect of T on Y is unconfounded,
the unadjusted OLS estimator again recovers the true causal effect, . The control
and difference estimators, however, control for F and hence suffer selection bias because

controlling for F amounts to selecting on the outcome.13 The control-strategy estimator
without confounding but with selection evaluates to

17

and the difference strategy estimator evaluates to

18

Since  and  are pure bias terms, neither the control estimator nor the
difference estimator recovers the true causal effect. It can be shown, however, that 

; that is, selection (without confounding) introduces far less bias into the
control estimator than into the Mayer/difference estimator, especially for small treatment
effects . Note that bias in the control and Mayer/difference estimators with selection
depends on the size of the treatment effect, b. Finally, Figure 8 shows the empirically
important scenario with both selection and confounding (combining Figures 7 and 2,
respectively). The corresponding analytic expressions for the control and Mayer/difference
estimators are highly nonlinear.

Y → F

= bbYT

= = b = b ,bC bYT .F
(1− )e2

1−b2e2
PC

= b = b .bM/D
b−e

b− eb2
PD

≠ 1PC ≠ 1PD

| | ≪ | |PC PD

T → Y
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Figure 8. A confounded study with selection, .

Result 9 (bias in the control estimator with selection): In data generated by Figure 8,
the control estimator evaluates to

19

Result 10 (bias in the Mayer/difference estimator with selection): In data generated by
Figure 8, the Mayer/difference estimator evaluates to

20

The bias-reduction properties of both future-treatment estimators with confounding and
selection strongly depend on the underlying path parameters. Simulations (see Online
Appendix) suggest that the Mayer/difference estimator is usually performing worse, and
often dramatically so, than the control estimator as long as the path parameters, p, are not
too large, . Specifically, any hint of selection, , threatens to turn the
Mayer/difference estimator into a bias amplifier. By contrast, as long as selection is mild, 

, the control estimator remains bias reducing, though bias reduction can be small

in absolute terms.14

Table 2 summarizes the divergent performance of the control and the Mayer/different
estimator. The upshot is that for scenarios in which path parameters are at most
moderately strong , the control strategy generally carries the day. Since the
control strategy without selection is strictly bias reducing and only minimally biased by
selection, it tends to remove some bias overall. By contrast, the Mayer/difference strategy

Y → F

= =bC bYT .F
(b+ac) − (bad+e +cd) (be +ace +ad)

1 − (be +ace+ad)2

= b+ ,BOLSSC

= = b+ .bD
(b+ac)− (bad +e+cd)

1 − (be +ace +ad)
BOLSSD

|p| < .5 e ≠ 0

|e| ≤ 0.3

(|p| ≤ .5)
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is strongly bias reducing without selection but can induce heavy bias with selection, and
so it is to be used with caution.

Table 2. Performance of the Control Estimator and the Mayer/Difference
Estimator in the Presence of Selection and Weak to Moderate Path
Parameters, .

Future-treatment Tests for Unobserved Confounding

Future treatments can also be used to detect, and even formally test for, the presence of
unobserved confounding between T and Y. Importantly, testing for bias is possible under
substantially weaker assumptions than bias reduction or bias removal. In this section, we
develop a nonparametric test for unobserved confounding via two results. (Readers
uninterested in the technical details may skip directly to result 12.)

Definition 4: Let V be an unobserved variable that directly causes treatment, T, 
and is associated with a postoutcome value of the treatment, F, conditional on T and
the vector of observed pretreatment covariates, X (which may be empty), 

.

Assumption 1: The DGP contains at least one unobserved variable V.

Assumption 1 is quite minimal compared to models discussed before. First, assumption 1
requires only partial knowledge of the DGP rather than a fully articulated DAG. Second, it
is nonparametric, that is, it puts no restrictions on the functional form of the effects. Third,
it does not require constant effects across individuals.

Result 11: Given assumption 1, independence between F and Y conditional on T and
X, , implies the absence of unobserved confounding between T and Y
conditional on X. (Proof in Online Appendix C)

By contraposition, result 11 says that unobserved confounding between T and Y will lead
to a conditional association between Y and F (given T and X), as long as at least one
unobserved cause of T, V, is also associated with F (given T and X). The scenarios of
unobserved confounding thus detected include the usual situations of hidden bias, where
the unobserved factors that confound T and Y are also causes of F (e.g., Figure 2), even
with strong path dependence (e.g., Figure 6). And they also include considerably more
complex situations, for example, when confounding between T and Y is only induced by
control for pretreatment colliders, X, and T shares no causes with F (Figure 9).

|p| < .5

V → T

V ¬ ⊥ F | (T ,X)

F ⊥ Y |(T ,X)
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Figure 9. The causal effect of T on Y is confounded after controlling for X because conditioning on X opens the
noncausal path . Assumption 1 holds because conditioning on X also opens the
path . F and Y are associated conditional on T and X because  is
always open.

Result 11 thus turns the conditional independence between F and Y into an indicator for
the absence of unobserved confounding between T and Y. However, result 11 does not
yet justify a formal test for unobserved confounding because the result is not symmetric:
Independence between F and Y (given T and X) implies the absence of unobserved
confounding, but dependence is compatible with both unobserved confounding and its
absence (e.g., in Figures 10 and 11).

Figure 10. F and Y are associated even though there is no unobserved confounding between T and Y.
Assumption 1 holds because  is always open. Y and F are associated because  is
always open. T and Y are unconfounded because F is an unconditioned collider on the only noncausal path
between them, .

T ← V →X← U → Y
T ← V →X← U → F Y ← U → F

T ← V → F Y → F

T ← V → F ← Y
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Figure 11. F and Y are associated even though there is no unobserved confounding between T and Y.
Assumption 1 holds because  is always open. Y and F are associated because 
is always open. T and Y are unconfounded because F is an unconditioned collider on the only noncausal path
between them, .

The asymmetry in result 11 is fixed, and a proper test for unobserved confounding is
provided, by assumptions 2 and 3 in result 12.

Definition 5: Let Q be the nonempty set of unobserved causes of F, excluding the
idiosyncratic causes of F (i.e., excluding the independent error term on F).

Assumption 2: All variables in Q directly cause T.

Like assumption 1, assumption 2 is nonparametric, that is, does not assume linearity or
effect homogeneity. Nonetheless, assumption 2 is stronger than assumption 1 (which it
implies). Assumption 2 requires that all unobserved causes of F (except those in Fs
idiosyncratic error term) also cause T. This rules out unobserved confounding between Y
and F by any event that occurs after T. Assumption 2, however, still does not require that
all unobserved confounders of T and Y also cause F, as we had assumed in prior sections
of this article (e.g., Figure 2).

Assumption 3: Y does not directly or indirectly cause F (no selection).

Result 12: Given assumptions 2 and 3, independence between F and Y conditional on
T and X (which may be empty), , implies the absence of unobserved
confounding between T and Y conditional on X; and nonindependence between F and

T ← V → F Y ← U → F

T ← V → F ← U → Y

F ⊥ Y |(T ,X )
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Y conditional on T and X (which may be empty), , implies the presence
of unobserved confounding between T and Y conditional on X. (Proof in Online
Appendix C)

Result 12 says that any (nonparametric or parametric) test of conditional independence
between F and Y given T and X is a valid test of nonconfounding between T and Y given
X when assumptions 2 and 3 are met. Rejection of the conditional independence is
evidence of unobserved confounding; and failure to reject conditional independence
indicates the absence of unobserved confounding. Translated to the familiar world of
linear regression, result 12 says that testing the null hypothesis , against
the alternative , in the following regression specification,

using a conventional two-sided t test is a valid test of the null hypothesis of no unobserved

confounding.15

Empirical Illustration

Motivation

We illustrate the utility of future-treatment strategies by elaborating on Mayer’s (1997)
original empirical example of the causal effect of parental income on children’s
educational attainment. Parental income is widely observed to be positively associated
with children’s test scores. This association could be at least partially causal because high
income allows parents to invest more in their children’s education (Kornrich and
Furstenberg 2012; Schneider, Hastings, and LaBriola 2018), for instance, by providing
private tutors (Buchmann, Condron, and Roscigno 2010), which promotes educational
success (see also Mayer 1997:45ff). On the other hand, the observed association could
also be due to unobserved confounding, for example, by parents’ ambition, which may
increase not only parents’ own income but also the educational success of their children.
Of more than merely historical interest, this example remains salient for contemporary
debates on intergenerational transmission, which are plagued by concerns about
unobserved confounding (Morgan and Winship 2015; Sobel 1998).

Data

We analyze data from the Panel Study of Income Dynamics PSID (2019). In an effort to
replicate the estimates provided by Mayer (1997:161ff), we closely follow her decisions in

F¬ ⊥ Y |(T ,X )

:   = 0H0 bYF.TX

:   ≠ 0HA bYF.TX

= a+ T +  F +X + ,Yi bYT .FX bYF.TX bYX.TF ui
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the construction of the analytic samples (covering birth cohorts 1954 through 1968) and
variables as described there. The outcome, Y, is children’s years of education completed
by age 24 ( , ). The treatment variable, T, is logged family income in
1992 dollars, measured at children’s ages 13–17 (5-year average). The future-treatment
variable, F, is logged family income in 1992 dollars, measured at children’s ages 25–29
(5-year average). The list of observed confounders, X, includes logged family size,
whether the child’s household head is black, age of the younger parent, the highest years
of education attained by either parent, and child’s gender. The analytic sample size for the
future-treatment regressions is N = 1,513. All analyses are weighted by the child’s
individual survey weight in 1989. Descriptive statistics are given in Online Appendix Table
D1. All variables are standardized (mean 0 and variance 1). A replication package for this
analysis is available online (http://doi.org/10.3886/E104060V1).

Results

Our analyses replicate Mayer’s published results almost perfectly. For instance, Mayer’s
main analysis (based on cohorts born between 1954 and 1968) estimates the
unstandardized coefficient of logged family income on children’s years of education as 

, compared to our estimate of . We observe an even closer
correspondence in our analytic subsample (for which future income measures are
available; birth cohorts 1954–1964) with a standardized coefficient estimate of  in both
Mayer’s and our own analysis (for full results, see Online Appendix Table D2).

Our empirical illustration of future-treatment strategies estimates a series of OLS models
that regress the outcome (Y, years of education) on different combinations of the
covariates: The treatment (T, parental income), the future treatment (F, future parental
income), and all observed pretreatment control variables mentioned above . All
models are estimated from the same analytic data set. Table 3 reports four different model
specifications that illustrate the use of different future-treatment strategies under various
assumptions about the DGP. Model 1 displays the unadjusted association between
parental income (T) and offspring’s educational attainment (Y). Without controlling for any
observed confounders (X), we expect the association between T and Y to provide a
biased estimate of the causal effect. For illustration purposes, it is helpful to first apply
future-treatment strategies to a treatment-effect estimate that we know strongly suspect to
be biased. Model 2 adds the future treatment (F), to model 1, but does not add any other
covariates. The comparison between models 1 and 2 therefore shows how future-
treatment strategies produce expected answers in a situation of bias. The more realistic
scenario encountered in empirical applications, of course, is that the analyst has already

mean = 12.9 SD  = 2.0

.78  (SE = .07) .76  (SE = .09)

.19

(X)
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attempted to exhaustively adjust for observable differences, reflected in model 3, which
adds all control variables used in Mayer’s original analyses to model 1. In model 4, we
then add a control for the future treatment to model 3 to illustrate the conclusions drawn
from future-treatment strategies in the typical empirical setting without prior knowledge
about the existence and direction of the remaining bias. We contrast the conclusions
drawn based on the control strategy, the Mayer/difference strategy, and our nonparametric
test for hidden bias under various assumptions about the DGPs.

Table 3. Estimating the Causal Effect of Parental Income on Children’s
Years of Education With and Without Future Treatments.

Best-case Scenario

The best-case scenario for future-treatment estimation is given by the DGP in Figure 2.
We recall that this scenario assumes that all confounders of T and Y also affect F and that
all confounders of F and Y also affect T. It also assumes the absence of true state
dependence (no arrow )—that is, changes in parental income during middle
childhood (aged 13–17) have no causal impact on parental income during offspring’s
young adulthood (aged 24–29). Furthermore, it assumes the absence of selection (no
arrow )—that is, children’s years of education do not cause changes in their
parents’ income.

We begin by testing for the absence of unobserved bias in the unadjusted association
between parental income, T, and child’s educational attainment, Y. Model 1 gives this
unadjusted association as  . The test for the absence of unobserved
confounding is implemented by testing the null hypothesis that the T-adjusted regression
coefficient on F is zero, . In model 2, this null hypothesis is safely rejected (

. Hence, we conclude that the naive, unadjusted estimate of model 1 suffers
from unobserved bias, which is plausible.

Now that we have provided evidence for in the existence of bias, we use the control
strategy to reduce it. The control strategy focuses on the F-adjusted coefficient in model 2,

, which is significantly smaller than the unadjusted association
between parental income and child’s educational attainment in model 1 

. By result 2, we know that the control strategy
is strictly bias reducing under the DGP of Figure 2. Thus, we conclude that the F-adjusted
estimate from model 2 is closer to the true treatment effect than the naive estimate without

T → Y

Y → F

= 0.448bYT (p < .001)

= 0bYF.T

p < .001)

= .319 (p < .001)bYT .F

( − = .448− .319 = .129;  p < .001)bYT bYT .F
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F-adjustment of model 1; the naive treatment effect estimated in model 1 is upwardly
biased.

The Mayer/difference method, applied to model 2, estimates the treatment effect as the
difference between the partial coefficients on T and F, 

 This estimate, too, is lower than the naive
estimate of the treatment effect in model 1  and also lower than the control
estimate . Earlier, we showed that the Mayer/difference estimate is
potentially more powerful in reducing bias than the control strategy, but that—unlike the
control strategy—it may also amplify bias.

From the application of the control strategy, we learned that the naive estimate of model 1
is upwardly biased. If the Mayer/difference estimator had yielded a larger estimated
treatment effect than the naive estimate (cf. Figure 4, scenario 1), we would have
concluded that the Mayer/difference strategy amplifies rather than reduces existing bias.
If, by contrast, the Mayer/difference estimator had fallen between the naive and the F-
adjusted estimate of the treatment effect, then, by the argument of Figure 4 (scenario 2),
we would have concluded that the difference strategy is less effective in reducing bias
than the control strategy. In both instances, we would have preferred the control estimate
to the Mayer/difference estimate.

In our application, however, the Mayer/difference estimate moves the naive estimate in the
same direction as, but more strongly than, the control estimate (Figure 4, scenario 3). Yet,
without further assumptions about the strength of the path parameters, we do not know
whether the Mayer/difference estimate is closer to the true causal effect than the control
estimate. The most conservative analyst may therefore prefer the estimate provided by
the control strategy in this empirical application, noting, however, that bias reduction may
be relatively modest unless the effect  is very large.

In some applications, the analyst may have reasonable expectations about the direction
and sign of the effects , a and , d. In our example, an analyst may assume
that parents’ unobserved ambition, U, impacts parental income in the same direction at T
and F, that is, a and d have the same sign. Then, unless the effect , d is much
larger than the effect , a, the analyst should prefer the Mayer/difference estimator
as the strategy to reduce the most bias. In sum, in this application, the decision between
the control and the difference estimator depends on how defensible the analyst’s
additional assumptions about the relative size of the effects  and  are. If the
analyst prefers the Mayer/difference strategy estimates, then one should note that this
estimate is not statistically different from zero . This would cast doubt on the

− = .319   − .274  = .045  (p = .723) .bYT .F bYF.T

( = .448)bYT

( = .319)bYT .F

U → F

U → T U → F

U → F

U → T

U → T U → F
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proposition that an increase in parental income causes an improvement in children’s
educational attainment.

Next, we estimate a treatment effect by controlling for observables (model 3). This
covariate-adjusted model estimates the treatment effect as . This
estimate is much smaller  than the unadjusted association of model 1, which
indicates that the control-strategy estimate of model 2 correctly determined the positive
direction of the bias in the unadjusted analysis of model 1.

Although, in model 3, we control for a number of important control variables, the careful
analyst will still worry about unobserved bias. This worry is addressed in the future-
adjusted model 4. Again, the null hypothesis of no unobserved bias cannot be rejected
since the coefficient on F,  is significantly different from zero ( . The
presence of unobserved bias motivates future-treatment adjustments in order to reduce
bias.

The control estimate of model 4 is smaller than the baseline treatment effect of model 3 (
 vs. ), indicating that controlling for the future treatment

has reduced bias. The correction is modest in size but statistically significant 
. (The correction was greater going from

model 1 to model 2—about twice the size—since the absence of any other control
variables in these models put a greater burden of bias reduction on the future treatment.)
The Mayer/difference estimate for the treatment effect is yet smaller, and even negative,
at , and statistically indistinguishable from zero at

conventional levels of statistical significance.16 As before, absent additional assumptions
about the relative strength of the effects  and , we cannot be certain that the
Mayer/difference estimate is closer to the true treatment effect than the control estimate.

True State Dependence and Selection

When the analyst is not willing to rule out true state dependence and selection, the
interpretation of the estimates presented in Table 3 may or may not change. In our
empirical example, true state dependence, , may be present if parents’ income
growth depends on their baseline income. By result 12, however, even under true state
dependence, the test for the absence of unobserved bias remains valid, as long as
assumptions 2 and 3 hold. The empirical conclusion of the test would thus remain the
same: We would rule out that the treatment-effect estimate is unbiased in all models
shown. With state dependence, however, using the control or Mayer/difference estimator
to reduce this bias in model 1 requires new assumptions about the size of certain path

= .185 (p < .001)bYT .X

(p < .001)

= .202bYF.TX p < .01)

= .118bYT .FX = .185;p < .001bYT .X

( − = .185− .118 = .067;  p < .001)bYT .X bYT .FX

− = −.084  (p = .098)bYT .FX bYF.TX

U → T U → F

T → F
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parameters because now even the control estimator is not strictly bias reducing anymore.
Most importantly, this includes assumptions about confounding itself. For example, we
could assume that the effects  and  are of the same size  and that
confounding is of, at most, moderate size . Second, our choice between the
control and Mayer/difference estimator is dictated by assumptions about the direction and
degree of state dependence. That is, if state dependence is negative or at best weakly
positive, the Mayer/difference estimator is the better choice. However, if state dependence
is moderately  or strongly positive , the control estimator is the better
choice. The stakes involved in making these assumptions are quite high. If they are
wrong, future-treatment strategies may amplify bias (namely, the control estimator if state
dependence is negative and the difference estimator if state dependence is strongly
positive). Existing empirical work on the dynamics of income poverty suggests state
dependence to be positive and large (e.g., Biewen 2009; Cappellari and Jenkins 2004),
which would lead one to prefer the control estimator.

In our empirical example, selection, , would be of concern if, for instance, children’s
decision to forego college enrollment for entry into the labor force causes parents to
reduce their labor supply because they no longer have to pay for children’s college tuition.
While such selection stories may be plausible for certain subgroups of the population, we
are not aware of well-identified estimates of large selection effects. Still, what would
selection imply for future-treatment strategies to detect, reduce, and remove bias?
Unfortunately, the test for the absence of unobserved bias would no longer be valid under
selection (violation of assumption 3). The attractiveness of the difference method is
drastically reduced as its bias-amplification property becomes more pronounced. Analysts
who believe selection to be a concern in this empirical example should refrain from both
an interpretation of the test and of the difference estimator. However, the control estimator
would remain useful because it remains bias reducing if confounding is present and
selection is mild. Thus, the control estimator would remain the preferred estimate.

Conclusion

The problem of unobserved confounding is profound. Most research in the social sciences
is observational and observational studies cannot rule out bias from unobserved
confounding. The direction and especially the size of the bias are often difficult to gauge,
in part because the bias could originate in confounders that are as yet unknown to
science.

U → T U → F (a = d)

(|a| ≤ .5)

(f ≥ 0.37) (f ≥ 0.5)

Y → F
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In this article, we have discussed future values of the treatment variable as a tool for
detecting, reducing, and removing bias from unobserved confounding. Future treatments
have occasionally been used for bias removal in prior research. Here, we have subjected
several easily computed future-treatment strategies to a detailed analysis, introduced a
simple new strategy, and compared the relative strengths and weaknesses of these
estimators to each other and to baseline conventional regression estimates. While we
identify challenges to future-treatment strategies, we do not stop there. To maximize the
usefulness of future-treatment estimators in applied research, we also demonstrate how
additional assumptions about effect sizes can help choose between estimators and inform
their interpretation.

The idea behind future-treatment strategies is intuitive: Any variable that affects the
treatment variable before the outcome likely also affects it after the outcome has been
measured. In other words, future treatments can proxy for unobserved confounders. We
have used this insight directly and proposed controlling for future treatments as a
covariate in a regression (our control estimator). This estimator has the great advantage
of being strictly bias reducing for some linear DGPs.

Analyzing important prior future-treatment strategies, we have noted that Mayer’s (1997)
estimator is not strictly bias reducing even in the best-case scenario and may in fact
amplify conventional OLS bias. The same is true of Gottschalk’s (1996) future-treatment
estimator (Online Appendix A). Nonetheless, Mayer’s estimator holds promise because, in
certain situations, it reduces bias more than the control estimator.

Future-treatment strategies have several advantages over other strategies for dealing with
unobserved confounding. One advantage lies in the ready availability of future-treatment
measures in most panel data. Another is the ease of implementation—including future
treatments as control variables in a conventional regression analysis. In contrast to fixed-
effects estimation, future-treatment strategies to reduce unobserved bias do not require
repeated measures of the outcome nor do they require long panels (three periods suffice;
see also Vaisey and Miles [2017] for a critical discussion of fixed-effects estimation based
on three observation points). Several large social science surveys newly facilitate the
application of the future-treatment strategy. For example, recent waves of the General
Social Survey included three-wave panels (Hout 2017), and the redesigned Survey of
Income and Program Participation includes four-wave panels.

Finally, future-treatment strategies can be used for the dual purpose of detecting and
reducing—sometimes even removing—unobserved confounding. Indeed, we have shown
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that future treatments can detect the presence of bias even when they cannot reduce this
bias.

A limitation shared with all strategies for reducing and removing hidden bias from
unobserved confounding is that causal inference always requires detailed knowledge of
the DGP. Within the confines of linear and homogenous models, we have highlighted two
conditions that pose particular challenges for future-treatment estimators: true state
dependence (when prior treatment causes future treatment) and selection (when the
outcome causes the future treatment). In both scenarios, all future-treatment estimators
may increase or decrease bias in unadjusted OLS estimates. And whereas selection may
be ruled out in many substantive applications, true state dependence often remains a
credible threat. Based on our analytic results, however, we have argued that the control
estimator remains bias reducing for moderate confounding under moderate true state
dependence and is surprisingly robust to selection as well.

Since future-treatment strategies make different demands on the DGP than fixed effects
or instrumental variables estimators (see Online Appendix B), and because future-
treatment measures are widely available in panel data, future-treatment strategies
promise help where other popular strategies may fail.

Authors’ Note

A replication package containing the data and code used for the empirical illustration in
this article is available through the PSID Public Data Extract Repository at
https://www.openicpsr.org/openicpsr/psid (#104060).
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Notes

1. Other examples of research that purposefully subverts the common temporal order
include the correlated random effects model proposed by Chamberlain (1982) as well as
applied contributions that consider a comparison group that only experiences treatment in
the future, such as future incarceration (e.g., Grogger 1995; Porter and King 2014;
Wildeman 2010) or a future network tie (e.g., Kim, Kogut, and Yang 2015).

2. Throughout, we assume large samples in order to focus on identification.

3. Path parameters are often called “path coefficients.” We write “parameter” to denote
true causal effects in the DGP, and we write “coefficient” to denote statistical quantities,
such as regression coefficients, which may or may not equal the desired parameter.

4. Contrary to conventional wisdom, however, standardized regression coefficients in
multivariate models can exceed 1, for example, when multicollinearity is high (Jöreskog
1999).

5. Our formulas apply directly after Y, T, and F have been residualized for other
covariates. One typically assumes that controlling for pretreatment variables reduces bias
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from unobserved confounding. For counterexamples, see Elwert and Winship (2014) and
Steiner and Kim (2016).

6. Additional assumptions embedded in Figure 2 include that (a) all confounders of F and
Y affect T, (b) T does not cause F, (c) Y does not cause F and (d) T and F share no
unobserved common causes that do not also cause Y. We will relax some of these
assumptions below.

7. We pick  for illustration. Results are qualitatively the same for other values of a.

8. The first two equations are collinear if past and future values of the treatment are very
similar, that is,  approaches 1. As a increases, the denominator of Mayer’s estimator,

, shrinks toward zero. Consequently, standard errors will increase with the
magnitude of a.

9. When , the three observable covariances between T, Y, and U, produce three
equations with four unknowns: (1) , (2) , and (3) ,
which cannot be solved uniquely for b. Mayer (1997:178) proposes an empirical
adjustment.

10. True state dependence is also a central challenge in the literature on dynamic
treatment effects (Robins 1994; Wodtke and Almirall 2017).

11. Negative state dependence can occur when treatment depletes some fixed stock. For
example, if insurance pays only for a limited number of therapy visits, then increasing
early visits, T, may decrease later visits, F. We thank an anonymous reviewer for this
suggestion.

12. Judging the equality of  in Figure 2 is easier because the structure of the DGP
provides that equality of the standardized path parameters corresponds to equality of the
parameters on their natural scale.

13.  Figure 7 presents an example of postoutcome endogenous selection bias (Elwert
and Winship 2014). Y is a collider variable on the path , and F is a
descendant of Y. Conditioning on a descendant of a collider induces an association
between the collider’s immediate causes, that is, between T and U. Hence, conditioning
on F induces a noncausal association between T and Y via U, which is the bias in the F-
adjusted analysis.

14. When the control estimator increases bias, it does so negligibly.

a = .4

a = d

1− a2

a ≠ d

= b+ acσYT = abd+ cdσYF = adσTF

a = d

T → Y ← U
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15.  Mayer (1997) informally suggested an endogeneity test involving future treatments
for the linear DGP of Figure 2. Here, we generalize the test nonparametrically beyond
linear models and causally beyond the DGP of Figure 2.

16. While we successfully replicate Mayer’s main results, our result using the
Mayer/difference estimator is quite different. Mayer’s analyses suggest a quite modest
drop from 0.186 in model 3 to 0.168 in model 4 Mayer 1997. Ours show a much larger
drop from 0.185 to a statistically insignificant estimate of −0.084. The conclusions that
may be drawn from our estimate—no evidence for a causal relationship between parental
income and children’s educational attainment—are in fact more supportive of Mayer’s
general conclusions. http://proceedings.mlr.press/v9
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