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Abstract

The U.S. National Science and Mathematics Access to

Retain Talent (SMART) Grant program provided up to

$8000 to high-achieving, low-income undergraduates

majoring in STEM fields. We evaluate the effects of

this financial incentive on college graduates' major

fields and subsequent STEM workforce retention

using nationally-representative survey data and a

difference-in-differences quasi-experimental approach.

The SMART Grant program significantly increased

the probability that first-generation college graduates

majored in STEM, by about 7 percentage points. How-

ever, this increase is almost entirely offset by affected

STEM graduates' significantly lower STEM workforce

retention. These program effects also appear to be con-

centrated among students whose parents had some col-

lege experience rather than those who were first in

their families to attend college.
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1 | INTRODUCTION

Policymakers in the United States have sought to increase the number and diversity of gradu-
ates with degrees in science, technology, engineering, and mathematics (STEM) fields, to main-
tain national competitiveness and economic growth (U.S. House of Representatives, 2010;
National Science Board, 2010). In principle, following the pipeline analogy for STEM education
and workforce training, a supply-side subsidy that increases the number of STEM graduates
should also increase the size of the STEM workforce. In practice, the influence of financial
incentives in higher education decision-making is complex, with heterogeneous effects across
demographic groups. Some undergraduates might respond to financial incentives by changing
their major to a STEM field. More likely, these incentives would simply cause intended STEM
majors to persist in STEM instead of switching into non-STEM fields. In any case, it is unclear
whether such financially-incentivized STEM majors would enter STEM occupations at the same
rate after graduation as their perhaps more intrinsically-motivated classmates.

This paper evaluates the impact of the U.S. Department of Education's Science and Mathe-
matics Access to Retain Talent (SMART) Grant program, which provided Pell Grant-eligible
undergraduates up to $2000 per semester for their junior and senior years, conditional on their
maintaining a 3.0 GPA and majoring in an eligible field. We first demonstrate the impacts of
the program on the probability that first-generation college graduates majored in a STEM field,
then provide novel evidence of changes in affected STEM graduates' probability of working in
STEM occupations.

To date, studies of the effectiveness of the SMART Grant program have found mixed results.
Both Evans (2017) and Denning and Turley (2017) employ regression discontinuity
(RD) designs using university administrative data. For Ohio's public university system, Evans
(2017) finds no significant impact of the SMART Grant program on undergraduates' probability
of selecting a SMART-Grant-eligible STEM major at the beginning of their junior year, even
among the undergraduates who said at initial enrollment that they intended to major in STEM
fields. For public universities in Texas, Denning and Turley (2017) do find a small but signifi-
cant 3.08 percentage point (p < .05) increase in juniors' probability of majoring in SMART-
eligible STEM fields, but no overall impact on students' probability of graduating with a
SMART-eligible degree. On the other hand, for the one private institution that Denning and
Turley (2017) study—Brigham Young University—the authors find a 10.2 percentage point
increase in STEM majors, and a “marginally significant” increase of 6.6 percentage points on
SMART-eligible degree completions.

These mixed results raise the questions: Why are students' responses different across these
universities, and what can we conclude about the overall impact of this national policy, given
these disparate local outcomes?

This paper extends the existing literature in four important ways. First, we examine national
data rather than individual institutions' data to evaluate the SMART Grant program's effect on
the probability that college graduates majored in a STEM field. Second, we address the pro-
gram's longer-term employment outcomes. Specifically, we examine whether students thus
incentivized to major in STEM fields are equally likely to enter and remain in the STEM work-
force after graduation. Since broadening STEM workforce participation was the policy's ulti-
mate goal, this gap in the extant literature is important to remedy. Third, we employ a different
identification strategy than the prior literature, allowing for spillover effects of the program on
major choices among students who might reasonably have expected to be eligible, even if they
did not ultimately receive a SMART Grant. Finally, we focus on the program's impact among
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first-generation college graduates, to better evaluate the program's impact within the demo-
graphic groups that policymakers arguably intended to treat. The Great Recession changed the
demographic composition of Pell Grant-eligible students while the SMART Grant program was
in effect. Compared to Pell-eligible students in the pre-policy period, students who received
SMART Grants tended to be from higher-income families with higher parental educational
attainment. Thus, measuring the effects of the program among all students who were eligible
for Pell Grants during this period may not provide representative estimates of the effects for the
underrepresented populations that policymakers intended to treat.

We find that first-generation college graduates who received grant support were 7 percentage
points more likely to have majored in STEM fields while the SMART Grant program was in
effect. This increase is concentrated among first-generation college graduates who had at least
one parent with some college experience, rather than among those who were first in their fami-
lies to attend college. However, this increase is almost entirely offset by the affected STEM grad-
uates' significantly lower STEM workforce retention.

The remainder of this paper proceeds as follows: Section 2 provides background on the
SMART Grant program and further discusses the prior literature and evidence; Section 3
describes our data source, key variables, and controls; Section 4 explains our empirical strategy
and presents evidence supporting the validity of the difference-in-difference model's identifying
assumptions; Section 5 presents our results including sensitivity and robustness checks; and
Section 6 concludes with a discussion of our results, limitations, and their broader policy
implications.

2 | BACKGROUND AND PRIOR LITERATURE

The U.S. Department of Education's SMART Grant program ran from Fall 2006 through Sum-
mer 2011, providing eligible undergraduate students with up to $2000 per semester, up to a
maximum of $8000 in total. Eligibility requirements evolved somewhat over time, but the core
requirements were: (a) U.S. citizenship, (b) Pell Grant eligibility, (c) having declared a major in
a designated STEM field or a critical foreign language, (d) full-time enrollment, (e) at least 3.0
cumulative GPA, (f) junior or senior standing, and (g) no prior bachelor's degree.

For a student to be designated Pell Grant eligible, they must first have chosen to apply for
financial aid using the Free Application for Federal Student Aid (FAFSA). These students typi-
cally come from lower-income families. For example, throughout the SMART Grant program's
term, Pell-eligible dependent students' median family income was under $30,000. In academic
year (AY) 2006–07, a student whose expected family contribution (EFC) based on FAFSA infor-
mation was $4050 or lower would have received a Pell Grant of up to $4050 to offset their cost
of attendance (U.S. Department of Education, 2008). Unfortunately, completing the FAFSA
itself can be a considerable barrier, especially for dependent students who are first in their fami-
lies to attend college (Bettinger et al., 2012; Dynarski & Scott-Clayton, 2006).

Relatedly, one advantage of the SMART Grant program's implementation was that students
did not need to apply separately or otherwise opt-in. Any eligible student would receive the
SMART award automatically in the semester(s) they were eligible, conditional on the require-
ments listed above. If students were unaware of the program before (or even after) receiving the
benefit, the SMART Grant program would not have influenced their major choice per
se. Instead, any real effects of the program we observe would be due to its subsidizing students'
full-time enrollment, perhaps reducing students' need for outside work per Carruthers and
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Ozek (2016). Thus, the program's main effect could be an increase in STEM-interested students'
persistence in STEM majors and their likelihood of completing their bachelor's degrees.

Supporting this increased-persistence effect, Choy et al. (2010) find almost 10 percentage
points higher persistence from junior to senior year for SMART Grant recipients versus other
Pell Grant recipients (78% vs. 69%) in the early years of the program. Recent studies of other
need-based scholarship programs without degree-field restrictions also support a possible STEM
persistence effect. For example, Anderson et al. (2020) observe a modest increase in STEM
degree completions and a reduction in time-to-degree for students in the private, need-based
Wisconsin Scholars grant program. In addition, Castleman et al. (2018) demonstrate that
Florida's earlier need-based grant program substantially increased eligible students' credit hours
in STEM fields, despite that grant program having no explicit STEM major eligibility restriction.
On the other hand, like Anderson et al. (2020), Sjoquist and Winters (2015b) find no evidence
that state merit scholarships—awards with no major or income restrictions but with some mini-
mum GPA requirement—increase bachelor's degree completions, overall. These latter results
suggest we should anticipate that the SMART Grant program might have had little effect on
graduation rates, instead resulting in a higher share of college graduates who completed STEM
coursework and STEM majors. If this is the case, the full effects of the SMART Grant program
may be adequately captured by estimating the change in the probability that a college graduate
majored in STEM.

Beyond the persistence effects described above, it is not clear a priori whether the SMART
Grant program should have substantially changed otherwise-eligible students' major declara-
tions. Students from lower-income and first-generation-to-college families are more likely to
enter college with the intent to major in pre-professional fields like engineering that they expect
will lead to higher-earning, stable jobs after graduation (Trejo, 2016). On the other hand, if
these students attended lower-performing high schools, they may be inadequately prepared for
college-level math and science courses when they arrive on campus. Poor performance in the
initial STEM gateway courses can be especially discouraging to first-generation, female, and
racial or ethnic minority students, for various reasons including stereotype vulnerability
(Astorne-Figari & Speer, 2019; Ost, 2010). Furthermore, at many institutions, the grade distribu-
tions in STEM courses—particularly in the 100- and 200-level gateway classes—are often sub-
stantially lower than for humanities and less-quantitative social science courses (Ahn
et al., 2019; Rask, 2010). Since state and institution-based merit scholarships typically require
students to maintain some minimum GPA but carry no major field restrictions, financially vul-
nerable students concerned with losing their other scholarship support may be more likely to
switch out of STEM fields, consistent with Sjoquist and Winters' (2015a) finding.

From a methodological perspective, focusing solely on outcomes among students who
appear to be eligible for SMART Grant awards based on their family income and cumulative
undergraduate GPA is insufficient to assess the program's full and intended impacts. For exam-
ple, both prior studies of the SMART Grant's impact mentioned above use the EFC as the run-
ning variable in an RD design, which necessarily narrows their studies' analytic window to
students from families with incomes near the cutoff, and well above the median for Pell-eligible
dependent students overall (Denning & Turley, 2017; Evans, 2017). In addition, Pell-eligible stu-
dents are disproportionately female, historically underrepresented racial/ethnic minorities, and
first-generation college students. As such, these are the demographic groups that policymakers
arguably intended the SMART Grant program to treat. However, during the Great Recession
(which occurred while the SMART Grant program was in effect), the demographic composition
of Pell-eligible students substantially changed. In AY 2007–08, roughly 1 in 4 (27.6%) bachelor's
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degree-seeking undergraduates were Pell-eligible, but this share rose to 40% after the Great
Recession (Ifill & Hufford, 2015). Many of these newly Pell-eligible students were continuing-
generation students from families likely to have greater “college knowledge,” including the
ability to identify and avail themselves of new funding opportunities. Including students who
experienced only temporary family income shocks in the “treated” group thus may misrepre-
sent the effects of the program for the population that policymakers intended to treat.

Identifying treated and control groups based on students' cumulative GPA is similarly
fraught. On the one hand, students who can maintain a 3.0 in non-STEM courses may not be
able to maintain a 3.0 in STEM coursework, so including these near-eligible students in the
treated group could contribute to measurement error. At the same time—as any teacher or
advisor of undergraduates is well aware!—undergraduates cannot perfectly forecast their future
course performance. Entering students may be overly optimistic about their ability to maintain
a 3.0 in their junior and senior years, and thus might have been encouraged by the SMART
Grant program to pursue STEM coursework, even if they ultimately end up below the GPA cut-
off in their junior or senior year. For example, over 1 in 5 Pell Grant recipients who received
SMART awards in their third year no longer met the eligibility requirements for a SMART
Grant award in their fourth year, for reasons including not meeting the GPA requirement,
dropping below full-time status, changing their major to an ineligible one, or not taking at least
one course fulfilling the requirements of their major (Choy et al., 2011).

To address the limitations noted above, we take an intent-to-treat perspective that focuses
on program effects among all first-generation college graduates who received grant or scholar-
ship support. As we show in the next section, these students closely resemble the original Pell-
eligible students on gender, institutional control, historically underrepresented racial/ethnic
minority (URM) share, and STEM degree completions.

3 | DATA

We use data from the 2015 National Survey of College Graduates (NSCG). The NSCG is a
nationally-representative survey of U.S. residents under age 76 who hold bachelor's or higher
degrees, conducted for the National Science Foundation by the U.S. Census Bureau. In earlier
years, the NSCG sampling frame focused on those who either (a) worked in STEM occupations,
or (b) held a bachelor's or higher degree in a STEM or STEM-related field. Since 2010, however,
each round of the NSCG adds new respondents with bachelor's or higher degrees drawn from
the previous year's American Community Survey, thus providing a more representative sample
of the U.S. resident college-educated workforce.

The NSCG data include detailed demographic and educational information for each respon-
dent, including the type of institution they attended, their major(s), and their high school and
college graduation years. In addition, since 2015, the NSCG has asked a series of detailed,
binary (yes/no) questions regarding the respondent's sources of financial support while in
school, and whether they attended community college en route to earning their bachelor's
degree. The 2015 NSCG also captures cumulative student debt load at graduation, which allows
us to descriptively compare whether SMART-eligible students who majored in STEM benefitted
from reduced debt load. Finally, the NSCG includes a series of questions asking respondents to
evaluate the relative importance of various job characteristics, including opportunities for
advancement, job security, fringe benefits, geographic location, level of responsibility, degree of
independence, intellectual challenge, and contribution to society. The question posed is, “When
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thinking about a job, how important is each of the following factors to you?” Because personal
preferences and attitudes correlate with preferences over fields of study as well as occupations
(Burn & Martell, 2020; Chen & Simpson, 2015; Humburg, 2017), we include indicators for
extreme responses (i.e., “Very Important” or “Not Important at All”) to each of these questions
as covariates in our final variants of the model predicting STEM occupations.

3.1 | Analytic sample

We restrict the NSCG sample in several ways before conducting our analysis. First, because stu-
dents needed to be enrolled at U.S. colleges or universities to be eligible for SMART Grants, we
exclude respondents who earned their bachelor's degrees abroad or for whom institution classi-
fication information (Carnegie classification, and public or private control) is missing. Second,
for several reasons including NSCG data limitations, the program's evolving eligibility require-
ments, and assuring validity of the difference-in-difference model's identifying assumptions, we
include only native U.S. citizens in our sample. The NSCG does not ask naturalized
U.S. citizens in what year they became citizens or legal permanent residents, so we cannot reli-
ably infer whether these respondents were already citizens while enrolled in their bachelor's
degree program. In addition, in the fourth and final years of the program, AY2009-10 and
AY2010-11, eligibility was expanded to include legal permanent residents. This compositional
change in the treated population (like the change in Pell-eligible students' backgrounds during
the Great Recession) raises concern about validity of the difference-in-difference identification
strategy if we include immigrants in the analysis. Specifically, individuals who immigrated to
the U.S. as children may differ from native U.S. citizens on a variety of other important but
unobservable characteristics that affect their probability of STEM degree completion and STEM
workforce participation, such as hyper-selectivity and parental academic support or expecta-
tions (Thomas & Lonobile, 2021; Tran et al., 2019).

Respondents would generally only be eligible for SMART Grant awards if they were third-
or fourth-year students while the program was in effect.1 Because the NSCG data do not include
the student's date of first enrollment in college, we impute time-period eligibility based on the
respondent's high school and college graduation years. Benchmarking with the 2008 National
Postsecondary Student Aid Study (NPSAS) data, we find that almost 80% of Pell-eligible gradu-
ating seniors who received SMART Grant awards in the previous academic year were under age
25. Furthermore, 96% of Pell-eligible graduating seniors under age 25 who had received SMART
Grant awards in the previous academic year graduated from high school three to 6 years earlier.
Similarly, in our NSCG data, 96.5% of graduates in the analytic sample described above gradu-
ated college three to 6 years after graduating from high school. So, to ensure greatest compara-
bility between the treated and control groups, we further restrict our analytic sample to
respondents who were under age 25 when they graduated from college, and who graduated
high school three to 6 years prior to graduating from college. We also exclude a small number
of respondents whose reported high school graduation year was less than 3 years prior to their
reported college graduation year, including those with a high school graduation year later than
their college graduation year, as these discrepancies raised concerns about data accuracy. The
SMART Grant program ended Spring 2011, so students graduating after 2011 would not have

1Students in eligible five-year degree programs, for example in some fields of engineering, could also receive a SMART
Grant award for the fifth year of their program.
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benefitted from the program in their final year (and may not have received any support at all, if
they were not yet juniors in AY2010-11). To avoid “forbidden comparisons” due to first-
generation grant recipients switching out of treatment after the program ended, we exclude
respondents who graduated after 2011.

Finally, as noted above, the SMART Grant program also supported “critical foreign lan-
guage” majors, nominally for studying languages rarely studied by U.S. students. In fact, by the
final year of the program, all foreign language and literature majors were eligible for SMART
awards. Since our intent in this paper is explicitly to evaluate the impact of the SMART Grant
program on STEM degrees and STEM workforce retention, to avoid confounding we exclude
about 120 remaining graduates from the sample whose only major was in foreign languages
and literatures.

3.2 | Outcome variables

We seek to identify whether the SMART Grant program successfully encouraged first-
generation college students to pursue bachelor's degrees (and then choose jobs) in natural sci-
ences, math and computational sciences, or engineering fields. Our first outcome variable is
thus a binary indicator that takes on value 1 if the respondent majored in a SMART Grant-
eligible STEM field, and zero otherwise. To identify whether each respondent's bachelor's
degree field is SMART-eligible, we crosswalked each numeric major code in the NSCG data to
its corresponding U.S. Department of Education Classification of Instructional Programs (CIP)
code, then compared those CIP codes against those in the original list of SMART-eligible STEM
fields. Appendix A lists the SMART-eligible STEM majors coded in our dataset.

Our second outcome variable is a binary indicator for employment in a STEM occupation.
Our STEM occupations list follows the job titles provided in the U.S. Bureau of Labor Statistics'
(BLS’) Detailed 2018 SOC Occupations Included in STEM. In some cases, the NSCG defines
occupation codes more narrowly than in the Standard Occupation Classification (SOC) codes.
In other cases, where NSCG codes cover multiple SOCs, we use other NSCG variables to disam-
biguate the NSCG codes and identify STEM workers. For example, the BLS STEM SOCs identify
medical scientists as STEM workers but exclude health practitioners from the primary STEM
fields. NSCG variables capturing the respondent's primary work activities allow us to disambig-
uate respondents who self-identify as physicians, but whose primary work activities include
basic or applied medical sciences research. Similarly, while the BLS STEM SOCs include for-
esters, in the NSCG data this occupation is grouped with farmers and fishers. To address this
discrepancy, we code respondents in the NSCG “Farmers, Foresters, and Fishermen” occupa-
tion group as STEM workers only if the respondent also indicates that their job requires the
“technical expertise of a bachelor's degree or higher in engineering, computer science, math, or
the natural sciences,” in addition to their naming basic or applied research among their primary
work activities.

We evaluate the sensitivity of our results to this STEM occupation definition using several
alternative outcome variables, for example: including individuals who, at the time of the survey,
were full-time graduate students earning degrees in STEM fields; including respondents
enrolled in medical school or employed in medical or allied health occupations; and including
quantitative social scientists, secondary school teachers, and others who hold STEM degrees
and indicate their job required bachelor's-level STEM expertise per above, while excluding a
small subset of computing and information technology workers like web content developers
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and help desk workers who assert their work does not require such technical expertise, and
who furthermore have earned no STEM degree. Since per Choy et al. (2011) the life sciences
were the most common major fields for SMART Grant awards and many life sciences graduates
pursue health-related work after graduation, an increase in these majors would not necessarily
translate to an increase in STEM workforce participation per the BLS definition.

3.3 | Explanatory variables

For this analysis, we identify respondents in the intended-treated demographic group by com-
bining information on parents' highest educational attainment and the respondent's sources of
financial support for college. Because natal family income, Pell Grant eligibility, and cumulative
GPA are not in the NSCG data, we cannot directly identify graduates who received SMART
Grant awards. Instead, we cast a wider net, evaluating whether the probability of majoring in a
STEM field and working in a STEM occupation changed among first-generation graduates who
received grant support, overall. Though first-generation status is an imperfect proxy for Pell
Grant eligibility, low income and first-generation status do substantially overlap (Redford &
Hoyer, 2017). For example, using data from the 2008 National Postsecondary Student Aid Study
(NPSAS), we find that 78% of native U.S. citizen Pell Grant recipients are first-generation col-
lege students. Furthermore, among native U.S. citizen first-generation grant recipients in the
2008 NPSAS, almost two-thirds (65%) had Pell Grants. In contrast, less than 15% of continuing-
generation students received Pell Grant awards.

The NSCG asks separately for the highest educational attainment of the respondent's father
or male guardian and their mother or female guardian. For both questions, one option is “not
applicable.” We define our first-generation indicator to take on value 1 if the respondent has no
parent that is known to have earned a bachelor's or higher degree, and 0 if at least one parent is
noted to have earned a bachelor's or higher degree. Following prior literature, we refer to this
latter group as “continuing-generation” graduates. For some models, we further divide first-
generation college graduates into two groups: first-to-attend, and first-to-complete. We classify
respondents as first-to-attend if the highest educational attainment reported for their parents or
guardians is a high school diploma or less than high school. We classify respondents as first-to-
complete if the highest educational attainment reported for their parents or guardians is “some
college, vocational, or trade school (including 2-year degrees).”

We also require that the individual report using “tuition waivers, fellowships, grants, or
scholarships” to finance their education, as those who did not receive such support could not
have received a SMART Grant. Using the 2008 NPSAS data, we confirmed that this
combination—first generation college graduate and grant recipient—is highly predictive of Pell
Grant eligibility. For greatest comparability, we first restricted the 2008 NPSAS sample to native
U.S. citizen graduating seniors under age 24 as of December 31, 2007. Then, we estimated a
logistic regression model predicting receipt of a Pell Grant solely as a function of binary indica-
tors for first-generation status and total grants of $400 or more. The test statistic for this model's
overall fit is 58,555 (p < .0001). Furthermore, controlling for having received any grants totaling
$400 or more, the odds of receiving a Pell Grant are 3.8 times higher (p < .0001) for first-
generation college students than for continuing-generation students.

Because the NSCG data do not include the student's date of first enrollment in college, we
impute each respondent's eligibility cohort based on their high school and college graduation
years. For example, respondents who graduated high school in 2004 and entered college
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immediately the following fall would have been third-year students in Fall 2006, when the
SMART program began. If those same respondents graduated college in Spring 2008 or later,
they would have been exposed to the program in both their third and fourth years.

There is good reason to expect heterogeneity in the program's impacts for respondents who
were in their fourth year (or in their final year, if graduating within 3 years) when it came into
effect, compared to those who could have received support in both their third and fourth years.
We therefore split the treated cohort into two groups: partially-exposed respondents who were
already fourth-year students or in their third but final year in AY2006-07 when the program
began, and fully-exposed respondents who could have received support in both their third and
their fourth years. These cohort indicators are distinct from the graduation-year calendar-time
fixed effects, which we also include in our model.

Figure 1 compares race and gender, institutional control, and proportion majoring in
SMART-eligible STEM fields for native U.S. citizen Pell Grant recipients from the 2008 NPSAS
who were graduating seniors in AY2007-08 and under age 24 as of December 31, 2007, versus
first-generation grant recipients from our 2015 NSCG analytic sample who graduated while the
SMART Grant program was in effect. We observe that the shares of female students and URM
males, the shares who attended public institutions, and the shares graduating with SMART-
eligible STEM majors closely match across these two datasets. However, we do note a discrep-
ancy between the two datasets for URM females. This discrepancy appears to be driven by the
relatively lower representation of Black women in our 2015 NSCG analytic sample versus the
2008 NPSAS.

FIGURE 1 Comparison of selected characteristics of Pell Grant recipients in the 2008 NPSAS with first-

generation grant recipients in the 2015 NSCG. This Figure benchmarks shares of historically underrepresented

minority (URM) males and females, all females, SMART Grant eligible STEM majors, and those attending public

institutions, for native U.S. citizen respondents under age 25 at graduation. The navy bar on the left of each pair

depicts the share among Pell Grant recipients who were graduating seniors in AY2007-08, from the 2008 NPSAS

data, estimated using the U.S. Department of Education National Center for Education Statistics' PowerStats

DataLab. The light blue bar on the right of each pair depicts the share among first-generation grant recipients in

our 2015 NSCG analytic sample who graduated while the SMART Grant program was in full effect, 2008–2011.
The gray cap markers indicate the 95% confidence interval for each estimate. Survey weights are applied in both

cases to retrieve nationally-representative estimates. [Color figure can be viewed at wileyonlinelibrary.com]
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3.4 | Descriptive analysis

As a preliminary test of the difference-in-difference model's parallel-trends assumption, we
begin by using just the pre-policy subset of our sample—respondents who graduated between
2002 and 2006—to estimate a probit model predicting our SMART Grant eligible STEM major
outcome variable. For this descriptive exercise, we include only our binary indicators for first-
generation status, grant receipt, and their interaction, and a separate time trend for each of the
four groups: first-generation grant recipients, first-generation non-grant recipients, continuing-
generation grant recipients, and continuing-generation non-grant recipients. We then estimate
the derivatives with respect to graduation year separately for each group. Finally, we test for sig-
nificant differences between our “intended-eligible” first-generation grant recipients' pre-policy
trend and the trends for each of the other three groups. For first-generation non-grant recipients
and continuing-generation grant recipients, we find no significant difference in the pre-policy
time trends: �.002, p = .73, and �.005, p = .527, respectively. However, for continuing-
generation non-grant recipients, the difference is both larger in magnitude and highly signifi-
cant: �.011, p = .004. Due to this descriptive evidence of violation of the parallel-trends
assumption, we exclude continuing-generation non-grant recipients from our analytic sample.

Table 1 presents descriptive statistics for variables of interest from the NSCG, including a com-
parison of the full analytic sample with those identified as part of the “intended-eligible” demo-
graphic based on their first-generation status and receipt of grant support and the control group,
both before and after the program's implementation. These statistics reveal three key points. First,
among the intended-eligibles, demographic and educational history characteristics are quite similar
before and after the SMART Grant program came into effect. The only statistically significant differ-
ences (p < .10) we observe over time are an increase in the share of Black, non-Hispanic males from
1.6% to 6.6%, and a decrease in the share of multiracial and other URM females from 2.6% to 0.5%.
Evidence also suggests that the share of STEM graduates employed in STEM occupations after grad-
uation fell by almost 18% (that is, by roughly 10 percentage points, p = .136), and the share of His-
panic males of Mexican origin may have increased (point estimates 1.5% vs. 3.6%, p = .146).
Cumulative student debt load at graduation significantly increased for both the intended-eligible
and control populations, by roughly 26%–29% for both groups, with no significant difference over
time across the two groups in their growth in debt load.

Both the intended-eligible and control group's shares of first-to-complete graduates fell, but this
difference over time was only statistically significant (p < .05) in the control group. As with cumula-
tive debt load changes, we find no significant difference in this change over time across groups. That
is, the time-variation in both debt load and first-to-complete status appears to be group-invariant.

Although the decreases in shares of Black, non-Hispanic males and Hispanic males of Mexi-
can origin over time in the control group are not statistically significant, juxtaposed with the
apparent increases in these groups' respective shares among intended-eligibles we find a signifi-
cant difference in the differences over time for each of these demographic groups. We observe a
similar significant difference for multiracial and other URM females, where shares appear to
increase in the control group, but significantly decrease in the intended-eligible group. In addi-
tion, the share of the control group that attended community college before completing their
bachelor's degree fell from 19.0% to 8.5% (p < .01), even while the share of intended-eligibles
attending community college appeared to increase. None of the differences in share attending
public universities is statistically significant at conventional levels. Finally, while the control
group's probability of employment in a STEM occupation conditional on earning a STEM
degree remained roughly constant over time (point estimate increased by less than 10%, from
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44.5 to 48.8 percentage points), this juxtaposed with the apparent decline for intended-eligibles
noted above yields a statistically significant (p < .10) relative decline in STEM workforce reten-
tion among intended-eligibles.

Figure 2 compares the shares of graduates by first-generation status who majored in a
SMART-eligible STEM field versus in a non-STEM field, by exposure cohort. In the pre-SMART
period, the shares of first-to-attend and first-to-complete students are significantly higher
(p < .01) among non-STEM graduates than among STEM graduates. For graduates with only
1 year of exposure to the SMART Grant program, the share of STEM graduates who were first-
to-attend increased, suggesting the windfall gain may have increased STEM persistence for this
cohort. For the later cohort, however, we see no evidence of a difference in the shares of STEM
and non-STEM graduates who were first-to-attend, compared to the pre-SMART period. The
share of non-STEM graduates who were first-to-complete remained constant at 35% for the first
cohort in the program. The first-to-complete group's smaller share among STEM graduates in
this cohort is due to the relatively larger number of first-to-attend graduates in this cohort who
completed their degrees. Finally, recall that Table 1 showed a statistically significant decrease
overall in the share of graduates who were first-to-complete when the SMART Grant program
was in full effect. Thus, while the share of STEM majors who were first-to-complete college
graduates appears unchanged relative to the pre-policy period, the share of first-to-complete col-
lege graduates who majored in STEM fields increased.

Finally, we must note some key limitations of the NSCG data. These data provide a rich
source for understanding college graduates' labor market choices. However, these data do not
include students' cumulative GPA, SAT/ACT scores, or any other direct measure of academic
performance in college or earlier. Moreover, even in the previous years of NSCG data available
under restricted-use license, detailed geographic information including the respondent's high
school state and time-of-survey state are suppressed. In the 2015 NSCG, our only geographic
indicator is Census region. Thus, while we can and do include region-by-year fixed effects to
control for regional and national economic forces, we cannot control for state or local

FIGURE 2 Distribution of first-to-attend, first-to-complete, and continuing-generation students by degree

and exposure to SMART Grant program. This Figure shows, for each cohort in the analytic sample, the shares of

SMART-eligible STEM majors and non-STEM majors who were, respectively, first-to-attend, first-to-complete, or

continuing-generation. Note that continuing-generation graduates are only included in the analytic sample if

they received grant support. [Color figure can be viewed at wileyonlinelibrary.com]
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differences in economic conditions or states' concurrent merit scholarship programs. Nonethe-
less, because this is a nationally representative sample, any changes over time in state-level
scholarship programs would only bias our impact of the effect if the program changes
(a) coincide with the SMART Grant program's dates, and (b) occurred across multiple states,
particularly those with disproportionately larger populations of first-generation college stu-
dents. In fact, the strong state merit programs that existed during our study period were already
well-established prior to the SMART Grant program's beginning (Sjoquist & Winters, 2015b).

4 | IDENTIFICATION AND EMPIRICAL STRATEGY

To evaluate the effect of the SMART Grant program, we employ probit estimation and a
difference-in-difference modeling approach. This section introduces our empirical model and
provides evidence to support the difference-in-difference model's identifying assumptions.

4.1 | Econometric model

We estimate:

Pr STEMi ¼ 1ð Þ¼ Φ α0þα1Grantþφf FirstGenf þδcSMARTcþθcGrant�SMARTc

�

þ ρf ,cFirstGenf �Grant�SMARTcþ κk,tþ τr,tþγgþλgtþXiβþuiÞ
ð1Þ

In this equation, STEM equals 1 if individual i majored in a SMART-eligible STEM field, or
alternatively—for our second outcome studied—if the graduate is working in a STEM occupa-
tion, and 0 otherwise. Grant is a binary indicator that equals 1 if the individual reports financ-
ing their undergraduate education, wholly or in part, with a grant or scholarship. SMART is a
two-element vector, where c = 1 indicates the individual is in the cohort for whom the SMART
program was in effect in both their third and fourth years (“SMART Program in Full Effect”),
and c = 2 indicates the individual's cohort was partially treated, with the SMART Program in
effect in only their fourth/senior year. FirstGenf is either a binary indicator variable for first-
generation college graduate, or a vector with two dummy variables representing, respectively,
first-to-attend (f = 1) and first-to-complete (f = 2) status. The Grant �SMARTc interactions
allow for the possibility that all students who received grants might have had different rates of
STEM degree completion while the SMART Grant program was in effect, for reasons unrelated
to the program. The main policy effect is then given by ρf ,c, the coefficient or coefficients on the
three-term interaction of first-generation status, grant receipt, and cohort. Note that because
continuing-generation non-grant-recipients are excluded from the sample, we cannot include
an additional interaction term for FirstGenf �Grant when only one first-generation indicator is
included in the model. However, when we split first-generation status into two groups—first-to-
attend and first-to-complete—we do include one additional interaction term to allow for base-
line differences in outcomes among first-generation grant recipients who are first-to-attend ver-
sus those who are first-to-complete.

Graduation year by region fixed effects (shown as the vector τr,t in Equation (1)) control for
historical differences in job market prospects, differences in regional economic opportunities,
and the changing opportunity cost of attending college, for example during the Great Recession.
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The κc,t vector of institution-type-by-year fixed effects controls for the respondent's bachelor's-
degree institution type (as per Carnegie Classification) as a measure of institutional prestige
and research focus, while also accounting for differences in the impacts of the Great Recession
on funding at public versus private institutions.

The γg vector contains indicators for female gender, race and ethnicity (including: Asian
and biracial Asian/white; Black, non-Hispanic; Hispanic, Mexican origin; Hispanic,
non-Mexican origin; Other multiracial/multiethnic or other; and white, non-Hispanic), as well
as their interactions. In models predicting SMART-eligible STEM major, we also include time
trends λgt for each race/ethnicity-by-gender group. These time trends account for possible secu-
lar differences in enrollment trends by gender and race/ethnicity over time, for example differ-
ences in enrollment trends for Black women versus for white non-Hispanic men.

Additional controls (included in X) include a binary indicator for whether the individual
attended community college prior to attending a 4-year institution, and in models predicting
STEM occupation, X also includes indicators for marital status, whether (if married) the respon-
dent's spouse works, presence of a child under age 6 in the home, and interactions of these
three indicators with female gender. Finally, some model variants predicting STEM occupation
include indicators for job-related preferences (as described in section 3), and models predicting
STEM occupation among STEM graduates include STEM major-by-year fixed effects which con-
trol for differences in baseline attrition rates across majors, and differences over time in employ-
ment opportunities across major fields.

4.2 | Validating the difference-in-difference modeling assumptions

As Wing et al. (2018) discuss, for estimates from difference-in-difference models to be valid, two
key assumptions must hold. First, within each group (respectively, the treated group and the
control group), any unmeasured factors besides the treatment that affect the outcome variable
should be time-invariant. If one or both groups experience statistically and practically signifi-
cant changes in composition after the policy goes into effect, we must consider whether that
change in composition may be responsible for the observed changes in outcome. Second, in the
counterfactual case (if no policy change was implemented), both groups' outcomes must share a
common time trend. So, if there is a significant change in composition within a group that could
impact that group's propensity towards majoring in STEM fields—for example, if we see a
higher proportion of male students graduating while the STEM program is in effect—there
should still be no significant difference between groups in that rate of change over time. Thus it
is important to evaluate whether the differences-in-differences we observed in Table 1 are likely
to impact our model's results.

Table 2 explores the relationships between the observed differences in Table 1 and our first
outcome, graduating with a STEM major, before and after the SMART program came into
effect. For example, in Table 1 we see the intended-eligibles' shares of Black, non-Hispanic and
Hispanic of Mexican origin males increased while the SMART grant program was in effect, so
we first investigate whether URM male graduates tend disproportionately to major in STEM
fields. In Table 2, we see that in the pre-policy period, URM male first-generation grant recipi-
ents were about 2.7 times more likely to have majored in STEM than in a non-STEM field.
However, while the SMART grant program was in effect, even while URM males' share among
intended-eligible graduates increased, their probability of graduating with a STEM major
declined to about parity. Thus, any increase we observe in intended-eligibles' STEM majors is
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unlikely to be due to the increasing share of URM male graduates, overall. The other key differ-
ence observed in Table 1—a relative increase in community college attendance among
intended-eligibles while the SMART grant program was in effect—would normally be associ-
ated with lower (rather than higher) probability that a graduate majored in STEM, so
unobserved attributes related to community college attendance also are unlikely to explain any
difference in our outcome variable.

To further test the identifying parallel-trends assumption, we estimated a model allowing
different pre-policy trends in STEM degree completion rates for all groups by Grant and
FirstGenf status, including continuing-generation non-grant recipients. Recognizing concerns
raised by Roth et al. (2022) and others, we first evaluated whether the parallel trends assump-
tion holds without conditioning on any observed covariates. Through this process, we found no
significant differences across groups' pre-trends among respondents graduating before the
SMART Grant program came into effect, except among continuing-generation students who did
not receive grant or scholarship aid. The difference in pre-trends for continuing-generation
non-grant recipients versus first-generation grant recipients, however, was highly significant
(p < .004), and intuitively continuing-generation non-grant recipients are least relevant as a
counterfactual or control. Therefore, we omit continuing-generation grant recipients from the
analyses that follow. With continuing-generation non-grant-recipients excluded, we find no evi-
dence of any pretrend in the sample: a test of joint significance for the groups' trend terms fails
to reject the null (p = .48), and the statistical tests of differences in the trend coefficients for
first-generation grant recipients versus first-generation non-grant recipients and continuing-
generation grant recipients respectively are both very small and statistically insignificant (less
than .003 in absolute value, and p > .44 in both cases).

While the unconditional test above avoids some problems, it may still be underpowered,
especially when the time series is short and there is substantial year-to-year volatility (Roth
et al., 2022; Wing et al., 2018). We therefore also provide graphical evidence to assess the paral-
lel trends assumption conditioning on covariates and to provide a “placebo” test for significant
differences between first-generation grant recipients and the combined control group before the
policy came into effect. Figure 3 shows two event-study plots, each showing the estimated dif-
ference, by graduation year, between first-generation grant recipients and the control group in
their probability of having majored in a SMART-eligible STEM field, controlling for baseline
(pre-policy) differences in the average rates across groups. The estimates depicted in this
Figure are from probit estimation of the full model shown in Equation (1), but instead of
including one or two post-policy indicators (SMARTc) in the model, we interact our treatment
indicators, FirstGenf*Grant, with individual graduation-year fixed effects. The results depicted
in Figure 3 are average marginal effects (with their 90% confidence intervals) for these interac-
tion terms. If first-generation grant recipients and our control group share a common pre-policy
trend, then the non-interacted year fixed effects will be sufficient to describe both groups' year-
on-year changes in the probability of earning a STEM major in the pre-policy period. On the
other hand, if the FirstGenf*Grant-interacted year fixed effects became statistically significant
prior to the policy or demonstrate a clear trend away from zero in the pre-policy period, this
would suggest the parallel-trends assumption does not hold.

For first-to-complete graduates (top panel of Figure 3), we observe little deviation from zero
through 2007, supporting the common-trend assumption. We also observe a strong break in
trend for respondents who graduated in 2008, which includes the first cohort with full 2 years'
exposure to the SMART Grant program. This higher probability of STEM degrees remains
essentially constant through the end of the program in 2011. For graduates who were first-to-
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attend (bottom panel of Figure 3) there is similarly no statistically significant variation prior to
the policy period, and there is also no evidence that first-to-attend grant recipients' probability
of STEM degree trended upward before the policy came into effect. We note that the first-to-
attend grant recipients' estimates are generally much less precise than those for first-to-
complete grant recipients, especially during the pre-policy period, which suggests some caution
should be taken in interpreting results for the first-to-attend group.

5 | RESULTS

Tables 3 and 4 display average marginal effects from probit estimation of the difference-in-
differences models predicting, respectively, STEM degree completion and STEM workforce par-
ticipation. For the latter outcome, we first examine the SMART Grant program's overall impact
on college graduates' STEM workforce participation, then evaluate whether the apparent lack

FIGURE 3 Event study for probability of STEM major, by first-generation status [Color figure can be viewed

at wileyonlinelibrary.com]
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of impact on STEM workforce participation we observe is attributable to higher attrition rates
among STEM graduates exposed to the program. Recognizing the issues described by Ai and
Norton (2003), we use Stata's margins command to obtain correctly calculated average marginal
effects, including for all of the interaction terms.

5.1 | STEM major completion

Table 3 Model 1 reports results for all first-generation grant recipients combined. The SMART
Grant program is associated with a 7 percentage point (p = .014) increase in the probability that
a first-generation grant recipient majored in a STEM field. However, we find no significant
impact overall when the program first came into effect, for graduates who were in their fourth
(or third and final) year. This result is robust to our choice of estimation approach and inclusion
of covariates. Linear regression estimation with the same covariates as in Table 3 column
1 results in a coefficient of .070, that is, 7.0 percentage points (p = .013, see Appendix C). Alter-
native specifications, for example including only year fixed effects and the difference-in-
difference terms or removing the gender-by-race/ethnicity time trends, result in similar and sig-
nificant point estimates (see Appendix B). These checks reassure us that our result is not due to
model overparameterization.

The second column of Table 3 splits first-generation grant recipients into two groups, first-
to-attend and first-to-complete. Here, we estimate that first-to-complete graduates had 8.8 per-
centage points (p < .004) higher probability of completing a STEM degree than would otherwise
be expected, due to the SMART Grant program. However, we observe no significant effect
(p = .97) of the program for students who were first in their family to attend college. As previ-
ously noted, this heterogeneity in response may be attributable to differences in students' “col-
lege knowledge”—students with a parent who attended college, even without graduating, may
be better able to avail themselves of financial aid opportunities.

Finally, given that life sciences were the most popular field for SMART Grant awardees, we
estimated a supplemental multinomial logistic regression predicting graduates' broad field—
computer science or engineering, life sciences, and mathematics or physical sciences—with
non-STEM fields as the reference group. Results from this regression are presented in
Appendix D. In brief, controlling for demographics and other covariates as in Table 3, we find
first-to-complete grant recipients' odds of having majored in life sciences versus non-STEM
fields more than doubled while the SMART Grant program was in full effect, and their odds of
having majored in computer science and engineering fields were 1.5 times higher as well. We
observe no significant change in major choices among first-to-attend college graduates.

5.2 | STEM workforce participation

Table 4 shows results from probit models predicting our second outcome, STEM occupation.
The model specification and covariates are very similar to those in Table 3 column (1), with the
following exceptions: we remove the community college indicator and demographic (race/eth-
nicity-by-gender) time trends, and we include indicators for marital status (and, if married,
whether the respondent's spouse works), as well as an indicator for the presence of a child
under age 6 in the home, and the interactions of each of these with female gender.
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Among respondents in the full analytic sample who are in the labor force or attending grad-
uate school, in Table 4 column 1 we see no evidence that the SMART program increased the
probability that first-generation grant recipients worked in STEM occupations or enrolled in
STEM graduate programs, overall. The model in Table 4 column 2 restricts the sample to
respondents who were employed at the time of the survey and predicts STEM occupation per

TABLE 3 Effects of the SMART Grant program on probability that a graduate majored in SMART-eligible

STEM field

(1) (2)

First-generation 0.0698**

* Grant * SMART program in effect (0.0293)

First-generation: parent w/ some college 0.0883***

* Grant * SMART program in effect (0.0303)

First-generation: first to attend college 0.0014

* Grant * SMART program in effect (0.0455)

First-generation 0.0041

* Grant * SMART program in effect 4th year only (0.0467)

First-generation: parent w/ some college �0.0115

* Grant * SMART program in effect 4th year only (0.0438)

First-generation: First to attend college 0.0054

* Grant * SMART program in effect 4th year only (0.0719)

First-generation �0.0328**

(0.0155)

First-generation: parent w/some college �0.0852**

(0.0357)

First-generation: first to attend college �0.1242***

(0.0337)

Received grant support 0.0656*** 0.0307**

(0.0209) (0.0141)

Graduation year X institution type fixed effects Y Y

Graduation year X geographic region fixed effects Y Y

Demographic characteristics Y Y

Race-ethnicity X gender time trends Y Y

Note: Average marginal effects from survey-weighted probit estimation predicting probability of a college graduate having

majored in a SMART-eligible STEM field. Heteroskedasticity-robust standard errors clustered on first-generation-
statusXgrantXgraduation-year are presented in parentheses below each estimate. Data are from the 2015 National Survey of
College Graduates, with analytic panel restricted to 15,992 U.S. citizens who graduated from college between 2002 and 2011,
who graduated at age 25 or younger, and whose college graduation year was at least 3 years after their high school graduation
year. Sample excludes continuing-generation non-grant recipients. Models also include race/ethnicity-by-gender fixed effects

per demographic groups shown in Table 1 and an indicator for attending community college prior to bachelor's degree
program, indicators for bachelor's institution type (Carnegie Classification and public versus private control) and geographic
region each interacted with graduation year, and separate time trends for each race/ethnicity-by-gender group.
***p < 0.01. **p < 0.05.
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the BLS' definition, and again we find no significant impact of the program overall on gradu-
ates' STEM workforce participation.

Table 4 columns (3)–(6) restrict the sample to respondents who graduated with SMART-
eligible STEM degrees, to examine their occupation choices. These models include major field
by graduation year fixed effects, to account for baseline differences in STEM attrition rates
across major fields and year-to-year differences in the employment opportunities new graduates
faced in each field. As in column 1, the model in column 3 includes individuals in the labor
force or in graduate school, and predicts STEM workforce participation including attending
graduate school in a STEM field. We see that the probability of STEM workforce participation
by this measure fell by 7.5 percentage points (p = .074) in the cohort with 2 years (full) expo-
sure to the program. Restricting the sample and outcome further (as in column 2), in column
4 we find that the SMART Grant program is associated with an 8.9 percentage point decrease
(p = .059) in probability that a STEM major worked in a STEM occupation after graduation.
These results indicate that, on the margin, individuals who were incentivized to complete
STEM majors due to the SMART Grant program were less likely to enter or remain in STEM
occupations after graduation. Thus, the lack of any evidence of the SMART Grant program on
STEM workforce participation we note in the first two models cannot be simply attributed to
lack of power to detect an effect. Rather, graduates in the likely-eligible group seem to have had
lower STEM workforce attachment.

The model in Table 4 column (5) considers one hypothesis to explain this greater attrition
among STEM graduates. If individuals incentivized by the SMART grant program to earn STEM
degrees during this time had job-related preferences inconsistent either with the characteristics
of STEM occupations or the attitudes of STEM occupations' incumbents, accounting for these
differences in preferences should reduce the magnitude of the effect on STEM workforce partic-
ipation. Of these job characteristics, only a few are significant predictors of STEM workforce
participation after conditioning on degree field. All else equal, STEM graduates are more likely
to work in STEM occupations if they view their job's intellectual challenge as very important
(13.5 p.p., p < .0001), and if they view job security or the job's location as unimportant (29.0
p.p., p < .0001, and 31.0 p.p., p < .0001). On the other hand, STEM graduates are much less
likely to work in STEM occupations if they view their job's contribution to society as very
important (�10.6 p.p., p < .0001). However, after including these controls for job-related prefer-
ences, we find the point estimate only grows larger: the SMART Grant program is associated
with a 9.7 percentage point decline (p < .033) in STEM workforce participation among STEM
graduates. Thus, differences in job-related preferences do not present a plausible explanation
for the observed gap in workforce retention, except to the extent that they influence which
STEM major an individual chooses.

This brings us to another possible explanation for the higher attrition we observe: the high
share of SMART grant awards that supported life sciences majors. All else equal, graduates who
majored in computer science and engineering have the highest probability of working in STEM
occupations after graduation: about 3 out of 4 remain in STEM. Similarly, over half of chemistry
and physical sciences graduates remain in STEM. However, only 36%–42% of life sciences grad-
uates (along with graduates in mathematics and statistics) work in STEM occupations after
graduation, and women and URMs have higher propensity than white non-Hispanic males
towards life sciences majors. As Jiang (2021) notes, gendered segregation across STEM majors
and a definition of STEM occupations that excludes health sciences together account for a sig-
nificant share of the gender gap in STEM workforce attrition. However, because our models
predicting STEM occupations among STEM graduates already control for gender, race and
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ethnicity, the graduate's major field, and major-by-graduation-year fixed effects, for this expla-
nation to hold there would need to be a significant increase in the STEM workforce attrition
rate among intended-eligible life sciences majors while the program is in effect, above and
beyond any change in attrition that control-group life sciences majors may have experienced.

To investigate this possibility, the model presented in Table 3 column (6) uses an expanded
outcome variable that includes individuals working in medical and allied health (STEM-H)
occupations. We continue to restrict the sample to respondents who graduated with SMART-
eligible STEM degrees and who are currently employed. Here, we see STEM-H workforce attri-
tion is only 7.1 p.p. (p = .096) for individuals exposed to the full effects of the program. Second,
among individuals who only had an unexpected windfall gain in their fourth year, it appears
the probability of STEM-H workforce participation significantly increased. That is, to the extent
that unexpected grant support in AY 2006–07 increased STEM degree completion in among
first-generation college graduates, these individuals were more likely to proceed into health pro-
fessions than into other STEM occupations. Re-estimating that model allowing different effects
for first-to-attend versus first-to-complete (results in Appendix C), we find positive point esti-
mates for both groups, but the larger and statistically significant impact is among graduates
who were first-to-attend: an 11.6 p.p. (p = .029) increase in probability of STEM-H workforce
participation.

Our final model (results shown in Appendix E) is almost identical to that presented in
Table 4 column (4), except that it allows all of our key terms' coefficients to differ across three
broadly-defined major fields: computer science and engineering, life sciences, or physical sci-
ences and mathematics. Among STEM graduates with majors in life sciences, at baseline we
find that first-generation graduates are more likely than continuing-generation graduates to
work in STEM occupations, by about 13 percentage points (p < .05). However, while the
SMART Grant program was in full effect, the probability of a STEM occupation among first-
generation life sciences graduates fell by 22 percentage points (p < .001). On the other hand,
first-generation grant recipients who majored in computer science or engineering and who
benefitted from a windfall gain in their senior year were significantly more likely to work in
STEM occupations.

5.3 | Sensitivity and robustness checks

To test robustness of the results to our model specification and estimation approach, we began
by re-estimating our original probit models from Table 3, excluding all covariates and including
only the difference-in-difference terms and graduation-year fixed effects. Results for this and
subsequent models described in this section are provided in Appendices B and C. For the base
model, we estimate a 6.1 percentage point (p < .05) increase in probability of having majored in
a STEM field. Broken out by first-to-attend and first-to-complete status, we estimate a 9.6 per-
centage point (p < .001) increase in probability of having majored in a STEM field for first-to-
complete graduates, with no significant effect (point estimate 0.0042) for those first-to-attend.
Subsequent models adding additional covariates yield estimates ranging from 5.9 to 7.0 percent-
age points for the overall effect, and 8.4 to 9.6 percentage points (with p < .01 in nearly all
cases) for first-to-complete graduates. The point estimates for first-to-attend graduates range
from 0.4 to �0.6 percentage points, and none are statistically significant.

We also investigated the sensitivity of our Table 3 results to our broader analytic decisions
regarding choice of control group and use of probit versus linear regression estimation. We
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obtain very similar overall results when using only continuing-generation grant recipients as
the control group (excluding first-generation non-grant recipients) and when using a linear
probability model instead of probit. Furthermore, inclusion of individual trend terms for each
FirstGen X Grant group simply drives our point estimates for the overall and first-to-complete
effects higher.

We also re-estimated all the models shown in Table 4 as linear probability models with the
same covariates and we find quantitatively similar and qualitatively identical results in all cases.
We also find very similar results when we expand the definition of a STEM occupation to
include respondents in secondary school teaching, managerial, or other professions who said
their work required technical expertise at a bachelor's or higher level in a STEM field, and
excluding computing help desk and web content developers who said their work required no
such expertise (see Appendix C, column 5). However, when we exclude first-generation non-
grant recipients from the control group (Appendix C, column 6), this causes our estimate of
first-to-attend graduates' attrition rate to increase. This seems to be driven by the fact that, prior
to the SMART Grant program, first-to-attend grant-recipient STEM graduates had relatively
higher probability of STEM workforce retention, overall, compared to all other groups in
our analytic sample. During the SMART Grant program, attrition rose among first-to-attend
graduates regardless of grant receipt. Comparing first-to-attend grant recipients to continuing-
generation grant recipients thus may overstate the change that occurred within this group
during the SMART Grant program.

6 | DISCUSSION

Using a difference-in-difference quasi-experimental approach and nationally representative
data, we find that the SMART Grant program significantly increased the probability that first-
generation native U.S. citizen college graduates majored in STEM, but only among those with
at least one parent who had some college experience. For these first-to-complete graduates, all
else equal, the probability of having majored in a STEM degree increased by 8.8 percentage
points, a 52% increase over baseline. Most notably, the odds of a first-generation college gradu-
ate majoring in life sciences instead of a non-STEM field more than doubled while the SMART
Grant program was in full effect. Along these lines, Choy et al. (2011) report that life sciences
were the most common field for SMART Grant awards. However, this increase in STEM degree
completion was significantly offset by new STEM graduates' occupational choices, such that we
find no net effect of the program on STEM workforce participation. Life sciences majors tend to
have a higher attrition rate than other majors in any case, partly due to their choosing medical
and health professions not traditionally included in STEM. However, among life sciences
graduates who experienced the full effect of the SMART Grant program—i.e., those for whom
the SMART Grant was in effect in both their third and fourth years—we find that STEM work-
force attrition significantly increased, and only a small fraction of that change is explained by
graduates choosing medical and health professions.

On the other hand, we also find evidence that the unexpected windfall gain for fourth-year/
senior students in the first year of the SMART Grant program significantly increased the proba-
bility that first-generation college graduates majored in computer science and engineering. Fur-
thermore, these graduates had higher probability of working in a STEM occupation after
graduation than would otherwise be expected. This suggests that, for students with intrinsic
interest in STEM fields, financial support can play an important role in broadening
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participation. Unfortunately, it also appears that simply offering financial incentives to students
for majoring in STEM fields may not yield the intended outcome of increased STEM workforce
participation. Students thus incentivized may declare STEM majors and complete STEM cour-
sework, and may even complete STEM degrees, but still have little interest in working in a
STEM occupation after graduation.

Prior to the SMART program, only 18% of graduates who would have been eligible for a
SMART grant based on their demographic characteristics were graduating with STEM majors.
If the program's true effect was (per our initial estimate) a 7 percentage point increase in STEM
majors, that would imply a 38% increase versus expectation in STEM degree completions for
the eligible population, conditional on completing a degree. This effect may seem extraordi-
narily large compared to those reported in previous literature, but the magnitudes are not
directly comparable. For example, Denning and Turley (2017)’s outcome variable was coded
1 if the student completed any SMART-eligible degree, and 0 if the student completed a non-
SMART-eligible degree or no degree at all. Since their denominator is larger, their estimated
effect size is necessarily smaller. Considering that less than half of Pell-eligible first-time
freshmen complete a bachelor's degree within 6 years of matriculating, a 7 percentage point
increase in STEM majors among eligible graduates would correspond to a roughly 3.5 percent-
age point increase in STEM degree completions among eligible students, overall. This back-of-
the-envelope calculation suggests our national results for all institutions are indeed quite simi-
lar to (and split the difference between) estimates for the private and public institutions that
Denning and Turley (2017) reported.

Our study does have limitations. First, though cumulative GPA was an eligibility require-
ment for the program, it is unobserved in our national data. Some students included in the
intended-eligible group for this analysis may not have been close enough to the GPA cutoff to
perceive themselves as potentially eligible. Second, our analysis relies on imputed time-based
eligibility, which contributes to measurement error. Due to the strict eligibility constraints we
imposed, this misclassification would primarily cause eligible (treated) students to be counted
as ineligible (controls), increasing the noise around our estimates. Finally, our analysis is condi-
tional on degree completion: to be in the NSCG dataset, an individual must have completed a
bachelor's or higher degree. This conditionality obscures any increase in probability of degree
completion, overall.

Despite these limitations and caveats, we note that these results fit comfortably in and rein-
force a growing body of research on the financial aid process as it impacts lower-income and
first-generation college students. Studies reveal that the financial aid process is opaque and con-
fusing for students and families, especially for low income and first generation students who
often lack “college knowledge” (Avery & Kane, 2004; Engle, 2007). Recent work by
Toutkoushian et al. (2021) further emphasizes the differences in outcomes for first-generation
students, depending on whether they are first-to-attend or first-to-complete college. Providing
information and guidance is especially critical for these students; research has shown that such
information and guidance alters students' behavior, making them, for example, more likely to
know about and take advantage of grant programs (Bettinger et al., 2012; Engle, 2007;
Toutkoushian et al., 2021). Along these lines, prior evidence also indicates that students whose
parents did have college experience were also more likely to know about the SMART Grant pro-
gram (Choy et al., 2010).

This paper presents evidence that direct financial incentives to low income and other under-
represented groups can be an effective method of increasing STEM majors, but our results also
support the U.S. Government Accountability Office's assessment, which argued that future
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programs must be more widely advertised and economically-disadvantaged students and fami-
lies must have sufficient support to navigate the federal financial aid process, for such programs
to achieve greater success. Finally, incentivizing students to major in STEM fields may not, on
its own, achieve policymakers' aim of increasing STEM workforce participation among individ-
uals from underrepresented groups. More research is needed to better understand why STEM
graduates opt out of working in STEM occupations, and what can be done to improve their
retention.
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APPENDIX A: SMART eligible majors in the national survey of college
graduates data

Aerospace/aeronautical/astronautical engineering Geology

Agricultural engineering Geophysical and geological engineering

Animal sciences Industrial and manufacturing engineering

Applied mathematics Industrial production technologies

Architectural engineering Information services and systems

Astronomy and astrophysics Materials engineering, incl. Ceramics and textiles

Atmospheric sciences and meteorology Mathematics, general

Biochemistry and biophysics Mechanical engineering

Bioengineering and biomedical engineering Mechanical engineering-related technologies

Biology, general Metallurgical engineering

Botany Microbiological sciences and immunology

Cell and molecular biology Mining and minerals engineering

Chemical engineering Naval architecture and marine engineering

Chemistry, except biochemistry Nuclear engineering

Civil engineering Oceanography

Computer and information sciences Operations research

Computer and systems engineering OTHER agricultural sciences

Computer programming OTHER biological sciences

Computer science OTHER computer and information sciences

Computer systems analysis OTHER engineering

Data processing OTHER engineering-related technologies

Earth sciences OTHER mathematics

Ecology OTHER physical sciences

Electrical and electronic technologies Petroleum engineering

Electrical and communications engineering Pharmacology, human and animal

Engineering sciences, mechanics and physics Physics

Engineering, general Physiology and pathology, human and animal

Environmental engineering Plant sciences

Genetics, animal and plant Statistics

Geological sciences, other Zoology, general

Note: This table contains all STEM majors considered by the Department of Education as SMART-eligible in 2006 that are also
found in our data set, the 2015 National Survey of College Graduates. For a full list of eligible majors, including those not

included in our data set, see Choy et al., 2010.
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APPENDIX C: Additional robustness checks

Panel A: SMART-eligible STEM
majors Panel B: STEM occupations

Control:
Continuing
generation
w/
Grant only

With
group-
specific
time
trends

Linear
probability
model

STEM-H
occupations
with
breakout by
FirstGen

STEM
Occs
expanded,
removing
IT support

Control:
Continuing
generation
w/
Grant only

First-generation 0.0632** 0.1228** 0.0688** �0.0706* �0.0974** �0.0813*

* Grant *
SMART
program in
effect

(0.0269) (0.0418) (0.0282) (0.0424) (0.0400) (0.0418)

First-generation �0.0082 0.0397 �0.0056 0.1097** �0.0001 0.0508

* Grant *
SMART
Program in
4th year
only

(0.0510) (0.0388) (0.0486) (0.0467) (0.0468) (0.0514)

First-
generation:
parent
w/some
college

0.0924*** 0.1385*** 0.0808*** �0.0439 �0.0958** �0.0526

* Grant *
SMART
program in
full effect

(0.0284) (0.0467) (0.0229) (0.0569) (0.0472) (0.0480)

First-
generation:
no parent
attended
college

0.0094 0.0496 0.0059 �0.0930 �0.0933 �0.1282**

* Grant *
SMART
program in
full effect

(0.0408) 0.0635 (0.0325) (0.0606) (0.0674) (0.0611)

First-
generation:
parent
w/some
college

�0.0200 0.0162 �0.0063 0.0695 0.0656 0.0986**

* Grant *
SMART
program in
4th year
only

(0.0390) (0.0387) (0.0301) (0.0525) (0.0429) (0.0456)
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Panel A: SMART-eligible STEM
majors Panel B: STEM occupations

Control:
Continuing
generation
w/
Grant only

With
group-
specific
time
trends

Linear
probability
model

STEM-H
occupations
with
breakout by
FirstGen

STEM
Occs
expanded,
removing
IT support

Control:
Continuing
generation
w/
Grant only

First-
generation:
no parent
attended
college

�0.0064 0.0285 �0.0061 0.1157** �0.0659 �0.0094

* Grant *
SMART
program in
4th year
only

(0.0777) (0.0620) (0.0586) (0.0532) (0.0731) (0.0725)

Observations 13,125 15,992 15,992 7365 7911 6279

Note: Panel A repeats models estimated in Table 3, with the following changes: column (1) excludes first-generation non-grant
recipients, using only continuing-generation grant recipients as the control group; column (2) allows different time trends for
each First Generation X Grant Recipient group; and column (3) uses a linear probability model instead of probit estimation.

Panel B column (1) breaks out results from the model shown in Table 4 column (6) into separate effects for first-to-attend and
first-to-complete. Panel B column (2) re-estimates the model shown in Table 4 column (3) with an expanded definition of
STEM occupations including quantitative social scientists, secondary school teachers, and other STEM graduates who indicate
their job requires bachelor's or higher STEM technical expertise, including individuals who are not currently working but

whose last job was a STEM occupation, but excluding allied health professions. Panel B column (3) re-estimates the model
shown in Table 4 column (5) excluding first-generation non-grant recipients and using only continuing-generation grant
recipients as the control.
***p < 0.01, ** p < 0.05, *p < 0.1.
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APPENDIX D: Relative risk ratios for STEM degree field

Computer
Science and
Engineering

Life
sciences

Math and
Physical
Sciences

First-generation: parent w/some college 1.549* 2.208*** 1.547

* Grant * SMART program in effect (0.411) (0.596) (0.831)

First-generation: first to attend college 0.4917 1.055 1.479

* Grant * SMART program in effect (0.221) (0.437) (0.603)

First-generation: parent w/some college 2.806** 0.862 1.014

(1.254) (0.356) (0.447)

First-generation: first to attend college 1.812** 0.647 0.873

(0.525) (0.195) (0.267)

Received grant support 5.440*** 1.361 2.359**

(1.960) (0.473) (0.916)

Note: Results from a single multinomial logistic regression predicting broad field of degree, with non-STEM fields as the
reference category. Models also include indicators (not shown) for: female gender, race/ethnicity, and their interactions; cohort
(SMART program in effect, 4th year only) and its interaction with the grant support indicator; community college attendance; 9

geographic regions; 8 institution categories (Carnegie classification and public versus private control); graduation year; and the
4th-year-only difference-in-difference interaction terms.
***p < 0.01, ** p < 0.05, * p < 0.1.
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APPENDIX E: Differences across major fields in probability of a STEM occupation
among STEM graduates

Computer
Science and
Engineering

Life
sciences

Math and
Physical
Sciences

First-generation �0.0327 �0.2237*** �0.0157

* Grant * SMART program in effect (0.0591) (0.0840) (0.1267)

First-generation 0.1905*** �0.0795 0.1500

* Grant * SMART program in 4th year only (0.0666) (0.1433) (0.1226)

First-generation 0.0128 0.1288** �0.0573

(0.0344) (0.0583) (0.0932)

Received grant support 0.0374 0.0449 0.0130

(0.0535) (0.0575) (0.0920)

Female �0.0929*** �0.1011*** �0.1106***

(0.0276) (0.0305) (0.0313)

Note: Average marginal effects from a single probit model predicting STEM occupation, using the same analytic sample and
including the same covariates as used in Table 4 column 4.

***p < 0.01, ** p < 0.05, * p < 0.1.
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