RecBoard: A Web-based Platform for Recommendation System
Research and Development

Mohit Chawla*
Cornell Tech, Cornell University
New York, New York
mc2683@cornell.edu

Longqi Yang
Cornell Tech, Cornell University
New York, New York
ylonggi@cs.cornell.edu

ABSTRACT

This paper introduces RecBoard, a unified web-based platform
that facilitates researchers and practitioners to train, test, deploy,
and monitor recommendation systems. RecBoard streamlines the
end-to-end process of building recommendation systems by pro-
viding a collaborative user interface that automates repetitive tasks
related to dataset management, model training, visualization, de-
ployments, and monitoring. Our demo prototype demonstrates how
RecBoard can empower common tasks in research and develop-
ment. RecBoard will be open-sourced and publicly available upon
publication.

CCS CONCEPTS

« Information systems — Recommender systems.

KEYWORDS
Recommender Systems; Machine Learning; Web Platforms

ACM Reference Format:

Mohit Chawla, Kriti Singh, Longqi Yang, and Deborah Estrin. 2019. RecBoard:
A Web-based Platform for Recommendation System Research and Develop-
ment. In Proceedings of the 2019 World Wide Web Conference (WWW °19),
May 13-17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3308558.3314133

1 INTRODUCTION

To innovate on and deploy recommender systems, researchers of-
ten need to perform a series of repetitive tasks that involve dataset
loading, dataset management, model monitoring, visualization, and
deployment, as shown in Fig. 1. These repetitive tasks lead to sig-
nificant overhead for model development and maintenance.
However, existing platforms are limited in addressing this over-
head. On one hand, many solutions are focused on limited stages
of the development pipeline (Fig. 1). For example, OpenRec [12]

“Both authors contributed equally.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3314133

3493

Kriti Singh*
Cornell Tech, Cornell University
New York, New York
ks2259@cornell.edu

Deborah Estrin
Cornell Tech, Cornell University
New York, New York
destrin@cornell.edu

Step 3
Test Model
Step 4

Step 2
Train Model

Select Best Model

Step 1
Create model
(Select params & algorithm)

Figure 1: End-to-end process of developing recommender
systems. It comprises of various stages: selecting parameters
and algorithm, training the model, testing and selecting the
best model, and deploying the best model into production.

supports systematic model training, TensorFlow serving [9] and
Clipper [1] enable model deployment in production, and AutoML
[3] automates the process of searching for model configurations.
On the other hand, existing systems that attempt to consolidate
different development stages have a steep learning curve and are
restricted to limited use cases — BigML [5] does not offer any
recommendation model; Amazon’s SageMaker [4] offers a train-
test-deploy pipeline only in a hosted notebook environment, and
MLBase [6] requires using a task language to declare machine learn-
ing tasks and does not provide deployment supports.

In this paper, we develop RecBoard, an open-sourced and web-
based platform that eases the end-to-end process of creating, testing,
deploying, and monitoring recommendation models. It unifies five
tasks in productionizing a recommendation system: (1) selecting
dataset, model and model parameters, (2) training and testing the
model, (3) visualizing the training progress (e.g., loss and precision)
in real time, (4) collaborating with peers, (5) deploying the model,
and (6) monitoring the deployed model. RecBoard is intended for
researchers who aspire to create or productionize recommendation
systems while collaborating with their peers.

https://doi.org/10.1145/3308558.3314133
https://doi.org/10.1145/3308558.3314133

E recboard = £ [
workspacel o o
@ Wcore,
& Total Models © Average Training Time & Ongoing Sessions
'WORKSPACES 0 12 5 0
.
+ Create new 0 complete
workspacel
<+ Add new model to workspace [Datasets
#F rec_sys dec
Params Upload new dataset
free— Recommender | BPR N Drop files here to upload
V' Deployed @ Train Dataset | users.dat v TestDataset | users.dat v
¥ Configurations [CommgSsa] Evaluator (s) | AUC Train Sampler | RandomPairwiseSampler 4
MSE
NDCG
Q Monitoring [Commngssea) Precision
Val Sampler | EvaluationSampler v Test Sampler | EvaluationSampler v
Hyperparams
Training lters | 100 Evallters | 10 Savelters | 10
Name
batch_size | 1000 total items | 1000 dim_item_embed | 50 Tags
 scoil x | acverts x | sses « JERTYH b
dim_user_embed | 50 total_users | 1000 dimyv | 50
max_seqlen | 1000 num_units | 1000
Upload &
Name | mymodel_1
Notes (Optional) | This is my model notes Existing
I users.dat 3
1 users_items_ctsr.dat S
Create & Start Training

Rechoard Github

Figure 2: Sample user’s workspace. A workspace encapsulates all related datasets and models.

TensorBoard scauss G e -8 @
Qitertags requiar exressions supported
Test Auc
Tol g mahd: defouit Lestprcison
— e recsion
o 057

c=Q

Traiing foss

[ore i | o

Figure 3: Real-time model variables visualization during
training and testing using TensorBoard.

2 SYSTEM FEATURES

RecBoard eliminates operational inefficiencies across all stages
of productionizing recommendation models. In this section, we
present its major functionalities and features.

2.1 Training

RecBoard facilitates users to train models using the user interface as
shown in Fig. 2 and enables them to monitor training progress (e.g.,
loss, precision, and recall) in real-time, as shown in Fig. 3. Since our
core training library, OpenRec [12] is based on TensorFlow, we use

3494

“Train Iters: 10 Eval Hters: 10 Save lters: 10
Evaluator(s): AUC, Precision
Train Sampler: RandomPainwiseSampler Eval Sampler: EvaluationSampler Test Sampler: EvaluationSampler

Testing and Debugging >
You can debugfest your model using Ul below: i

Users Homs

Model API URL | You can deployed model here: htp: o

‘Download model

Figure 4: UI (with testing) for a deployed model

TensorBoard [11] as the default visualizer. RecBoard allows users
to plug in their custom visualization solutions.

2.2 Deployment

RecBoard allows users to deploy a model as a REST API using
TensorFlow Serving [9]. This leads to fast, automated and easy to
manage deployments. The Deployment Manager can be configured
to use other deployment solutions, such as Clipper [1].

2.3 Monitoring

RecBoard enables users to monitor metrics and keep track of a
model, which is deployed as a REST API. For debugging purposes,
an input form is provided, and it enables the user to quickly test if
the API of the deployed model is working, as shown in Fig. 4.

2.4 Collaboration

RecBoard enables users to collaborate via features such as dataset
sharing, model visualization sharing (Fig. 5).

Model: 5c0c3f90d7553;

Figure 5: Sharing a model’s visualization with peers

2.5 Management

RecBoard provides better model management by introducing workspaces,

and model and dataset sharing and tagging.

data and storage

Model Datastore R
Manager Interface Datastore
Client .
Ul serving & '
request
AP Collaboration &
Access Control
Framework l l
Deployment Monitoring Monitoring
Manager Interface Implementation
RecBosrdcore 1 monitoring manager

Figure 6: The architecture of RecBoard. All components are
designed to automate repetitive tasks in different stages of
developing recommender systems.

3 ARCHITECTURE OVERVIEW

The architecture of RecBoard is shown in Fig. 6, which highlights
the major components of the system. RecBoard views the process of
developing recommender systems as a multi-stage pipeline (Fig. 1)
and provides user interfaces to perform tasks relevant to each stage
of the pipeline. The tasks include managing datasets, training and
testing model(s), organizing models into workspace(s), deploying
model(s), and monitoring deployed models. RecBoard core is the
central component that handles model management (via Model
Manager), serves the user interface and handles model deployment.

3.1 Modular Design

To make the pipeline efficient, we define reusable components by
identifying repetitive tasks and clustering those tasks, as shown
in Fig. 7. For example, Model Manager automates repetitive tasks
such as loading datasets, initializing model, and starting training.
Furthermore, RecBoard is modularised in a way that its compo-
nents can be replaced by custom modules by advanced users. For
example, a different database can be connected easily and custom
monitoring solutions can be added. Since each model training task is
independent of others and is executed outside of the HT TP request-
response cycle, we leverage distributed task queues to parallelize
model training related operations. A task queue handles invoking

3495

; . {peeesanaaees oo

i | Dataset | ! Model i Faster i Setup Real- |

i | Loading i1 Initiaization || Deployments |i ! time Monitoring

. Dataset : - i Reusable . Resource

! ‘ Organization | | Model Training | | ggrying : :‘ Management

[— ! 1| Infrastructure |-

Dataset Setup Model |} : - : Model

management Visualization || i| Analysis& | monitoring

ittt ' Debugging EI, __________________ :

! Organized Model : Tools 'l Dataset

‘experimentation i || Comparison || feeessseseeaaaaa. " i

: p ; p Model ! Sharing

: Pipeline Hyperparameter deployment | Workspace

i Management : Tuning ; ' Sharing

Organization | Model Collaboration
management

Repetitive Task : Missing/Inefficient Featre

Figure 7: There are a number of repetitive tasks in end-to-

end process and some missing features in existing platforms.
These can be clustered into reusable components.

code that trains the model, processes results and stores them in
a persistent database for later use. This architecture supports an
on-premise solution so that users with constraints around data
sharing can use RecBoard.

3.2 Components

RecBoard core consists of Model Manager, Deployment Manager and
Ul Serving & API framework. For a request from client, UI Serving
& API framework interacts with other components of system and
serves the user interface. Model Manager provides mechanisms
to manage all model related tasks such as training, visualization,
testing, management (create, delete, and edit), and download. De-
ployment Manager provides infrastructure for deploying (and
un-deploying) a trained model and managing cloud configurations.
Monitoring Manager provides infrastructure support for moni-
toring metrics (e.g., requests and up-time) of a deployed model via
a monitoring interface. Mechanisms for monitoring are provided
by a default implementation. The Data and storage component is
part of persistence layer and provides an interface which can be
implemented by any database wrapper. We used MongoDB in the
initial prototype. The Collaboration and access control compo-
nent provides infrastructure for collaboration via features such as:
sharing training visualization and sharing datasets.

4 SAMPLE USER WORKFLOWS/EXPERIENCE

This section describes examples of user experience for different
tasks performed via RecBoard.

4.1 Developing Recommendation Systems for
Online Supermarket

A researcher R; at an online supermarket company wants to create
a recommender system for clothes and deploy it as a REST API so
that other teams in the company can use it to provide clothes’ recom-
mendations to users. She opens RecBoard and creates a workspace
named "Clothes Experiments" to organize all recommender mod-
els related to clothes. She splits a dataset into training, validation
and testing, uploads them to RecBoard, and adds tags (clothes,

train/test/eval) to them. She decides to create and deploy a Prob-
abilistic Matrix Factorization (PMF) [8] based model. For experi-
mentation, she chooses 3 sets of hyper-parameters to test upon and
deploy the best of these. Using the Add Model to Workspace Section
(Fig. 2), she selects a recommender and other hyper-parameters to
add 3 models to the workspace. Now she can monitor key training
indicators (e.g., loss, precision, and recall) of these 3 models in real
time. After some time, all models are trained and the Model 2’s
results are the best. She decides to deploy it. To do so, she adds
configurations for deployment corresponding to a cloud provider.
Next, she clicks the Deploy button to deploy the model. After the
model is deployed, she sees model testing UI along with API URL
(Fig. 4) and decides to test if API is working. To test, she wants to
know the output of the model for users with ids 2, 90 for items with
ids 3, 81. So, she enters these ids and clicks the TestAPI button. She
sees responses from the server and verifies that the API is working
fine. So, she shares the API URL with other teams.

4.2 Collaborating on Recommendation
Systems Development

R;’s team member is a recommender systems developer, Rz. Ry pro-
poses to experiment with recommenders other than PMF (deployed
already). So, R1 wants to collaborate with Ry. To do so, Ry shares the
"Clothes Experiments" workspace (created earlier) using the Share
Workspace button and entering Ry’s email. Now, Ry has access to
the workspace and she creates other models based on Bayesian
Personalized Ranking (BPR). She trains new models and finds that,
say, one of her models performs better than the model deployed
earlier. So, she decides to deploy this model and update other teams
with new API URL. Once other teams migrate to this new API, she
undeploys previous model using Undeploy button (Fig. 4).

5 EVALUATION

In this section, we evaluate RecBoard in terms of efficiency and
present examples to demonstrate how users can customize modules
and add new recommendation algorithms as per their use case.

5.1 Efficiency: RecBoard as a platform for
efficient and organized experimentation

Previously, the end-to-end process was inefficient because it in-
volved writing multiple lines of glue code for repetitive tasks (shown
in orange in Fig. 7) and manually setting up pipelines for commonly
needed features (shown in blue in Fig. 7). Now, the user can perform
the same tasks by a few clicks in the UI, which leads to increased
efficiency.

5.2 Extensibility and Maintainability: Adapting
RecBoard by customizing existing
implementation

It is important that the existing implementation is extensible be-

cause users might need additional features and custom implemen-

tations of modules. RecBoard provides ways to adapt the platform
to custom use cases. For example, additional recommendation al-
gorithms can be added by adding a file similar to the ones in the

3496

recommenders folder, different datastore (Fig. 6) can be added by
extending implementation of the RecboardDB class.

As shown above, the existing implementation of RecBoard is
extensible and maintainable as it is modular, based on DRY [2] and
SOLID [7] principles, and is testable.

6 DEMO OVERVIEW

We plan to demonstrate RecBoard using a user-item interaction
dataset with 5551 users and 16980 items. This dataset, citeulike-
a, was collected by Wang et al. [10] from CiteULike and Google
Scholar. CiteULike allows users to create their own collections of ar-
ticles. There are abstracts, titles, and tags for each article. Auxiliary
information such as authors, groups, posting time, and keywords is
not used. The details can be found at www.citeulike.ort/fag/data.adp.

The demonstration starts by logging in as a registered user
and creating a workspace using Create New button in left panel
and entering workspace name (e.g., MyWorkspace). This creates
a workspace, as shown in Fig. 2. This is followed by uploading
the dataset into workspace created above using the Upload button.
Once the dataset is uploaded, a model is trained by selecting hyper-
parameters and other details and clicking Create and Start Training
button. This would show training process with real-time graphs
as shown in Fig. 3. Once training is completed, Deploy button is
clicked, which deploys the model on local server and presents an
API URL along with UI component to test the deployed model’s
REST API (Fig. 4). We show that deployed model is working by in-
puting comma-separated sample user-ids and item-ids followed by
clicking Test button. This shows sample response from the deployed
model.

7 CONCLUSION AND FUTURE WORK

RecBoard contributes towards reducing operational inefficiencies
in the process of creating recommendation systems. This is made
feasible by (1) identifying repetitive tasks in the pipeline, (2) defin-
ing reusable components for these tasks, and (3) creating a user
interface to automate these tasks using the components defined.
This can improve the speed at which recommender models can be
productionized, irrespective of production environment or cloud
provider. In the future, we plan to improve RecBoard by adding
features for dataset visualization, cross-validation and comparison
of deployed models. We also plan to explore the idea of a similar
platform in other domains, such as Computer Vision, and Natural
Language Processing.

8 ADDITIONAL MATERIAL

Screencast video link: http://mohitchawla.in/recboard/index.html

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation
under grant IIS-1700832 and by Yahoo Research (via the Connected
Experiences Laboratory at Cornell Tech). The work was further
supported by the small data lab at Cornell Tech, which received
funding from NSF, NIH, RWJF, UnitedHealth Group, Google, and
Adobe. We thank the anonymous reviewers for their insightful
comments and suggestions.

http://www.citeulike.ort/faq/data.adp
http://mohitchawla.in/recboard/index.html

REFERENCES

(1]

(2]

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael] Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System..
In NSDI 613-627.

Andrew Hunt and David Thomas. 1999. The Pragmatic Programmer: From Jour-
neyman to Master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2018. Automatic
Machine Learning: Methods, Systems, Challenges. Springer. In press, available at
http://automl.org/book.

Amazon Web Services Inc. 2018. Amazon SageMaker. http://aws.amazon.com/
sagemaker/. Online; accessed: 2018-12-08.

BigML Inc. 2018. BigML: Machine Learning made beautifully simple for everyone.
https://bigml.com. Online; accessed: 2018-12-08.

Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin,
and Michael I Jordan. 2013. MLbase: A Distributed Machine-learning System.. In
Cidr, Vol. 1. 2-1.

3497

[10

[11

[12

]

Robert C Martin. 2000. Design principles and design patterns. Object Mentor 1,
34 (2000), 597

Andriy Mnih and Ruslan R Salakhutdinov. 2008. Probabilistic matrix factorization.
In Advances in neural information processing systems. 1257-1264.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. TensorFlow-
Serving: Flexible, high-performance ML serving. arXiv preprint arXiv:1712.06139
(2017).

Hao Wang, Binyi Chen, and Wu-Jun Li. 2013. Collaborative Topic Regression
with Social Regularization for Tag Recommendation.. In IJCAL 2719-2725.
Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion
Mané, Doug Fritz, Dilip Krishnan, Fernanda B Viégas, and Martin Wattenberg.
2018. Visualizing dataflow graphs of deep learning models in TensorFlow. IEEE
transactions on visualization and computer graphics 24, 1 (2018), 1-12.

Longgi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and
Deborah Estrin. 2018. OpenRec: A Modular Framework for Extensible and
Adaptable Recommendation Algorithms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. ACM, 664-672.

http://aws.amazon.com/sagemaker/
http://aws.amazon.com/sagemaker/
https://bigml.com

	Abstract
	1 Introduction
	2 System Features
	2.1 Training
	2.2 Deployment
	2.3 Monitoring
	2.4 Collaboration
	2.5 Management

	3 Architecture Overview
	3.1 Modular Design
	3.2 Components

	4 Sample User Workflows/Experience
	4.1 Developing Recommendation Systems for Online Supermarket
	4.2 Collaborating on Recommendation Systems Development

	5 Evaluation
	5.1 Efficiency: RecBoard as a platform for efficient and organized experimentation
	5.2 Extensibility and Maintainability: Adapting RecBoard by customizing existing implementation

	6 Demo overview
	7 Conclusion and Future Work
	8 Additional Material
	Acknowledgments
	References

