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Soft Tracking Using Contacts for Cluttered Objects to Perform Blind
Object Retrieval

Sheng Zhong!, Nima Fazeli', and Dmitry Berenson

Abstract—Retrieving an object from cluttered spaces such
as cupboards, refrigerators, or bins requires tracking objects
with limited or no visual sensing. In these scenarios, contact
feedback is necessary to estimate the pose of the objects, yet
the objects are movable while their shapes and number may
be unknown, making the association of contacts with objects
extremely difficult. While previous work has focused on multi-
target tracking, the assumptions therein prohibit using prior
methods given only the contact-sensing modality. Instead, this
paper proposes the method Soft Tracking Using Contacts for
Cluttered Objects (STUCCO) that tracks the belief over contact
point locations and implicit object associations using a particle
filter. This method allows ambiguous object associations of past
contacts to be revised as new information becomes available. We
apply STUCCO to the Blind Object Retrieval problem, where a
target object of known shape but unknown pose must be retrieved
from clutter. Our results suggest that our method outperforms
baselines in four simulation environments, and on a real robot,
where contact sensing is noisy. In simulation, we achieve grasp
success of at least 65% on all environments while no baselines
achieve over 5%.

Index Terms—Perception for Grasping and Manipulation,
Force and Tactile Sensing.

I. INTRODUCTION

His paper considers the problem of tracking objects in
cluttered environments without visual feedback. Appli-
cations such as rummaging through a cupboard, refrigerator,
or bin for a target object require tracking objects to estimate
the pose of the target with limited or no visual sensing. In these
scenarios contact feedback is necessary to estimate the poses
of objects. A key difficulty is that the objects in these scenarios
are movable, requiring the robot to estimate the poses of
objects as they move. This is especially challenging because
we do not assume we know the shapes of, or even the number
of, objects in the environment a priori. Thus when two nearby
contacts are detected, it is not clear if we have contacted
two objects once or one object twice. This ambiguous data
association makes tracking much more difficult, as we may
need to change the association of past contacts with objects
when we observe new data.
Previous work in this area has focused either on single
target tracking from contact [1] or on visual tracking of
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Fig. 1: Initial (top) and after rummaging (bot) cluttered environment
with STUCCO allowing us to successfully estimate the pose of the
cracker box and grasp it without visual perception. The segmented
tracked contact points are shown in different colors.

objects [2], [3]. Work on tracking multiple targets with li-
dar/sonar/visual data is relevant, but relies on receiving long-
range information at high frequency to be effective, which
is not the case for contact. To our knowledge, this is the first
paper to address the problem of tracking multiple objects using
only contact feedback.

The key insight that allows us to tackle this problem is
that we can efficiently propagate a belief over contact points
without explicit object assignments. We can then sample from
that belief to generate hypotheses of contact points and asso-
ciations. We term this approach “soft tracking” to emphasize
its difference with tracking explicit “hard” associations.

Given a model of the pushing dynamics (which can be very
simplistic) and an existing method for localizing contact on the
surface of the robot [4] (contact isolation), our method, which
we call Soft Tracking Using Contacts for Cluttered Objects
(STUCCO), tracks the belief over contact point locations
and implicit associations using a particle filter. We propagate
the belief by sampling whether each contact point moved
with probability inversely proportional to its distance to the
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latest contact point, then updating the particles to enforce that
contact points could not have occurred inside the robot. The
best estimate of contact points and a hard association of them
to objects, useful for downstream tasks, can be extracted from
the belief through our segmentation process.

To show the utility of STUCCO, we demonstrate how it can
be used to solve the Blind Object Retrieval (BOR) problem,
where a target object of known shape must be retrieved from
a planar cluttered environment. We evaluate our method and
baselines on both simulated and real (Fig. 1) instances of this
type of problem and find that our method achieves at least 65%
grasp success on all environments while no baseline achieves
more than 5% grasp success on all of them.

II. RELATED WORK

When we know the number of objects in the environment
and the mapping between sensing and object is unambiguous,
single target tracking methods can be used, such as ones
from [5] when vision is available, or the Manifold Particle
Filter [1] when contact feedback is available. For single iso-
lated objects, pose and shape estimation has been demonstrated
using tactile feedback [6], [7]. Here, we focus on the much
more difficult problem when data association is ambiguous
and there are an unknown number of objects.

For this problem, computer vision methods have tradi-
tionally been used. The relevant problem is termed Multiple
Object Tracking, with [8] providing a comprehensive survey
of modern methods. In cases where vision is available, its
information density makes it attractive as the primary method
for object detection and tracking. Our method could be used
in conjunction to resolve ambiguities and provide information
around occlusions. Indeed, often the robot will occlude the
target as it approaches for manipulation.

Outside of computer vision, Multiple Target Tracking is a
more common term to refer to the problem and is associated
with methods that are agnostic to the information source [9].
Classically, Multiple Hypothesis Tracking (MHT) [10] propa-
gates hypotheses on associations of observations (contacts) to
specific targets (objects). A relaxation of allowing association
probabilities, instead of fixed associations, is Joint Probabilis-
tic Data Association (JPDA) [11]. While there are ways to
limit the combinatorial number of hypotheses to make these
methods tractable, in the context of unknown object shapes,
the explicit association of contact to objects is difficult. Often
only much later do we have sufficient data to discriminate
previous associations, so many hypotheses must be kept.

An alternative to explicitly considering associations is prop-
agating the intensity (first-order moment) of the posterior
on the number of targets and their states. This class of
methods is called intensity filters [9], with the Probability
Hypothesis Density (PHD) filter [12] being a notable special
case. We compare against an implementation of the PHD
filter as a baseline. All these methods were designed with
dense information sources in mind (radar, sonar, or cameras),
and their assumptions are problematic in the context of blind
manipulation. Most significantly, their observation models
assume each target generates an observation at each step with

some state-independent probability. This is clearly not the case
for contact, since we can only observe contact from objects
close to the robot. Our method takes inspiration from intensity
filters and propagates a belief without explicit associations that
exploits the local nature of contact.

Several methods have been proposed for manipulation in
cluttered environments. An RGB-D approach [3] demonstrated
success in visually segmenting then retrieving objects in clut-
ter. However, the environments they showed allow immediate
segmentation of the target object without needing to rum-
mage; additionally, the objects were often well separated from
each other. A haptic approach with whole-arm tactile sensing
was demonstrated in [13] to successfully reach in clutter.
In contrast to their focus on robot control for navigation,
allowing them to push movable objects out of the way, we
focus on perceiving the objects themselves for downstream
manipulation tasks. Similar to [13], our approach benefits
from making numerous contacts, as each contact gives us
information. While we do not have accurate localization of
contact points from whole-arm tactile feedback (which is
limited to very few current robots) we are able to perform
our tasks using only the estimate of the external wrench at the
end-effector.

III. PROBLEM STATEMENT

Let x € SE(3) denote the robot end-effector pose. We
are given a trajectory X, ..., Xy, during which the robot has
made contacts with some objects. We assume that the robot
is the only agent in the environment, so objects only move
in direct or indirect contact with the robot. Additionally we
assume that the robot moves rigidly with no compliance, the
robot’s geometry is known, the clutter is rigid, and that we
are given a dynamics model of how objects transform for
some robot motion. Our objective is to track the contact points
such that they stay close to object surfaces and are segmented
corresponding to the objects they belong to.

Concretely, we define contact error (CE) on a contact point
to be the smallest euclidean distance from the tracked point
to any object surface. The contact error on the trajectory is
the average over all contact points. Additionally, we evaluate
the segmentation quality using the Fowlkes-Mallows index
(FMI) [14], which approaches 0 for random assignments (with
increasing number of points) and 1 for perfect assignments.

IV. METHOD

At a high level, our approach enables downstream tasks
such as object tracking and retrieval for robots “rummaging”
in environments with only tactile feedback. To this end, our
approach takes as input the robot trajectory Xg,...,X7 and a
set of contact points (each one denoted p € R3) detected
during motion. The output is the tracked set of contact
points segmented based on object motions. Our method is
composed of three elements: contact detection and isolation,
soft tracking, and contact point segmentation, of which contact
detection and isolation uses prior work while the rest are our
contributions. In the following, we provide the details of each
component.
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Fig. 2: Prediction (a-c) and update (d) step of one particle. (a) Initial observation of the latest contact point, end-effector pose, and change
in end-effector pose. (b) Compute connection probability based on distance to p, and sample that connection; point 1 was not connected.
(c) Apply dynamics to all connected points. (d) Update step assigns this particle low probability due to p; penetrating X3 and X7.

A. Contact Detection and Isolation

To detect contact, we utilize the momentum observer [15].
This observer estimates the external wrench applied to the
robot () using the robot’s joint torques and dynamics model.
We detect contact if a specified threshold € is exceeded, similar
to [4], [16]:

YV SbasY > € (1)

where X1 is the precision matrix of the residual, measured
by executing random actions in free space.

Once detected, we localize contact on the robot’s surface us-
ing the Contact Particle Filter (CPF) [4]. This filter iteratively
solves for the contact location on the robot’s surface assuming
a point contact that can transmit forces but no torques —
commonly referred to as the Hard Finger approximation [17].
We note that the remainder of our method does not depend on
the details of the contact detection and isolation algorithm.
As such, advances in this area can be used to extend the
functionality of our approach.

B. Soft Tracking

STUCCO maintains a belief over the positions of all contact
points. One possibility is to track each contact point indepen-
dently (e.g. a Kalman Filter to estimate each contact point’s
position); however, this approach ignores the dependence be-
tween contact points that stems from the connectivity between
points that belong to the same object. To utilize this basic
assumption and represent the belief, we use a particle filter
where each particle represents the set of all contact point
positions and associated end-effector poses for those contacts.
For convenience, we refer to the pair (p,X) as a point. Alg. 1
shows how we propagate this belief while Fig. 2 depicts one
step of our method for a single particle.

Our algorithm is structured in alternating prediction and
update steps typical of Bayesian filters. Each particle is
propagated independently, thus for simplicity we describe the
process in terms of a single particle. However, in practice the
process can be parallelized across particles and points.

Our method does not explicitly track point to object as-
sociations, like the iFilter from [9] and PHD filter from [12].
Instead, at each step we sample associations to predict motion,
the source of the “soft tracking” name. Incorrect associations
are propagated forward, resulting in low likelihood for the

Algorithm 1: Soft Tracking Using Contacts for Clut-
tered Objects
Given: N number of particles, | characteristic length,

I, penetration length, pxpen point to robot
penetration, pxdyn object dynamics for
change in end-effector pose

1 fﬁ”Afé—-{} // particles

2140

3 while robot is in execution do

4 robot executes action u;

5 t—t+1
6 observe x; and dx;, change in end-effector pose
while in contact
7 if in contact from Eq. I then
p; < get latest contact point

9 for n < 1to N do
10 P, + P, U{(p;,x:)}
11 d()‘.t — Hpn,O..t - pt||2
12 Pconnect,0..t = eidg”t/l
13 Dsample,0..t ~ U(0,1) indep.
14 ad] — DPsample,0..t < Pconnect,0..t

// predict step
15 Pn,adj — pxdyn(anadj, dxy)

// update step

| Pn] [P )

16 €y ) pxpen(Xn i, Py, ;)
17 Dobs,n < eiez/lp;
18 else
19 for n < 1to N do
20 € Z‘]};‘ pxpen(X¢, P, ;)
21 Dobs,n < eiez/lp;
22 ImportanceResample(P, pops)
23 ReplacelInconsistentPoints(P, pxpen)

particle when the update step detects inconsistencies arising
from some past mistake.

In detail, the prediction step (lines 11 to 15 in Alg. 1) esti-
mates how each contact point moves for an observed change
in robot end-effector pose dx. Since we assume that the robot
is the only agent in the environment, we only predict motion
when in contact. Contact points belong to objects; however, the
likelihood of two contact points belonging to the same object
scales inversely w.r.t. their relative distance. Line 12 from
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Algorithm 2: ReplaceInconsistentPoints

Algorithm 3: Segment a particle into objects

Given: Py particles, pxpen point to robot
penetration
1 for n < 1to N do
2 for j < 1 to |P,| do
// how inconsistent each point is
Py
€5 < Z!’,:l‘ pxpen<Xn,ia pn,j)
incon <— € >0 // indices
for j € incon do

k<« arg minieﬁincon”pn,w pn,jH2
Pn,j — {pnﬁk,xmk} // as well as weight

N & Ut A

Alg. 1 encodes this using a characteristic length | parameter.
To determine each contact point’s adjacency (belonging to
the same object) to the most recently encountered one, we
randomly sample proportional to the likelihood provided by
their relative distance. Contact points on the same object and
their associated end-effector poses move together according
to the given dynamics function pxdyn on line 15. Thus a
single contact point p,, ; at time ¢ < ¢ would only move if it
is adjacent to p,. '

The update step in lines 21 and 17 evaluates the likelihood
of each particle in realizing the most recent observation, pops n.-
We utilize the fact that contact can only occur on the robot
surface to evaluate each particle. To this effect, we define
the function pxpen(x,p) which outputs 0 if p is outside
the robot when the end-effector is in pose X, and otherwise
min, cs(x)||P — Psl|2, where S(x) is the set of points on the
robot surface at x.

When in contact, the predicted movement of the contact
points may result in penetration between any pair of x and p.
Thus in line 16 we sum the penetration between all pairs in
the particle. In contrast, in line 20 when out of contact, we
only need to evaluate the observed x; against all contact points
since there is no predicted movement.

In both cases, the computation of p,s ., parallels our
computation for adjacency during the prediction step, with a
separate length parameter [, scaling with the expected contact
isolation error (actual contact point’s distance to the estimated
contact point). A lower value will result in more false positives
of penetration while a higher value will result in more false
negatives. With p,ps, we perform the standard particle filter
importance resampling (line 22 of Alg. 1).

Even after resampling, particles may still have penetra-
tion inconsistencies. This could be due to none of the par-
ticles sampling a consistent prediction, or from errors in
the contact isolation or contact dynamics. To address this,
we call ReplaceInconsistentPoints after resampling,
detailed in Alg. 2. A point is inconsistent and discarded if its p
incurs any penetration, and replaced with the closest consistent
point in terms of p Euclidean distance in lines 6 and 7 of
Alg. 2.

C. Segmenting into Objects

Many useful applications of tracking require a single es-
timate of the contact points as well as hard assignments to

Given: P, a single particle, [ characteristic length, «
probability threshold for each edge
1 for i < 1 to |P,| do
2 for j < 1 to |P,| do
3 d <« ||pn,z _pn,j||2
4 Ai,j = 6_d2/l >«

5 return connected components of adjacency matrix A

objects. To achieve this, our method selects the most likely
particle (MAP) according to the particle weights (updated
each step with pys). Alg. 3 details how the MAP particle
is segmented into groups of contact points that are estimated
to belong to the same object.

Similar to line 12 from Alg. 1, we compute the connection
probability and compare it against a threshold « to determine
if an edge between two points exists. The resulting adjacency
matrix A describes a graph over all the points, from which
we find connected components. Each connected component
is an object. Our segmentation is a form of agglomerative
clustering (such as with BIRCH [18] or DBSCAN [19]), which
is well suited for irregular and elongated shapes, such as the
set of points belonging to surfaces of objects. A common
weakness of these methods is combining two clusters when
noise or an error creates a data point between them. Our update
process mitigates this weakness when the robot’s configuration
overlaps with the erroneous contact point (depicted in Fig. 7)
and it is deemed inconsistent, but it remains an issue if our
robot does not explore that location.

V. EXPERIMENTS

In this section, we evaluate and benchmark the performance
of our approach on: i) tracking and segmentation of contact
points under a “blind rummaging” policy; and ii) a downstream
task of Blind Object Retrieval (BOR) — both in cluttered
environments. To this end, we first describe our baselines.
Next, we describe the robot environment and training data.
Then, we formalize the downstream BOR task that uses
contact tracking. Lastly, we quantitatively evaluate our method
and baselines on BOR in simulated and real-world cluttered
environments.

For all tasks, we used the following pxdyn:

deyn(Pna dX) = {(p + F(dX),X + dX)'(va) € Pn} (2
where F' extracts the linear translation of the pose change. This
motion model implicitly assumes that objects translate together
with the robot when in contact without rotation. A more
sophisticated motion model may be used if object properties
such as size, shape, or pressure distribution are known a priori;
however, this is not the case in our experiments. Here, we
demonstrate that our method is able to partially mitigate errors
from this approximation since some of its predictions result
in contact point penetration.

To speed up our method, we implemented Alg. 1 to process
each particle in parallel. In particular, pxpen was imple-
mented as a parallel lookup of a pre-computed discretized
(resolution 1mm) signed distance field of the end-effector in
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link frame. The transform of contact points from world to link
frame was also implemented to be parallel.

For contact isolation, we used the Single-CPF from [4]
which assumes each detected contact occurred at only one
contact point. We note that while there are inherent ambiguities
in isolating contact from externally-applied wrenches, our
method is robust to these errors. On the real robot, we
additionally consider contacts detected by each of the two
soft-bubble sensors [20] (seen in Fig. 1). This distributed
tactile sensing modality significantly mitigates ambiguities
from using only wrench estimates.

A. Baselines

We compare against baselines that maintain a single esti-
mate of all p, clustering on p at each step in contact, and
applying the dynamics function to all points in the same
cluster as p,. The baselines differ in their clustering methods,
with BIRCH [18] and DBSCAN [19] by default not needing
to specify the number of clusters. A k-means baseline was
implemented that starts with a single cluster and increases
the cluster number by 1 if doing so reduces the inertia (what
k-means minimizes) sufficiently. Additionally, we consider a
Gaussian Mixture (GM) implementation of the PHD filter [12].
As introduced in Section II, this method propagates the
intensity (first-order moment) of the posterior on the number
of objects and their positions. The intensity is integrated over
to extract discrete targets (objects), which we clustered the
contact points to using nearest neighbours then propagated in
the same way as the clustering methods.

B. Training Set for Tuning

For simulation, we use a floating Franka Emika (FE) gripper
from the PANDA arm (see Fig. 4) with a fixed height and con-
strained orientation. The gripper is simulated in PyBullet [21]
and takes discrete action steps in the form of desired dx, dy,
with a maximum per step movement of 0.03m along each
dimension. Each simulation time step is 1/240s, and we moved
slowly to avoid bouncing objects off the robot. The residual ~
used for contact detection and isolation here is the measured
force torque on the gripper provided by the simulator.

Note that our method takes contact points as input and is
not limited to planar systems. However, restricting to planar
motion simplifies the data collection, contact isolation, and the
downstream task of BOR.

Our training set consists of 40 trials of randomized start
and goal positions for each of the 4 environments depicted in
Fig. 3. We generated trajectories using a greedy controller that
entered a random walk of length 6 upon contact. Trajectories
that were in contact less than 5% of the time were discarded
without replacement, yielding a total of 129 valid trajectories.

Tuning consisted of parameter sweeping to maximize me-
dian FMI and minimize median CE on the whole training
set. For our method, the primary parameter to tune was the
characteristic length [, which was larger on the real robot to
handle a large kettle. See Tab. I for our tuned parameters.
BIRCH was tuned to have threshold 0.08, DBSCAN was tuned

B es B
o' ]
N e ®

Fig. 3: Training environments in simulation. Immovable walls are
colored grey while the darker the movable object is, the more massive
it is.

TABLE I: STUCCO parameters for Blind Object Retrieval.

Parameter sim real
[ characteristic length 0.02 0.006
lp penetration length 0.002 | 0.002
€ residual threshold 1 5
N number of particles 100 100
« connection threshold 0.4 0.4

to have eps 0.05 and minimum neighbourhood size of 1, k-
means was tuned to need an inertia improvement of 5 times
to increase the number of clusters, and the GMPHD filter was
tuned to have birth probability of 0.001, spawn probability of
0, and detection probability of 0.3.

The tuned performances of all methods on the training set
are shown in Fig. 5 (top), where our method outperforms
all baselines in CE. Since we are interested in manipulation
in clutter, Fig. 5 (bottom) shows the performance on runs
that had ambiguous contact assignments. For each step, this
was computed using the minimum distance from the robot
to the second closest object, with an ambiguity score of 1
corresponding to a distance of 0 and a score of 0 corresponding
to a distance of 0.15m or more. The bottom figure shows runs
with an average ambiguity of at least 0.3. On these, our method
outperforms the baselines in both FMI and CE by an even
larger margin, demonstrating that our method is well suited
for clutter.

C. Blind Object Retrieval

We present the problem of Blind Object Retrieval: pose
estimation and grasping of a target object with known ge-
ometry using no visual perception. To perform this task, the
robot rummages in clutter to collect contact points that it can
segment into objects using our method. Using the segmented
objects, the robot runs iterative closest point (ICP) [22] be-
tween the set of contact points of each object and model points
sampled from the known surface of the target object. ICP is
run 30 times from random initial poses and the object with the
lowest variance in position estimation is selected (see Fig. 6).
An important source of variance is uncertainty in orientation
due to contacts being unevenly distributed across the object
surface. From the ICP estimates of the selected object, we
further select the one that penetrates x, the least, and on ties
choose the lowest ICP matching error.

To evaluate success, we attempt a grasp at the estimated
pose after executing a given rummaging policy. Grasp success
is an important metric to evaluate on for two reasons. First,
it avoids the need to combine position and orientation errors.
These metrics are typically combined using radius of gyrations
which may not be available during run time. Second, it does
not penalize small pose errors that may not be relevant to the



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

Fig. 4: Simulated BOR task in 4 different environments, with each starting condition (top) and after executing actions (bottom), with the
trail in blue. Overlaid is STUCCO’s best estimate of segmented objects, with propagated contact points as crosses and associated actions
taken with a different color for each object. The pose estimate of the target object is represented by a blue outline.
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Fig. 5: Tracking metrics evaluated on the training set, with the median
plotted and error bars indicating 20-80" percentile. (top) Results for
the whole data set, and (bot) results for only runs with an ambiguity
score of at least 0.3. Ideal performance is an FMI of 1 and CE of 0
corresponding to points in the upper left.

task and can safely be ignored while penalizing those beyond
a gripper dependent threshold that will always result in grasp
failure.

D. Blind Object Retrieval in Simulation

In simulation, we designed 4 cluttered environments (see
Fig. 4) with YCB objects [23], with the target being the
cracker box in FB, BC, and IB, and the tomato can in TC.

Fig. 6: Iterative closest point pose estimates from 30 random starts
plotted in green. ICP run on the left set of points (corresponding to
the cracker box) result in lower positional variance in the estimate
than the ICP results run on the set of points corresponding to the can
(right).

A grasp was successful if it closed on the two long sides of
the box and not on a corner, or around more than half of
the tomato can. The control sequence was manually created
to make contact with multiple objects that were initially close
together, while making sufficient contacts to identify the target.
When replayed, each action was perturbed with uniformly
random noise of up to £0.5mm (compared to max action step
of 30mm).

We performed 20 runs of each task (same random seed
used for each baseline so they are evaluated under the same
actions), with the statistical comparison of our method against
baselines summarized in Tab. II. Our method was the only one
that achieved 65% grasp success or higher on all tasks, and
achieved significantly lower contact error than all baselines.

Our method also achieved better FMI than baselines.
The overall lower FMI scores compared to the training set
seen in Fig. 5 attests to the difficulty of the BOR tasks.
Importantly, the lowered FMI (indicating more assignment
errors) for our method did not translate to increased CE.
This is a key strength of our method and can be at-
tributed to the particle update penalizing contact penetration
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Fig. 7: Steps during a BOR run with (left) initially wrong associations of contact points to objects, (mid) moving to right before entering
the gap between the objects, and (right) resolving the previous ambiguity from moving through the gap and penalizing particles with points
in between. Tracked contact points are in orange for the first object and green for the second one.

and also the ReplaceInconsistentPoints function.
Specifically, the action sequences often moved back and forth
between two objects, eventually opening a gap and moving
through it, as captured in Fig. 7. The oscillatory motion
initially left particles with contact points between the gap,
but after moving through it, the update process assigned high
likelihood to particles that separated the contact points to
either side. Additionally, ReplaceInconsistentPoints
replaced remaining points in between with points on a side
while occasionally making an assignment error.

The baselines have no mechanisms for correcting associa-
tions in hindsight, so the lower FMI translated to higher CE
and lower grasp success. However, despite the high errors in
CE, the baselines sometimes achieved grasp success due to
the ICP eliminating many wrong pose estimates.

E. Real Robot Blind Object Retrieval

We applied our method on a real 7DoF KUKA LBR iiwa
arm with two soft-bubble tactile sensors [20] on the gripper
for the BOR task depicted in Fig. 1. Similar to simulation,
we restricted our motion to be planar, with a max step of
20mm implemented using a Cartesian impedance controller.
KUKA’s on-board software estimated the externally applied
wrench at the end-effector using the measured joint torques.
To accommodate the limited sensitivity of this measurement,
We filled the YCB objects to increase their mass and reduce

the effect of measurement noise.

TABLE II: Quantitative comparison of our method against baselines
on 20 runs of blind object retrieval in different simulated cluttered
environments and 5 runs on the real environment in Fig. 1. GS is
grasp success (%), and CE is contact error (cm). Top values per
category are in bold while standard deviations are in parentheses.
FB, BC, IB, and TC are depicted in Fig. 4.

task ours BIRCH DBSCAN k-means GMPHD
GS (70 5 5 45 25

FB FMI | 0.69 (0.08) | 0.62 (0.07) 0.66 (0.10) 0.63 (0.05)|0.56 (0.05)
CE |0.72 (0.25) | 4.63 (0.53) 3.52 (1.54) 1.49 (0.40)|3.90 (0.61)
GS (80 0 10 5 0

BC FMI|0.92 (0.05)|0.84 (0.09) 0.89 (0.02) 0.83 (0.04)|0.57 (0.04)
CE |1.33 (0.13) | 6.49 (0.36) 6.56 (0.31) 7.04 (0.41)|7.33 (0.44)
GS |65 0 60 10 0

IB  FMI|0.78 (0.07) | 0.71 (0.05) 0.75 (0.06) 0.47 (0.23)|0.46 (0.06)
CE |1.04 (0.33) | 3.27 (0.36) 2.31 (0.58) 4.84 (1.81)|5.62 (0.85)
GS |85 0 0 25 20

TC FMI | 1.00 (0.00) |0.79 (0.07) 1.00 (0.00) 0.54 (0.17)|0.54 (0.17)
CE |0.31 (0.90) | 4.20 (0.22) 4.14 (0.09) 6.23 (0.72) | 8.09 (0.22)

Real GS |[100 20 0 20 0

Contact isolation was performed independently by the left
and right soft-bubble sensors, then by the CPF if neither of
them detected contact. Each bubble had a depth camera inside
that measured surface deformation. Pixels with deformations
greater than 4mm were considered deformed. We then aver-
aged all deformed pixel coordinates and projected that point
to the camera frame then rigidly transformed it to produce a
contact point in the world frame. Due to the deformable nature
of the sensors, we adjusted pxpen to ignore the first 10mm
of penetration.

To extend Alg. 1 to multiple contact points per step,
each contact point’s distance in line 11 is measured against
their closest new contact point, and dynamics in line 15 is
performed with their associated dx. Note that dx for each new
contact point may be distinct due to making contact at different
times during the action.

VI. DISCUSSION

Proprioceptive and tactile driven object state-estimation is
an important functionality for autonomous robotic systems in
highly unstructured environments. Here, we discuss important
extensions that can further generalize our method to more
challenging instances of “blind” object state-estimation for
downstream tasks such as object retrieval. These extensions
include generalizing beyond point contacts and generating the
rummaging policies.

A. Generalizing Beyond Object Translation

Our update step can use inconsistency in object motion to
correct for errors in the dynamics function, such as assuming
that objects translate without rotation. However, it is unable
to handle higher dimensional pose changes such as those
induced by toppling or deforming. To address this, more rich
information beyond point contacts can be extracted from each
contact (e.g., incipient slip from the soft-bubbles) together with
more sophisticated object dynamics models.

B. Generalization Beyond Single Point Contacts

Alg. 1 can generalize beyond single point contacts without
major changes. Indeed, as shown in our real robot experiment
with essentially three contact detectors, we can easily gener-
alize to multiple contacts per step. The soft-bubble sensors
provide rich contact information that we hope to exploit in
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future work. Advanced representations of contact patches such
as meshes and non-uniform rational B-splines (NURBS) [24]
could directly replace or exist alongside contact points in
Alg. 1 as long as we have efficient pairwise distance functions
between them.

C. Rummaging Policy

In this paper, our method assumed a prescribed action
sequence that makes sufficient contact with our target object
to uniquely identify it. Future work could generate this policy
using active perception. For example, after estimating the
object pose using a probabilistic method (or approximations
such as using multiple runs of ICP to estimate the target pose
and associated uncertainty), an action sequences can be chosen
to reduce uncertainty while maintaining distance from other
contact point sets to minimize ambiguity.

VII. CONCLUSION

We presented STUCCO, a contact tracking method that
maintains a belief over contact point locations to enable
corrections in hindsight. The method is based on the basic
assumptions that points closer together are more likely to be
on the same object, and that contact only occurs on the surface
of the robot. We showed that it performs well on a variety of
Blind Object Retrieval tasks in clutter and demonstrated its ap-
plication on a real robot. Specifically, it is capable of handling
cases where contact is initially made on different objects close
together, and later correct their tracking when they are moved
apart. In contrast, we showed that clustering and the PHD filter
baselines struggle in these scenarios. Finally, the failure of
baselines that maintain a single estimate of the contact points
on our tasks suggests that it is beneficial to maintain a belief
over them to allow corrections in hindsight. Future work will
focus on representing rich contact patches and generating the
rummaging policy.
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