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A gauge-invariant mass term for nonabelian gauge fields in two dimensions can
be expressed as the Wess—Zumino—Witten (WZW) action. Hard thermal loops in
the gauge theory in four dimensions at finite temperatures generate a screening
mass for some components of the gauge field. This can be expressed in terms of
the WZW action using the bundle of complex structures (for Euclidean signature)
or the bundle of lightcones over Minkowski space. We show that a dynamically
generated mass term in three dimensions can be put within the same general
framework using the bundle of Sasakian structures.

1. Introduction

The early 1980s were a time of growing appreciation of the role of topology in
quantum field theory, especially for gauge theories. Anomalies and Chern—Simons
terms were very much in the air, so it was impossible for any graduate student to be
unaware of the seminal contributions of Roman Jackiw. My own collaboration with
Roman began somewhat later, during his sabbatical visit to Columbia University in
1990. At that time Roman was very much interested in solitons in Chern—Simons
theories coupled to matter fields, both relativistic and nonrelativisticX' but we did
talk about anomalies and anyons and representations of the Poincaré group in 2+1
dimensions. After he went back to MIT, we corresponded about anyons, and this
evolved into our paper on the relativistic wave equation for anyons2

Throughout the 1990s and early 2000s, we continued to collaborate on a number
of projects of common interest, from finite-temperature field theories, nonabelian
Clebsch parametrization, a group-theory-based formulation of nonabelian magne-
tohydrodynamics,? etc. Particularly gratifying was my work with Efraty on an
effective action for hard thermal loops,® and the subsequent work with Roman on
developing it into a nonabelian version of the Kubo formula,? combining two of his
favorite topics: field theory at finite temperature and Chern—Simons theory. Chro-
momagnetic screening masses and gap equations in 2+1 dimensional gauge theories
was another topic on which I had many discussions with Roman and So-Young,

This paper is reproduced from the book Roman Jackiw: 80th Birthday Festschrift,
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although we never published any joint work on this” Looking back, it is striking
to me that we had overlap of interest on so many different topics. Yet, on second
thought, it is perhaps not so remarkable since Roman has been a continuing in-
fluence on the development of field theory from the mid-1960s to the present, and
hence anyone interested in field theory would be bound to have many points of
overlap with his work.

To a man who has devoted decades to physics, appreciation must be shown in
kind, not just in anecdotes and reminiscences alone. So, for my contribution to this
Festschrift, I have decided to write on a novel aspect of something we have both
worked on. I shall discuss dynamically generated mass terms in gauge theories,
which brings together Chern—Simons actions and their eikonals, the Wess—Zumino—
Witten actions, Dirac determinants, chromomagnetic screening effects and many
facets of geometry and topology, which are all topics of interest to Roman. The
key point is that while Kéhler structures play an important role for physics in even
dimensions, Sasakian structures should do so in odd dimensions. A mass term which
can be dynamically generated in nonabelian gauge theories in odd dimensions, as I
argue below, exemplifies this.

2. Masses for gauge theories in two and four dimensions

The prototypical example of a gauge-invariant mass term is given by the Wess—
Zumino-Witten (WZW) action in two dimensions,®
arithm of the Dirac determinant® This is the nonabelian generalization of
Schwinger’s result for the Abelian casel Specifically, this mass term takes the
form

or, equivalently, by the log-

I' = —[Trlog (—DD) — Trlog(—00)] = —Ar Swzw(H)

1 _
Swazw (H) 7/ d?zTr(0HOH ™)
M

~on
v Te(HYdH A H7'dH A H7NdH) (1)
127 M3

where we use complex coordinates in two dimensions, z, Z = x1 F ixy and

D=0+A=21(01+1i05) + (A1 +ids) = L(01 +i0s) + (—it,) 1 (AT +iA9)

D=0+ A=1(01—id) + 3(A1 —iAs) = 3(d1 —i02) + (—ita) 5 (AT — i45)(2)
One can parametrize the gauge field in terms of a complex matrix M as A =
—OMM~™', A = Mt=19M', which yields the second expression in in terms of
the WZW action with H = MTM. In , {t.} are a set of hermitian matrices
forming a basis for the Lie algebra of the gauge group, Ar = 1 if the fields are in
the fundamental representation (F'), otherwise, for representation R, it is defined
by Tr(taty)r = Ag Tr(taty)r. The integration is over the two-dimensional space M
of interest; in the second term of Swzw we extend the fields to a three-manifold
M? whose boundary is M, as usual.
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The WZW action we have written can also be expressed directly in terms of
the gauge potentials, which is useful for explicit computations in a gauge theory. It
reads

Swzw (H) = % [ / d?z Tr(AA) — 7Z(A) — nZ(A)

1) =3 O [y e, BEC AR 2 A 2]
5 N (z1 —22)(Z2 — 23) -+ (Zn — Z1)
and Z(A) is similar with A — A, z; — Zo — z; — 29, etc. for the terms in the
denominator of the expression in .
The fact that we have a complex structure for R? is important in constructing
this mass term. The WZW action, and hence the mass term, can be written for

any Riemann surface, viewed as a complex manifold, by a simple generalization as

1
Swzw (H) = 8—”/ d*x \/Egab Tr(aaHabH_l)
M

[ Te(H'dH AHYdH A H™'dH) (4)
127 M3
where g is the metric tensor for the two-manifold.

Consider now the extension of this to four dimensions. A mass term, similar to
, can be written down if we can identify two complex coordinates out of the four
real coordinates of R*. But there are many choices for a complex (or even a Kéhler)
structure. We can understand the inequivalent choices as follows. If we choose one
set of complex combinations, say w; = xg — ix3, wa = X2 — ix1, then a U(2)
transformation of (wy,ws) does not change the complex structure. In particular, a
holomorphic function of w = (wy,ws) remains holomorphic under the U(2) transfor-
mation. However, we can do a rotation of all four coordinates, as x,, — x; =Rz,
where R, is a rotation matrix, and this does lead to a different structure given by
x—ixk, xh—ix). Sothe inequivalent ways of combining (xg, z1, 22, £3) into complex
combinations are parametrized by SO(4)/U(2) ~ S2. More explicitly, introduce a
two-spinor (71, 72) with the identification m = (71, m3) ~ A(m1,m2), A € C — {0}.
The 7’s parametrize CP' ~ $2. The complex combinations can be taken as

w1 . o — 13 —X — 1T T

(WQ) - ((Eo B ZO'i(Ei)?T - To — ixl xo + ixg :| <7T2) (5)
where o; are the Pauli matrices. We can also define a real unit vector @; =
wo;m /(7). We then find
%(m,m) = (20 —iQ - &, xo +1iQ - T) = (2,7) (6)
These constitute two of the complex coordinates. The remaining two transverse
coordinates are given by T X Q The unit vector @; gives an alternate way to
parametrize S2. For any fixed choice of Q, we do lose rotational invariance but we

can construct an invariant mass term as>

I'= —]{J/d,usz dQ.%‘T Swzw(H) (7)
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where H = MM and

A=LAg+iQ-A) =L@ +iQ-V)M M~!

A= $(A —iQ - A) = M9y — i@ - V) MT (®)
The integrations over all orientations of Q, signified in by dugz, and over the
transverse coordinates x7, will make this mass term rotationally invariant. The in-
tegration over z, Z is part of Swzw (H), so the final result in (7)) will have integration
over all four coordinates with the measure d*z. This mass term is also obviously
gauge-invariant, in the same way as in two dimensions.

A number of comments are in order at this point. First of all, the key idea
here is to use a pair of complex coordinates or more generally a two-dimensional
complex subspace to construct the WZW action. This necessarily entails a lack of
rotational symmetry. Symmetry is restored by integrating over all possible choices
of complex coordinates. In other words, we may think of the total space of interest
as the bundle of complex structures on R*. This is basically the way twistor space
is defined ™ In the present case, where the base space is flat, the bundle is trivial.
One could do an analogous construction for other spaces, a notable example being
S%. For this latter case, we cannot have a global complex structure, so combinations
of coordinates into complex ones correspond to local complex structures and one
is considering the bundle of local complex structures over S*. The bundle space is
then CP?, with S2 as the fiber and S* as the base, and the bundle is topologically
nontrivial. In any case, the key point here is to consider the bundle of local complex
structures, trivial or nontrivial.

Secondly, while the twistor space genesis of @ may be mathematically grati-
fying, one may ask whether this mass term has anything to do with physics. The
remarkable fact is that it does. Of course, its use in physics needs a continuation to
Minkowski signature, not the Euclidean one we have used so far. This continuation
can be done by the rules

A= LA +Q - A) =3 +Q - V)M M

A= L(Ag—-Q-A) =M1 (9 - G- V)MT (9)
If we consider a physical system described by a nonabelian gauge theory such
as quantum chromodynamics (QCD), then, at finite temperature where we get
a plasma of gluons (and quarks if they are included), the terms in the standard
perturbative expansion have infrared divergences. There is an infinite sequence of
terms, which are the leading infrared divergent terms, known as hard thermal loops
(HTL) 22 These are special to the case of nonzero temperature and are in addition
to the usual divergences (both in the ultraviolet and infrared) in the theory at zero
temperature. These HTL terms have to be summed up and included at the lowest
order to reformulate perturbation theory without infrared divergences. (This has
to be done in a self-consistent way, the technology for this is well understood.) The
summation of the HTL terms is a screening effect for the electric-type forces corre-
sponding to the nonabelian gauge field. In fact it is the nonabelian generalization
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of the Debye screening effect well known for the Abelian plasma (and electrolytes).
The sum of the HTL terms can be interpreted as a mass term, primarily for the
Ap-component of the gauge field, with some contributions to the other components
as well to satisfy the Gauss law. The HTL contributions can be calculated in the
field theory at finite temperature and the result of the detailed calculations at finite
temperature is exactly the mass term @, with the continuation in @, and with
k = (N + $Np)T?/65 This value of k is for the case of an SU(N) gauge theory,
with Np massless fermion flavors and T denotes the temperature of the plasma.
Thus, quite remarkably, what was defined purely as a mathematical generalization
is indeed realized in explicit calculations in a very physical context, namely, the
quark—gluon plasma.

A similar screening effect also occurs for a degenerate gas of quarks with a
nonzero total baryon number, such as can occur deep inside a neutron star. This
is the nonabelian generalization of the well-known Thomas—Fermi screening effect
for electron gases. The mass term describing this is again of the same form, with
k= ug /4Am?, where i, is the chemical potential for the quark number (= % of the
baryon number) 22

Finally, we may raise the question of Lorentz invariance. The Minkowski con-
tinuation of the mass term as written in is not Lorentz-invariant. Physically,
this is indeed as it should be, since thermal equilibrium and the specification of the
temperature are obtained in the rest frame of the plasma without any overall drift
velocity. For a Lorentz-invariant result, we need one more parameter, the overall
drift velocity of the plasma, whose Lorentz transformation will lead to an invariant
result. The relevant form of the mass term (i.e., the generalization for the moving
plasma) was worked out many years ago and takes the form14

I=—k / dpd*x™ Sy zw (H)

meodn R dR & dEE - dE Ve Glimle . oI
(- 6)2(7 - £)2 §¢(e - p)7] d[m(e - p)¢] (10)

We have introduced two sets of two-component SL(2,C) spinors, 74, ¢4, A = 1,2,
with 74 = 74 and €4 = €4 as their complex conjugates. The components of the
gauge fields used to define M and M, and hence H, are given by

Ap =Ln(e- Ar, A = Le(e- A)E (11)

dp = 2i

Further e# = (1,0%), and Dy in denotes the drift 4-velocity of the plasma. The
derivatives are defined in a way similar to the A’s given above, namely by with
A — 0, with corresponding expressions for the coordinates. Notice the presence
of the d-functions in du. Upon integration, they enforce a relation between the
two spinors in a way which depends on p*. In the rest frame of the plasma, with
p* =(1,0,0,0), expression reproduces the previous result @

Another feature worthy of remark is that the combinations of the gauge poten-
tials in @D, as well as derivatives, can be written asn-A, n-0 and n’- A, n’ -0, where
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n* = (1,iQ;) n'* = (1, —iQ;) = 7* in Euclidean space. These are complex null vec-
tors. Upon continuation to Minkowski space, we get n* = (1,Q;) n'* = (1,—-Q;),
which are real null vectors. Thus the bundle space we are considering is the bundle
of lightcones over Minkowski space !

Turning now to three-dimensional space, obviously we cannot combine coordi-
nates pairwise into complex combinations, so an immediate generalization seems
difficult. However, there is a mathematical structure known as the Sasakian which
can exist on certain odd-dimensional manifolds and which has been suggested as the
closest we can get to a Kéahler structure. We can try to utilize this to construct a
mass term. In the next section, we give a general discussion of Sasakians for S3 and
R3 and write down this mass term. The final result agrees with what was suggested
as the magnetic screening mass for the gluon plasma many years ago, although the
Sasakian connection was not apparent at that time.

3. S2 and R?® as Sasakian manifolds and a 3d mass term

We begin by briefly recalling the definition of a Sasakian manifold ™ Let M be an
odd-dimensional Riemannian manifold with the metric ds%/l. The Riemannian cone
for M is M x R, with the cone metric

ds* = dr? +r? ds%, (12)

where r € R, is the additional coordinate along the R, direction. The manifold
M is said to be a contact manifold if there is a one-form © on M such that the
two-form

Q =7r2dO + 2rdr © (13)

is symplectic. The manifold M endowed with © is Sasakian if the two-form  and
the metric ds? on the cone, i.e., , are Kahler. Since M is a transverse cross-
section of the cone, it inherits many properties from the Kéahler structure of the
cone. In fact, it is generally considered that the Sasakian structure is the closest
one can get to Kéahler-type properties for an odd-dimensional space.

We can apply this specifically to S® by considering its embedding in R* and
taking r as the radial coordinate. Removing the origin, R* — {0} has the cone
structure, with the metric on the cone being the flat Euclidean metric ds? = dx3 +
dz? +dz3+dz3. Toidentify S as a Sasakian space, we need to write this metric as a
Kahler metric. As discussed in the last section, there are an infinity of inequivalent
ways of doing this, the possible complex combinations being parametrized by m
which form the homogeneous coordinates for CP'. Using the freedom of scaling,
7~ Im, I € C— {0}, we can bring it to the form

e
m\  [—e"2 cos%
o —€'Z sin 3

e .0 —i L [
_|metrsing —etrcosg 0\ _ 0 1
{ efcosd et sing} <1> _g<1 (14)
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The complex combinations for R* can be taken as in . But as mentioned earlier,
we are free to do a U(2) rotation of the complex combinations without changing
the complex structure. For our purpose here, it is useful to do this using g7, thus
defining

w = gT(xo —i0 - B)T = gT(xo —id - Z)g ((1))

= (z0 — iokReizi) (g) (15)

For the choice of 7 in (14)), the components of the orthogonal matrix Ry; are given

by
—cosf cosp —cosfsing  sind
Ry, = | —sing Cos ¢ 0 (16)
—sinf cospy —sinf singp —cosé

In terms of the complex coordinates w, the Kahler forms and metric can be taken
as

Q=i (dwi Adwy + dws Adws) =dA
A= %[QlAdwl — w1 Adwy + 0 A dws — wa A divs]
ds® = dwydw + dsdw, (17)
Using w1, we from , we can now separate out the radial coordinate, writing
wy = —i(Ry; — iRg;)w; = r[—i(Ry; — iR2i) i)
wo = To + iR3;iw; = r[do + iRz ;] (18)
with odg + ¢sd; = 1. It is straightforward to simplify A to get A = 2O, with

6 = Ryu(¢uddo — doder) + 5 [(n- 6)d(n - 6) = (- 6) d(n - 9)
n; = Ry; + iRa; = (—cosfcosp — isinp, —cosfsinp +icosp,sind)  (19)

We have chosen a Kéhler metric for the cone and we see that = dA does have
the required structure (13]). This is basically the Sasakian structure on S3. Notice

that the second term in ©, namely,

a=5[n-¢)dn-¢)—(n-¢)dn-g¢) (20)

defines a local Kéhler structure for the two-dimensional subspace transverse to
R3;¢;. This is only local, since the separation of the third direction on S® can only
be local. The existence of such a local transverse Kéhler structure is a feature of
Sasakian manifolds.

The vectors n;, n; define the choice of complex combinations on the cone. (Rs;
is not independent, it is proportional to (7 x 1);.) A particular Kihler structure on
the cone corresponds to a particular choice of these vectors, each of them leading to
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a particular Sasakian structure for S3. We have an S? worth of such choices, so the
total space we are considering is the bundle of Sasakians over S3. In this sense, it is
the natural equivalent in three dimensions of the twistor space in four dimensions[]
Notice that, since Ry; is an orthogonal matrix,

In other words, n;, n; are complex null vectors, normalized by the second relation in
(21). Thus we may think of the bundle of Sasakians of S3 as the bundle of complex
null rays. In this case, the bundle is still trivial just as it was in R

To proceed further, we introduce stereographic coordinates y; for S° by
o = y? — R? 2y; R

0T 2T RY y? + R?

We also introduce the notation z =n-y, Z =n-y, Rs;y; = v. The Kahler potential
for the transverse local Kahler one-form « in is

4R?zz
(22 + v2 + R?)?

¢i = (22)

Kr=(n-¢)(n-¢) = (23)

If we take the large R limit, which corresponds to blowing up the S3 to get R?, we

find
A 2d 21
O~ fv + RfZQ(def zdz)
zZz

This will be useful in applying our results to gauge fields in R3.

We can now write down the WZW action for the transverse space with the
coordinates z, 2, with the (local) Kihler metric (00K7) dzdz. The factors involving
(aéKT) will drop out of Swzw because of its conformal invariance. The action is
thus the integral of a differential two-form given as
i

Swozw (H) = —ﬁ/ Tr(0H ANOH ') + Tr(H 'dH A H 'dH AN H 'dH)
M

127 J e
:_ZU Tr(0H A DH™Y)
4 M

T
- / Tr[H'dH A (H'OH NH'OH — H'OH N H '0H)]| (25)
MS
The mass term of interest can now be written down as I' = m2S,,,, withl4

Sm = —/du(sz)éSsz(H>

aIn Ref. |15, Boyer and Galicki study a particular version of what they name as the twistor space
for Sasakian manifolds. They also mention that there could be another object which deserves the
name of twistor space for Sasakians. The latter one is the trivial S2 bundle for a Sasakian manifold
inheriting the structure from the Kéahler structure on the cone. It is this latter definition which
applies to our case here.
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- ﬁ du(S?) 6 A [Tr(aH AOH™Y)

~Tr [H '"dH A (H'0HANH '0H — H 'OH ANH '0H)|| (26)

The same expression also applies to the large R (or R?) limit, where the one-form
© and the potential K simplify as given in .

The expression may still seem rather cryptic, but it is straightforward to
work out the expression as a series in terms of the gauge potentials, after Fourier
transforming to momentum space. The first two terms areld

1 d3k kik;
Sm== | oz AT (—k)A% (k) ( 0;5 — =2
m 2/(27’1’)3 1( ) J( )( J k2>
A3k d3q
AL (k) A(9) AL (=K — q) f** Vi (K, q, —k —
+ [ G G A AN @ A (k= ) Ve~ = )

k-(q+k)

4. Properties of the 3d mass term

Our arguments in arriving at show that it has a deep and interesting mathe-
matical structure and that it is the most natural generalization to three dimensions
of the results in two and four dimensions. But we can again ask the crucial question
of whether it has anything to do with physics. Indeed that is the case, the motiva-
tion from physics is what led to this mass term, for R?, many years ago, although
the Sasakian structure was not clear at that time"* The general expectation is
that in nonabelian gauge theories a mass gap will be dynamically generated, so
potentially, one can get a term like in the effective action for such theories.
This will be a highly nonperturbative result. One can attempt to demonstrate this,
and calculate the coefficient m?2, via a gap equation approach where we add and
subtract the same term to the standard Yang—Mills action,

S = Sym +m3S,, — AS,, =S — AS,,
S = Sym + mQSm (28)

The idea is to consider m? as the exact value of the mass generated by interactions
while A is taken to have a loop expansion of the form A = A®) + A@) 4
Calculations can be done in a loop expansion, with the action S used to construct
the propagators and vertices at the tree level, but A starts at the one-loop level.
Since m? is taken to be the exact dynamically generated mass, the pole of the
propagator must remain at k3 — k2 = m? as loop corrections are added. This
requires choosing A to cancel the one-loop shift of the pole, A®® to cancel the
two-loop shift of the pole, etc., as is usually done for mass renormalization. After
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this is done, the A so obtained must still equal m?, since the theory is defined by
just the YM action. Thus we must impose the condition

A=A 4+ A® ¢ = p? (29)
This statement of equating the corrections to the mass term is the gap equation
which determines m2?19 (This strategy can be continued to arbitrary orders of

calculation! Notice that the approach is completely gauge-invariant. The cal-
culation of m? along these lines was carried out in Ref. 16| and gave the value
m =~ 1.19 (e?c4/27), where e is the gauge coupling and c4 is the quadratic Casimir
value for the adjoint representation of the gauge group. (For other related ap-
proaches to the magnetic screening mass, see Refs. |17, [7})

The gap equation can be viewed as the result of the summation of an infinite
number of Feynman diagrams, a particular sequence being chosen by the form of
the mass term. A very different approach is to use the Schrédinger equation in the
Hamiltonian formulation of the theory and to solve it for the ground—state wave
functional in a low energy approximation. Such an approach, which has been de-

TIIe)

veloped in a series of articles*® leads to a prediction for the string tension (which is
in good agreement with lattice simulations'?) and a value for m as e%c4/2m. This
is close to the value obtained from the gap equation analysis. Yet another indepen-
dent validation of the result comes from using the same Hamiltonian approach to
calculate the Casimir energy for two parallel plates2? One can then obtain a direct
and independent numerical estimate of the value of the mass by a lattice simulation
of the parallel plate geometry for the Yang—Mills theory. Such a simulation yields
the same value of 628,4/271' to within a fraction of a percent2!

There are two other observations regarding this mass term which might be inter-
esting. The first is about the one-loop correction generated by the mass term which
determines the gap equation. Let us denote, in any gauge theory, the correction
to the two-point function as [ Af(—k)IL;;(k)A$ (k). Then one can analyze some of
the excitations which can occur in intermediate states of the one-loop graph, corre-
sponding to a unitarity cut of the diagram, by the singularity structure of IL;; (k).

As an example, if we use a mass term
1 1
Sm = /dngr |:Fz <.D2> FL:| ) E = ieiijjka (30)

one can show that there are singularities at k% = 0 in II;;(k) indicating that there
are still zero-mass excitations present in the spectrum'® One way to understand
this is to note that if we write in terms of local monomials with an auxiliary
field, we get

Sm = —/d?’??Tr B@ (=D*)¢; + ¢iFi:| (31)

This would give propagating massless solutions corresponding to [J¢; = 0 in the
absence of A;. In contrast to this, II;;(k) resulting from the mass term or
has no zero-mass threshold singularities, at least to the one-loop order the
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calculations have been carried out. One way to understand this may be to note
that the mass term rewritten in terms of local monomials with auxiliary fields is

Sm = /d,u(SQ)[/ dzT Swzw (G)

41 /d% Tr (GT'0GA— AdGG™ + AGTTAG — AA) (32)

™

The equations of motion for the group element G leads to the solution
G=M"1WVvEM!? (33)

Since the matrices M, M are only defined up to the ambiguity M — MV ~1(z),
Mt — V(2)MT by the equations A = —9M M~', A = MT=19M*, we can absorb
V(z) V(z) in into the definition of M, MT. Thus there are no independent
solutions, or independent degrees of freedom, for the auxiliary field.

Our second observation is about the use of this mass term in the context of
the quark-gluon plasma. The hard thermal loops generate a screening mass @ or
for the chromoelectric forces, the mass term can describe the magnetic
screening or the magnetic mass of the plasma. In carrying out calculations at
finite temperature, one can see that, even after taking account of the hard thermal
loops and the corresponding chromoelectric screening effects, there are still infrared
divergences left over in the nonabelian theory. These are cured by the screening
mass for the chromomagnetic interactions, so the dynamical generation of such a
mass term is an important feature. At very high temperatures, the 3+1 dimensional
theory can be approximated by the same theory in three Euclidean dimensions, i.e.,
there is a dimensional reduction, the coupling of the 3d theory being e? = ¢°T,
where g is the 4d coupling. The dynamically generated mass of the 3d theory can
thus be interpreted as the magnetic screening mass of the high temperature limit
of the 4d theory*? For this idea to be implemented in the full four-dimensional
theory, we again need a 4d- Lorentz- invariant form of the mass term. It is indeed
possible to construct such an invariant mass term2* The result is exactly of the
form given in with one change. Instead of the components of 4, given in ,
we must use

Ar = Lnle- A)E,  Ac=Le(e- A)m (34)

Notice that in each of these combinations there is mixing of the spinors 7, £, unlike
the situation in .
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