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A gauge-invariant mass term for nonabelian gauge fields in two dimensions can
be expressed as the Wess–Zumino–Witten (WZW) action. Hard thermal loops in
the gauge theory in four dimensions at finite temperatures generate a screening
mass for some components of the gauge field. This can be expressed in terms of
the WZW action using the bundle of complex structures (for Euclidean signature)
or the bundle of lightcones over Minkowski space. We show that a dynamically
generated mass term in three dimensions can be put within the same general
framework using the bundle of Sasakian structures.

1. Introduction

The early 1980s were a time of growing appreciation of the role of topology in

quantum field theory, especially for gauge theories. Anomalies and Chern–Simons

terms were very much in the air, so it was impossible for any graduate student to be

unaware of the seminal contributions of Roman Jackiw. My own collaboration with

Roman began somewhat later, during his sabbatical visit to Columbia University in

1990. At that time Roman was very much interested in solitons in Chern–Simons

theories coupled to matter fields, both relativistic and nonrelativistic,1 but we did

talk about anomalies and anyons and representations of the Poincaré group in 2+1

dimensions. After he went back to MIT, we corresponded about anyons, and this

evolved into our paper on the relativistic wave equation for anyons.2

Throughout the 1990s and early 2000s, we continued to collaborate on a number

of projects of common interest, from finite-temperature field theories, nonabelian

Clebsch parametrization,3 a group-theory-based formulation of nonabelian magne-

tohydrodynamics,4 etc. Particularly gratifying was my work with Efraty on an

effective action for hard thermal loops,5 and the subsequent work with Roman on

developing it into a nonabelian version of the Kubo formula,6 combining two of his

favorite topics: field theory at finite temperature and Chern–Simons theory. Chro-

momagnetic screening masses and gap equations in 2+1 dimensional gauge theories

was another topic on which I had many discussions with Roman and So-Young,

This paper is reproduced from the book Roman Jackiw: 80th Birthday Festschrift,

edited by Antti Niemi, Terry Tomboulis and Kok Khoo Phua (World Scientific, 2020);
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although we never published any joint work on this.7 Looking back, it is striking

to me that we had overlap of interest on so many different topics. Yet, on second

thought, it is perhaps not so remarkable since Roman has been a continuing in-

fluence on the development of field theory from the mid-1960s to the present, and

hence anyone interested in field theory would be bound to have many points of

overlap with his work.

To a man who has devoted decades to physics, appreciation must be shown in

kind, not just in anecdotes and reminiscences alone. So, for my contribution to this

Festschrift, I have decided to write on a novel aspect of something we have both

worked on. I shall discuss dynamically generated mass terms in gauge theories,

which brings together Chern–Simons actions and their eikonals, the Wess–Zumino–

Witten actions, Dirac determinants, chromomagnetic screening effects and many

facets of geometry and topology, which are all topics of interest to Roman. The

key point is that while Kähler structures play an important role for physics in even

dimensions, Sasakian structures should do so in odd dimensions. A mass term which

can be dynamically generated in nonabelian gauge theories in odd dimensions, as I

argue below, exemplifies this.

2. Masses for gauge theories in two and four dimensions

The prototypical example of a gauge-invariant mass term is given by the Wess–

Zumino–Witten (WZW) action in two dimensions,8 or, equivalently, by the log-

arithm of the Dirac determinant.9 This is the nonabelian generalization of

Schwinger’s result for the Abelian case.10 Specifically, this mass term takes the

form

Γ = −[Tr log
(
−D̄D

)
− Tr log(−∂̄∂)] = −AR SWZW(H)

SWZW(H) =
1

2π

∫
M
d2zTr(∂H∂̄H−1)

+
i

12π

∫
M3

Tr(H−1dH ∧H−1dH ∧H−1dH) (1)

where we use complex coordinates in two dimensions, z, z̄ = x1 ∓ ix2 and

D = ∂ +A = 1
2 (∂1 + i∂2) + 1

2 (A1 + iA2) = 1
2 (∂1 + i∂2) + (−ita) 1

2 (Aa1 + iAa2)

D̄ = ∂̄ + Ā = 1
2 (∂1 − i∂2) + 1

2 (A1 − iA2) = 1
2 (∂1 − i∂2) + (−ita) 1

2 (Aa1 − iAa2)(2)

One can parametrize the gauge field in terms of a complex matrix M as A =

−∂MM−1, Ā = M†−1∂̄M†, which yields the second expression in (1) in terms of

the WZW action with H = M†M . In (2), {ta} are a set of hermitian matrices

forming a basis for the Lie algebra of the gauge group, AR = 1 if the fields are in

the fundamental representation (F ), otherwise, for representation R, it is defined

by Tr(tatb)R = AR Tr(tatb)F . The integration is over the two-dimensional spaceM
of interest; in the second term of SWZW we extend the fields to a three-manifold

M3 whose boundary is M, as usual.
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The WZW action we have written can also be expressed directly in terms of

the gauge potentials, which is useful for explicit computations in a gauge theory. It

reads

SWZW(H) =
1

π

[∫
d2zTr(AĀ)− πI(A)− πĪ(Ā)

]
I(A) =

∞∑
2

(−1)n

nπn

∫
d2z1 · · · d2zn

Tr
(
A(z1, z̄1)A(z2, z̄2) · · ·A(zn, z̄n)

)
(z̄1 − z̄2)(z̄2 − z̄3) · · · (z̄n − z̄1)

(3)

and Ī(Ā) is similar with A → Ā, z̄1 − z̄2 → z1 − z2, etc. for the terms in the

denominator of the expression in (3).

The fact that we have a complex structure for R2 is important in constructing

this mass term. The WZW action, and hence the mass term, can be written for

any Riemann surface, viewed as a complex manifold, by a simple generalization as

SWZW(H) =
1

8π

∫
M
d2x
√
g gab Tr(∂aH∂bH

−1)

+
i

12π

∫
M3

Tr(H−1dH ∧H−1dH ∧H−1dH) (4)

where gab is the metric tensor for the two-manifold.

Consider now the extension of this to four dimensions. A mass term, similar to

(1), can be written down if we can identify two complex coordinates out of the four

real coordinates of R4. But there are many choices for a complex (or even a Kähler)

structure. We can understand the inequivalent choices as follows. If we choose one

set of complex combinations, say ω1 = x0 − ix3, ω2 = x2 − ix1, then a U(2)

transformation of (ω1, ω2) does not change the complex structure. In particular, a

holomorphic function of ω = (ω1, ω2) remains holomorphic under the U(2) transfor-

mation. However, we can do a rotation of all four coordinates, as xµ → x′µ = R ν
µ xν ,

where R ν
µ is a rotation matrix, and this does lead to a different structure given by

x′0−ix′3, x′2−ix′1. So the inequivalent ways of combining (x0, x1, x2, x3) into complex

combinations are parametrized by SO(4)/U(2) ∼ S2. More explicitly, introduce a

two-spinor (π1, π2) with the identification π = (π1, π2) ∼ λ(π1, π2), λ ∈ C − {0}.
The π’s parametrize CP1 ∼ S2. The complex combinations can be taken as(

ω1

ω2

)
= (x0 − iσixi)π =

[
x0 − ix3 −x2 − ix1
x2 − ix1 x0 + ix3

](
π1
π2

)
(5)

where σi are the Pauli matrices. We can also define a real unit vector Qi =

π̄σiπ/(π̄π). We then find

1

π̄π
(π̄ω, ω̄π) = (x0 − i ~Q · ~x, x0 + i ~Q · ~x) ≡ (z, z̄) (6)

These constitute two of the complex coordinates. The remaining two transverse

coordinates are given by ~x × ~Q. The unit vector Qi gives an alternate way to

parametrize S2. For any fixed choice of ~Q, we do lose rotational invariance but we

can construct an invariant mass term as5

Γ = −k
∫
dµS2 d2xT SWZW(H) (7)
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where H = M†M and

A = 1
2 (A0 + i ~Q · ~A) = − 1

2 (∂0 + i ~Q · ∇)MM−1

Ā = 1
2 (A0 − i ~Q · ~A) = 1

2M
†−1(∂0 − i ~Q · ∇)M† (8)

The integrations over all orientations of ~Q, signified in (8) by dµS2 , and over the

transverse coordinates xT , will make this mass term rotationally invariant. The in-

tegration over z, z̄ is part of SWZW(H), so the final result in (7) will have integration

over all four coordinates with the measure d4x. This mass term is also obviously

gauge-invariant, in the same way as in two dimensions.

A number of comments are in order at this point. First of all, the key idea

here is to use a pair of complex coordinates or more generally a two-dimensional

complex subspace to construct the WZW action. This necessarily entails a lack of

rotational symmetry. Symmetry is restored by integrating over all possible choices

of complex coordinates. In other words, we may think of the total space of interest

as the bundle of complex structures on R4. This is basically the way twistor space

is defined.11 In the present case, where the base space is flat, the bundle is trivial.

One could do an analogous construction for other spaces, a notable example being

S4. For this latter case, we cannot have a global complex structure, so combinations

of coordinates into complex ones correspond to local complex structures and one

is considering the bundle of local complex structures over S4. The bundle space is

then CP3, with S2 as the fiber and S4 as the base, and the bundle is topologically

nontrivial. In any case, the key point here is to consider the bundle of local complex

structures, trivial or nontrivial.

Secondly, while the twistor space genesis of (7) may be mathematically grati-

fying, one may ask whether this mass term has anything to do with physics. The

remarkable fact is that it does. Of course, its use in physics needs a continuation to

Minkowski signature, not the Euclidean one we have used so far. This continuation

can be done by the rules

A → 1
2 (A0 + ~Q · ~A) = − 1

2 (∂0 + ~Q · ∇)MM−1

Ā → 1
2 (A0 − ~Q · ~A) = 1

2M
†−1(∂0 − ~Q · ∇)M† (9)

If we consider a physical system described by a nonabelian gauge theory such

as quantum chromodynamics (QCD), then, at finite temperature where we get

a plasma of gluons (and quarks if they are included), the terms in the standard

perturbative expansion have infrared divergences. There is an infinite sequence of

terms, which are the leading infrared divergent terms, known as hard thermal loops

(HTL).12 These are special to the case of nonzero temperature and are in addition

to the usual divergences (both in the ultraviolet and infrared) in the theory at zero

temperature. These HTL terms have to be summed up and included at the lowest

order to reformulate perturbation theory without infrared divergences. (This has

to be done in a self-consistent way, the technology for this is well understood.) The

summation of the HTL terms is a screening effect for the electric-type forces corre-

sponding to the nonabelian gauge field. In fact it is the nonabelian generalization
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of the Debye screening effect well known for the Abelian plasma (and electrolytes).

The sum of the HTL terms can be interpreted as a mass term, primarily for the

A0-component of the gauge field, with some contributions to the other components

as well to satisfy the Gauss law. The HTL contributions can be calculated in the

field theory at finite temperature and the result of the detailed calculations at finite

temperature is exactly the mass term (7), with the continuation in (9), and with

k = (N + 1
2NF )T 2/6.5 This value of k is for the case of an SU(N) gauge theory,

with NF massless fermion flavors and T denotes the temperature of the plasma.

Thus, quite remarkably, what was defined purely as a mathematical generalization

is indeed realized in explicit calculations in a very physical context, namely, the

quark–gluon plasma.

A similar screening effect also occurs for a degenerate gas of quarks with a

nonzero total baryon number, such as can occur deep inside a neutron star. This

is the nonabelian generalization of the well-known Thomas–Fermi screening effect

for electron gases. The mass term describing this is again of the same form, with

k = µ2
q/4π

2, where µq is the chemical potential for the quark number (= 1
3 of the

baryon number).13

Finally, we may raise the question of Lorentz invariance. The Minkowski con-

tinuation of the mass term as written in (7) is not Lorentz-invariant. Physically,

this is indeed as it should be, since thermal equilibrium and the specification of the

temperature are obtained in the rest frame of the plasma without any overall drift

velocity. For a Lorentz-invariant result, we need one more parameter, the overall

drift velocity of the plasma, whose Lorentz transformation will lead to an invariant

result. The relevant form of the mass term (i.e., the generalization for the moving

plasma) was worked out many years ago and takes the form14

Γ = −k
∫
dµ d2xT SWZW (H)

dµ = 2i
π · dπ π̄ · dπ̄ ξ · dξ ξ̄ · dξ̄

(π · ξ)2(π̄ · ξ̄)2
δ[ξ(e · p)π̄] δ[π(e · p)ξ̄] (10)

We have introduced two sets of two-component SL(2,C) spinors, πA, ξA, A = 1, 2,

with πȦ = πA and ξȦ = ξA as their complex conjugates. The components of the

gauge fields used to define M and M†, and hence H, are given by

Aπ = 1
2π(e ·A)π̄, Aξ = 1

2ξ(e ·A)ξ̄ (11)

Further eµ = (1, σi), and pµ in (10) denotes the drift 4-velocity of the plasma. The

derivatives are defined in a way similar to the A’s given above, namely by (11) with

A → ∂, with corresponding expressions for the coordinates. Notice the presence

of the δ-functions in dµ. Upon integration, they enforce a relation between the

two spinors in a way which depends on pµ. In the rest frame of the plasma, with

pµ = (1, 0, 0, 0), expression (10) reproduces the previous result (7).

Another feature worthy of remark is that the combinations of the gauge poten-

tials in (9), as well as derivatives, can be written as n ·A, n ·∂ and n′ ·A, n′ ·∂, where
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nµ = (1, iQi) n
′µ = (1,−iQi) = n̄µ in Euclidean space. These are complex null vec-

tors. Upon continuation to Minkowski space, we get nµ = (1, Qi) n
′µ = (1,−Qi),

which are real null vectors. Thus the bundle space we are considering is the bundle

of lightcones over Minkowski space.11

Turning now to three-dimensional space, obviously we cannot combine coordi-

nates pairwise into complex combinations, so an immediate generalization seems

difficult. However, there is a mathematical structure known as the Sasakian which

can exist on certain odd-dimensional manifolds and which has been suggested as the

closest we can get to a Kähler structure. We can try to utilize this to construct a

mass term. In the next section, we give a general discussion of Sasakians for S3 and

R3 and write down this mass term. The final result agrees with what was suggested

as the magnetic screening mass for the gluon plasma many years ago, although the

Sasakian connection was not apparent at that time.

3. S3 and R3 as Sasakian manifolds and a 3d mass term

We begin by briefly recalling the definition of a Sasakian manifold.15 Let M be an

odd-dimensional Riemannian manifold with the metric ds2M. The Riemannian cone

for M is M× R+ with the cone metric

ds2 = dr2 + r2 ds2M (12)

where r ∈ R+ is the additional coordinate along the R+ direction. The manifold

M is said to be a contact manifold if there is a one-form Θ̂ on M such that the

two-form

Ω = r2dΘ̂ + 2rdr Θ̂ (13)

is symplectic. The manifold M endowed with Θ̂ is Sasakian if the two-form Ω and

the metric ds2 on the cone, i.e., (12), are Kähler. Since M is a transverse cross-

section of the cone, it inherits many properties from the Kähler structure of the

cone. In fact, it is generally considered that the Sasakian structure is the closest

one can get to Kähler-type properties for an odd-dimensional space.

We can apply this specifically to S3 by considering its embedding in R4 and

taking r as the radial coordinate. Removing the origin, R4 − {0} has the cone

structure, with the metric on the cone being the flat Euclidean metric ds2 = dx20 +

dx21+dx22+dx23. To identify S3 as a Sasakian space, we need to write this metric as a

Kähler metric. As discussed in the last section, there are an infinity of inequivalent

ways of doing this, the possible complex combinations being parametrized by π

which form the homogeneous coordinates for CP1. Using the freedom of scaling,

π ∼ lπ, l ∈ C− {0}, we can bring it to the form(
π1
π2

)
=

(
−e−i

ϕ
2 cos θ2

−ei
ϕ
2 sin θ

2

)
=

[
−e−i

ϕ
2 sin θ

2 − e−i
ϕ
2 cos θ2

ei
ϕ
2 cos θ2 − ei

ϕ
2 sin θ

2

] (
0

1

)
≡ g

(
0

1

)
(14)
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The complex combinations for R4 can be taken as in (5). But as mentioned earlier,

we are free to do a U(2) rotation of the complex combinations without changing

the complex structure. For our purpose here, it is useful to do this using g†, thus

defining

ω = g†(x0 − i~σ · ~x)π = g†(x0 − i~σ · ~x)g

(
0

1

)
= (x0 − iσkRkixi)

(
0

1

)
(15)

For the choice of π in (14), the components of the orthogonal matrix Rki are given

by

Rki =

− cos θ cosϕ − cos θ sinϕ sin θ

− sinϕ cosϕ 0

− sin θ cosϕ − sin θ sinϕ − cos θ

 (16)

In terms of the complex coordinates ω, the Kähler forms and metric can be taken

as

Ω = i (dω̄1 ∧ dω1 + dω̄2 ∧ dω2) = dA

A =
i

2
[ω̄1 ∧ dω1 − ω1 ∧ dω̄1 + ω̄2 ∧ dω2 − ω2 ∧ dω̄2]

ds2 = dω̄1dω1 + dω̄2dω2 (17)

Using ω1, ω2 from (15), we can now separate out the radial coordinate, writing

ω1 = −i(R1i − iR2i)xi = r
[
−i(R1i − iR2i)φi

]
ω2 = x0 + iR3ixi = r

[
φ0 + iR3iφi

]
(18)

with φ0φ0 + φiφi = 1. It is straightforward to simplify A to get A = r2 Θ̂, with

Θ̂ = R3i(φidφ0 − φ0dφi) +
i

2
[(n · φ) d(n̄ · φ)− (n̄ · φ) d(n · φ)]

ni = R1i + iR2i = (− cos θ cosϕ− i sinϕ,− cos θ sinϕ+ i cosϕ, sin θ) (19)

We have chosen a Kähler metric for the cone and we see that Ω = dA does have

the required structure (13). This is basically the Sasakian structure on S3. Notice

that the second term in Θ̂, namely,

α =
i

2
[(n · φ) d(n̄ · φ)− (n̄ · φ) d(n · φ)] (20)

defines a local Kähler structure for the two-dimensional subspace transverse to

R3iφi. This is only local, since the separation of the third direction on S3 can only

be local. The existence of such a local transverse Kähler structure is a feature of

Sasakian manifolds.

The vectors ni, n̄i define the choice of complex combinations on the cone. (R3i

is not independent, it is proportional to (~n× ~̄n)i.) A particular Kähler structure on

the cone corresponds to a particular choice of these vectors, each of them leading to
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a particular Sasakian structure for S3. We have an S2 worth of such choices, so the

total space we are considering is the bundle of Sasakians over S3. In this sense, it is

the natural equivalent in three dimensions of the twistor space in four dimensions.a

Notice that, since Rki is an orthogonal matrix,

nini = n̄in̄i = 0, nin̄i = 2 (21)

In other words, ni, n̄i are complex null vectors, normalized by the second relation in

(21). Thus we may think of the bundle of Sasakians of S3 as the bundle of complex

null rays. In this case, the bundle is still trivial just as it was in R4.

To proceed further, we introduce stereographic coordinates yi for S3 by

φ0 =
y2 −R2

y2 +R2
, φi =

2yiR

y2 +R2
(22)

We also introduce the notation z = n · y, z̄ = n̄ · y, R3iyi = v. The Kähler potential

for the transverse local Kähler one-form α in (20) is

KT = (n · φ) (n̄ · φ) =
4R2z̄z

(z̄z + v2 +R2)2
(23)

If we take the large R limit, which corresponds to blowing up the S3 to get R3, we

find

Θ̂ ≈ 2dv

R
+

2i

R2
(zdz̄ − z̄dz)

KT ≈ 4
z̄z

R2
(24)

This will be useful in applying our results to gauge fields in R3.

We can now write down the WZW action for the transverse space with the

coordinates z, z̄, with the (local) Kähler metric (∂∂̄KT ) dzdz̄. The factors involving

(∂∂̄KT ) will drop out of SWZW because of its conformal invariance. The action is

thus the integral of a differential two-form given as

SWZW(H) = − i

4π

∫
M

Tr(∂H ∧ ∂̄H−1) +
i

12π

∫
M3

Tr(H−1dH ∧H−1dH ∧H−1dH)

= − i

4π

[∫
M

Tr(∂H ∧ ∂̄H−1)

−
∫
M3

Tr
[
H−1dH ∧

(
H−1∂H ∧H−1∂̄H −H−1∂̄H ∧H−1∂H

)]]
(25)

The mass term of interest can now be written down as Γ = m2Sm, with14

Sm = −
∫
dµ(S2) Θ̂SWZW(H)

aIn Ref. 15, Boyer and Galicki study a particular version of what they name as the twistor space
for Sasakian manifolds. They also mention that there could be another object which deserves the
name of twistor space for Sasakians. The latter one is the trivial S2 bundle for a Sasakian manifold

inheriting the structure from the Kähler structure on the cone. It is this latter definition which
applies to our case here.
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=
i

4π

∫
dµ(S2) Θ̂ ∧

[
Tr(∂H ∧ ∂̄H−1)

−Tr
[
H−1dH ∧

(
H−1∂H ∧H−1∂̄H −H−1∂̄H ∧H−1∂H

)]]
(26)

The same expression also applies to the large R (or R3) limit, where the one-form

Θ̂ and the potential KT simplify as given in (24).

The expression (26) may still seem rather cryptic, but it is straightforward to

work out the expression as a series in terms of the gauge potentials, after Fourier

transforming to momentum space. The first two terms are16

Sm =
1

2

∫
d3k

(2π)3
Aai (−k)Aaj (k)

(
δij −

kikj
~k2

)
+

∫
d3k

(2π)3
d3q

(2π)3
Aai (k)Abj(q)A

c
k(−k − q) fabcVijk(k, q,−k − q)

Vijk(k, q,−(k + q)) =
i

6

[
1

k2q2 − (q · k)2

][{
q · k
k2
− q · (q + k)

(q + k)2

}
kikjkk

+
k · (q + k)

(q + k)2
(qiqjkk + qkqikj + qjqkki)− (q ↔ k)

]
(27)

4. Properties of the 3d mass term

Our arguments in arriving at (26) show that it has a deep and interesting mathe-

matical structure and that it is the most natural generalization to three dimensions

of the results in two and four dimensions. But we can again ask the crucial question

of whether it has anything to do with physics. Indeed that is the case, the motiva-

tion from physics is what led to this mass term, for R3, many years ago, although

the Sasakian structure was not clear at that time.14 The general expectation is

that in nonabelian gauge theories a mass gap will be dynamically generated, so

potentially, one can get a term like (26) in the effective action for such theories.

This will be a highly nonperturbative result. One can attempt to demonstrate this,

and calculate the coefficient m2, via a gap equation approach where we add and

subtract the same term to the standard Yang–Mills action,

S = SYM +m2Sm −∆Sm = S̃ −∆Sm

S̃ = SYM +m2Sm (28)

The idea is to consider m2 as the exact value of the mass generated by interactions

while ∆ is taken to have a loop expansion of the form ∆ = ∆(1) + ∆(2) + . . ..

Calculations can be done in a loop expansion, with the action S̃ used to construct

the propagators and vertices at the tree level, but ∆ starts at the one-loop level.

Since m2 is taken to be the exact dynamically generated mass, the pole of the

propagator must remain at k20 − ~k2 = m2 as loop corrections are added. This

requires choosing ∆(1) to cancel the one-loop shift of the pole, ∆(2) to cancel the

two-loop shift of the pole, etc., as is usually done for mass renormalization. After
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this is done, the ∆ so obtained must still equal m2, since the theory is defined by

just the YM action. Thus we must impose the condition

∆ = ∆(1) + ∆(2) + . . . = m2 (29)

This statement of equating the corrections to the mass term is the gap equation

which determines m2.16 (This strategy can be continued to arbitrary orders of

calculation.7,16) Notice that the approach is completely gauge-invariant. The cal-

culation of m2 along these lines was carried out in Ref. 16 and gave the value

m ≈ 1.19 (e2cA/2π), where e is the gauge coupling and cA is the quadratic Casimir

value for the adjoint representation of the gauge group. (For other related ap-

proaches to the magnetic screening mass, see Refs. 17, 7.)

The gap equation can be viewed as the result of the summation of an infinite

number of Feynman diagrams, a particular sequence being chosen by the form of

the mass term. A very different approach is to use the Schrödinger equation in the

Hamiltonian formulation of the theory and to solve it for the ground–state wave

functional in a low energy approximation. Such an approach, which has been de-

veloped in a series of articles,18 leads to a prediction for the string tension (which is

in good agreement with lattice simulations19) and a value for m as e2cA/2π. This

is close to the value obtained from the gap equation analysis. Yet another indepen-

dent validation of the result comes from using the same Hamiltonian approach to

calculate the Casimir energy for two parallel plates.20 One can then obtain a direct

and independent numerical estimate of the value of the mass by a lattice simulation

of the parallel plate geometry for the Yang–Mills theory. Such a simulation yields

the same value of e2cA/2π to within a fraction of a percent.21

There are two other observations regarding this mass term which might be inter-

esting. The first is about the one-loop correction generated by the mass term which

determines the gap equation. Let us denote, in any gauge theory, the correction

to the two-point function as
∫
Aai (−k)Πij(k)Aaj (k). Then one can analyze some of

the excitations which can occur in intermediate states of the one-loop graph, corre-

sponding to a unitarity cut of the diagram, by the singularity structure of Πij(k).

As an example, if we use a mass term

Sm =

∫
d3xTr

[
Fi

(
1

D2

)
Fi

]
, Fi =

1

2
εijkFjk, (30)

one can show that there are singularities at k2 = 0 in Πij(k) indicating that there

are still zero-mass excitations present in the spectrum.7 One way to understand

this is to note that if we write (30) in terms of local monomials with an auxiliary

field, we get

Sm = −
∫
d3xTr

[
1

2
φi (−D2)φi + φiFi

]
(31)

This would give propagating massless solutions corresponding to �φi = 0 in the

absence of Ai. In contrast to this, Πij(k) resulting from the mass term (26) or

(27) has no zero-mass threshold singularities, at least to the one-loop order the
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calculations have been carried out. One way to understand this may be to note

that the mass term rewritten in terms of local monomials with auxiliary fields is

Sm =

∫
dµ(S2)

[∫
dxTSWZW(G)

+
1

π

∫
d3xTr

(
G−1∂̄GA− Ā ∂GG−1 +AG−1ĀG−AĀ

)]
(32)

The equations of motion for the group element G leads to the solution

G = M†−1Ṽ (z)V (z̄)M−1 (33)

Since the matrices M , M† are only defined up to the ambiguity M → MV −1(z̄),

M† → Ṽ (z)M† by the equations A = −∂M M−1, Ā = M†−1∂̄M†, we can absorb

Ṽ (z)V (z̄) in (33) into the definition of M , M†. Thus there are no independent

solutions, or independent degrees of freedom, for the auxiliary field.

Our second observation is about the use of this mass term in the context of

the quark–gluon plasma. The hard thermal loops generate a screening mass (7) or

(10) for the chromoelectric forces, the mass term (26) can describe the magnetic

screening or the magnetic mass of the plasma. In carrying out calculations at

finite temperature, one can see that, even after taking account of the hard thermal

loops and the corresponding chromoelectric screening effects, there are still infrared

divergences left over in the nonabelian theory. These are cured by the screening

mass for the chromomagnetic interactions, so the dynamical generation of such a

mass term is an important feature. At very high temperatures, the 3+1 dimensional

theory can be approximated by the same theory in three Euclidean dimensions, i.e.,

there is a dimensional reduction, the coupling of the 3d theory being e2 = g2T ,

where g is the 4d coupling. The dynamically generated mass of the 3d theory can

thus be interpreted as the magnetic screening mass of the high temperature limit

of the 4d theory.22 For this idea to be implemented in the full four-dimensional

theory, we again need a 4d- Lorentz- invariant form of the mass term. It is indeed

possible to construct such an invariant mass term.14 The result is exactly of the

form given in (10) with one change. Instead of the components of Aµ given in (11),

we must use

Aπ = 1
2π(e ·A)ξ̄, Aξ = 1

2ξ(e ·A)π̄ (34)

Notice that in each of these combinations there is mixing of the spinors π, ξ, unlike

the situation in (11).
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