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Abstract: Machine learning represents a milestone in data-driven research, including material in-
formatics, robotics, and computer-aided drug discovery. With the continuously growing virtual and
synthetically available chemical space, efficient and robust quantitative structure-activity relation-
ship (QSAR) methods are required to uncover molecules with desired properties. Herein, we pro-
pose variable-length-array SMILES-based (VLA-SMILES) structural descriptors that expand con-
ventional SMILES descriptors widely used in machine learning. This structural representation ex-
tends the family of numerically coded SMILES, particularly binary SMILES, to expedite the discov-
ery of new deep learning QSAR models with high predictive ability. VLA-SMILES descriptors were
shown to speed up the training of QSAR models based on multilayer perceptron (MLP) with opti-
mized backpropagation (ATransformedBP), resilient propagation (iRPROP-), and Adam optimiza-
tion learning algorithms featuring rational train—test splitting, while improving the predictive abil-
ity toward the more compute-intensive binary SMILES representation format. All the tested MLPs
under the same length-array-based SMILES descriptors showed similar predictive ability and con-
vergence rate of training in combination with the considered learning procedures. Validation with
the Kennard-Stone train—test splitting based on the structural descriptor similarity metrics was
found more effective than the partitioning with the ranking by activity based on biological activity
values metrics for the entire set of VLA-SMILES featured QSAR. Robustness and the predictive
ability of MLP models based on VLA-SMILES were assessed via the method of QSAR parametric
model validation. In addition, the method of the statistical Ho hypothesis testing of the linear re-
gression between real and observed activities based on the F2-2-criteria was used for predictability
estimation among VLA-SMILES featured QSAR-MLPs (with 1 being the volume of the testing set).
Both approaches of QSAR parametric model validation and statistical hypothesis testing were
found to correlate when used for the quantitative evaluation of predictabilities of the designed
QSAR models with VLA-SMILES descriptors.
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1. Introduction

In the rising era of big data and artificial intelligence, machine learning (ML)-based
technologies have become one of the key approaches in computer-aided drug discovery,
allowing fast processing of large-scale and continuously growing chemical libraries [1,2].
Quantitative structure—activity relationship (QSAR) or quantitative structure—property
relationship (QSPR)-based modeling evolved as the leading framework for the develop-
ment of scalable and versatile methods for in silico activity or property prediction [3-6].
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When considering a specific biological target, ML modeling remains an efficient and low-
cost choice for activity prediction by training the model on a library of compounds with
known biological activities. Prior to utilizing a QSAR model for screening unknown com-
pounds, it should be tested on a variety of externally generated sets and demonstrate con-
sistency and robustness for the chosen biological system [7]. Direct research expenses for
experimental testing can be substantially reduced with the increasing predictive ability of
computer-assisted screening in the sheer magnitude of the synthetically available chemi-
cal space [8,9]. Recent QSAR studies have focused on both nonlinear and linear methods,
such as the k nearest neighbor method (kNN) [10], random forest [11], and artificial neural
networks (ANNSs) [12] including deep learning neural networks (DNN) as a basis of deep
learning methods [13]. In a comparative study of 16 different types of ML algorithms for
QSAR, the neural network-based, i.e., principal component analysis (PCA)-ANN and
deep neural network (DNN), models were reported to be among the best in terms of pre-
diction abilities within those commonly used in QSAR [14]. The development of ANN-
based models to improve predictive ability has gained great attention and provided a new
direction in ML-based QSAR studies [15-17]. In particular, multilayer perceptrons (MLPs)
have been demonstrated to be promising for structural design and biological activity pre-
diction [18]. Success of ANN models such as MLP is dictated by their ability to establish
complex nonlinear relationships among different types of predictors, which is the basis of
structure-activity (QSAR) or structure—property (QSPR) modeling [18]. The capability of
ANN:s to solve these complex correlations is linked to the “learning” potential to adapt
parameters to fit the multidimensional space of training samples obtained either experi-
mentally or computationally. A variety of learning algorithms and optimization strategies
for ANNS, such as input sequence calibration and weight update initializations, have been
reported and can be readily applied in various systems [19].

One of the most time-consuming tasks in the development of QSAR models is the
preparation of the modeling and validation datasets that should span the entire scope of
potential molecular structures and scaffolds [20]. To improve the predictive ability in ML
models, the datasets should be accurately described in numerical, computer-friendly no-
tation. Recent ML studies used various types of molecular descriptors [21], among which
the SMILES (Simplified Molecular Input Line Entry System) representation proposed by
Weininger in 1988 remains one of the most commonly used and low-space-complexity
descriptors [22]. Recent advancements in molecular representations using SMILES-based
formats have facilitated the discovery of novel therapeutics [23] and enhanced toxicity
prediction [24], driving the development of versatile and easily generated molecular de-
scriptors for QSAR studies [25,26]. Despite these successes, several critical issues remain
unsolved in neural network-based QSAR modeling. A recent study demonstrated the im-
portance of numerical coding of SMILES, where decimal and binary SMILES coding
schemes were shown to work well for solving structure—property relationships in dielec-
tric polymer motifs [27]. However, it remains to be studied systematically how such en-
coding influences the speed and accuracy of training in a more general setting. In this
work, we propose variable-length-array numerical SMILES-based representations (VLA-
SMILES) and apply them as digital input sequences for the structural description of bio-
active molecules (Figure 1). Notably, compared to binary SMILES for molecular represen-
tation, VLA-SMILES structural descriptors have been shown to be reduced in size by array
length encoding (k clustered binary numbers, explained in Section 2.2) while preserving
the structural peculiarities. Thus, the training convergence time when using VLA-
SMILES-based structural representation was shown to be k2 lower compared to the binary
SMILES representation format. Two datasets involving small active molecules targeting
the human angiotensin II receptor (ATR) of both type 1 and type 2 (Dataset#1) and human
immunodeficiency virus-1 (HIV-1) protease receptor (Dataset#2) were generated and used
for validation and testing of the designed models. The candidate molecules with corre-
sponding bioactivity data were extracted from the open-access ChEMBL database, the
largest publicly available resource of compound bioactivity data [28,29]. The obtained
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diverse datasets contain both agonist and antagonist ligands of the ATR and inhibitors of
HIV-1 protease, which showed activity in either active or inactive receptor conformation
states. The VLA-SMILES were implemented and tested in 199 different types of neural
network-based QSAR models, including MLP-based models with one and two hidden
layers, as well as deep learning models based on autoencoders. In addition to the varied
VLA-SMILES input format of molecular structures, the QSAR models also differed by the
rational type of the database train—test split algorithms introduced (ranking by activity
and Kennard-Stone-based), activation functions (Sigmoid, Tanh, and ReLU), and the
learning approaches implemented (ATransformedBP, iRPROP, and Adam).

To quantitatively validate the predictive ability and robustness of developed QSAR
models using VLA-SMILES-based descriptors, we utilized the standard parameter-based
QSAR validation approach, as well as a newly developed statistical Ho hypothesis testing
methodology. The standard parametric approach includes the calculation of the coeffi-
cient of correlation R (Pearson’s), the square of the coefficient of correlation R? the deter-
mination coefficient R (R$'), a slope coefficient k (k’) for the linear regression through the
origin (ideal regression), and the determination coefficient 42 for linear regression between
real and observed activities in the testing phase [30,31]. On the basis of activity prediction
results derived for nearly 160 QSAR models, Golbraikh and Tropsha proposed quantita-
tive criteria for these parameters, where the satisfaction of these criteria signifies good
prediction ability of a particular model of interest [30]. While Alexander and Tropsha later
reported the root-mean-square error (RMSE) and R? parameters to be enough for estimat-
ing the practical usefulness of a model, the previously defined standard parameters of
model validity were still referred to as relevant for measuring a model's predictive ability
if properly applied [31]. As an alternative to the standard QSAR validation approach pro-
posed by Golbraikh and Tropsha, the possibility of Fi.2 (with n being the volume of the
testing set) distribution function was reported toward acceptance of the statistical Ho hy-
pothesis of not-better-than-average activity prediction. In addition to the abovementioned
method, herein we propose new criteria of statistical Ho hypothesis testing of the linear
regression between real and observed activities based on 2D probability density distribu-
tions for the regression coefficients. The validity proofs, as well as correct implementation
conditions of the current criteria, are provided by Kendall and Stuart [32]. Thus, calculated
critical values t;_, for the F2x-2-statistics (with two and n — 2 degrees of freedom) were
found to correlate well with the statistical criteria of the QSAR predictability validation
approach, as well as with the root-mean-square error (RMSE) parameter for the testing
phase.

As rational approaches for dataset partitioning have been demonstrated to provide
more diverse results, we formulated the training and testing sets employing rational
train—test splitting approaches, Kennard-Stone-based and ranking by activity [20]. For the
entire set of VLA-SMILES-based description strategies, MLP-based QSAR models featur-
ing Kennard-Stone splitting yielded better predictive ability than those based on ranking
by activity splitting. In addition to dataset splitting optimization, the MLP models were
developed using several learning optimizers including affine transformed backpropaga-
tion ATransformedBP [27], resilient backpropagation [33], and Adam optimizer [34].

The entire set of VLA-SMILES-coded MLP QSAR models were developed using a
C++ codebase. Such self-developed software facilitates flexible and adaptive ML-based
model investigation, particularly inner-parameter variability and optimization, which
would be more restricted in plug-in-play modules or library packages.
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Figure 1. Flowchart of our MLP-based QSAR modeling using variable-length-array numerical
SMILES-based descriptors. Batch-trained affine transformed BP (ATransformedBP), epoch trained
resilient propagation (iRPROP-), and Adam optimizer learning algorithms form the foundation of
the developed MLP models.

2. Materials and Methods
2.1. Dataset Description

The original datasets of the bioactive compounds were obtained from the ChEMBL
database (ver. 25) which includes close to 1.8 million chemical structures [28,29]. Both re-
ceptor families, angiotensin II and protease, are multifunctional enzymes that play im-
portant roles in organism functioning while regulating many biological processes. The
ChEMBL pool of compounds targeting the intensively studied human receptor target of
angiotensin II receptor type 1 (ATiR) and type 2 (AT2R) consists of 3462 structures. Both
ATiR and AT:R play role in the regulation of blood pressure, as well as in sodium excre-
tion [35,36]. Inhibition of ATiR and AT:R reduces the risk of hypertension due to the reg-
ulation of cardiovascular and electrolyte homeostasis; activation was recently proposed
to be an effective treatment of neurological cognitive disorders, including Alzheimer’s
disease [37]. The ChEMBL pool of human protease active ligands consists of 1935 struc-
tures. Proteases play an essential role in cell behavior and survival, which makes them
one of the main drug targets, and they are of interest as prognostic biomarkers of cancer,
inflammatory, and cardiovascular diseases [38]. Inhibition of HIV-1 protease is an effec-
tive treatment in COVID-19 [39], by stopping the virus's lifecycle, and, for over 30 years,
in highly active antiretroviral therapy (HAART) against AIDS [40].

The logarithmic values of the activity parameter in the original human angiotensin II
(ATR) receptor database, pAct, span from unknown and 0 to 10.9. Compounds with un-
known pAct and pAct =0, as well as duplicates, oligomers, or structures with high molec-
ular weight, were excluded in the data curation phase. The final Dataset#1 consisted of
1005 ATR active drug-like compounds with a pAct value in the range 3.8-10.9. The same
data curation procedures were applied for the human HIV-1 protease receptor pool giving
final Dataset#2 of protease active structures with known affinities, consisting of 1378 drug-
like compounds with a pAct value in the range 2.7-13.6. Since a compound is considered
to be active if revealing pAct > 6, both generated Dataset#1 and Dataset#2 preserved high
diversity, while containing ligands with low activity and high activity of pAct being in a
range from ~2 to ~10 and higher [41]. While the database also reported other types of ac-
tivity data (IC50, Kq, Ki, and Kb) for some structures, only pAct values were available for
all the compounds. An example compound, its chemical structure, and its SMILES and
VLA-SMILES representations, together with the corresponding activity value, pAct, is de-
picted in Figure 1.

2.2. Data Encoding: Variable-Length-Array (VLA) SMILES-Based Descriptors

SMILES, a single-line spaceless representation, is the most common machine-reada-
ble format due to the reversibility and generality of features [22]. The SMILES notation is
a conventional form describing chemical structures and is widely used in computer mod-
eling and ML. Thus, one-dimensional SMILES representation has been utilized in predict-
ing the structure-activity or structure-property relationships in the fields of material
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science [42], biochemistry [43], polymers [44,45], and drug discovery [46]. While the clas-
sical SMILES notation is based on a fixed alphabet and follows a set of rules achieving a
linear string format, variations of SMILES-type syntax representations demonstrated
good performance in structure—activity relationship [47] and generative model [47,48]
studies. SELFIES (self-referencing embedded strings) as a string-based molecular repre-
sentation approach improved memory storage capabilities while retaining the robustness
and user-friendliness of SMILES [49]. Variable dictionary-featured text-based representa-
tions have shown to be useful when mapping chemical structure information, e.g., CUS-
TODI (custom tokenization dictionary) [50]. However, implementation of CUSTODI re-
quires nontrivial preprocessing of the dataset. Other expansions of the SMILES string lan-
guage include dot-separated CurlySMILES [51] (Curly-braces enhanced Smart Material
Input Line Entry Specification), eclectic-featured quasi-SMILES [52], and substructure-ex-
tended SMARTS [53].

In this work, we designed and used a variety of numerical representations of ma-
chine-readable SMILES notation. Initially, all molecular structures in the dataset were de-
fined in the canonical SMILES notation, and the largest string was found to consist of 234
characters. We denote the length of the longest string as L4, = 234. Subsequently, all
SMILES entries in the dataset were padded with zeros to ensure a consistent length of
strings (L = 234). The obtained vectors were then mapped with ASCII decoding tables to
represent the atomic composition in SMILES byte-type numerical format of range 0-255.
Figure 2 depicts an example flowchart of all steps in the variable-length-array encoding
of a molecular structure. This two-step conversion is illustrated in the example of the
methoxy group, a common structural motif readily available in the majority of chemical
libraries. A methoxy group in SMILES is defined as representation (1) (Figure 2, step (B)).

Ssmne ={C o c}. 1)

In the first step of the VLA encoding, the SMILES string of the methoxy-group (rep-
resentation (1)) is converted to the SMILES numerical format using ASCII tables with the
following transformation into the binary SMILES having a length of 24 digits (Figure 2,
step (C)):

Dyin = D; = {01000011 01,001,111 01100011}, @)

The SMILES format in binary representation in ASCII codes can be clustered by two,
three, and more binary values to be represented in other numerical formats. In the case of
Dataset#1 and Dataset#2, the lengths of the resulting vectors in binary representation were
equal to d1=1872 and d2=1192 correspondingly. Clustering by the k-th sequenced binary
symbols produces numerical sequences with a length of d/k, where k is an array length
and an integer factor of d (herein, for Dataset#1 with d1=1872, weused k=1, 2, 4, 6, 8, 12,
and 16, whereas, for Dataset#2 with d2=1192, only the values of k =1, 2, 4, and 8 were
possible). A common representation for the resulting vector unit is defined as

Sik = 2d a2, 3)

where Qi 1S A binary unit (either “0” or “1”) in the j-th array withj (=0, 1, 2, ..., d/k-1)
being an index of an array-based element in the VLA-featured SMILES notation.

For the example of the SMILES-encoded methoxy-group (1), representation (3) can
be defined as D, variable-length-array-based SMILES representation (array length k = 2).

D, = {100310331203}. (4)

Thus, any chemical structure can be described in the VLA-based binary SMILES for-
mat using Equation (5).

D = {So,e0 Sucr Sz o> St } (5)
where | = 8Ly, /k —1,and 0 < Sj; < 2% —1.
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Figure 2. Data encoding using the variable-length-array-featured SMILES notation (VLA-SMILES).
(A) Examples of compounds carrying a methoxy functional group, a common structural motif in
the dataset. (B) SMILES representation of one example. The methoxy group and its SMILES code
are highlighted in red. (C) Binary mapped SMILES representation with zero padding at the end of
the sequence. Transformation of the obtained arrays D, (k=2) and Dg (k = 6).

One of the promising characteristics of the VLA-featured representation is its ad-
vanced intermolecular bond description with increasing value of the array k-group. The
modeling studies revealed that array-based VLA-SMILES representation enhances the in-
formation content of the chemical substructure features compared to SMILES byte-type
numerical format. The VLA-type representation can, thus, improve the predictive ability
of MLP models that utilize text-based notation as input data. The obtained S;; values in
Dy, were normalized by a range-scaling procedure to distribute their values within the
range —0.5 to 0.5 as

S - (Sj,k - 05" (Sj,k(max) + Sj,k(min)))
ok

: 6
(Sj,k(max) - Sj,k(min)) ( )

where S; ;(max) and S x(min) are the maximum and minimum values of elements of Dj.

2.3. Theoretical Background: Multilayer Perceptron and Statistical Metrics of the Model
Prediction Ability

The multilayer perceptron (MLP) architecture with classical gradient learning algo-
rithms (e.g., backpropagation [54], RPROP [33], Adam [34]) is considered the basis of var-
iable ANNS, e.g., recurrent (RNN) [27], convolutional (CNN) [55], and graph (GNN) [56].
Here, various MLPs with one, two, and three hidden layers and the abovementioned
learning procedures were designed to solve QSARs for a set of active ATR (Dataset#1) and
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HIV-1 protease ligands (Dataset#2). A typical schematic representation of the MLP archi-
tecture is depicted in Figure 3. The block scheme of the MLP includes an input layer, hid-
den layers with various activation functions F(Y), and an output layer. Input and hidden
layers comprise [ neurons with | weighing parameters. The output signals from the first
hidden and second layer are determined as

1) _ 5(1,m)3r (1

Y(m)i =wams (it T(m)i’ )
@ _ wempr® @

Y imyi = WE™XT i + Ty 8)

where §(k)l- = (S Spi - Swri) isaninput row vector with the dimension [ for the

i-th ligand, X L = F (Y(l) ) and X @ —F (Y(Z) ) are the outputs of an activation func-

(m)i (m)i (m)i (m)i
tion for the first and second hidden layers, W™ = (w{"™,w™™, ., 0®*™) and

wem = (w(()z,m)' wiz’m), ...,wl(z’m)) are row vectors of the weighting parameters
- (2 (1
(m=0,1,...,1), and T(m)i and T(m)i
The message function for the predicted activity can be expressed as

are biases (not shown in Figure 3).

e ai—n(2)
pAct; = WOXT ), + T, ©)

where W® is a one-dimensional row vector, and Tl@ is the bias for the output layer (not
shown in Figure 3).

input layer 1st hidden layer 2nd hidden layer output layer
—
Dy
l (1) (1) l (2) ) l Act:
Y5 x$ R 75 x& pAct
‘ 0i 0i (21) y(1) 0 2 0 (3) y(2) l
Ski z “’Srlli)s(m.k)i > F(Yf,li)) Z O X i — F(Y(,(f)) — Z O Xiyyg ————»
m=0 m=0 m=0
L y® L y® x® /
1,2 1i 1 2.2 1 1i G i
S D 08P —b FVY) Y oex( — Fe®)
m=0 m=0
\
/ \ . y® ! @
. 1,0) li 1 ] d :
S D o0 S — ) > o228, —— @i
m=0

m=0
Figure 3. Schematic representation of the multilayer perceptron (MLP) neural network architecture

(with two hidden layers) utilizing the VLA-featured binary SMILES input ﬁ(k).

The activation function F(Y) is critical for achieving a high prediction ability in
QSAR. We used three commonly applied activation functions:

Hyperbolic tangent, Tanh: F(Y) = Tanh(Y), (10)
Sigmoid: F(Y) =1/(1+e™"), (11)

e . _(0,Y<0
Rectified Linear Unit, ReLU: F(Y) = {Y, Yo (12)

To determine the prediction ability of MLP models, one needs to evaluate the accu-
racy of the nonlinear mapping of the variable-length-array SMILES into the predicted val-
ues of the activity pAct . We used the error parameter, root-mean-square error (RMSE),
as evaluation criteria for predictive ability, as well as the learning efficiency, which is re-
ferred to as the loss function.
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RMSE = J%Z?z‘ol(pActi — pAct;)?. (13)

As addition error measures, the relative standard deviation parameter (RSD) with
the maximum and average values were used. They are defined in Equations (14) and (15),
respectively.

o,
RSDpax = (max 1(1=PAU4S 100D x 100 (%), (14)

RSDgy = = 2153 |(1 — pAct;/pAct;)| x 100 (%). (15)

2.4. Formation of Training and Testing Sets: Method of Rational Splitting

To evaluate the predictive ability of the QSAR model, one needs to split the original
dataset into training and testing sets. For smaller datasets, the leave-one-out cross-valida-
tion splitting procedure can be used [57]. Larger databases require the use of random or
rational partitioning methods. QSAR modeling relying on random train—test split meth-
odologies tends to perform less effectively if the molecules in the testing set are structur-
ally very different from those in the training set, which can be easily achieved for a ran-
dom split [58]. More rational division algorithmes, i.e., rational selection of the training and
test sets, are crucial for developing accurate and robust models that lead to superior gen-
eralization characteristics [59-61]. Multiple algorithms have been reported for intelligent
dataset division including sphere exclusion [62], Kennard-Stone [63], and ranking by ac-
tivity methods [64]. The Kennard-Stone algorithm allows the selection of a very diverse
subset of compounds in terms of the Euclidean distance between the descriptors. It con-
stitutes the basis of various clustering methods and training set generation for the valida-
tion of QSAR models. The ranking of compounds by activity with subsequent separation
into equal-sized groups is another commonly used algorithm for intelligent training/test-
ing set generation [64]. Ranking methods are based on cluster preprocessing of the input
descriptors. The evolution of the data clustering theory and clustering algorithms covers
an independent area of research [65-67]. For this work, we performed and tested two
types of data partitioning methods (Figure 4):

e Splitting 1: train—test split using Kennard-Stone algorithm [63],
e  Splitting 2: train—test split using ranking by activity [64].

In the case of the Kennard-Stone protocol, VLA-based SMILES representations were
used as structure-based descriptors. First, two reference samples D,, and D,, which had
the largest distance between corresponding descriptors, were selected. These reference
samples should exhibit rpnglx p(ﬁm, Bn) in Euclidean metrics are defined as

p(l—))m' Bn) = \/ 3';%)(Sj,m - Sj,n)zl (16)

where n and m are selected indices of the entries in the original dataset. These two entries

are automatically selected for the training set. The next sample i needs to be chosen to

satisfy the maximal criteria, m_ax(min(p(ﬁi, Bm), p(ﬁi, Bn))). The remaining samples are
L

ranked in the descending order of conformity with max(min p(ﬁi, Bj)), where j refers to
i

the samples that have already been ranked. The first 95% samples of the generated pool
were selected as the training (learning) set, while the remaining 5% constituted the testing
set.

For the ranking-based train-test splitting method, we used the activity parameter
pAct as descriptor values for clustering [64]. The samples were sorted in descending order
of pAct. The sorted list was then divided into 50 groups, each containing 20 samples sorted
in descending order of pAct (Figure 4). The first 19 samples of each group were assigned
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to the training set (95% of the dataset), whereas the remaining samples formed the testing
set (5% of the dataset).

Require: D preprocessing of the input sequence of chemical descriptors

Bk,Bm - ny
n, =2
p(D;D;) , where D; € n,
p(ﬁm,ﬁj)
n ++

dataset).

Splitting 1: Kennard-Stone Splitting Method Splitting 2: Ranking by Activity-based Splitting Method
Step 1: n; = 0 (sorted list), n = 1000 (Database#1) Step 1: Samples are sorted by activity parameter descriptor pAct
n = 1370 (Database#2) in the descent order:
Finding Dy, D,,, with the max Euclidian distance between ny =0
structural descriptors (cluster-featured SMILES): while (m € n,) -
p(ﬁkﬁm) = E‘r}g;{p(b’l,ﬁj) if D = m"allx (pACt(Dm))

Step 2: Finding l_)'l- with the maximum minimum value of the

while (m ¢ n,)
for all D; € n,

if D = max(min p(D,n, D;))
m
D - n, (sorted list)

Step 3: In the obtained sorted list n; = n, first 95% goes to
training set, remaining go to the testing set (5% of the

D - n, (sorted list)

n++
Step 2: Division of n, = n by N groups. Each group contains
number of samples equals to the bin size:

bin =n,/N

Step 3: Coherent selection of samples from each decently
ordered bin, first 95% goes to training set, remaining go to the
testing set (5% of the dataset).

Figure 4. Pseudocode of the dataset partitioning splitting methods. (A) Train-test splitting using
Kennard-Stone algorithm. (B) Ranking by activity train-test splitting algorithm. Due to the 5%/95%
partitioning ratio with regard to the original dataset, we elaborated with the first n=1000 (Dataset#1)
and n = 1370 (Dataset#2) samples to have a feasible round number for the train-test splitting.

2.5. Training Algorithms

Optimized backpropagation (ATransformedBP), resilient propagation RPROP, and
Adam optimizer learning algorithms were used for the training of MLP models. These
recurrent learning methods comprise the family of gradient-based ML algorithms [68].

The backpropagation (BP) algorithm is one of the most widely used supervised learn-
ing algorithms in neural networks [54]. It continuously updates the weighting parameters
for the row-vectors W®™ and biases, e. g., for MLP with p hidden layers as illustrated in
Figure 3. Overtraining and local minimum trapping are the most common issues of the
learning phase [69]. Overtraining remains a challenge when a model’s generalizability be-
comes substantially lower when achieving excessive accuracy during training [70]. Thus,
the decreased RMSE (Equation (13)) for a larger number of epochs during the training
phase does not guarantee a similar performance in the testing phase due to overtraining.
At the same time, a large RMSE value in the learning phase inevitably results in a high
value of RMSE for the testing set, indicating a poor predictive ability of the model. The
problematic overtraining can be overcome using a regularization method, particularly
early stopping, where the learning is terminated at the minimum of the loss function in
the test phase and the corresponding weighting parameters are recorded [70-72]. On the
other hand, trapping in a local minimum may be mitigated utilizing resilient backpropa-
gation (RPROP), Adam optimizer, and ATransformedBP (a modification of the BP algo-
rithm with input affine transformation).

We showed that the ATransformedBP approach paired with an affine transform op-
timization strategy for the input sequence exhibits superior performance for the predic-
tion of polymer dielectric constants using traditional Elman-type recurrent neural
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networks (RNNs) [27]. The ATransformedBP approach is based on the preprocessing of
the SMILES-based input, in our case, the variable-length-array-featured Bk vector,

Dy, =v (D, — (D), 1<i<n, (17)

where y is the affine-transformation factor.
The optimal value of y for each of the VLA-based binary SMILES representations
was found to satisfy the minimum criteria of the loss function in the testing set,

Vopt = Min(E (pAct; — pAct;)). (18)

The input vector data of the variable-length-array SMILES was used under the opti-
mal value of the hyperparameter a before testing the prediction abilities of the MLP-
based models using ATransformedBP (Table S1).

Resilient backpropagation (RPROP) was also implemented to solve the convergence
and local minimum problems. Previous comparative studies based on RNN modeling us-
ing iRPROP, one of the four types of RPROP learning methods, showed superior results
in comparison to backpropagation [27,73-76].

Another learning method that is frequently used in ML-based models is the Adam
stochastic gradient-based optimization strategy [34]. This method performs weight up-
dates recursively via calculation of the bias-corrected first and second adaptive moments
estimations.

In addition, we designed a deep neural network (DNN)-based QSAR model based
on an MLP Autoencoder [77]. The Autoencoder implements phases of the rough setting
of the weighting parameters and fine-tuning. Our model consisted of three hidden layers
using Adam optimizer as a learning algorithm for the first and second phases of an Auto-
encoder realization.

The internal parameters of all QSAR models for the structure-activity studies are
summarized in Table S1. The design of MLP-based QSAR models involved optimization
of several hyperparameters, such as learning rate, y affine transform parameter, and the
number of the epochs, which depended on the array-featured molecular representation,
learning algorithm, and NN architecture.

2.6. Statistical Criteria for Predictive Ability of QSAR Models

A model is considered robust and of high predictive capability when the abovemen-
tioned quantities satisfy the following criteria for a testing set: g* > 0.5, R* > 0.6, |R§ —
R{| < 0.3, 0.85 < k < 1.15 or 0.85 < k’ < 1.15[30]. Here, R3 and k are the determina-
tion coefficients and slope values for linear regression through the origin between the ac-
tual and predicted, whereas Ry* and k'’ are the corresponding determination coefficients
between predicted and actual activities for the testing phase. These conditions are deter-
mined on the basis of a linear regression assumption between the observed and predicted
values of a specific parameter, in our case, the biological activity pAct. The values of the
parameters for the QSAR model predictive ability validation described above were found
to be correlated with the RMSE and were used for a comprehensive analysis of model
performance.

As a more rigorous criterion to analyze the model's predictive ability, we used statis-
tical hypothesis testing [32]. The H, hypothesis assumes a resemblance of the linear re-
gression EA\ct =d+b- pAct to the ideal linear regression with values a = 0, b =~ 1. The
point estimations of the intercept @ and the slope b for the predicted vs. actual data re-
gression are defined as follows [78]:

Lizi PACt] S, PACt—FIL, pAct; SIL, PActiDACt;
nEl, pAct?~ (S, pAct))’

a= , (19)

B _ n'2?=1 pACti'pACti_Z?zl pPAct; 2?:1 PAct;
- 2
n'2?=1 pACtiz_(Z‘{;l pACti)

: (20)
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where n is the size of the testing set (in our case, n = 50 for Dataset#1 and n = 70 for
Dataset#2).

Validity of the H, hypothesis is defined by the confidence intervals yéi) (pAct) with
the significance level a. It is based on the fact that ideal linear regression is within the
upper and lower limit for all the predicted pAct values of the testing set. To accept the
Hy hypothesis, the regression values pAct should be within the range
[yo (pAct), yg (pAct)] [32].

yo(_)(pAct) <a+b-pAct < y(§+) (pAct). (21)

where, y(§+) (pAct) and yé_) (pAct) are upper and lower curve limits, defined as follows
[32]:
s2pAct?

N 2
WD (pAct) = @+ b pAct + 21, + =2y (22)

Y pAct?
where t;_, determines a critical value for the F,, ,,, distribution with mi=2 and mz2=
n — 2 degrees of freedom, for a = 0.001, t;_, = 8.01 [78], and s* = ﬁZ?zl(pActi -
(& +b- pACti))z. A lower t,_, value for the Ho hypothesis to be valid (Equation (22)) in-
dicates a higher predictive ability of the QSAR model.

3. Results

RMSE for the learning phase tends to decrease with the increasing values of epochs,
whereas the testing set RMSE minimum values depend on the epoch number and defined
regularization approach for QSAR modeling. Thus, the RMSE values corresponding to
the last epoch of the training phase, as well as the minimum RMSE of the testing phase,
were recorded for each prediction model. Depending on the k value of the length-array-
featured SMILES representation, the duration of training depended on the epoch referred
to as the characteristic minimum of the testing RMSE (Supplementary Materials, Tables
52-510). The predictive ability comparison included the models with D1 VLA-SMILES en-
coding where the clustering was made by k =1 (D1) sequenced binary symbols, which is
commonly referred to as binary SMILES representation.

3.1. Comparison of Kennard—Stone and Ranking by Activity Splitting Methodologies

To compare the Kennard-Stone and Ranking by Activity train—test splitting algo-
rithms, prediction results of QSAR models using both splitting types were evaluated us-
ing Dataset#1 (Tables S2, S3, and S6 (Kennard—Stone-based MLPs), Tables S4 and S7 (rank-
ing by activity-based MLPs). The applied learning procedures included iRPROP- and
Adam optimizer for QSAR models based on one hidden layer MLP with various activa-
tion functions and VLA-SMILES descriptors. When evaluating the evolution of loss func-
tion in testing and training phases, developed QSAR models can be separated into two
groups. The first group includes MLPs with RMSE values not exceeding 0.85. Such QSAR
models are considered of good predictive ability and are applicable for further QSAR
analysis with external datasets. The second group included models with lower RMSE val-
ues and are considered of less predictive ability, whereby their application in the QSAR
analysis is less efficient.

Table 1 shows the minimum RMSE for testing sets for MLP-based models with iR-
PROP- learning and Sigmoid(Y) activation with different train—test splitting for Dataset#1.
For the Kennard-Stone train—test splitting, the models with length-array-featured SMILES
representations D1, D2, and Ds are referred to as the first group of good predictive ability
with the RMSE value not exceeding 0.85. When implementing ranking by activity parti-
tioning, all the designed models were in the second group of mild predictive ability, re-
vealing the RMSE minimum of the testing set to exceed 0.85. Albeit of low prediction abil-
ity, the D12 VLA-SMILES descriptor-based MLP was the only model from the modeling
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set using ranking by activity for the train—test splitting that outperformed the D12 VLA-
SMILES descriptors-based MLP model but with Kennard-Stone dataset partitioning.

Table 1. RMSE values for testing sets of MLPs with one hidden layer and iRPROP- learning proce-
dure: Kennard-Stone vs. ranking by activity-based train—test split (Sigmoid activation function was
used), Dataset#1.

Kennard-Stone-Based Train-Test Splitting

D, D, D, D Dg Dy, Dig
VLA-SMILES format k=1 k=2 k=4 k=6 k=8 k=12 k=16
iRPROP (Sigmoid(S))
Minimum RMSE for testing set 0.77 0.77 0.88 0.84 0.94 0.95 0.89
Adam (Sigmoid(S))
Minimum RMSE for testing set 0.82 0.79 0.84 0.94 0.93 0.99 0.93
Ranking by Activity-Based Train-Test Splitting
D, D, D, D Dg Dy, Dig
VLA-SMILES format k=1 k=2 k=4 k=6 k=8 k=12 k=16
iRPROP (Sigmoid(S))
Minimum RMSE for testing set 0.87 0.95 0.88 0.87 1.02 0.87 0.94
Adam (Sigmoid(S))
Minimum RMSE for testing set 1.01 1.18 1.14 1.21 1.29 1.11 1.26

Prognosis and training results for the QSAR models with ReLU and Tanh activations
are shown in Tables S3 and S4. The entire family of VLA-SMILES descriptors-based mod-
els with ranking by activity partitioning and ReLU and Tanh activations belonged to the
second group of mild predictive ability models. Yet, an interesting observation was that
MLPs with D8 VLA-SMILES descriptors revealed the best prediction accuracy compared
to other VLA-SMILES-based MLPs for Tanh and RELU activation sets. With Kennard-
Stone-based splitting, models using variable-length-array-based descriptors D1, Dz, and
D4 (for ReLU activation) and Di, D: (for Tanh activation) exhibited good predictive ability
in terms of RMSE minimum criteria.

The epoch-dependent loss function evolutions in the testing and training phases gen-
erated with Kennard-Stone and ranking by activity partitioning for single-layered MLPs
with variable-length-array-featured SMILES and ReLU, Sigmoid, and Tanh activations, as
well as iRPROP- learning, are shown in Figures S1-56, respectively.

The same trend in RMSE evolution between the two rational splitting methods was
observed for MLP models using the Adam learning procedure (Table S6 and S7). Here,
QSAR modeling with ranking by activity splitting and Sigmoid activation showed low ac-
tivity prediction with RMSE values above 1.0 for the entire family of the VLA-based
SMILES representations (Table 1). For the MLP with Kennard-Stone partitioning, the
models with D1, D2, and Ds featured array length representations of SMILES descriptors
were the only ones satisfying RMSE minimum criteria for the good prediction ability mod-
eling group.

Graphical examples of RMSE evolution for the training and testing phases for the
QSARs with D»-featured array length SMILES representations using Kennard-Stone and
ranking by activity-based splits are shown in Figure 5. Here, testing progress reached 0.77
and 0.79 minimum values for Kennard-Stone-based partitioning with the iRPROP- and
Adam optimizer-based learnings, respectively (Figure 5A). For the models with ranking
by activity train—test splitting, the minimum RMSE for those with the VLA-SMILES D:
reached 0.95 and 1.18 when implementing iRPROP- and Adam learning algorithms, re-
spectively (Figure 5B).
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Figure 5. RMSE parameters for training and testing sets for MLPs with one hidden layer with iR-
PROP and Adam learning procedures and Sigmoid activation function using (A) Kennard—Stone and
(B) ranking by activity-based train-test splits, Dataset#1.

The other Adam-based MLPs with ReLU or Tanh activation and Kennard-Stone-
based train—test splitting showed superiority over the corresponding models with ranking
by activity split on the example of Dataset#1 (Tables S6 and S7). For QSAR implementing
the Kennard-Stone algorithm and ReLU activation, Rz and R4 length-array-featured mod-
els had RMSE lower than 0.82, satisfying the requirement for the first group of high-accu-
racy models. With Tanh activation, MLPs models based on VLA-SMILES D;, D2, and Da
also accomplished criteria of good predictive ability modeling. Regardless of the activa-
tion function, the entire family of prediction models with the VLA-based SMILES repre-
sentations using the ranking by activity splitting showed a minimum RMSE value of
nearly 1.0 and above. Hence, they were in the second group of models with low predictive
ability. The general observation was a reduction of the predictive ability in some VLA-
SMILES descriptor-based models with the increasing k number of sequenced binary sym-
bols during VLA-encoding. This can be explained by the fact that a higher number of clus-
tered binary numbers leads to increasing of structural peculiarity mismatching during
encoding to VLA-SMILES from Binary SMILES. The epoch-dependent RMSE in the test-
ing and training phases of MLPs derived with Kennard-Stone-based and ranking by ac-
tivity splitting methods for variable-length-array-featured SMILES using ReLU, Sigmoid,
and Tanh activation functions and Adam-based learning are presented in Figures S10-15,
respectively.

A notable observation was that the training convergence speed increased with in-
creasing values of k in length-array-featured representations Dk. Compared with D1 (k =
1), the traditional binary SMILES-featured MLP, the convergence time for the MLPs with
k>1 VLA-SMILES notation was proportional to a/k?, where the prefactor a depends on
the CPU (processor made and model, clock speed, number of cores, etc.), as well as the
NN model architecture (number of training epochs, learning algorithm, etc.).

CPU(time) = a/k?. (23)

Table 2 lists the CPU convergence times for the implemented VLA-SMILES-based
MLP with one hidden layer and Adam optimizer. The theoretical CPU times according to
Equation (23) (with a = 66.47 X 256 = 17,016.32) were within 4% with regard to the ex-
perimentally observed values.
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Table 2. CPU times for the training convergence of the models with VLA-SMILES representations
(single-layer MLP with Adam learning, Kennard—Stone-based rational train-test splitting, and Sig-
moid activation). The single prefactor in the theoretical CPU time was determined to reproduce the
observed CPU for the MLP with D6 (k = 16) cluster-featured SMILES, Dataset#1.

VLA-SMILES Representation
D, D, D, Dg Dg Dy, D
k=1 k=2 k=4 k=6 k=8 k=12 k=16

Adam
(Sigmoid (S))

CPU time 17,01632 4254.08 1063.52 472.67 26588 11817 6647
(theor),s
Cf;;‘)mse 17,651.90 4668.33 119930 503.09 268.03 11656 66.47

ATransformedBP based MLP modeling was implemented only with Kennard-Stone-
based partitioning, taking into account its improved performance over ranking by activ-
ity. For activation function Tanh, the evolution of the loss function for the training and
testing phases showed VLA-SMILES D1, Dz, and Ds to satisfy the criteria of the first group
of models with good predictive ability (Table 3). For the Sigmoid activation-built models,
the D1 and D2 length-array SMILES based models fitted the group of models with the high
prediction ability, yet minimum RMSE values for these models were the same or lower
than those for Tanh-based models. The affine transform y parameters spanning in the
range of 14 for each of the designed models were tested to find an optimal one for best
prediction results. A full set of y parameters, as well as epochs corresponding to the testing
and training set minimum RMSE values, are reported in Table S2.

Epoch-dependent RMSE values in the testing and training phases with Kennard-
Stone-based and ranking by activity splitting methods for different length-array-featured
SMILES using Sigmoid, Tanh, and ReLU activation functions and ATransformed-based
learning QSAR are shown in Figures 516-18, respectively.

When applying the Kennard-Stone-based train-test partitioning strategy for Da-
taset#2, the MLP models with D2 and Ds-based VLA-SMILES descriptors outperformed
D1 length-array SMILES for all three activation functions implemented (Table S5). Thus,
single-layered MLPs with D2 and D4+ VLA-SMILES structural representation and either
ReLU or Sigmoid activation were referred to the first group of models with high predictive
ability. The epoch-dependent RMSE for the testing and training phases of MLPs derived
with the Kennard-Stone-based splitting method and variable-length-array-featured
SMILES using ReLl, Sigmoid, and Tanh activation functions and iRPROP--based learning
for Dataset#2 are presented in Figures S7-S9, respectively.

Table 3. RMSE values for testing sets for MLP with one hidden layer using ATransformedBP learn-
ing (Tanh and Sigmoid activation functions, Kennard-Stone based train—test split), Dataset#1.

Kennard-Stone-Based Train-Test Splitting

VLA-SMILES D, D, D, Dy Dg Di, Die
format k=1 k=2 k=4 k=6 k=8 k=12 k=16
iRPROP (Sigmoid(S))
Minimum
RMSE for 0.81 0.80 0.85 0.96 0.90 0.98 0.91
Testing set
iRPROP- (Tanh(S))
Minimum
RMSE for 0.84 0.80 0.84 0.93 0.90 0.96 0.95
Testing set
iRPROP- (ReLU(S))
Minimum
RMSE for 0.84 0.82 0.84 0.93 0.93 1.02 0.90

Testing set
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The key findings can be summarized as follows:

1. The Kennard-Stone-based train-test splitting was found to be more efficient than
ranking by activity for the investigated QSAR models.

2. The models built on variable-length-array SMILES D:, D, D4, or Ds showed equiva-
lent prediction when implemented together with the Kennard-Stone partitioning
and were in the first group of models with high predictive ability with RMSE not
exceeding 0.85. All types of VLA-featured SMILES-based models with ranking by
activity partitioning were in the second group of models of low prediction ability.

3.2. Analysis of Predictive Ability Concerning Activation Functions

MLP models with Sigmoid activation exhibited lower RMSE for the majority of vari-
able-length-array SMILES descriptors regardless of the learning algorithm using Da-
taset#1 (Tables S3 and S6). For iRPROP- learning and ReLU activated series of single-layer
MLPs, only two models with the VLA-SMILES-featured representations D1, and D: be-
longed to the group of models with high predictive ability, having a minimum RMSE of
0.79 and 0.80, respectively. For the models with Tanh activation, the only MLP model in
the first group of models with high predictive ability was the D1 length-array SMILES-
based one. For comparison, three VLA-based representations D1, D2, and Ds satisfied the
rule of the first group of models when using Sigmoid activation. A similar trend within
single-layer MLPs was observed for models with Adam- and ATransformedBP-based
learnings. Thus, for the majority of the QSAR models with variable-length-array SMILES
representations, Sigmoid activation demonstrated superior prediction results over the
ReLU or Tanh.

3.3. MLP Prediction Models with Two Hidden Layers

The predictive abilities of the MLP models with two hidden layers based on iRPROP-
and Adam optimizer learning algorithms were evaluated (Tables S8 and S9). Both types
of two-hidden-layer models led to similar activity prediction results to the prior described
results from single-layered MLPs. Table 4 shows the dependency of the RMSE on variable-
length-array SMILES for double-layered MLP models with Sigmoid activation for the Da-
taset#1. When considering iRPROP--based MLPs, only one out of seven VLA-based de-
scriptors model, Di-based, was in the first group of models with high predictive ability.
The models with Ds and Ds VLA-featured descriptors resulted in borderline RMSE, thus
assigned to the second group of models with low predictive ability. For Adam-based MLP
architectures, two models with length-array-based SMILES representations D1 and D:
demonstrated compatibility with the first group of models with high predictive ability,
having RMSE not exceeding 0.81.

Table 4. RMSE values for testing sets for MLP with two hidden layers using iRPROP- and Adam
optimizer learning (Sigmoid activation function, Kennard—-Stone-based train—test split), Dataset#1.

MLP Two Hidden Layers
s D D D, D Dy Dz Dig
k=1 k=2 k=4 k=6 k=8 k=12 k=16
format
iRPROP (Sigmoid(S))
Minimum
RMSE for 0.81 0.87 0.85 0.89 0.85 0.98 0.90
Testing set
Adam (Sigmoid(S))

Minimum
RMSE for 0.81 0.80 0.86 1.01 0.94 0.98 0.90

Testing set
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Figure 6 shows the evolution of RMSE as a function of epoch in the training and test-
ing phases for one- and two-hidden-layer MLPs with iRPROP- and Adam optimizer and
the D4 VLA-featured SMILES descriptors. When using the iRPROP- learning procedure,
the testing set’s loss function reached a similar minimum RMSE of 0.88 and 0.84 for one-
and two-layered MLPs, respectively.

1.6 iRPROP"_Sigmoid_k=4 (Kennard-Stone) —
MLP (1 hidden layer)
1.4 testing set
e training set
1.2 MLP (2 hidden layers)
’ testing set
e training set
1.0
408
= L
o
0.6
0.4
0.2
0.0 T T T T T T T . .
0 100 200 300 400 500
epoch

Figure 6. RMSE values as a function of epoch in training and testing sets for iIRPROP~-based learning
MLP with one and two hidden layers (Sigmoid activation function, Kennard—Stone-based train-test
splitting), Dataset#1.

MLPs with two hidden layers and iRPROP- but Tanh activation showed D2 and Ds
variable-length-arrays SMILES to satisfy criteria of the first group of models with high
prediction ability (Table S8). Adam-based MLPs with Tanh activation allowed only the D»-
based descriptor model to be in the group of high accuracy QSAR (Table S9). The entire
set of epoch-dependent RMSE in the testing and training phases for MLPs with two hid-
den layers, variable-length-array-featured SMILES, using iRPROP- and Adam optimizer
learning procedures is provided in Figures S19-522, respectively. The key finding is the
similarity of the single and two-hidden-layer MLPs models in terms of the prediction for
all types of VLA-featured SMILES representations involved.

3.4. Deep Learning, MLP Autoencoder

This section contains experimental evaluations of prediction results derived with
MLP Autoencoder modeling. For comparison purposes, the QSAR model based on MLP
with one hidden layer, Adam optimizer learning, and Sigmoid(Y) activation was taken as
a standard MLP method (Table 1). MLP Autoencoder with three hidden layers and 20
iterations of the first phase of rough estimates of the weighting parameters and subse-
quent fine-tuning emerged as the deep neural network QSAR model (Table 5). Both stand-
ard MLP and DNN-built models implemented Kennard—Stone-based train—test splitting
methodology. Following comparison studies of RMSE parameters from Tables 1 and 5,
the addition of constituting hidden layers did not improve the predictive ability shown
by single-layer MLP models. MLP Autoencoder models with D1, D2, and Ds length-array
SMILES revealed RMSE minimum satisfying the first group of models with high predic-
tive ability. The same VLA-SMILES-based models also showed high predictive ability
among single- and two-hidden-layer MLPs.
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Table 5. RMSE values for testing sets of deep learning, MLP Autoencoder with three hidden layers,
and Adam learning procedure (Kennard-Stone-based train-test split, Sigmoid activation), Dataset#1.

Dl DZ D4- D6 DB DlZ D16
VLA-SMILES 4 4 k-2 k=4 k=6 k=8 k=12 k=16
Minimum
RMSE fortest- 085 084 088 094 099 103 092
ing set

Graphical examples of RMSE evolution for the training and testing phases for the
single-layer MLP and DNN with D length-array-based SMILES are shown in Figure 7.
Here, the single-layered MLP testing progress reached minimum RMSE at the value of
0.84, which is nearly the same as for the DNN-based model (minimum RMSE = 0.88). The
convergence rate of training for MLP Autoencoder was dependent on the number of iter-
ations in the first phase of tuning and, in this case, was higher than that for the single-
layer MLP.

1.6 —— Adam_Sigmoid_k=4 (Kennard-Stone)
r Testing set (MLP, one hidden layer)
1.4 | e Training set (MLP, one hidden layer)
Testing set (MLP Autoencoder, three hidden layers)
1.2 = Training set (MLP Autoencoder,three hidden layers)

1.0

0.8

RMSE

0.6
0.4

0.2

0.0 T T T T T T T T T
0 100 200 300 400 500
epoch

Figure 7. Evolution of RMSE as a function of epoch for training and testing sets for Adam optimizer-
based learning MLP with one hidden layer and Autoencoder with three hidden layers (Sigmoid ac-
tivation function, Kennard-Stone-based train—test splitting, and D1+ VLA-SMILES), Dataset#1.

Epoch-dependent RMSE values in the testing and training phases derived with Ken-
nard-Stone-based splitting method for variable-length-array SMILES MLP Autoencoder
models using Sigmoid (S) activation function are presented in Figure S23. A full set of
RMSE parameters, as well as epochs corresponding to the testing phase minimum RMSE
and training set final RMSE values for the three-hidden-layer MLP Autoencoder model,
are reported in Table S10.

Hence, the increase in the number of hidden layers in the architecture of the proposed
VLA-SMILES-based MLP models for QSAR, as well as transition to deep learning, did not
lead to substantial improvement in the activity prediction.

3.5. Statistical Analysis of QSAR Model Prediction Ability

In this section, we report the results of the statistical analysis of the model prediction
ability using (1) common criteria of QSAR model predictive ability, such as determination
coefficients g2 [64] and R3 (RZ'), the square of the Pearson’s coefficient of correlation R?,
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and slope parameters k (k') [30], and (2) method of statistical hypothesis Ho testing using
F>n2-statistics (Equation (22)).

Predictive ability evaluation using these criteria was accomplished for MLP models
with one hidden layer and the iRPROP- learning procedure. Following the regularization
approach, the predictive ability was evaluated at the epoch corresponding to the mini-
mum of the loss function of the testing phase. Common statistical parameters defining the
acceptability of QSAR model with iRPROP- learning and Sigmoid (Y) activation were cal-
culated and are presented in Table 6. As a reminder, when taking into account only the
minimum RMSE parameter of the testing phase, the MLPs with D1, D2, and Ds VLA-
SMILES were shown to satisfy the first group of models with high accuracy prediction
(Table 1). According to the results of the parametric analysis of the QSAR predictive abil-
ity, the values of the R? were found to be similar to either Rf or R} for the entire
spectra of the variable-length-array SMILES based MLPs, satisfying the strict condition of
the QSAR high predictive ability. Additionally, the slope coefficients k' and |R} — R{
of the linear regression for the testing sets satisfied statistical criteria of model validation
for all types of VLA-SMILES representation-based QSAR. Interestingly, the model with
the D4 length-array SMILES showed a minimum RMSE of 0.88, which was slightly higher
than a threshold value of a good prediction efficiency, suggested by the authors. Thus, on
the basis of only the minimum RMSE criteria, the addition of Ds VLA-SMILES-based MLP
to the group of models with high predictive power was questionable. Meanwhile, follow-
ing the statistical criteria of g* and R% MLPs based on R:length-array-featured SMILES
(as well as Ds, D12, and Dis) did not satisfy requirements for QSAR models with high pre-
dictive ability. This remains in agreement with the results of the minimum RMSE analysis
reported beforehand (Table 1). The error measure parameter RSDmax for the predicted ac-
tivity for MLPs with D1, D2, and Ds VLA-featured SMILES reached a level of 23.5%, 24.5%,
and 50.5%, respectively, whereas RSDav did not exceed the level of 8.3%. Overall, the
method of prediction ability estimation via the minimum RMSE criteria was found to be
in correlation with the model validation parametrical approach.

Table 6. Statistical parameters derived for model predictive ability assessment (single-layered MLP
with iRPROP learning and Sigmoid activation), Dataset#1.

VLA-SMILES-Based Representation

(Si‘RnI:ffiI(’S)) D, D, D, D D, Dy, Dys
g k=1 k=2 k=4 k=6 k=8 k=12 k=16
pe 0.58 0.58 0.44 0.57 0.48 0.47 0.47

R? 0.58 0.61 0.40 0.58 0.51 0.48 0.55

k 0.60 0.62 0.46 0.65 0.59 047 0.48

k' 0.95 0.93 0.98 0.89 0.85 1.00 0.98

|R§ — R{,Z 0.02 0.018 0.039 0.01 0.01 0.02 0.01
R(z) 0.57 0.58 0.40 0.58 0.50 047 0.46

sz 0.56 0.56 0.36 0.57 0.49 0.45 0.45
RSD,,0., % 23.46 24.47 33.53 50.54 50.47 42.88 40.11
RSD,,, % 7.46 7.60 8.75 8.28 9.45 8.96 9.44

a -0.07 -0.17 0.036 -0.04 -0.09 -0.11 -0.28

E 0.62 0.65 0.44 0.66 0.60 0.48 0.53

ti_q 13.27 13.41 23.62 8.69 11.06 26.07 30.49

The results of the method of statistical Ho hypothesis testing of the linear regression
between real and observed activities for the QSAR model with iRPROP- learning and Sig-
moid activation are reported in Table 6. Herein, estimations of the linear regression param-
eters, intercept @ and the slope B values, for the predicted vs. original activity data, are
reported. Derived slope parameters B demonstrated MLPs based on D1, D>, Ds, and Ds
variable-length-array SMILES to be the closest ones to ideal regression criteria revealing
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B = 0.6. Thus, none of the models exhibited closeness of B to 1, yet models with D4, D1,
and Dis VLA-SMILES-based descriptors possessed slope values that significantly deviated
from the ideal linear regression (B < 0.6), signalizing poor predictive ability. In addition,
critical values t;_, for Fai2-statistics were calculated using Equation (22). MLP models
with D1, D2, De, and Ds variable-length-array-featured SMILES had t;_, <13.5, whereas
MLPs with D4, D12, and D16 length-array SMILES representations demonstrated t;_, >23.
Thus, the method of statistical hypothesis testing revealed single-layer iRPROP--based
MLP with VLA-featured SMILES descriptors Ds to have high predictive power, despite
being previously considered a model the low predictive ability with minimum RMSE >
0.85. F-statistics analysis also confirmed D1, D2, and Ds VLA-SMILES-featured models to
show high prediction power, whereas D12 and Dis length-array SMILES MLPs were in-
deed members of the second group of models with poor predictive ability. The parity
plots, as well as the limit curves for the testing phase of QSAR models with D1, D2, Ds, and
Ds VLA-SMILES formats, are depicted in Figure 8. The dotted line corresponds to the lin-
ear regression curve with an intercept @ and the slope B, the red line signalizes ideal
regression, and the upper and lower limit curves resemble F»-2-statistics with t;_, values
that set the requirement for Ho hypothesis satisfaction. Thus, the statistical method of hy-
pothesis testing was found to be in correlation with the RMSE minimum criteria and par-
ametric model validation methods.

12— iRPROP"_Sigmoid_k=1 (Kennard-Stone) 12— iRPROP"_Sigmoid_k=4 (Kennard-Stone)
® Testing set ® Testing set
119 +- -+ pAct(predicted)=-0.071+0.617*pAct(original) 114 .- .. pAct(predicted)=0.036+0.444*pAct(original)
—— pAct(predicted)=pAct(original) — pAct(predicted)=pAct(original)
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104 = 104 ]
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Figure 8. Linear regression parameters for the testing set, and upper and lower limit curves for
statistical hypothesis Ho verification. MLPs with one hidden layer, iRPROP- optimizer, and Sigmoid
activation for (A) k=1 (D1), (B) k=4 (D4), (C) k =6 (Ds), (D) k =8 (Ds) VLA-based SMILES represen-
tation, Dataset#1.

Related parity plots, regression, and the upper and lower limit curves for the F-sta-
tistics for the testing phase of the corresponding cluster-based single-layered MLPs with
iRPROP- learning are reported in Figure 524.
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4. Conclusions

We developed a variable-length-array SMILES that allows a robust and straightfor-
ward description of the molecular structure contributing to information about intermo-
lecular connectivity. The essence of VLA-featured SMILES is a combination of a sequence
(two, three, and more) of SMILES symbols in binary representation to be encoded in other
digital formats. The VLA-SMILES descriptors were used for activity prediction with deep
learning models, particularly MLP-based QSAR models. Predictive ability was found to
increase once the optimal length of the VLA-based SMILES was found.

The developed QSAR MLP models built on VLA-SMILES were based on Adam op-
timizer, ATransformedBP, and iRPROP- learning algorithms and various activation func-
tions. The rational splitting procedures for training and testing set generation were imple-
mented for validation of the obtained MLPs. For Dataset#1, the models built with D1, D»,
D4, or De VLA-SMILES descriptors (sequences of k=1, k=2, k=4, and k = 6 binary SMILES
digits, respectively) were the most effective in terms of prediction ability when imple-
mented together with Kennard—-Stone partitioning, achieving average RSDav within 8.3%.
For dataset#2, the models with D>, and D+ VLA-SMILES showed the best prediction abil-
ity. Thus, the testing of all possible VLA-SMILES representations for the dataset of interest
is required to discover the best variable-length-array encoding in terms of prediction ac-
curacy and training convergence rate.

All types of VLA-SMILES representation-based models with alternative partitioning,
i.e., ranking by activity, exhibited lower prediction ability.

Predictive ability was evaluated for MLP models with one and two hidden layers, as
well as for MLP Autoencoder with three hidden layers. In comparison with a single-layer
MLP, addition of the second and third hidden layers did not improve the activity predic-
tion significantly. When comparing QSAR outcome between MLP with one hidden layer
and deep learning with MLP Autoencoder with three hidden layers, again no substantial
improvement in the activity prediction was observed.

Based on the calculations and statistical analysis presented in this paper, we conclude
that parametric analysis of model validation, as well as the error measure parameter of
minimum RMSE, correlate well with the results of the statistical analysis based on Ho hy-
pothesis testing of an ideal regression verification.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/make4030034/s1: Figures S1-23: RMSE as a function of
epoch for learning (training) and testing sets; Figure 524: Parity plot and Ho hypothesis testing; Table
S1: Internal parameters of designed neural network-based QSAR models; Tables S2-10: Training
and prediction results in terms of RMSE.
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