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Abstract: Machine learning represents a milestone in data‐driven research, including material in‐

formatics, robotics, and computer‐aided drug discovery. With the continuously growing virtual and 

synthetically available chemical space, efficient and robust quantitative structure–activity relation‐

ship (QSAR) methods are required to uncover molecules with desired properties. Herein, we pro‐

pose variable‐length‐array SMILES‐based  (VLA‐SMILES) structural descriptors  that expand con‐

ventional SMILES descriptors widely used in machine learning. This structural representation ex‐

tends the family of numerically coded SMILES, particularly binary SMILES, to expedite the discov‐

ery of new deep learning QSAR models with high predictive ability. VLA‐SMILES descriptors were 

shown to speed up the training of QSAR models based on multilayer perceptron (MLP) with opti‐

mized backpropagation (ATransformedBP), resilient propagation (iRPROP‒), and Adam optimiza‐

tion learning algorithms featuring rational train–test splitting, while improving the predictive abil‐

ity toward the more compute‐intensive binary SMILES representation format. All the tested MLPs 

under the same length‐array‐based SMILES descriptors showed similar predictive ability and con‐

vergence rate of training in combination with the considered learning procedures. Validation with 

the Kennard–Stone  train–test  splitting based on  the  structural descriptor  similarity metrics was 

found more effective than the partitioning with the ranking by activity based on biological activity 

values metrics  for  the entire set of VLA‐SMILES  featured QSAR. Robustness and  the predictive 

ability of MLP models based on VLA‐SMILES were assessed via the method of QSAR parametric 

model validation. In addition, the method of the statistical H0 hypothesis testing of the linear re‐

gression between real and observed activities based on the F2,n−2 ‐criteria was used for predictability 

estimation among VLA‐SMILES featured QSAR‐MLPs (with n being the volume of the testing set). 

Both  approaches  of QSAR  parametric model  validation  and  statistical  hypothesis  testing were 

found  to  correlate when used  for  the quantitative  evaluation of predictabilities of  the designed 

QSAR models with VLA‐SMILES descriptors. 
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1. Introduction 

In the rising era of big data and artificial intelligence, machine learning (ML)‐based 

technologies have become one of the key approaches in computer‐aided drug discovery, 

allowing fast processing of large‐scale and continuously growing chemical libraries [1,2]. 

Quantitative  structure–activity  relationship  (QSAR) or quantitative  structure–property 

relationship (QSPR)‐based modeling evolved as the leading framework for the develop‐

ment of scalable and versatile methods for in silico activity or property prediction [3–6]. 
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When considering a specific biological target, ML modeling remains an efficient and low‐

cost choice for activity prediction by training the model on a library of compounds with 

known biological activities. Prior to utilizing a QSAR model for screening unknown com‐

pounds, it should be tested on a variety of externally generated sets and demonstrate con‐

sistency and robustness for the chosen biological system [7]. Direct research expenses for 

experimental testing can be substantially reduced with the increasing predictive ability of 

computer‐assisted screening in the sheer magnitude of the synthetically available chemi‐

cal space [8,9]. Recent QSAR studies have focused on both nonlinear and linear methods, 

such as the k nearest neighbor method (kNN) [10], random forest [11], and artificial neural 

networks (ANNs) [12] including deep learning neural networks (DNN) as a basis of deep 

learning methods [13]. In a comparative study of 16 different types of ML algorithms for 

QSAR,  the  neural  network‐based,  i.e., principal  component  analysis  (PCA)‐ANN  and 

deep neural network (DNN), models were reported to be among the best in terms of pre‐

diction abilities within those commonly used in QSAR [14]. The development of ANN‐

based models to improve predictive ability has gained great attention and provided a new 

direction in ML‐based QSAR studies [15−17]. In particular, multilayer perceptrons (MLPs) 

have been demonstrated to be promising for structural design and biological activity pre‐

diction [18]. Success of ANN models such as MLP is dictated by their ability to establish 

complex nonlinear relationships among different types of predictors, which is the basis of 

structure–activity (QSAR) or structure–property (QSPR) modeling [18]. The capability of 

ANNs to solve these complex correlations is linked to the “learning” potential to adapt 

parameters to fit the multidimensional space of training samples obtained either experi‐

mentally or computationally. A variety of learning algorithms and optimization strategies 

for ANNs, such as input sequence calibration and weight update initializations, have been 

reported and can be readily applied in various systems [19]. 

One of the most time‐consuming tasks in the development of QSAR models is the 

preparation of the modeling and validation datasets that should span the entire scope of 

potential molecular structures and scaffolds [20]. To improve the predictive ability in ML 

models, the datasets should be accurately described in numerical, computer‐friendly no‐

tation. Recent ML studies used various types of molecular descriptors [21], among which 

the SMILES (Simplified Molecular Input Line Entry System) representation proposed by 

Weininger  in 1988 remains one of the most commonly used and  low‐space‐complexity 

descriptors [22]. Recent advancements in molecular representations using SMILES‐based 

formats have  facilitated  the discovery of novel  therapeutics  [23] and enhanced  toxicity 

prediction [24], driving the development of versatile and easily generated molecular de‐

scriptors for QSAR studies [25,26]. Despite these successes, several critical issues remain 

unsolved in neural network‐based QSAR modeling. A recent study demonstrated the im‐

portance  of  numerical  coding  of  SMILES, where  decimal  and  binary  SMILES  coding 

schemes were shown to work well for solving structure–property relationships in dielec‐

tric polymer motifs [27]. However, it remains to be studied systematically how such en‐

coding  influences  the speed and accuracy of  training  in a more general setting.  In  this 

work, we propose variable‐length‐array numerical SMILES‐based representations (VLA‐

SMILES) and apply them as digital input sequences for the structural description of bio‐

active molecules (Figure 1). Notably, compared to binary SMILES for molecular represen‐

tation, VLA‐SMILES structural descriptors have been shown to be reduced in size by array 

length encoding (k clustered binary numbers, explained in Section 2.2) while preserving 

the  structural  peculiarities.  Thus,  the  training  convergence  time  when  using  VLA‐

SMILES‐based structural representation was shown to be k2 lower compared to the binary 

SMILES representation format. Two datasets involving small active molecules targeting 

the human angiotensin II receptor (ATR) of both type 1 and type 2 (Dataset#1) and human 

immunodeficiency virus‐1 (HIV‐1) protease receptor (Dataset#2) were generated and used 

for validation and testing of the designed models. The candidate molecules with corre‐

sponding bioactivity data were extracted  from  the open‐access ChEMBL database,  the 

largest publicly available  resource of  compound bioactivity data  [28,29]. The obtained 
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diverse datasets contain both agonist and antagonist ligands of the ATR and inhibitors of 

HIV‐1 protease, which showed activity in either active or inactive receptor conformation 

states. The VLA‐SMILES were  implemented and tested  in 199 different types of neural 

network‐based QSAR models,  including MLP‐based models with one and  two hidden 

layers, as well as deep learning models based on autoencoders. In addition to the varied 

VLA‐SMILES input format of molecular structures, the QSAR models also differed by the 

rational type of the database train–test split algorithms  introduced (ranking by activity 

and Kennard–Stone‐based),  activation  functions  (Sigmoid,  Tanh,  and ReLU),  and  the 

learning approaches implemented (ATransformedBP, iRPROP, and Adam). 

To quantitatively validate the predictive ability and robustness of developed QSAR 

models using VLA‐SMILES‐based descriptors, we utilized the standard parameter‐based 

QSAR validation approach, as well as a newly developed statistical H0 hypothesis testing 

methodology. The standard parametric approach  includes  the calculation of  the coeffi‐

cient of correlation R (Pearson’s), the square of the coefficient of correlation R2, the deter‐

mination coefficient  𝑅଴
ଶ  (𝑅଴

ଶᇱ), a slope coefficient k (k’) for the linear regression through the 

origin (ideal regression), and the determination coefficient q2 for linear regression between 

real and observed activities in the testing phase [30,31]. On the basis of activity prediction 

results derived for nearly 160 QSAR models, Golbraikh and Tropsha proposed quantita‐

tive criteria  for  these parameters, where  the satisfaction of  these criteria signifies good 

prediction ability of a particular model of interest [30]. While Alexander and Tropsha later 

reported the root‐mean‐square error (RMSE) and R2 parameters to be enough for estimat‐

ing  the practical usefulness of a model,  the previously defined standard parameters of 

model validity were still referred to as relevant for measuring a modelʹs predictive ability 

if properly applied [31]. As an alternative to the standard QSAR validation approach pro‐

posed by Golbraikh and Tropsha, the possibility of F1,n−2 (with n being the volume of the 

testing set) distribution function was reported toward acceptance of the statistical H0 hy‐

pothesis of not‐better‐than‐average activity prediction. In addition to the abovementioned 

method, herein we propose new criteria of statistical H0 hypothesis testing of the linear 

regression between real and observed activities based on 2D probability density distribu‐

tions for the regression coefficients. The validity proofs, as well as correct implementation 

conditions of the current criteria, are provided by Kendall and Stuart [32]. Thus, calculated 

critical values  𝑡ଵିఈ  for the F2,n−2 ‐statistics (with two and n − 2 degrees of freedom) were 

found to correlate well with the statistical criteria of the QSAR predictability validation 

approach, as well as with the root‐mean‐square error (RMSE) parameter for the testing 

phase. 

As rational approaches for dataset partitioning have been demonstrated to provide 

more  diverse  results, we  formulated  the  training  and  testing  sets  employing  rational 

train–test splitting approaches, Kennard–Stone‐based and ranking by activity [20]. For the 

entire set of VLA‐SMILES‐based description strategies, MLP‐based QSAR models featur‐

ing Kennard–Stone splitting yielded better predictive ability than those based on ranking 

by activity splitting. In addition to dataset splitting optimization, the MLP models were 

developed using several learning optimizers including affine transformed backpropaga‐

tion ATransformedBP [27], resilient backpropagation [33], and Adam optimizer [34]. 

The entire set of VLA‐SMILES‐coded MLP QSAR models were developed using a 

C++ codebase. Such self‐developed software  facilitates  flexible and adaptive ML‐based 

model  investigation,  particularly  inner‐parameter  variability  and  optimization, which 

would be more restricted in plug‐in‐play modules or library packages. 
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Figure  1.  Flowchart  of  our MLP‐based QSAR modeling  using  variable‐length‐array  numerical 

SMILES‐based descriptors. Batch‐trained affine transformed BP (ATransformedBP), epoch trained 

resilient propagation (iRPROP‒), and Adam optimizer learning algorithms form the foundation of 

the developed MLP models. 

2. Materials and Methods 

2.1. Dataset Description 

The original datasets of the bioactive compounds were obtained from the ChEMBL 

database (ver. 25) which includes close to 1.8 million chemical structures [28,29]. Both re‐

ceptor families, angiotensin  II and protease, are multifunctional enzymes  that play  im‐

portant roles  in organism  functioning while regulating many biological processes. The 

ChEMBL pool of compounds targeting the intensively studied human receptor target of 

angiotensin II receptor type 1 (AT1R) and type 2 (AT2R) consists of 3462 structures. Both 

AT1R and AT2R play role in the regulation of blood pressure, as well as in sodium excre‐

tion [35,36]. Inhibition of AT1R and AT2R reduces the risk of hypertension due to the reg‐

ulation of cardiovascular and electrolyte homeostasis; activation was recently proposed 

to be an effective  treatment of neurological cognitive disorders,  including Alzheimer’s 

disease [37]. The ChEMBL pool of human protease active ligands consists of 1935 struc‐

tures. Proteases play an essential role in cell behavior and survival, which makes them 

one of the main drug targets, and they are of interest as prognostic biomarkers of cancer, 

inflammatory, and cardiovascular diseases [38]. Inhibition of HIV‐1 protease is an effec‐

tive treatment in COVID‐19 [39], by stopping the virus’s lifecycle, and, for over 30 years, 

in highly active antiretroviral therapy (HAART) against AIDS [40]. 

The logarithmic values of the activity parameter in the original human angiotensin II 

(ATR) receptor database, pAct, span from unknown and 0 to 10.9. Compounds with un‐

known pAct and pAct = 0, as well as duplicates, oligomers, or structures with high molec‐

ular weight, were excluded in the data curation phase. The final Dataset#1 consisted of 

1005 ATR active drug‐like compounds with a pAct value in the range 3.8–10.9. The same 

data curation procedures were applied for the human HIV‐1 protease receptor pool giving 

final Dataset#2 of protease active structures with known affinities, consisting of 1378 drug‐

like compounds with a pAct value in the range 2.7–13.6. Since a compound is considered 

to be active if revealing pAct > 6, both generated Dataset#1 and Dataset#2 preserved high 

diversity, while containing ligands with low activity and high activity of pAct being in a 

range from ~2 to ~10 and higher [41]. While the database also reported other types of ac‐

tivity data (IC50, Kd, Ki, and Kb) for some structures, only pAct values were available for 

all the compounds. An example compound, its chemical structure, and its SMILES and 

VLA‐SMILES representations, together with the corresponding activity value, pAct, is de‐

picted in Figure 1. 

2.2. Data Encoding: Variable‐Length‐Array (VLA) SMILES‐Based Descriptors 

SMILES, a single‐line spaceless representation, is the most common machine‐reada‐

ble format due to the reversibility and generality of features [22]. The SMILES notation is 

a conventional form describing chemical structures and is widely used in computer mod‐

eling and ML. Thus, one‐dimensional SMILES representation has been utilized in predict‐

ing  the  structure–activity  or  structure–property  relationships  in  the  fields  of material 
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science [42], biochemistry [43], polymers [44,45], and drug discovery [46]. While the clas‐

sical SMILES notation is based on a fixed alphabet and follows a set of rules achieving a 

linear  string  format,  variations  of  SMILES‐type  syntax  representations  demonstrated 

good performance  in  structure–activity  relationship  [47]  and generative model  [47,48] 

studies. SELFIES (self‐referencing embedded strings) as a string‐based molecular repre‐

sentation approach improved memory storage capabilities while retaining the robustness 

and user‐friendliness of SMILES [49]. Variable dictionary‐featured text‐based representa‐

tions have shown to be useful when mapping chemical structure information, e.g., CUS‐

TODI (custom tokenization dictionary) [50]. However, implementation of CUSTODI re‐

quires nontrivial preprocessing of the dataset. Other expansions of the SMILES string lan‐

guage  include dot‐separated CurlySMILES [51] (Curly‐braces enhanced Smart Material 

Input Line Entry Specification), eclectic‐featured quasi‐SMILES [52], and substructure‐ex‐

tended SMARTS [53]. 

In  this work, we designed and used a variety of numerical representations of ma‐

chine‐readable SMILES notation. Initially, all molecular structures in the dataset were de‐

fined in the canonical SMILES notation, and the largest string was found to consist of 234 

characters. We denote  the  length of  the  longest string as  𝐿௠௔௫  = 234. Subsequently, all 
SMILES entries  in the dataset were padded with zeros to ensure a consistent  length of 

strings (L = 234). The obtained vectors were then mapped with ASCII decoding tables to 

represent the atomic composition in SMILES byte‐type numerical format of range 0–255. 

Figure 2 depicts an example flowchart of all steps in the variable‐length‐array encoding 

of a molecular  structure. This  two‐step  conversion  is  illustrated  in  the example of  the 

methoxy group, a common structural motif readily available in the majority of chemical 

libraries. A methoxy group in SMILES is defined as representation (1) (Figure 2, step (B)). 

𝑆ௌெூ௅ா ൌ ሼ𝐶 𝑜 𝑐ሽ.  (1)

In the first step of the VLA encoding, the SMILES string of the methoxy‐group (rep‐

resentation (1)) is converted to the SMILES numerical format using ASCII tables with the 

following transformation into the binary SMILES having a length of 24 digits (Figure 2, 

step (C)): 

𝐷௕௜௡ ൌ 𝐷ଵ ൌ ሼ01000011 01,001,111 01100011ሽ.  (2)

The SMILES format in binary representation in ASCII codes can be clustered by two, 

three, and more binary values to be represented in other numerical formats. In the case of 

Dataset#1 and Dataset#2, the lengths of the resulting vectors in binary representation were 

equal to d1 = 1872 and d2 = 1192 correspondingly. Clustering by the k‐th sequenced binary 

symbols produces numerical sequences with a length of d/k, where k is an array length 

and an integer factor of d (herein, for Dataset#1 with d1 = 1872, we used k = 1, 2, 4, 6, 8, 12, 

and 16, whereas, for Dataset#2 with d2 = 1192, only the values of k = 1, 2, 4, and 8 were 

possible). A common representation for the resulting vector unit is defined as 

𝑆௝,௞ ൌ ∑ 𝑎௝∙௞ା௜2௜
௞ିଵ
௜ୀ଴ ,    (3)

where  𝑎௝∙௞ା௜  is a binary unit (either “0” or “1”) in the j‐th array with j (= 0, 1, 2, …, d/k–1) 

being an index of an array‐based element in the VLA‐featured SMILES notation. 

For the example of the SMILES‐encoded methoxy‐group (1), representation (3) can 

be defined as 𝐷ଶ  variable‐length‐array‐based SMILES representation (array length k = 2). 

𝐷ଶ ൌ ሼ100310331203ሽ.  (4)

Thus, any chemical structure can be described in the VLA‐based binary SMILES for‐

mat using Equation (5). 

𝐷ሬሬ⃗ ௞ ൌ ൛𝑆଴,௞, 𝑆ଵ,௞, 𝑆ଶ,௞, … , 𝑆௟,௞ ൟ,  (5)

where  𝑙 ൌ 8𝐿௠௔௫/𝑘 െ 1, and  0 ൑ 𝑆௝,௞ ൑ 2௞ െ 1. 
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Figure 2. Data encoding using the variable‐length‐array‐featured SMILES notation (VLA‐SMILES). 

(A) Examples of compounds carrying a methoxy functional group, a common structural motif in 

the dataset. (B) SMILES representation of one example. The methoxy group and its SMILES code 

are highlighted in red. (C) Binary mapped SMILES representation with zero padding at the end of 

the sequence. Transformation of the obtained arrays 𝐷ଶ (k = 2) and 𝐷଺ (k = 6). 

One of  the promising characteristics of  the VLA‐featured  representation  is  its ad‐

vanced intermolecular bond description with increasing value of the array k‐group. The 

modeling studies revealed that array‐based VLA‐SMILES representation enhances the in‐

formation content of the chemical substructure features compared to SMILES byte‐type 

numerical format. The VLA‐type representation can, thus, improve the predictive ability 

of MLP models that utilize text‐based notation as input data. The obtained  𝑆௝,௞  values in 

𝐷ሬሬ⃗ ௞ were normalized by a  range‐scaling procedure  to distribute  their values within  the 

range −0.5 to 0.5 as 

𝑆መ௝,௞ ൌ
ሺ𝑆௝,௞ െ 0.5 ∙ ሺ𝑆௝,௞ሺ௠௔௫ሻ ൅ 𝑆௝,௞ሺ௠௜௡ሻሻሻ

ሺ𝑆௝,௞ሺ௠௔௫ሻ െ 𝑆௝,௞ሺ௠௜௡ሻሻ
,  (6)

where  𝑆௝,௞ሺ୫ୟ୶ሻ and 𝑆௝,௞ሺ୫୧୬ሻ  are the maximum and minimum values of elements of 𝐷ሬሬ⃗ ௞. 

2.3. Theoretical Background: Multilayer Perceptron and Statistical Metrics of the Model 

Prediction Ability 

The multilayer perceptron (MLP) architecture with classical gradient learning algo‐

rithms (e.g., backpropagation [54], RPROP [33], Adam [34]) is considered the basis of var‐

iable ANNs, e.g., recurrent (RNN) [27], convolutional (CNN) [55], and graph (GNN) [56]. 

Here, various MLPs with one,  two,  and  three hidden  layers  and  the  abovementioned 

learning procedures were designed to solve QSARs for a set of active ATR (Dataset#1) and 
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HIV‐1 protease ligands (Dataset#2). A typical schematic representation of the MLP archi‐

tecture is depicted in Figure 3. The block scheme of the MLP includes an input layer, hid‐

den layers with various activation functions  𝐹ሺ𝑌ሻ, and an output layer. Input and hidden 
layers comprise  𝑙  neurons with  𝑙 weighing parameters. The output signals from the first 

hidden and second layer are determined as 

𝒀ሺ𝒎ሻ𝒊
ሺ𝟏ሻ ൌ 𝑾ሬሬሬሬ⃗ ሺ𝟏,𝒎ሻ𝑺ሬሬ⃗ 𝑻ሺ𝒌ሻ𝒊 ൅ 𝑻ሺ𝒎ሻ𝒊

ሺ𝟏ሻ ,  (7)

𝒀ሺ𝒎ሻ𝒊
ሺ𝟐ሻ ൌ 𝑾ሬሬሬሬ⃗ ሺ𝟐,𝒎ሻ𝑿ሬሬ⃗ 𝑻ሺ𝒎ሻ𝒊

ሺ𝟏ሻ
൅ 𝑻ሺ𝒎ሻ𝒊

ሺ𝟐ሻ ,  (8)

where  𝑺ሬሬ⃗ ሺ௞ሻ௜ ൌ ሺ𝑺ሺ𝟎,𝒌ሻ𝒊,𝑺ሺ𝟏,𝒌ሻ𝒊, … ,𝑺ሺ𝒍,𝒌ሻ𝒊ሻ  is an input row vector with the dimension  𝑙  for the 
i‐th ligand, 𝑿ሺ𝒎ሻ𝒊

ሺ𝟏ሻ ൌ 𝑭ሺ𝒀ሺ𝒎ሻ𝒊
ሺ𝟏ሻ ሻ  and 𝑿ሺ𝒎ሻ𝒊

ሺ𝟐ሻ ൌ 𝑭ሺ𝒀ሺ𝒎ሻ𝒊
ሺ𝟐ሻ ሻ  are the outputs of an activation func‐

tion  for  the  first  and  second  hidden  layers,  𝑾ሬሬሬሬ⃗ ሺଵ,௠ሻ ൌ ሺ𝜔଴
ሺଵ,௠ሻ,𝜔ଵ

ሺଵ,௠ሻ, … ,𝜔௟
ሺଵ,௠ሻሻ   and 

𝑾ሬሬሬሬ⃗ ሺଶ,௠ሻ ൌ ሺ𝜔଴
ሺଶ,௠ሻ,𝜔ଵ

ሺଶ,௠ሻ, … ,𝜔௟
ሺଶ,௠ሻሻ   are  row  vectors  of  the  weighting  parameters 

(m=0,1,…,l), and  𝑻ሺ𝒎ሻ𝒊
ሺ𝟐ሻ
  and  𝑻ሺ𝒎ሻ𝒊

ሺ𝟏ሻ
  are biases (not shown in Figure 3). 

The message function for the predicted activity can be expressed as 

𝒑𝑨𝒄𝒕෣𝒊 ൌ 𝑾ሬሬሬሬ⃗ ሺ𝟑ሻ𝑿ሬሬ⃗ 𝑻ሺ𝒎ሻ𝒊
ሺ𝟐ሻ

൅ 𝑻𝒊
ሺ𝟑ሻ,  (9)

where 𝑾ሬሬሬሬ⃗ ሺ𝟑ሻ  is a one‐dimensional row vector, and  𝑻𝒊
ሺ𝟑ሻ
  is the bias for the output layer (not 

shown in Figure 3). 

 

Figure 3. Schematic representation of the multilayer perceptron (MLP) neural network architecture 

(with two hidden layers) utilizing the VLA‐featured binary SMILES input 𝐷ሬሬ⃗ ሺ௞ሻ. 

The  activation  function  𝐹ሺ𝑌ሻ  is  critical  for  achieving  a high prediction  ability  in 
QSAR. We used three commonly applied activation functions: 

Hyperbolic tangent, Tanh:  𝐹ሺ𝑌ሻ ൌ 𝑇𝑎𝑛ℎሺ𝑌ሻ,    (10)

Sigmoid:  𝐹ሺ𝑌ሻ ൌ 1/ሺ1 ൅ 𝑒ି௒ሻ,    (11)

Rectified Linear Unit, ReLU:  𝐹ሺ𝑌ሻ ൌ ቄ
0,𝑌 ൑ 0
𝑌,𝑌 ൐ 0.    (12)

To determine the prediction ability of MLP models, one needs to evaluate the accu‐

racy of the nonlinear mapping of the variable‐length‐array SMILES into the predicted val‐

ues of the activity  𝑝𝐴𝑐𝑡෣   . We used the error parameter, root‐mean‐square error (RMSE), 

as evaluation criteria for predictive ability, as well as the learning efficiency, which is re‐

ferred to as the loss function. 
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𝑅𝑀𝑆𝐸 ൌ  ට
ଵ

௡
∑ ሺ𝑝𝐴𝑐𝑡௜ െ 𝑝𝐴𝑐𝑡෣௜ሻଶ𝒏ି𝟏
௜ୀ଴ .  (13)

As addition error measures, the relative standard deviation parameter (RSD) with 

the maximum and average values were used. They are defined in Equations (14) and (15), 

respectively. 

𝑅𝑆𝐷௠௔௫ ൌ ሺ𝑚𝑎𝑥 |
௜

ሺ1 െ 𝑝𝐴𝑐𝑡෣௜
𝑝𝐴𝑐𝑡௜
൘ ሻ|ሻ ൈ 100 ሺ%ሻ,    (14)

𝑅𝑆𝐷௔௩ ൌ
ଵ

௡
∑ |ሺ1 െ 𝑝𝐴𝑐𝑡෣௜ 𝑝𝐴𝑐𝑡௜⁄ ሻ|௡ିଵ
௜ୀ଴ ൈ 100 ሺ%ሻ.    (15)

2.4. Formation of Training and Testing Sets: Method of Rational Splitting 

To evaluate the predictive ability of the QSAR model, one needs to split the original 

dataset into training and testing sets. For smaller datasets, the leave‐one‐out cross‐valida‐

tion splitting procedure can be used [57]. Larger databases require the use of random or 

rational partitioning methods. QSAR modeling relying on random train–test split meth‐

odologies tends to perform less effectively if the molecules in the testing set are structur‐

ally very different from those in the training set, which can be easily achieved for a ran‐

dom split [58]. More rational division algorithms, i.e., rational selection of the training and 

test sets, are crucial for developing accurate and robust models that lead to superior gen‐

eralization characteristics [59−61]. Multiple algorithms have been reported for intelligent 

dataset division including sphere exclusion [62], Kennard–Stone [63], and ranking by ac‐

tivity methods [64]. The Kennard–Stone algorithm allows the selection of a very diverse 

subset of compounds in terms of the Euclidean distance between the descriptors. It con‐

stitutes the basis of various clustering methods and training set generation for the valida‐

tion of QSAR models. The ranking of compounds by activity with subsequent separation 

into equal‐sized groups is another commonly used algorithm for intelligent training/test‐

ing set generation [64]. Ranking methods are based on cluster preprocessing of the input 

descriptors. The evolution of the data clustering theory and clustering algorithms covers 

an  independent area of  research  [65−67]. For  this work, we performed and  tested  two 

types of data partitioning methods (Figure 4): 

 Splitting 1: train–test split using Kennard–Stone algorithm [63], 

 Splitting 2: train–test split using ranking by activity [64]. 

In the case of the Kennard–Stone protocol, VLA‐based SMILES representations were 

used as structure‐based descriptors. First, two reference samples 𝐷ሬሬ⃗ ௠  and 𝐷ሬሬ⃗ ௡, which had 

the  largest distance between corresponding descriptors, were selected. These reference 

samples should exhibit max
௠,௡

𝜌ሺ𝐷ሬሬ⃗ ௠,𝐷ሬሬ⃗ ௡ሻ  in Euclidean metrics are defined as 

𝜌൫𝐷ሬሬ⃗ ௠,𝐷ሬሬ⃗ ௡൯ ൌ ට∑ ሺ𝑆௝,௠ െ 𝑆௝,௡ሻଶ௟ିଵ
௝ୀ଴ ,  (16)

where n and m are selected indices of the entries in the original dataset. These two entries 

are automatically selected for the training set. The next sample  i needs to be chosen to 

satisfy the maximal criteria, max
௜
ሺminሺ𝜌൫𝐷ሬሬ⃗ ௜ ,𝐷ሬሬ⃗ ௠൯,𝜌൫𝐷ሬሬ⃗ ௜ ,𝐷ሬሬ⃗ ௡൯ሻሻ.  The remaining samples are 

ranked in the descending order of conformity with max
௜
ሺmin

௝
𝜌൫𝐷ሬሬ⃗ ௜ ,𝐷ሬሬ⃗ ௝൯ሻ, where j refers to 

the samples that have already been ranked. The first 95% samples of the generated pool 

were selected as the training (learning) set, while the remaining 5% constituted the testing 

set. 

For  the  ranking‐based  train–test splitting method, we used  the activity parameter 

pAct as descriptor values for clustering [64]. The samples were sorted in descending order 

of pAct. The sorted list was then divided into 50 groups, each containing 20 samples sorted 

in descending order of pAct (Figure 4). The first 19 samples of each group were assigned 
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to the training set (95% of the dataset), whereas the remaining samples formed the testing 

set (5% of the dataset). 

 

Figure 4. Pseudocode of the dataset partitioning splitting methods. (A) Train–test splitting using 

Kennard–Stone algorithm. (B) Ranking by activity train–test splitting algorithm. Due to the 5%/95% 

partitioning ratio with regard to the original dataset, we elaborated with the first n = 1000 (Dataset#1) 

and n = 1370 (Dataset#2) samples to have a feasible round number for the train–test splitting. 

2.5. Training Algorithms 

Optimized backpropagation (ATransformedBP), resilient propagation RPROP, and 

Adam optimizer  learning algorithms were used for the training of MLP models. These 

recurrent learning methods comprise the family of gradient‐based ML algorithms [68]. 

The backpropagation (BP) algorithm is one of the most widely used supervised learn‐

ing algorithms in neural networks [54]. It continuously updates the weighting parameters 

for the row‐vectors 𝑾ሬሬሬሬ⃗ ሺ𝒑,𝒎ሻ
  and biases, e.g., for MLP with p hidden layers as illustrated in 

Figure 3. Overtraining and local minimum trapping are the most common issues of the 

learning phase [69]. Overtraining remains a challenge when a model’s generalizability be‐

comes substantially lower when achieving excessive accuracy during training [70]. Thus, 

the decreased RMSE (Equation (13)) for a  larger number of epochs during the  training 

phase does not guarantee a similar performance in the testing phase due to overtraining. 

At the same time, a large RMSE value in the learning phase inevitably results in a high 

value of RMSE for the testing set, indicating a poor predictive ability of the model. The 

problematic overtraining can be overcome using a  regularization method, particularly 

early stopping, where the learning is terminated at the minimum of the loss function in 

the test phase and the corresponding weighting parameters are recorded [70−72]. On the 

other hand, trapping in a local minimum may be mitigated utilizing resilient backpropa‐

gation (RPROP), Adam optimizer, and ATransformedBP (a modification of the BP algo‐

rithm with input affine transformation). 

We showed that the ATransformedBP approach paired with an affine transform op‐

timization strategy for the input sequence exhibits superior performance for the predic‐

tion  of  polymer  dielectric  constants  using  traditional  Elman‐type  recurrent  neural 
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networks (RNNs) [27]. The ATransformedBP approach is based on the preprocessing of 

the SMILES‐based input, in our case, the variable‐length‐array‐featured 𝐷ሬሬ⃗ ௞  vector, 

𝐷ሬሬ⃗ ௞೔
ᇱ ൌ 𝛾 ∙ ሺ𝐷ሬሬ⃗ ௞೔ െ 〈𝐷ሬሬ⃗ ௞೔〉ሻ, 1 ൑ 𝑖 ൑ 𝑛,  (17)

where  𝛾  is the affine‐transformation factor. 

The optimal value of  𝛾  for each of the VLA‐based binary SMILES representations 

was found to satisfy the minimum criteria of the loss function in the testing set, 

𝛾௢௣௧ ൌ 𝑚𝑖𝑛
ఈ
〈𝐸ሺ𝑝𝐴𝑐𝑡෣௜ െ 𝑝𝐴𝑐𝑡௜ሻ〉.    (18)

The input vector data of the variable‐length‐array SMILES was used under the opti‐

mal value of  the hyperparameter  𝛼  before  testing  the prediction abilities of  the MLP‐

based models using ATransformedBP (Table S1). 

Resilient backpropagation (RPROP) was also implemented to solve the convergence 

and local minimum problems. Previous comparative studies based on RNN modeling us‐

ing iRPROP, one of the four types of RPROP learning methods, showed superior results 

in comparison to backpropagation [27,73−76]. 

Another learning method that is frequently used in ML‐based models is the Adam 

stochastic gradient‐based optimization strategy  [34]. This method performs weight up‐

dates recursively via calculation of the bias‐corrected first and second adaptive moments 

estimations. 

In addition, we designed a deep neural network (DNN)‐based QSAR model based 

on an MLP Autoencoder [77]. The Autoencoder implements phases of the rough setting 

of the weighting parameters and fine‐tuning. Our model consisted of three hidden layers 

using Adam optimizer as a learning algorithm for the first and second phases of an Auto‐

encoder realization. 

The  internal parameters of all QSAR models  for  the structure–activity studies are 

summarized in Table S1. The design of MLP‐based QSAR models involved optimization 

of several hyperparameters, such as learning rate,  𝛾  affine transform parameter, and the 

number of the epochs, which depended on the array‐featured molecular representation, 

learning algorithm, and NN architecture. 

2.6. Statistical Criteria for Predictive Ability of QSAR Models 

A model is considered robust and of high predictive capability when the abovemen‐

tioned quantities satisfy the following criteria for a testing set:  𝑞ଶ ൐ 0.5,  𝑅ଶ ൐ 0.6,  |𝑅଴
ଶ െ

𝑅଴
ᇱଶ| ൏ 0.3,  0.85 ൑ 𝑘 ൑ 1.15  or  0.85 ൑ 𝑘ᇱ ൑ 1.15 [30]. Here,  𝑅଴

ଶ  and  𝑘  are the determina‐

tion coefficients and slope values for linear regression through the origin between the ac‐

tual and predicted, whereas  𝑅଴
ᇱଶ  and  𝑘ᇱ  are the corresponding determination coefficients 

between predicted and actual activities for the testing phase. These conditions are deter‐

mined on the basis of a linear regression assumption between the observed and predicted 

values of a specific parameter, in our case, the biological activity pAct. The values of the 

parameters for the QSAR model predictive ability validation described above were found 

to be correlated with  the RMSE and were used  for a comprehensive analysis of model 

performance. 

As a more rigorous criterion to analyze the modelʹs predictive ability, we used statis‐

tical hypothesis testing [32]. The 𝐻଴  hypothesis assumes a resemblance of the linear re‐

gression  𝑝𝐴𝑐𝑡෣ ൌ 𝑎ො ൅ 𝑏෠ ∙ 𝑝𝐴𝑐𝑡  to the ideal linear regression with values  𝑎ො ൎ 0, 𝑏෠ ൎ 1. The 
point estimations of the intercept  𝑎ො  and the slope  𝑏෠  for the predicted vs. actual data re‐
gression are defined as follows [78]: 

𝑎ො ൌ
∑ ௣஺௖௧೔

మ೙
೔సభ ∙∑ ௣஺௖௧෣೔

೙
೔సభ ି∑ ௣஺௖௧೔

೙
೔సభ ∑ ௣஺௖௧೔൉௣஺௖௧෣ ೔

೙
೔సభ

௡∙∑ ௣஺௖௧೔
మିሺ∑ ௣஺௖௧೔ሻ

೙
೔సభ

మ೙
೔సభ

,  (19)

𝑏෠ ൌ
௡∙∑ ௣஺௖௧೔൉௣஺௖௧෣ ೔

೙
೔సభ ି∑ ௣஺௖௧೔

೙
೔సభ ∑ ௣஺௖௧෣೔

೙
೔సభ

௡∙∑ ௣஺௖௧೔
మିሺ∑ ௣஺௖௧೔ሻ

೙
೔సభ

మ೙
೔సభ

,  (20)
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where  𝑛  is the size of the testing set (in our case,  𝑛 ൌ 50  for Dataset#1 and  𝑛 ൌ 70  for 
Dataset#2). 

Validity of the 𝐻଴  hypothesis is defined by the confidence intervals  𝑦଴
ሺേሻሺ𝑝𝐴𝑐𝑡ሻ with 

the significance  level  𝛼. It  is based on the fact that  ideal  linear regression  is within the 

upper and lower limit for all the predicted  𝑝𝐴𝑐𝑡෣   values of the testing set. To accept the 

𝐻଴   hypothesis,  the  regression  values  𝑝𝐴𝑐𝑡෣   should  be  within  the  range 
ሾ𝑦଴

ିሺ𝑝𝐴𝑐𝑡ሻ,𝑦଴
ାሺ𝑝𝐴𝑐𝑡ሻሿ  [32]. 

𝑦଴
ሺିሻሺ𝑝𝐴𝑐𝑡ሻ ൑ 𝑎ො ൅ 𝑏෠ ∙ 𝑝𝐴𝑐𝑡 ൑ 𝑦଴

ሺାሻሺ𝑝𝐴𝑐𝑡ሻ.  (21)

where,  𝑦଴
ሺାሻሺ𝑝𝐴𝑐𝑡ሻ  and  𝑦଴

ሺିሻሺ𝑝𝐴𝑐𝑡ሻ  are upper and lower curve limits, defined as follows 

[32]: 

𝑦଴
ሺേሻሺ𝑝𝐴𝑐𝑡ሻ ൌ 𝑎ො ൅ 𝑏෠ ∙ 𝑝𝐴𝑐𝑡 േ ඥ2 ∙ 𝑡ଵିఈሼ

௦మ

௡
൅

௦మ௣஺௖௧మ

∑ ௣஺௖௧೔
మ೙

೔సభ
ሽଶ,  (22)

where  𝑡ଵିఈ  determines a critical value for the  𝐹௠భ,௠మ  distribution with m1 = 2 and m2 ൌ
 𝑛 െ 2   degrees  of  freedom,  for  𝛼 ൌ 0.001 ,  𝑡ଵିఈ ൌ 8.01 [78],  and  𝑠ଶ ൌ

ଵ

௡ିଶ
∑ ሺ𝑝𝐴𝑐𝑡෣௜ െ
௡
௜ୀଵ

൫𝛼ො ൅ 𝑏෠ ∙ 𝑝𝐴𝑐𝑡௜൯ሻଶ. A lower  𝑡ଵିఈ  value for the H0 hypothesis to be valid (Equation (22)) in‐

dicates a higher predictive ability of the QSAR model. 

3. Results 

RMSE for the learning phase tends to decrease with the increasing values of epochs, 

whereas the testing set RMSE minimum values depend on the epoch number and defined 

regularization approach  for QSAR modeling. Thus,  the RMSE values corresponding  to 

the last epoch of the training phase, as well as the minimum RMSE of the testing phase, 

were recorded for each prediction model. Depending on the k value of the length‐array‐

featured SMILES representation, the duration of training depended on the epoch referred 

to as the characteristic minimum of the testing RMSE (Supplementary Materials, Tables 

S2–S10). The predictive ability comparison included the models with D1 VLA‐SMILES en‐

coding where the clustering was made by k = 1 (D1) sequenced binary symbols, which is 

commonly referred to as binary SMILES representation. 

3.1. Comparison of Kennard–Stone and Ranking by Activity Splitting Methodologies 

To compare  the Kennard–Stone and Ranking by Activity  train–test splitting algo‐

rithms, prediction results of QSAR models using both splitting types were evaluated us‐

ing Dataset#1 (Tables S2, S3, and S6 (Kennard–Stone‐based MLPs), Tables S4 and S7 (rank‐

ing  by  activity‐based MLPs). The  applied  learning procedures  included  iRPROP‒  and 

Adam optimizer for QSAR models based on one hidden layer MLP with various activa‐

tion functions and VLA‐SMILES descriptors. When evaluating the evolution of loss func‐

tion in testing and training phases, developed QSAR models can be separated into two 

groups. The first group includes MLPs with RMSE values not exceeding 0.85. Such QSAR 

models are considered of good predictive ability and are applicable  for  further QSAR 

analysis with external datasets. The second group included models with lower RMSE val‐

ues and are considered of less predictive ability, whereby their application in the QSAR 

analysis is less efficient. 

Table 1 shows the minimum RMSE for testing sets for MLP‐based models with iR‐

PROP‒ learning and Sigmoid(Y) activation with different train–test splitting for Dataset#1. 

For the Kennard–Stone train–test splitting, the models with length‐array‐featured SMILES 

representations D1, D2, and D6 are referred to as the first group of good predictive ability 

with the RMSE value not exceeding 0.85. When implementing ranking by activity parti‐

tioning, all the designed models were in the second group of mild predictive ability, re‐

vealing the RMSE minimum of the testing set to exceed 0.85. Albeit of low prediction abil‐

ity, the D12 VLA‐SMILES descriptor‐based MLP was the only model from the modeling 
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set using ranking by activity for the train–test splitting that outperformed the D12 VLA‐

SMILES descriptors‐based MLP model but with Kennard–Stone dataset partitioning. 

Table 1. RMSE values for testing sets of MLPs with one hidden layer and iRPROP‒ learning proce‐

dure: Kennard–Stone vs. ranking by activity‐based train–test split (Sigmoid activation function was 

used), Dataset#1. 

Kennard‐Stone‐Based Train‐Test Splitting 

VLA‐SMILES format 
𝐷ଵ 
k = 1 

𝐷ଶ 
k = 2 

𝐷ସ 
k = 4 

𝐷଺ 
k = 6 

𝐷଼ 
k = 8 

𝐷ଵଶ 
k = 12 

𝐷ଵ଺ 
k = 16 

iRPROP (𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 
Minimum RMSE for testing set  0.77  0.77  0.88  0.84  0.94  0.95  0.89 

Adam (𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 
Minimum RMSE for testing set  0.82  0.79  0.84  0.94  0.93  0.99  0.93 

Ranking by Activity‐Based Train‐Test Splitting 

VLA‐SMILES format 
𝐷ଵ 
k = 1 

𝐷ଶ 
k = 2 

𝐷ସ 
k = 4 

𝐷଺ 
k = 6 

𝐷଼ 
k = 8 

𝐷ଵଶ 
k = 12 

𝐷ଵ଺ 
k = 16 

iRPROP (𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 
Minimum RMSE for testing set  0.87  0.95  0.88  0.87  1.02  0.87  0.94 

Adam (𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 
Minimum RMSE for testing set  1.01  1.18  1.14  1.21  1.29  1.11  1.26 

Prognosis and training results for the QSAR models with ReLU and Tanh activations 

are shown in Tables S3 and S4. The entire family of VLA‐SMILES descriptors‐based mod‐

els with ranking by activity partitioning and ReLU and Tanh activations belonged to the 

second group of mild predictive ability models. Yet, an interesting observation was that 

MLPs with D8 VLA‐SMILES descriptors revealed the best prediction accuracy compared 

to other VLA‐SMILES‐based MLPs  for Tanh and RELU activation sets. With Kennard–

Stone‐based splitting, models using variable‐length‐array‐based descriptors D1, D2, and 

D4 (for ReLU activation) and D1, D2 (for Tanh activation) exhibited good predictive ability 

in terms of RMSE minimum criteria. 

The epoch‐dependent loss function evolutions in the testing and training phases gen‐

erated with Kennard–Stone and ranking by activity partitioning for single‐layered MLPs 

with variable‐length‐array‐featured SMILES and ReLU, Sigmoid, and Tanh activations, as 

well as iRPROP‒ learning, are shown in Figures S1–S6, respectively. 

The same trend in RMSE evolution between the two rational splitting methods was 

observed for MLP models using the Adam learning procedure (Table S6 and S7). Here, 

QSAR modeling with ranking by activity splitting and Sigmoid activation showed low ac‐

tivity prediction with RMSE  values  above  1.0  for  the  entire  family  of  the VLA‐based 

SMILES  representations  (Table  1).  For  the MLP with Kennard–Stone partitioning,  the 

models with D1, D2, and D4 featured array length representations of SMILES descriptors 

were the only ones satisfying RMSE minimum criteria for the good prediction ability mod‐

eling group. 

Graphical examples of RMSE evolution  for the training and testing phases  for  the 

QSARs with D2‐featured array length SMILES representations using Kennard–Stone and 

ranking by activity‐based splits are shown in Figure 5. Here, testing progress reached 0.77 

and 0.79 minimum values for Kennard–Stone‐based partitioning with the iRPROP‒ and 

Adam optimizer‐based learnings, respectively (Figure 5A). For the models with ranking 

by activity train–test splitting, the minimum RMSE for those with the VLA‐SMILES D2 

reached 0.95 and 1.18 when implementing iRPROP‒ and Adam learning algorithms, re‐

spectively (Figure 5B). 
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Figure 5. RMSE parameters for training and testing sets for MLPs with one hidden layer with iR‐

PROP and Adam learning procedures and Sigmoid activation function using (A) Kennard–Stone and 

(B) ranking by activity‐based train–test splits, Dataset#1. 

The  other Adam‐based MLPs with ReLU  or Tanh  activation  and Kennard–Stone‐

based train–test splitting showed superiority over the corresponding models with ranking 

by activity split on the example of Dataset#1 (Tables S6 and S7). For QSAR implementing 

the Kennard–Stone algorithm and ReLU activation, R2 and R4 length‐array‐featured mod‐

els had RMSE lower than 0.82, satisfying the requirement for the first group of high‐accu‐

racy models. With Tanh activation, MLPs models based on VLA‐SMILES D1, D2, and D4 

also accomplished criteria of good predictive ability modeling. Regardless of the activa‐

tion function, the entire family of prediction models with the VLA‐based SMILES repre‐

sentations using  the  ranking by  activity  splitting  showed  a minimum RMSE value of 

nearly 1.0 and above. Hence, they were in the second group of models with low predictive 

ability. The general observation was a reduction of the predictive ability in some VLA‐

SMILES descriptor‐based models with the increasing k number of sequenced binary sym‐

bols during VLA‐encoding. This can be explained by the fact that a higher number of clus‐

tered binary numbers  leads  to  increasing of structural peculiarity mismatching during 

encoding to VLA‐SMILES from Binary SMILES. The epoch‐dependent RMSE in the test‐

ing and training phases of MLPs derived with Kennard–Stone‐based and ranking by ac‐

tivity splitting methods for variable‐length‐array‐featured SMILES using ReLU, Sigmoid, 

and Tanh activation functions and Adam‐based learning are presented in Figures S10–15, 

respectively. 

A notable observation was  that  the  training convergence speed  increased with  in‐

creasing values of k in length‐array‐featured representations Dk. Compared with D1 (k = 

1), the traditional binary SMILES‐featured MLP, the convergence time for the MLPs with 

k > 1 VLA‐SMILES notation was proportional to  𝛼 𝑘ଶ⁄ , where the prefactor  𝛼  depends on 
the CPU (processor made and model, clock speed, number of cores, etc.), as well as the 

NN model architecture (number of training epochs, learning algorithm, etc.). 

𝐶𝑃𝑈ሺ𝑡𝑖𝑚𝑒ሻ ൌ 𝛼 𝑘ଶ⁄ . (23)

Table 2  lists  the CPU convergence  times  for  the  implemented VLA‐SMILES‐based 

MLP with one hidden layer and Adam optimizer. The theoretical CPU times according to 

Equation (23) (with  𝛼 ൌ 66.47 ൈ 256 ൌ 17,016.32) were within 4% with regard to the ex‐

perimentally observed values. 
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Table 2. CPU times for the training convergence of the models with VLA‐SMILES representations 

(single‐layer MLP with Adam learning, Kennard–Stone‐based rational train–test splitting, and Sig‐

moid activation). The single prefactor in the theoretical CPU time was determined to reproduce the 

observed CPU for the MLP with D16 (k = 16) cluster‐featured SMILES, Dataset#1. 

Adam 

(𝑺𝒊𝒈𝒎𝒐𝒊𝒅 ሺ𝑺ሻሻ 

VLA‐SMILES Representation 

𝑫𝟏 

k = 1 
𝑫𝟐 

k = 2 
𝑫𝟒 

k = 4 
𝑫𝟔 

k = 6 
𝑫𝟖 

k = 8 
𝑫𝟏𝟐 

k = 12 
𝑫𝟏𝟔 

k = 16 
𝐂𝐏𝐔 𝐭𝐢𝐦𝐞 
ሺ𝐭𝐡𝐞𝐨𝐫ሻ, 𝐬  17,016.32  4254.08  1063.52  472.67  265.88  118.17  66.47 

𝐂𝐏𝐔 𝐭𝐢𝐦𝐞  
ሺ𝐞𝐱𝐩ሻ, 𝐬  17,651.90  4668.33  1199.30  503.09  268.03  116.56  66.47 

ATransformedBP based MLP modeling was implemented only with Kennard–Stone‐

based partitioning, taking into account its improved performance over ranking by activ‐

ity. For activation function Tanh, the evolution of the  loss function for the training and 

testing phases showed VLA‐SMILES D1, D2, and D4 to satisfy the criteria of the first group 

of models with good predictive ability (Table 3). For the Sigmoid activation‐built models, 

the D1 and D2 length‐array SMILES based models fitted the group of models with the high 

prediction ability, yet minimum RMSE values for these models were the same or lower 

than  those  for Tanh‐based models. The affine  transform γ parameters  spanning  in  the 

range of 1–4 for each of the designed models were tested to find an optimal one for best 

prediction results. A full set of γ parameters, as well as epochs corresponding to the testing 

and training set minimum RMSE values, are reported in Table S2. 

Epoch‐dependent RMSE values  in  the  testing and  training phases with Kennard–

Stone‐based and ranking by activity splitting methods for different length‐array‐featured 

SMILES using Sigmoid, Tanh, and ReLU  activation  functions  and ATransformed‐based 

learning QSAR are shown in Figures S16–18, respectively. 

When  applying  the Kennard–Stone‐based  train–test  partitioning  strategy  for Da‐

taset#2, the MLP models with D2 and D4‐based VLA‐SMILES descriptors outperformed 

D1 length‐array SMILES for all three activation functions implemented (Table S5). Thus, 

single‐layered MLPs with D2 and D4 VLA‐SMILES structural  representation and either 

ReLU or Sigmoid activation were referred to the first group of models with high predictive 

ability. The epoch‐dependent RMSE for the testing and training phases of MLPs derived 

with  the  Kennard–Stone‐based  splitting  method  and  variable‐length‐array‐featured 

SMILES using ReLU, Sigmoid, and Tanh activation functions and iRPROP‐‐based learning 

for Dataset#2 are presented in Figures S7–S9, respectively. 

Table 3. RMSE values for testing sets for MLP with one hidden layer using ATransformedBP learn‐

ing (Tanh and Sigmoid activation functions, Kennard–Stone based train–test split), Dataset#1. 

Kennard–Stone‐Based Train–Test Splitting 

VLA‐SMILES 

format 

𝐷ଵ 
k = 1 

𝐷ଶ 
k = 2 

𝐷ସ 
k = 4 

𝐷଺ 
k = 6 

𝐷଼ 
k = 8 

𝐷ଵଶ 
k = 12 

𝐷ଵ଺ 
k = 16 

iRPROP (𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 
Minimum 

RMSE for 

Testing set 

0.81  0.80  0.85  0.96  0.90  0.98  0.91 

iRPROP‐ (𝑻𝒂𝒏𝒉ሺ𝑺ሻሻ 
Minimum 

RMSE for 

Testing set 

0.84  0.80  0.84  0.93  0.90  0.96  0.95 

iRPROP‐ (𝑹𝒆𝑳𝑼ሺ𝑺ሻሻ 
Minimum 

RMSE for 

Testing set 

0.84  0.82  0.84  0.93  0.93  1.02  0.90 
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The key findings can be summarized as follows: 

1. The Kennard–Stone‐based  train–test splitting was  found  to be more efficient  than 

ranking by activity for the investigated QSAR models. 

2. The models built on variable‐length‐array SMILES D1, D2, D4, or D6 showed equiva‐

lent prediction when  implemented  together with  the Kennard–Stone partitioning 

and were  in the first group of models with high predictive ability with RMSE not 

exceeding 0.85. All  types of VLA‐featured SMILES‐based models with ranking by 

activity partitioning were in the second group of models of low prediction ability. 

3.2. Analysis of Predictive Ability Concerning Activation Functions 

MLP models with Sigmoid activation exhibited lower RMSE for the majority of vari‐

able‐length‐array  SMILES  descriptors  regardless  of  the  learning  algorithm  using Da‐

taset#1 (Tables S3 and S6). For iRPROP‒ learning and ReLU activated series of single‐layer 

MLPs, only two models with the VLA‐SMILES‐featured representations D1, and D2 be‐

longed to the group of models with high predictive ability, having a minimum RMSE of 

0.79 and 0.80, respectively. For the models with Tanh activation, the only MLP model in 

the first group of models with high predictive ability was the D1 length‐array SMILES‐

based one. For comparison, three VLA‐based representations D1, D2, and D6 satisfied the 

rule of the first group of models when using Sigmoid activation. A similar trend within 

single‐layer MLPs was observed  for models with Adam‐  and ATransformedBP‐based 

learnings. Thus, for the majority of the QSAR models with variable‐length‐array SMILES 

representations,  Sigmoid  activation  demonstrated  superior  prediction  results  over  the 

ReLU or Tanh. 

3.3. MLP Prediction Models with Two Hidden Layers 

The predictive abilities of the MLP models with two hidden layers based on iRPROP‒ 

and Adam optimizer learning algorithms were evaluated (Tables S8 and S9). Both types 

of two‐hidden‐layer models led to similar activity prediction results to the prior described 

results from single‐layered MLPs. Table 4 shows the dependency of the RMSE on variable‐

length‐array SMILES for double‐layered MLP models with Sigmoid activation for the Da‐

taset#1. When considering iRPROP‒‐based MLPs, only one out of seven VLA‐based de‐

scriptors model, D1‐based, was in the first group of models with high predictive ability. 

The models with D4 and D8 VLA‐featured descriptors resulted in borderline RMSE, thus 

assigned to the second group of models with low predictive ability. For Adam‐based MLP 

architectures,  two models with  length‐array‐based  SMILES  representations D1  and D2 

demonstrated compatibility with the first group of models with high predictive ability, 

having RMSE not exceeding 0.81. 

Table 4. RMSE values for testing sets for MLP with two hidden layers using iRPROP‒ and Adam 

optimizer learning (Sigmoid activation function, Kennard–Stone‐based train–test split), Dataset#1. 

MLP  Two Hidden Layers 

VLA‐

SMILES 

format 

𝐷ଵ 
k = 1 

𝐷ଶ 
k = 2 

𝐷ସ 
k = 4 

𝐷଺ 
k = 6 

𝐷଼ 
k = 8 

𝐷ଵଶ 
k = 12 

𝐷ଵ଺ 
k = 16 

iRPROP (𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 
Minimum 

RMSE for 

Testing set 

0.81  0.87  0.85  0.89  0.85  0.98  0.90 

Adam (𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 
Minimum 

RMSE for 

Testing set 

0.81  0.80  0.86  1.01  0.94  0.98  0.90 
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Figure 6 shows the evolution of RMSE as a function of epoch in the training and test‐

ing phases for one‐ and two‐hidden‐layer MLPs with iRPROP‒ and Adam optimizer and 

the D4 VLA‐featured SMILES descriptors. When using the iRPROP‒ learning procedure, 

the testing set’s loss function reached a similar minimum RMSE of 0.88 and 0.84 for one‐ 

and two‐layered MLPs, respectively. 

 

Figure 6. RMSE values as a function of epoch in training and testing sets for iRPROP‒‐based learning 

MLP with one and two hidden layers (Sigmoid activation function, Kennard–Stone‐based train–test 

splitting), Dataset#1. 

MLPs with two hidden layers and iRPROP‒ but Tanh activation showed D2 and D4 

variable‐length‐arrays SMILES to satisfy criteria of the first group of models with high 

prediction ability (Table S8). Adam‐based MLPs with Tanh activation allowed only the D2‐

based descriptor model to be in the group of high accuracy QSAR (Table S9). The entire 

set of epoch‐dependent RMSE in the testing and training phases for MLPs with two hid‐

den layers, variable‐length‐array‐featured SMILES, using iRPROP‒ and Adam optimizer 

learning procedures is provided in Figures S19–S22, respectively. The key finding is the 

similarity of the single and two‐hidden‐layer MLPs models in terms of the prediction for 

all types of VLA‐featured SMILES representations involved. 

3.4. Deep Learning, MLP Autoencoder 

This  section  contains  experimental  evaluations of prediction  results derived with 

MLP Autoencoder modeling. For comparison purposes, the QSAR model based on MLP 

with one hidden layer, Adam optimizer learning, and Sigmoid(Y) activation was taken as 

a standard MLP method  (Table 1). MLP Autoencoder with  three hidden  layers and 20 

iterations of the  first phase of rough estimates of the weighting parameters and subse‐

quent fine‐tuning emerged as the deep neural network QSAR model (Table 5). Both stand‐

ard MLP and DNN‐built models implemented Kennard–Stone‐based train–test splitting 

methodology. Following comparison studies of RMSE parameters from Tables 1 and 5, 

the addition of constituting hidden layers did not improve the predictive ability shown 

by single‐layer MLP models. MLP Autoencoder models with D1, D2, and D4 length‐array 

SMILES revealed RMSE minimum satisfying the first group of models with high predic‐

tive ability. The  same VLA‐SMILES‐based models also  showed high predictive ability 

among single‐ and two‐hidden‐layer MLPs. 
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Table 5. RMSE values for testing sets of deep learning, MLP Autoencoder with three hidden layers, 

and Adam learning procedure (Kennard–Stone‐based train‐test split, Sigmoid activation), Dataset#1. 

VLA‐SMILES 
𝑫𝟏 

k = 1 
𝑫𝟐 

k = 2 
𝑫𝟒 

k = 4 
𝑫𝟔 

k = 6 
𝑫𝟖 

k = 8 
𝑫𝟏𝟐 

k = 12 
𝑫𝟏𝟔 

k = 16 

Minimum 

RMSE for test‐

ing set 

0.85  0.84  0.88  0.94  0.99  1.03  0.92 

Graphical examples of RMSE evolution  for the training and testing phases  for  the 

single‐layer MLP and DNN with D4 length‐array‐based SMILES are shown in Figure 7. 

Here, the single‐layered MLP testing progress reached minimum RMSE at the value of 

0.84, which is nearly the same as for the DNN‐based model (minimum RMSE = 0.88). The 

convergence rate of training for MLP Autoencoder was dependent on the number of iter‐

ations in the first phase of tuning and, in this case, was higher than that for the single‐

layer MLP. 

 

Figure 7. Evolution of RMSE as a function of epoch for training and testing sets for Adam optimizer‐

based learning MLP with one hidden layer and Autoencoder with three hidden layers (Sigmoid ac‐

tivation function, Kennard–Stone‐based train–test splitting, and D4 VLA‐SMILES), Dataset#1. 

Epoch‐dependent RMSE values in the testing and training phases derived with Ken‐

nard–Stone‐based splitting method for variable‐length‐array SMILES MLP Autoencoder 

models using Sigmoid  (S) activation  function are presented  in Figure S23. A  full  set of 

RMSE parameters, as well as epochs corresponding to the testing phase minimum RMSE 

and training set final RMSE values for the three‐hidden‐layer MLP Autoencoder model, 

are reported in Table S10. 

Hence, the increase in the number of hidden layers in the architecture of the proposed 

VLA‐SMILES‐based MLP models for QSAR, as well as transition to deep learning, did not 

lead to substantial improvement in the activity prediction. 

3.5. Statistical Analysis of QSAR Model Prediction Ability 

In this section, we report the results of the statistical analysis of the model prediction 

ability using (1) common criteria of QSAR model predictive ability, such as determination 

coefficients  𝑞ଶ [64] and  𝑅଴
ଶ  (𝑅଴

ଶᇱ), the square of the Pearson’s coefficient of correlation R2, 
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and slope parameters  𝑘 ሺ𝑘ᇱሻ [30], and (2) method of statistical hypothesis H0 testing using 

F2,n‐2 ‐statistics (Equation (22)). 

Predictive ability evaluation using these criteria was accomplished for MLP models 

with one hidden layer and the iRPROP‒ learning procedure. Following the regularization 

approach, the predictive ability was evaluated at the epoch corresponding to the mini‐

mum of the loss function of the testing phase. Common statistical parameters defining the 

acceptability of QSAR model with iRPROP‒ learning and Sigmoid (Y) activation were cal‐

culated and are presented in Table 6. As a reminder, when taking into account only the 

minimum RMSE parameter of  the  testing phase,  the MLPs with D1, D2, and D6 VLA‐

SMILES were shown to satisfy the first group of models with high accuracy prediction 

(Table 1). According to the results of the parametric analysis of the QSAR predictive abil‐

ity,  the values of  the  𝑹𝟐  were  found  to be  similar  to either 𝑹𝟎
ᇱ𝟐 or 𝑹𝟎

𝟐  for  the entire 
spectra of the variable‐length‐array SMILES based MLPs, satisfying the strict condition of 

the QSAR high predictive ability. Additionally, the slope coefficients  𝒌′  and  ห𝑹𝟎
𝟐 െ 𝑹𝟎

ᇱ𝟐ห 
of the linear regression for the testing sets satisfied statistical criteria of model validation 

for all types of VLA‐SMILES representation‐based QSAR. Interestingly, the model with 

the D4 length‐array SMILES showed a minimum RMSE of 0.88, which was slightly higher 

than a threshold value of a good prediction efficiency, suggested by the authors. Thus, on 

the basis of only the minimum RMSE criteria, the addition of D4 VLA‐SMILES‐based MLP 

to the group of models with high predictive power was questionable. Meanwhile, follow‐

ing the statistical criteria of  𝒒𝟐  and 𝑹𝟐, MLPs based on R4 length‐array‐featured SMILES 

(as well as D8, D12, and D16) did not satisfy requirements for QSAR models with high pre‐

dictive ability. This remains in agreement with the results of the minimum RMSE analysis 

reported beforehand (Table 1). The error measure parameter RSDmax for the predicted ac‐

tivity for MLPs with D1, D2, and D6 VLA‐featured SMILES reached a level of 23.5%, 24.5%, 

and  50.5%,  respectively, whereas RSDav did not  exceed  the  level of  8.3%. Overall,  the 

method of prediction ability estimation via the minimum RMSE criteria was found to be 

in correlation with the model validation parametrical approach. 

Table 6. Statistical parameters derived for model predictive ability assessment (single‐layered MLP 

with iRPROP learning and Sigmoid activation), Dataset#1. 

iRPROP 

(𝑺𝒊𝒈𝒎𝒐𝒊𝒅ሺ𝑺ሻሻ 

VLA‐SMILES‐Based Representation 

𝑫𝟏 

k = 1 
𝑫𝟐 

k = 2 
𝑫𝟒 

k = 4 
𝑫𝟔 

k = 6 
𝑫𝟖 

k = 8 
𝑫𝟏𝟐 

k = 12 
𝑫𝟏𝟔 

k = 16 

𝒒𝟐  0.58  0.58  0.44  0.57  0.48  0.47  0.47 

𝑹𝟐  0.58  0.61  0.40  0.58  0.51  0.48  0.55 

𝒌  0.60  0.62  0.46  0.65  0.59  0.47  0.48 

𝒌ᇱ  0.95  0.93  0.98  0.89  0.85  1.00  0.98 

ห𝑹𝟎
𝟐 െ 𝑹𝟎

ᇱ𝟐ห  0.02  0.018  0.039  0.01  0.01  0.02  0.01 

𝑹𝟎
𝟐  0.57  0.58  0.40  0.58  0.50  0.47  0.46 

𝑹𝟎
ᇱ𝟐  0.56  0.56  0.36  0.57  0.49  0.45  0.45 

𝑹𝑺𝑫𝒎𝒂𝒙, %  23.46  24.47  33.53  50.54  50.47  42.88  40.11 

𝑹𝑺𝑫𝒂𝒗, %  7.46  7.60  8.75  8.28  9.45  8.96  9.44 

𝜶ෝ  −0.07  −0.17  0.036  −0.04  −0.09  −0.11  −0.28 

𝜷෡  0.62  0.65  0.44  0.66  0.60  0.48  0.53 

𝒕𝟏ି𝜶  13.27  13.41  23.62  8.69  11.06  26.07  30.49 

The results of the method of statistical H0 hypothesis testing of the linear regression 

between real and observed activities for the QSAR model with iRPROP‒ learning and Sig‐

moid activation are reported in Table 6. Herein, estimations of the linear regression param‐

eters, intercept 𝜶ෝ and the slope 𝜷෡ values, for the predicted vs. original activity data, are 
reported. Derived slope parameters 𝜷෡  demonstrated MLPs based on D1, D2, D6, and D8 

variable‐length‐array SMILES to be the closest ones to ideal regression criteria revealing 
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𝜷 ෡  ൒ 0.6. Thus, none of the models exhibited closeness of 𝜷෡  to 1, yet models with D4, D12, 

and D16 VLA‐SMILES‐based descriptors possessed slope values that significantly deviated 

from the ideal linear regression (𝜷෡ ൏ 0.6), signalizing poor predictive ability. In addition, 
critical values  𝑡ଵିఈ for F2,l−2‐statistics were calculated using Equation (22). MLP models 

with D1, D2, D6, and D8 variable‐length‐array‐featured SMILES had  𝑡ଵିఈ  < 13.5, whereas 

MLPs with D4, D12, and D16 length‐array SMILES representations demonstrated  𝑡ଵିఈ  > 23. 
Thus,  the method of statistical hypothesis  testing  revealed single‐layer  iRPROP‒‐based 

MLP with VLA‐featured SMILES descriptors D8 to have high predictive power, despite 

being previously considered a model the low predictive ability with minimum RMSE > 

0.85. F‐statistics analysis also confirmed D1, D2, and D6 VLA‐SMILES‐featured models to 

show high prediction power, whereas D12 and D16  length‐array SMILES MLPs were  in‐

deed members of  the second group of models with poor predictive ability. The parity 

plots, as well as the limit curves for the testing phase of QSAR models with D1, D2, D6, and 

D8 VLA‐SMILES formats, are depicted in Figure 8. The dotted line corresponds to the lin‐

ear regression curve with an  intercept 𝜶ෝ and  the slope 𝜷෡,  the red  line signalizes  ideal 
regression, and the upper and lower limit curves resemble F2,l−2‐statistics with  𝑡ଵିఈ  values 
that set the requirement for H0 hypothesis satisfaction. Thus, the statistical method of hy‐

pothesis testing was found to be in correlation with the RMSE minimum criteria and par‐

ametric model validation methods. 

 

Figure 8. Linear  regression parameters  for  the  testing set, and upper and  lower  limit curves  for 

statistical hypothesis H0 verification. MLPs with one hidden layer, iRPROP‒ optimizer, and Sigmoid 

activation for (A) k = 1 (D1), (B) k = 4 (D4), (C) k = 6 (D6), (D) k = 8 (D8) VLA‐based SMILES represen‐

tation, Dataset#1. 

Related parity plots, regression, and the upper and lower limit curves for the F‐sta‐

tistics for the testing phase of the corresponding cluster‐based single‐layered MLPs with 

iRPROP‒ learning are reported in Figure S24. 
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4. Conclusions 

We developed a variable‐length‐array SMILES that allows a robust and straightfor‐

ward description of the molecular structure contributing to information about intermo‐

lecular connectivity. The essence of VLA‐featured SMILES is a combination of a sequence 

(two, three, and more) of SMILES symbols in binary representation to be encoded in other 

digital formats. The VLA‐SMILES descriptors were used for activity prediction with deep 

learning models, particularly MLP‐based QSAR models. Predictive ability was found to 

increase once the optimal length of the VLA‐based SMILES was found. 

The developed QSAR MLP models built on VLA‐SMILES were based on Adam op‐

timizer, ATransformedBP, and iRPROP‒ learning algorithms and various activation func‐

tions. The rational splitting procedures for training and testing set generation were imple‐

mented for validation of the obtained MLPs. For Dataset#1, the models built with D1, D2, 

D4, or D6 VLA‐SMILES descriptors (sequences of k = 1, k = 2, k = 4, and k = 6 binary SMILES 

digits,  respectively) were  the most effective  in  terms of prediction ability when  imple‐

mented together with Kennard–Stone partitioning, achieving average RSDav within 8.3%. 

For dataset#2, the models with D2, and D4 VLA‐SMILES showed the best prediction abil‐

ity. Thus, the testing of all possible VLA‐SMILES representations for the dataset of interest 

is required to discover the best variable‐length‐array encoding in terms of prediction ac‐

curacy and training convergence rate. 

All types of VLA‐SMILES representation‐based models with alternative partitioning, 

i.e., ranking by activity, exhibited lower prediction ability. 

Predictive ability was evaluated for MLP models with one and two hidden layers, as 

well as for MLP Autoencoder with three hidden layers. In comparison with a single‐layer 

MLP, addition of the second and third hidden layers did not improve the activity predic‐

tion significantly. When comparing QSAR outcome between MLP with one hidden layer 

and deep learning with MLP Autoencoder with three hidden layers, again no substantial 

improvement in the activity prediction was observed. 

Based on the calculations and statistical analysis presented in this paper, we conclude 

that parametric analysis of model validation, as well as the error measure parameter of 

minimum RMSE, correlate well with the results of the statistical analysis based on H0 hy‐

pothesis testing of an ideal regression verification. 
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