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We consider the generators of gauge transformations with test functions which do not vanish on the
boundary of a spacelike region of interest. These are known to generate the edge degrees of freedom in a
gauge theory. In this paper, we augment these by introducing the dual or magnetic analog of such operators.
We then study the algebra of these operators, focusing on implications for the superselection sectors of the
gauge theory. A manifestly duality-invariant action is also considered, from which alternate descriptions
which are SL(2, Z) transforms of each other can be obtained. We also comment on a number of issues
related to local charges, definition of confinement and the appearance of interesting mathematical structures

such as the Drinfel’d double and the Manin triple.
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I. INTRODUCTION

Superselection sectors are a characteristic feature of
quantum field theories owing to the presence of an infinite
number of degrees of freedom. Their effects are particularly
significant and manifest in gauge theories such as QED or
QCD, where they can strongly constrain the nature of
observables. Thus in QED one has the constraint of the
Gauss law in the sense that all observables are required to
commute with it. The charge operator, which is closely
related to the Gauss law, commutes with it, and with all
local observables as well. In other words, the charge
algebra is a nontrivial commutant of the local algebra of
observables. This is a fundamental difference between
gauge theories and field theories without gauge symmetry.

But there are further implications of this framework,
even for the Abelian gauge group of QED. Let us recall the
meaning of the gauge group G(G) based on a compact Lie
group G; the latter may be referred to as the “global” group.
Consider fields defined on an N-dimensional Minkowski
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space MV . In this case, G(G) is generally isomorphic to the
group of maps from the spatial “boundary” of the spatial
slice MY~!, which is taken to be SN2, to G. They are
generated by the Gauss law operator appropriately smeared
with test functions. A moderately careful treatment of these
test functions smearing the Gauss law shows that there is an
infinity of superselected operators [1,2]. These generate
what we have previously referred to as the sky group;
effectively, they measure the moments of the electric fields
at infinity. In Sec. II, we will recall some features of this
group and argue that there is a magnetic counterpart to the
sky group as well, which arises from the Bianchi identity.
Together these two sets constitute the superselected oper-
ators of QED. If we consider a compact region of MN~!,
say, a ball of finite radius, with the boundary S¥—2, these
operators may also be thought of as generating the “edge
states” of the theory.

All these structures also exist for the case of non-Abelian
gauge theories such as QCD, with subtle consequences
which are still not fully understood [3]. Unlike the case of
the gauge group G(U(1)) of QED, the gauge group
G(SU(3)) of, say, QCD, is non-Abelian. Considerations
of locality show that, in this case also, the observables must
commute with it. As in QED, one may relate these
operators to the edge states as well. But there are additional
consequences due to the non-Abelian nature of the groups
G(G). We will see that superselection sectors will be
labeled, at least partially, from a maximal Abelian algebra
or a complete commuting set (CCS) taken from CG(G), the
group algebra of G(G).

Published by the American Physical Society
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The algebra of local observables .4 acting on a vector
state labeled by the eigenvalues of a CCS, cannot change
these eigenvalues. (Additionally, the state is left invariant
by the Casimir operators and the Cartan subalgebra of
CG(G) containing the chosen CCS.) But a nontrivial
representation of the generators of G in G(G) does change
these eigenvalues. So they cannot be implemented in an
irreducible representation of A, a feature similar to the
spontaneous breaking of the Lorentz transformations in the
charged sectors of QED. Notice that what is “broken” is the
global group, such as SU(3).

As in the Abelian case, there is a magnetic analog of
CG(G) or rather its Lie algebra CQ(G), again following
from the Bianchi identity, which we shall refer to as
CM(G). Its elements measure moments of the magnetic
field at infinity so that the full superselection group
becomes a Drinfel’d double. In Sec. III, we will formulate
and explore features of this generalized sky group. It is
interesting to ask how various features of the “breaking” of
G in an irreducible representation of A generalizes to the
larger context, including the magnetic analog CM(G).
This is discussed in Sec. IV.

The addition of the Chern-Simons term to the (2 + 1)-
dimensional gauge theory brings in a new feature: the
group of “large” gauge transformations gets centrally
extended both for G = U(1) or for a non-Abelian G.
This has been shown for the theory on a disk D? x time
[4]. A similar analysis works here. We discuss the Chern-
Simons twist in Sec. IV as well. Because of the extended
algebra, Chern-Simons modified gauge theories have to be
dealt with as non-Abelian theories with all the attendant
subtleties.

Another immediate and natural question which can arise
is the following: Given CG(G) and CM(G), can we
identify duality transformations connecting these, and if
so, is there a “magnetic description” which exchanges the
role of these? In Sec. V, we construct a duality-invariant
action which realizes the algebra of CG(G) and CM(G) in
a canonical framework. We show that the standard “electric
description” and its dual, the “magnetic description,” can be
obtained from this as special gauge choices.

As mentioned earlier, the algebra CQ(G)vVCM(G)
generates the edge states of the theory for a compact
region. The definition and meaning of local charges in this
case are briefly discussed in Sec. VI. We have also
mentioned that only a CCS belonging to CG(G) can be
unitarily implemented. If this is the case, what do we mean
by, or how do we define, the notion of color confinement?
We discuss this in Sec. VI as well, arguing that the only
meaningful definition is that confinement is equivalent to
the statement that the colored states do not belong to the
domain of the Hamiltonian.

There are also certain additional structures we can
identify within this framework, such as Cuntz algebras
and Drinfel’d double. We mention that Cuntz algebras were

introduced in algebraic quantum physics in the DHR papers
[5-8] and are also discussed in Doplicher and Roberts [9].
The latter used them to prove a deep generalization of
Tanaka-Krein duality. The key point for us is that gauge
transformations can be localized. If we consider local
observables .A(O) in a finite open causally complete region
O, such as a double diamond, we can localize all the gauge
transformations to O and consider O as our spacetime, with
00 as the substitute for the infinity of the standard space-
times like M*. Then for each such O, there is a “large” gauge
group G(G;00) which is just like G(G) on the full
spacetime. There is also a magnetic analog M (G;00)
which together encode a Cuntz algebra 0%(G, 00). Once
more using CG(G;00) and OS(G; 00), we see the emer-
gence of both a Drinfel’d double and a Manin triple. An
implication is that each such local region O has edge states
from these algebras and their representations. As relativity
has no role in this remark, it gives “topological” excitations
also in condensed matter systems. These structures are
discussed in the concluding section, although their full
impact on the physics is still not clear.

Superselection sectors are poorly understood in gauge
theories. Besides the electric and magnetic charge super-
selection sectors (for some recent work on electric-mag-
netic duality, see [10]), there are those due to infrared
effects [11,12] with theorems on the breaking of Lorentz
symmetry in the charged sectors. There are also arguments
that both the Lorentz group and the “global symmetry”
group G are broken because of infrared effects when G is
non-Abelian [1,13,14]. These effects are not expected in
local field theories with only global symmetries as they
require infrared photons or gluons. In contrast, both the
local and global algebras of gauge theories share the
superselection sectors from G(G) and M(G). A more
comprehensive understanding of superselection sectors is
clearly important, particularly since such sectors are also
fundamentally important for the epistomology of quantum
field theory [15,16].

As argued beautifully by Fioroni and Immirzi [15] and
Wightman [16], superselection sectors are fundamentally
important for the epistemology of quantum physics. Thus
measurements necessarily observe Abelian subalgebras
associated with A (see for instance [17] and references
therein) and these can be the algebras generated by the CCS
labeling the superselection sectors. A better insight into
their properties is thus called for.

II. ASYMPTOTIC CHARGES AND MAGNETIC
MOMENTS: ABELIAN GAUGE THEORIES

We start with a review of old and familiar material on the
Gauss law when the gauge group G(U(1)) is Abelian and is
associated with the global group G = U(1). Our study of
gauge transformations is in the canonical formalism, with
the splitting of Minkowski space MY as MV = MN~! x R.
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On the spatial slice M"¥~!, we have the gauge potential A;
and the electric field £/, which form a canonically con-
jugate pair. In addition, there are matter fields with charge
density J°. The Gauss law

OE +J°~0 (1)

is a first class constraint in the classical theory. The
analogous statement in the quantum theory is that the
elements of the algebra of observables A must commute
with the Gauss law operators, that is to say they must be
gauge-invariant.

A state @ on A is, as usual, a positive linear functional
which is normalized to unity on the identity element 1 € A,
i.e., (1) = 1. The states of interest to us are given by
density matrices p, which are positive trace class operators
with Trp = 1. (There may be more general states on .4, but
the requirement of subadditivity excludes them.) When p is
of rank 1, we get a vector state, p = |y) (y|, where |y) is a
vector in the Hilbert space 7 on which A is represented.

It is worth remarking that while is often assumed that the
Gauss law operator should vanish on the vectors |y), this is
rather too restrictive. For the purpose of maintaining gauge
invariance, it is sufficient if the action of the unitary
transformation generated by the Gauss law operator acts
as identity on |y) for “small” gauge transformations, and
generate the superselection sectors for “large” gauge trans-
formations as we explain below.

A very simple example from quantum mechanics illus-
trates our point. Consider a g-bit with its observables
M,(C) of two-by-two matrices. The 2z-rotation e>*5:
acting on an observable m € M,(C) cannot change it so
that we require e2™3me =753 = m for all m € M,(C). So
€753 € C(M,(C), the center of M,(C). The center consists
of all diagonal entries with equal entries. Imposing also
unitarity, we see that ¢>*S3 = ¢1. For a g-bit, = 7 is
picked out so that %% = —1.

¢'?753 is a superselection operator, its values identifying
superselection sectors. In states where ¢/2*53 # 41, one has
anyons.

How does one measure e/?*53 and get —1? For a pure
state |w)(y|, we can compute its mean value to get
Tr(jy) (w|e™S:) = (w|e™S3ly) = —1 as we want. This
argument extends to all g-bit states.

Now a reasonably careful treatment of the Gauss law we
outline below shows the existence of “large” gauge trans-
formations and their magnetic flux analogs which commute
with A. They generate the “sky” group [1] and its magnetic
analog and commute with A as well. But they need not
vanish on vectors |yp) which generate the density matrices
lw)(w|. Using the GNS construction, we can find a
representation of A and of the sky group and its magnetic
analog as well.

Turning to a more careful treatment of the Gauss law (1),
we introduce a test function A and the smeared operator

g(A) = —/dN‘lx(éiA)Ei(x) + / dV"'xA(x)J°(x) = 0.
(2)

This is in accordance with the fact that derivatives of
distributions are to be understood in terms of derivatives of
test functions such as A. But we would also need this
constraint (2) to be consistent with the classical imple-
mentation of the Gauss law as in (1), so we require that the
test functions A should vanish at spatial infinity. This will
ensure the passage from (2) to (1) via an integration by
parts. So (2) is interpreted to hold for all A € CP(RN~1),
the superscript oo indicating infinite differentiability, and
the subscript O indicating that a A € C§° vanishes at
infinity. Thus

g(A)~0 forall A € CP(RN). (3)

The smeared operator g(A) is well defined even for test
functions which are nonzero at spatial infinity, even though
it does not vanish as a constraint on observables. We will
denote test functions which do not necessarily vanish at
spatial infinity as ®, and define the corresponding operators
from (2) as Q(@); i.e.,

0(0) = / V1 x[~(2,0)E (x) + O(x)1°(x)].
O(x) € C®(RN1). (4)

Our aim is to analyze the properties of this operator and a
magnetic dual version of it, which we shall introduce
shortly.

First of all, notice that since

[9(A), ()] =0, (5)

0(0) qualifies as an element of the set of operators of
interest. Further, if ® vanishes at infinity, i.e., if
® € CP(MN"), then Q(O) is identical to g(A) and it
vanishes on all vector states. For test functions ® which go
to a constant @ at infinity, Q(®) is proportional to the
electric charge Q(1), Q(®) = @*Q(1). If it goes to an
angle-dependent function at infinity,

O(X =ri) - O%(X), (6)

we get the elements of what was referred to as the sky group
in [1].

Another important property of Q(®) is that it commutes
with all local observables. Let ¢(x) be a local tensorial field
and f a test function supported in O. Then ¢(f) =
Jd¥xf(x)p(x) is localized in a bounded open region
O with compact closure O, and A is the restriction of © to
O, then by the locality of commutators,
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[0(0). ¢(f)] = [2(A), p(£)]- (7)

But now Q(A) = g(A) so that

[0(0),#(f)] = 0. (8)

In other words, Q(®) commutes with local observables.
The set of operators {e'?(®)} form the quotient of the
gauge algebra by “small” gauge transformations (which
correspond to €9V, with A € C). Since Q(®) commute
with local observables, the full set of observables is made of
a complete commuting set from {¢’?®)} and the local
observables A. The complete commuting set from {¢/?(®)}
will define the superselection sectors of the theory. In the
present case of an Abelian gauge theory, the entire set
{e'2®)1 for all ®, form the complete commuting set. Thus

A, which includes ¢’?(®) in its center C(A) for a fixed A, is
not a factor.'

There is an elegant way to write (4). In four dimensions,
(i.e., for N = 4), the Maxwell equation corresponding to
the Gauss law, written in terms of differential forms, reads

1 . .
d[i Fdx' A dx/} =d'F =Jdx. 9)
So we can write (4) as

0(©) = A d(®°F). (10)

More generally, for arbitrary number of dimensions, we can
write this as

0©) = [ e (11)

In four dimensions, we can clearly write a dual version of
(10) defined as

M(®) _Az d(DF) _43 dDd A F (12)

with a test function ® € C®(R?). The second equality
follows from the Bianchi identity. For those functions ®
which vanish at spatial infinity, evidently,

M(u) ~0. (13)

We have used p to denote test functions which vanish at
infinity, i.e., 4 € CF(R?). The operators M (®) need not be
weakly zero for ® € C*®(R?), which do not vanish at

'Although we use the same symbol A for the local algebra and

the local algebra extended by {¢’?(®)}, the meaning should be
clear from the context.

infinity. With such test functions, M(®) generate an
Abelian subalgebra, which is “localized at infinity,” since
formally

M(®) = A OF. (14)

As a result, M(®) commutes with all local observables.
Thus they form another set of superselected operators for
the theory. So M(®) € C(.A), the center of the algebra of
observables.

In this way, for a U(1) gauge theory, we obtain an
infinite number of superselected operators, Q(®) and
M(®), which are characterized by the asymptotic limits
of ® and ®.

Also, from canonical commutation relations, we can
work out the commutator algebra of the superselected
operators {Q(®), M(®)}. It is given by

[Q(®1)’Q(®1>] = [Q(Gl)’M((D)] = [M((D1>’M(q)z>] =0.
(15)

To summarize the key results of this section, we have two
sets of superselected operators, Q(®) and M(®), which
obey the algebra (15) given above. Clearly the interesting
question is about the observable consequences of these
operators. We will come back to this after discussing the
non-Abelian case, which also possesses a similar set of
superselected operators.

III. ASYMPTOTIC CHARGES AND MAGNETIC
MOMENTS: NON-ABELIAN GAUGE THEORIES

We take the gauged “symmetry” group G to be a
compact connected simple Lie group such as SU(3), and
the spacetime as before to be the Minkowski manifold
RY = R¥=! x R!. On the spatial slice R¥~!, we have the
Lie algebra valued connection one-form A;dx’ and its
canonically conjugate field E/. For specificity, we use a
set of matrices 7, which span the Lie algebra G of G in its
defining representation (such as the triplet representation
for SU(3)) and fulfilling the normalization condition

1
Tr(tatb) :z(sab. (16)

The fields A; and E/ can be expanded in this basis as
A; = Al,, E' = E't,. (17)
The non-Abelian version of the Gauss law (1) is

DE +J°~0 (18)

where JO is the Lie algebra valued charge density
from matter fields, which can also be expanded in terms
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of {t,} as J° =J%,, and D; denotes covariant differ-
entiation,

Dl'Ei = al’Ei - i[Ai, El] (19)

As before, we rewrite (18), after smearing it with test
functions A = A%,, with A® € CP(RY7!), as

g(A) = /dN‘ler[—DiAEi +AJ)~0. (20)

Since A vanish on SV=2 as r — oo, the commutator of g(A)
with any operator reduces to the commutator of the Gauss
law with the same operator. Thus all the observables must
commute with g(A).

We can now write down the non-Abelian charges by
extending the left-hand side of (20) to test functions
0 = 0%,, where ® € C*(R""!) do not necessarily
vanish at infinity. Explicitly, the charges are thus given as

0(®) = / d"='xTr(-D,@E" + ©J°). (21)

Q(0®) is not weakly zero if @ ¢ CP(RN-1).

Turning to observables, as mentioned above, the local
observables commute weakly with Q(®). It is useful to
work again through the reasoning for this result. Recall that
a local observable is either a field y(x) at a point x, or its
smeared version

w(f) = [9 U f (O (). (22)

where O denotes a bounded open region which is the
support of f(x). The locality of the commutation relations
implies that the commutator of Q(®) with a local observ-
able depends only on |, the restriction of ® to O. We can
smoothly change ® outside of O to zero, getting a new
function ® € CP(RN~"). Thus, effectively, Q(®) in the
commutator with (f) can be taken to be Q(©) and as a
result,

[0(8).w(/)] = [Q(©).w(/)] = [9(®).w(f)] ~0. (23)

We see thus that local observables weakly commute with
the charges Q(®) and that Q(®) are superselected oper-
ators for local observables. But the key point of distinction
with the previous case is that Q(®) generate non-Abelian
superselection rules since the commutator

[0(0,),0(0,)] = 0([0,,0,]) (24)

is not identically zero. (Henceforth, we drop the symbol =~
as we will deal with quantum theory.)

Using the Yang-Mills field equation D*F = J°, we can
write (21) as

0(©) = / ATt(O"F). (25)

Again, in four dimensions, this naturally leads to a dual set
of operators

M(®) = / dTe(BF), (26)

where ® = ®“¢,, with ®* € C*(R?). If 4 = u“t, vanishes
at infinity, i.e., u¢ € CP(R?), then clearly M () = 0. Also,
as before, using Bianchi identity DF = 0, we can rewrite
M(®) in four dimensions as

M(®) = / Tr(D®) A F. (27)

We can generalize this equation to dimension N > 4, by
choosing @ to be a differential form of rank N — 4, but for
most of the following discussions, we take N = 4.

The components F; of the magnetic field } F;;dx’ A dx/
commute among themselves on the spatial slice R?, hence
M (CD)’s generate an Abelian algebra; i.e.,

M(®). M(®,)] =0, &5 € C=(RY).  (28)
Also, as is evident from (26), M(®) is a surface term at
infinity. Therefore, it commutes with all local observables
and form another set of superselected operators.

However, unlike the Abelian case, Q(®) and M (®) need
no longer commute; rather we obtain the commutation
relation

[0(0), M(®)] = M([6, D)), (29)

Returning to the algebra of the Q(®), notice that we have
the algebraic relations

[0(01),0(0,)] = 0([0,,8,]), (30)

[0(0).9(A)] =g([0.A]). since [0.A]€ CF(MY). (31)

[9(A1), 9(A2)] = g([A1, As)). (32)

From (31) above, we see that e'9() generate a normal
subgroup of the group of transformations ¢'¢(®). In the
representation of these operators on the Hilbert space,
g(A) = 0 and €™ — 1. Hence the quotient {¢'2(®)}/
{e'9(\)} defines operators which intuitively are “localized at
infinity.” It is this group which is relevant in the quantum
theory, since, by Gauss law, g(A) — 0 on the Hilbert space.
We will refer to the transformations generated by Q(®),
M(®), with the commutation rules (28), (29), (30) as the
generalized sky group.
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The exponentials ¢/2(®) give the group of maps from
oMN~=! = §N=2 to0 G as g(A) vanishes. From this fact and
the algebraic relations (28), (29), we conclude that the set of
superselection operators is given by the semi-direct product
of Maps (S¥~2,G) with the Abelian algebra of M(®)’s.
Once again, the key distinction with the case of Abelian
theories is that these generate a non-Abelian superselection
algebra.

Some further reduction will be useful before we can
deduce some of the consequences of the non-Abelian
nature of the superselection operators. Towards this, let
us set

0% (%) = limO(rk), ®*(%) = im®(rx). (33)
Thus ©%, ®* are (Lie algebra valued) functions on the

sphere S¥~2. On the Hilbert space of states, by virtue of the
Gauss law and the Bianchi identity, Q(®) and M(®)
depend only on ®% and ®%, so that they give operators

Q(@‘”),M(q)“’); ie.,
0(0) - 0(0®),  M(d) > M(®®). (34)

The commutation relations can also be written in terms of
O®, O as

[0(67). 0(65)] = O([6F. 65°])
[0(6%). M(0)] = M([O>, >=]). (35)

We see that we have an infinite-dimensional algebra of the
superselection operators labeled by Lie algebra valued
functions on the sphere SV=2. For our analysis, it is
important that the nature of the commutation relations
for this infinite-dimensional superselection algebra is
entirely determined by the structure of the Lie algebra G
of the finite-dimensional group G. In fact, explicitly, we can
write

0P =07, 0=y, O°=0%, (36)
where O, ©“, ®*“ are elements of Maps(SV=2, C).
(We can complexify the functions as well, as indicated by
the target space of these maps.) The test functions for the
right-hand side of (35) then become

[0, 09] = 0705 [1,. 1) (37)
[@®, ®°] = ®°°'“<I>°°'b[ta, 1) (38)

showing explicitly how the Lie algebra commutation rules
determine the structure of the superselection algebra (35).

We can now define a maximal Abelian subalgebra from
CMaps(SV=2, G%). If H; span a Cartan subalgebra of G,
then from (37,38), we see that G)‘lx”jHj, G);”Hi and ®*®'H,

commute and, hence, Q(03/H i), M(®>H,) generate an
Abelian algebra. It is infinite-dimensional as the functions
©%-/, ®*+J span an infinite-dimensional space, being maps
from SV~ to C. We can take these functions to belong to a
Hilbert space L2(SV¥~2) with Lie algebra-valued elements
by introducing the scalar product

(©F.077) = [ doyTeOr () 05 (h). ies

SN—Z

(39)

where d€); is the rotationally invariant volume form on
SN=2 Tt is convenient to choose the normalization

/ dQ, = 1. (40)
SN—Z

Let © define an orthonormal basis on SV=2 for
L*(SN=2), where n now denotes a generic index for the
basis elements. We write

007)=0,,  M(OF)=M,. (41)
The operators {Qn, M,,} generate an Abelian algebra.

It is convenient to choose the basis functions ®;° to be

real, with (:)8" as the constant function, equal to 1, on SV .

whose integral over SN-2 s also 1, since we have the
normalization (40). With these choices, we also get

IV. REALIZATIONS OF THE
SUPERSELECTION ALGEBRA

We now turn to some of the consequences of the non-
Abelian nature of the superselection algebra. Some of the
results to follow were anticipated in [1].

A. G(G) is spontaneously broken

From the arguments in the previous section, we see that a
vector state in a superselection sector can be labeled by the
eigenvalues ¢,,,,, of a complete commuting set (CCS)
such as Q,,,Mm, with m,n € Z, and possible additional
operators. Any element in the local algebra A acting on
such a vector state cannot change the eigenvalues g, 771,
since it commutes with Q,,, M,,. Thus {g,,, /71,,} are labels
for a superselection sector of the local algebra A.

But the group G(G) has operators which do not commute
with 0, M,,. If E,,, E_, are the roots of the Lie algebra G
of G, it is enough to consider test functions ©*F = @**E,
and the corresponding charges and magnetic fluxes

Q(G)iaEia) = in M(®iaEia) =M=, (43)
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Clearly, these do not commute with the chosen set
{Qn, Mm} and so change the eigenvalues labeling a super-
selection sector. Thus { 0%, M*} cannot be implemented as
operators in a given superselection sector of .A. In other
words, the group G(G) is spontaneously broken to the
group generated by Q,, M,,. We will denote the unbroken
group as G(Q,. M,,).

This breakdown of CG(G), which includes the represent-
atives of the global group G, to one of its maximal Abelian
subalgebras, say CQ(Q,,, M ), 18, at one level, similar to the
Higgs field ¢ breaking a symmetry group G to the maximal
stability group G, of its vacuum expectation value (¢). The
group G, is also the stability group of the asymptotic value
¢ of ¢, so that we see that G also labels the superselection
sectors of the associated local observables.

But there are also differences. The unbroken algebra in
the gauge theory case is always Abelian. But for symmetry
breaking via the Higgs field, G, can be non-Abelian.
An example is where G = SU(3), ¢*™ = constant X Y
(Y =2tg/+/3 is the hypercharge) and G, = U(2) =
(SU(2) x U(1))/Z, C G. Again for the standard model,
G =[SU(3) x SU(2) x U(1)]/Z¢ and G(D,.M,,), uses
the commuting generators I3, Y of SU(3), I3 of SU(2)
and the weak hypercharge, whereas the Higgs field breaks
it to U(3). Further, there are no Goldstone modes or gauge
boson mass generation for the symmetry breakdown
CG(G) — CG(0,. M,,).

There is a deficiency in this analysis. We need a state w, a
positive linear functional on A with (1) = 1, such that the
expectation values @(e'®) and w(e™(®) are not zero
when ©% and ®* are not zero. We plan to take up this issue
in detail in another paper. But see the next subsection for
remarks in this direction.

B. The Chern-Simons twist in 3 +1 dimensions

Witten considered this case in his paper [18] showing
that magnetic monopoles acquire fractional charge propor-
tional to @ in the presence of #-vacua (This € is not our test
function). We will formulate his approach in another way.

Thus let G be our global group, A its connection field and
|0) its vacuum vector state. Consider the twisted state

|0) = exp (iﬁ/Tr (AdA +§A3>> 0)  (44)

(In this expression, A;dx’ = —it,A%dx".) Since the “small”
gauge transformations generated by g(A) do not change
|0), we have that g(A)|@) = 0. Now our .4|0) gives us a
vector space giving a representation of .A. We assume that
the scalar product of these vectors can be calculated by
quantum field theory techniques; the resultant space can be
completed into a Hilbert space.

Consider next the action of ¢’2(®) on these states. Using
(35), one gets just a boundary term

e'2(®) A|9) = eM(®) 4|). (45)

Thus if the magnetic flux at infinity is nonzero, the
eigenvalue of Q(®) is OM(®) mod 2x.

In the presence of the ’t Hooft-Polyakov monopole,
where the global G is broken to U(1), M(®) is, in fact, not
zero. Classically F is the magnetic field of the monopole
and in M(®), we take the moments of this field on S? from
which we can reconstruct (the asymptotic form of) F itself.
For a spherically symmetric monopole with a Higgs triplet,
the connection one-form on $? fulfills

DGE-#) =d(F h)+[A.T 7] =0, (46)

so that, with 7; as the Pauli matrices,

(Z-A)d(Z-72), F=—-% (diAdi). (47)

1

4
In the quantum theory, M (®) is an operator and we need a
state where the expectation values lead to (47).

But semiclassically, we can interpret M(®) as the
eigenvalue of Q(®). In that case, the unbroken U(1)
subgroup has the generator 7 - 71 and the charge is

oM(7 - 7) = _g A T(z - )7 (dh A dh) (48)
o[
= ——/ n- (dn A dn) - _2779, (49)
2 2

which is Witten’s result.

C. The Chern-Simons twist in 2 +1 dimensions

In this case, one adds the Chern-Simons term to the
Lagrangian. It has been treated by us in a few papers
[19,20] previously when the spatial slice is a disk D, of
radius R. In that case, the gauge algebra is localized on
0D, = S' and fulfills the Kac-Moody algebra

0(61). 0(6:] = 0(10,.:)) + & [ Tr(©1d8;).  (50)

So Q(®) are generators of the Kac-Moody algebra with the
central term of level k if the Chern-Simons term in the
Lagrangian is

2

Since (51) involves no term with the scale R, we can take its
limit as R — 0. So the edge algebra for Q(0) is also (50),
in the limit of R — co. It is remarkable that even for
G = U(1), we get a non-Abelian gauge algebra of charges.
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For U(1), Q(®%) generates an Abelian algebra. For
O = constant, it is in the center of the full Kac-Moody
algebra. Since Q(0%) = ©*Q(1) and Q(1) is the charge,
we see that charge acts as a label for the Abelian Kac-
Moody irreducible representation. This is a basic and
known result, but is derived here in the present approach.

If G is non-Abelian, we get

0(67). 0(65)) = (67,65 + k [ Tr(6rd03)
(52)

if the Chern-Simons term in the Lagrangian is as in (51). So

again, the charges, for which O are constant, do not have
the k-term and Q(z,) generate the Lie algebra of G. We note
that (52) is the standard form of the Kac-Moody Lie
algebra. The highest weight representations of this algebra
are reviewed in [21].

The central term commutes with M(®) and does not
affect the commutators between Q(®) and M(®P), for
example, in verifying the Jacobi identity,

[0(6F). Q(O)]. #()] +cyclic =0.  (53)

V. A DUALITY-INVARIANT EDGE ACTION

In this section we will make some further observations
on the electric-magnetic type duality which relates the
operators Q(®) and M(®). A natural and interesting
question regarding these operators is whether we can
construct an action which has manifest duality-invariance
and which leads to the previously obtained algebra. The
most interesting situation will be, of course, for the four-
dimensional theory; this is the case we shall focus on.

The quest for actions which display manifest duality-
invariance has a long history, going back to the work of
Schwinger and Zwanziger in QED [22]. The evaluation of
QED partition functions in a dual-symmetric way was also
analyzed many years ago by Witten [23] and by Verlinde
[24]. Extensions to the N = 4 supersymmetric Yang-Mills
theory have also been considered in [25]. Nevertheless
efforts toward the construction of an action with manifest
duality-symmetry have not really been successful, although
we may note that, for the Abelian theory, it is possible to
obtain such an action by dimensional reduction from a six-
dimensional theory [24,26]. Here we would like to pose a
more limited question: If we are only interested in the edge
modes, i.e., the algebra of Q(®) and M (®), is it possible to
have an action with manifest duality symmetry? We will
see that the answer to this question is in the affirmative, it is
the subject of this section.

We start with the statement that the standard YM action
(perhaps with the addition of the -term, for full generality)
is sufficient to give a complete characterization of the

physics we are interested in. Thus, even though the theory
is presented in what might be called the “electric descrip-
tion,” it should be fully adequate to describe the dynamics.
Thus any attempt to make a duality-invariant theory must
take account of this fact. This means that electric and
magnetic descriptions must appear as equivalent but differ-
ent choices; i.e., they must be like different choices for
some larger gaugelike symmetry. We will construct an
action which has this property.

Let us start with the Yang-Mills action and choose the
Ay =0 gauge. The spatial components of the gauge
potential may be parametrized as

A =Uaq,U™' —o,UU! (54)

with U(x) € G. This is not simply a gauge transformation
of a;, since U will be taken to be time-dependent in general.
The components a; must obey one constraint such as
transversality (d;a; = 0) or something similar to it, to avoid
redundancy of field variables. With such a restriction on a;,
(54) is a general parametrization for the gauge field.

Using this parametrization and the standard Yang-Mills
action, we can identify the canonical one-form W of the
theory as

2
W= -2 / d*xTr[5A;F ;]

= ;/[Tr[Di(éUU_l)Foz‘] + Tr[Uda; U™ Fo]

2

=-= { / dQTr[sUU Fyin'r?]
e S2

+/Tr[U5aiU_1F0i} + Gauss law |. (55)

We are interested in edge states, which are generated by
the charge rotations U. This means that, on the space of
fields {U, a;, F; }, we can restrict to the subspace where
oa; = 0, with a suitable restriction on its conjugate vari-
able. Notice that the magnetic field, according to (54), has
the form

F =dA =U(da+ aa)U™". (56)

Asymptotically, the magnetic field in any monopole sector
has the form F = UFPU~', where FP, which is defined by
a;, corresponds to configurations of the Dirac monopole
type in any set of chosen U(1) subgroups of G, as in the
GNO ansatz [27]. Thus considering fixed values for a; is
equivalent to considering a fixed configuration asymptoti-
cally, apart from an overall charge rotation. This is the case
we are considering. The canonical one-form, for action on
states which obey the Gauss law constraint, may then be
taken as
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e2

2 )
w—-2 / dQTHSUU- Fonir?]. (57
SZ

Define Fyn'r> = E. Further, we define the complex
parameter

0 A
We can then write
i
W = Tr[SUUE(r — 7)]. 59
i [ TUUT B =R ()
The addition of the #-term gives the one-form
W= / THSUU-E(r—7) + iB(r+ D). (60)

The term B(7 + 7) = OB/ arises from the OF F term in the
action.

Even though we obtained this from the YM action plus
the O-term, we can now write an action for fields defined on
the boundary S which leads to this canonical structure. It is
given by

i

/ dr / Te{d,UU-1[E(r - 7) + iB(z + 7)]].
(61)

e*Imr

It is trivial to check that the canonical one-form obtained
from (61) agrees with (60). As we will see again shortly, the
electric field-dependent term in (61) is also the action
which comes from exponentiating the action of Q(®) on
the wave functions. In this sense, the theory is indeed the
standard YM theory with a O-term. Our goal now is to
construct a duality-invariant generalization of this.

As mentioned earlier, the “electric description” given by
(61) must emerge as one gauge choice (within a larger
gauge symmetry) of a duality-invariant action. This calls
for an enlargement of the space of fields. So, analogous to
U we introduce a group-valued field V and define

Iy = DyUU™! = 0,UU" + UayU™!,
‘]0 = V_ID()V = V_IOOV - V_laoV, (62)

where @ denotes a new gauge field. It gauges U on the
right and V on the left. Further, notice that under U <> V™!,

Iy = DyV'V =0, V7'V + Vla,V
= (V7 19,V = V7 lqyV) = —J,,
Jo = UDyU™" = UdyU™'V — UayU™!
= —(0UU™" + UayU™") = —I,,
ie., (I, Jo) < (=Jo, —Iy). (63)

The action is now taken as

i
S=— [dt | L,
62//
1

L = —Tr{{lo[E(r = 7) + iB(z + 7)]]

+ [Jo[-B(zr —7) +iE(r + 7)]] }. (64)

The overall 1/¢? is needed, but it is to be interpreted as some
overall constant. While 7 will undergo transformations
under duality, the overall 1/e” is held constant. (It may
be possible to absorb it into the definition of the fields.)
The duality transformations correspond to modular
transformations (SL(2, Z)) of . These are generated by

1
a)t o7+ 1, b)r—> ——. (65)
T

The first one is the same as @ — 0 + 2x. Under this, we find
from (60),

W W / 2Tr [5UU—1 45} . (66)
T

The invariance of e’ is thus guaranteed by the quantization of
the magnetic charge §(B/4x). From E(z + 7) term in (64),
by a similar argument, we will get quantization of electric
charge. Thus with the quantization of electric and magnetic
charges, the action (or rather e’S) from (64) is invariant under
the first of the modular transformations in (65).

Now consider the second transformation in (65). Under
7 — —(1/7), we find

CE(e—7) +iB(e +)] > B ~7) iB(r+ 7))
ﬁ[—B(r—%) +iE(z+7)] ﬂﬁ[—B(r—%) —iE(t+7)].

(67)

We can now accompany the second modular transformation
by a transformation of the fields defined as
E < B, U« VL (68)

Using (67) and this transformation,
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1
OImz

Io——[E(z = %) + iB(c + 7)) — zoﬁ [E(z—7) — iB(z + 7).

fort— -1/t

= (<o) ﬁ [B(z—7) —iE(z+7)],  using (68)
1 - . —
= JOInTT [-B(z —7) + iE(t + 7)]
0 ﬁ [-B(r—7) 4+ iE(t+ 7)) > I ﬁ [E(t-7)+iB(t + 7)]. (69)

Thus we have L — L in (64). The action is duality invariant
if we do not transform the overall 1/e? factor.

It is useful to rewrite the duality transformations. The
two generating ones are

(1) z->7+1, (E,B,U,V)—> (E,B,U,V)

) - -1/, (E,B,U,V) - (B,E,V=',U™")
Compositions of these two will generate all the duality
transformations. Thus we have shown the duality invari-
ance of ¢S for the action S in (64).

Our next step is to show that the electric and magnetic
descriptions are obtained as gauge choices for the new
gauge field ay. This can be done using the canonical
analysis of the action. To carry out this analysis, define

i
i

B= —m[—B(T— 7) +iE(t + 7)). (70)

The action is thus given by

S = / [-2Tr(0,UU~'E) = 2Tr(V~'9,VB)
+a3[2Tr(UtaU_1tb)5b —2TI‘(V_llaVlb)BhH. (71)

Notice that the first two terms are similar to the
co-adjoint orbit action. But the fields £ and B are not
restricted to the Cartan subalgebra, so the results are
different from the case of the co-adjoint orbit actions. In
particular, the commutation rules are different. In fact, it is
easy to see that the basic nontrivial commutation rules are
given by

[Uj(x), Un(y)] =0,
[Ea(x), U(y)] = =1,U(x)5(x,),
[Ea(x), Ep(¥)] = if apeCcd(x, ). (72)

[Vij(x)v Viu(y)] =0,
[Ba(x)v V(y)] = _V(x)taé(x’ y)’
[Ba(x)78b(y)] = _ifachcé(x’ y) (73)

These relations also show that 2Tr(Ut,U~'t,)E,, will carry
out right translations on U and 2Tr(V~'t,V1,)B,, will carry
out left translations on V.

The equation of motion for a, will give the Gauss law
type constraint

2Tr(UtaU_1tb)5b — 2Tr(V_1tthb)Bb =0. (74)

These are evidently first class constraints and so one can
choose a gauge fixing conjugate constraint. Since the two
terms in (74) carry out right translations on U and left
translations on V, respectively, there are two natural gauge
choices:

(1) We can set V = 1 as the conjugate constraint. In this
case, the Gauss law (74) shows that 53, is equivalent
to the generator of right translations on U. The
V-sector is eliminated and we have an “electric
description.”

(2) We canset U = 1. In this case, (74) tells us that £, is
equivalent to the generator of left translations on
V. The U-sector is eliminated and we have a
“magnetic description.”

The two dual descriptions appear as gauge choices now. It
is important that we can reduce to one or the other, so that
the degrees of freedom are as they are in the YM theory. As
we said at the beginning, the YM theory should provide a
complete accounting for all degrees of freedom.

There are also other gauge choices we can make,

corresponding to mixed electric-magnetic description.

Returning to the electric description, we can define the

operators Q(®) and M(®) by

0(0) = - [ atv(es) = § g0,
M(®) = / THOUFPU-1). (75)

From the fact that £ generates left translations on the group
element U, we see that the commutation relations (28), (29)
and (30) are easily obtained from (72). Further, notice that

1 0 [ B
/E-;/E—&—Z ot (76)
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The quantization of [ & implied by the fact it generates
group translations thus shows that the electric charges have
the additional contribution, as expected from Witten’s
result.

While the canonical analysis and the commutation rules
can be realized in the fully interacting quantum theory,
there are difficulties with the modular transformation. Since
7 involves the coupling constant, the full set of modular
transformations cannot be realized in general due to the
running of the coupling constant. This problem is avoided
in theories with vanishing f-function, such as the N =4
supersymmetric theory or certain N = 2 theories with
judicious choice of matter content.

VI. LOCAL CHARGES, FLUXES,
AND COLOR CONFINEMENT

So far, we have considered the edge effects defined on
the sphere at spatial infinity, namely, with r — oo. In this
section, we comment on the case of the local algebra of
observables defined on a bounded set.

On the spatial slice, let O be a bounded open set and
A(O) the local algebra of observables. They are gauge
invariant operators of local fields smeared with complex
valued test functions f with support C O, i.e., operators
such as

ﬁmzéwwmmw%m

Suitable regularization may be needed to make these
well-defined; we can also consider their exponentiated
forms to get bounded operators.

Now consider Q(®) and M(®) where the test functions
are supported in O, the closure of O. It is then clear that
they commute with the local observables .4(O) of operators
localized in O. For test functions ® with support in open
sets V C O, Q(0) is an integral of the Gauss law and hence
vanishes. That is also the case for M(®) iff Supp® =
V C O, as shown by an integration by parts and use of the
Bianchi identity. Thus the observables are in A(Q), with
the two-sided ideals generated by the Gauss law and M (®P)
with test functions having support in V' quotiented out.

But the situation for Q(®) and M (®) with support O for
® and @ is different. They commute with the Gauss law and
are gauge-invariant. They also commute with observables
in @ (the causal complement of O) by Einstein causa-
lity, and can be regarded as additional operators in
A(O) o A(O).

The center of the algebra generated by Q(®) and M(®P)
obviously also commutes with A(O). The algebra gen-
erated by Q(®) and M (®) define the edge observables of
A(O). Tt is non-Abelian and has the defining relations

(77)

[0(01),0(0,)] = 0([0,,6,]),
[0(©), M(®)] = M([B, D)),
[M(®,), M(®,)] = 0. (78)

These are identical to (28), (29) and (30), but now for the
case of a bounded set O. We will also refer to the group
action generated by these operators as the generalized
sky group.

It is also useful to consider the action of these operators
on states. Consider first the vector states on .A(QO) obtained
from the vacuum density matrix |0)(0| and the GNS
construction. These vectors have zero charge and no edge
states, so that Q(®) and M(®) acting on them give zero.
The vacuum sector has no charges or fluxes.

Consider next a complex quantum scalar field ¢, on
which the generalized sky group of O generated by (45) has
an adjoint action. We next smear it with a test function f¢
localized in O to get

#0) = [ @ xpa() 7). (19)
We then consider the vector
P(f)|0) = |$(f))- (80)

For an interacting field ¢, the normalization of (80) to 1,
leading to a density matrix

wp = |p(f)) (e (f) (81)

can be rather problematic. For this reason, we take ¢ be a
free, in- or out-field with |0) as the corresponding vacuum.
This suffices to illustrate the point we are making. For free
fields, we can normalize wy, that is, ensure that w /(1) = 1
so that @, is a state on A(O). Finally, given the state , and
the algebra AQO, we can obtain a representation of A0
acting on a carrier Hilbert space H(QO) (This construction,
known as the GNS construction, has been explained in
considerable detail in Chapter 3 of [28]. We can do this
even though |¢(f)) is not annihilated by “small” gauge
transformations).

The Gauss law operators with test functions vanishing on
O/O vanish on states as implied by the preceding dis-
cussion. But the generalized sky group of O can act
nontrivially on states including vector states w/(O). So
we can extend this representation to the extension of A(O)
which includes the group algebra of the generalized sky
group. This is the representation built from a general
vector state.

Since the generalized sky group acts nontrivially on
these vector states, clearly they are the starting point toward
a definition of color confinement. In a conventional treat-
ment of first class constraints, such as those which arise in
gauge theory Lagrangians, the constraints for all test
functions are set to zero on the allowed state vectors.
The observables are also required to be gauge-invariant. No
constraints are placed on the test functions for the Gauss
law. In this approach, since both observables and states are
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color singlets, there is no notion of color left: there is no
observable operator with color whose zero expectation
value will signal color confinement.

The imposition of Gauss law on states with no con-
straints on the test functions eliminates all charged states.
The more general structure is to impose the Gauss law on
physical states with test functions which vanish at spatial
infinity. The operators Q(®) with a constant nonzero value
for ©(x) as r — oo define the charge algebra with states of
nonzero charges transforming appropriately under the
action of ¢/2(®) Allowing for ® to be asymptotically a
function on SV=2 as in [1,2,14] enhances this framework.
Since only the smeared Gauss law with test functions
vanishing at infinity is required to vanish on vector states,
the latter can in general transform nontrivially under the sky
group, which includes the global G. Thus colored states are
not a priori ruled out at the level of the gauge algebra, and
color confinement has to be understood dynamically as the
statement that the expectation values of the Hamiltonian in
the colored states are infinite. In other words, colored states
are not in the domain of the Hamiltonian. While the
expectation value of the Wilson loop or Polyakov loop
operators can serve as a diagnostic of confinement in
certain circumstances (e.g. in gauge theories invariant
under the action of the center of the group G), the proper
definition of confinement has to be phrased in terms of the
domain of the Hamiltonian.

This scenario is applicable in the even more general
approach suggested in this paper: we have required only the
observables 4 to be gauge-invariant, then from any state on
A, gauge-invariant or not, using the GNS construction, we
can recover a x-representation of A (i.e. a representation of
A that carries an involution [28]). We can then extend this
representation by including the group for charges and
fluxes, Q(®) and M(®), as well.

We cannot claim that such a treatment of states is new.
The DHR analysis [28] where the observables A are
invariant under a group G, which from the context, we
can infer is the global symmetry group, is treated in this
manner. It has also appeared in the constraint analysis of the
action for gravity, under the guise of “frozen” formalism.
The algebra A is then the algebra of diffeo-invariant
observables with no notion of time. A *-representation
of A then defines the quantum theory. This approach was
applied in [29] to quantize the relativistic action (the
coadjoint action) of a point particle with reparametrization
invariance. This treatment does not require gauge fixing
and gives for A the Poincaré algebra with its center
generated by the mass and spin Casimirs fixed. So A
has only one representation, namely that with fixed mass
and spin, just as one wants.

VII. DISCUSSION

The duality of electric and magnetic descriptions has
long been viewed as being central to understanding gauge

theories. Dual superconductivity as the key idea behind
confinement was advanced in the early 1970s by Nambu, 't
Hooft and others [30-32]. The dual symmetric algebra of
Wilson loops and ’t Hooft operators and the possible
classification of phases of gauge theories in terms of their
expectation values carried this idea further. A mathemati-
cally more precise realization was obtained later in super-
symmetric theories, see for instance [33,34]. Somewhat
parallel to these developments, a better appreciation of the
existence of superselection sectors in gauge theories has
emerged in the last few years, even though the basic idea
goes back to the 1970s. To date, a (even mildly) rigorous
discussion of the phases of gauge theories in terms of
superselection sectors is lacking. Clearly, in any attempt to
augment the description of phases of gauge theories by
taking account of superselection sectors as well, it is
important to look for a dual-symmetric characterization
of the algebra governing such sectors. This is what is done
in this paper, namely, to give a systematic description
of the asymptotic structure of states for non-Abelian
gauge theories that treats electric and magnetic charges
democratically.

Specifically, we have considered the operator Q(®) and
its magnetic dual M(®), which together define the super-
selection sectors of a gauge theory. The algebra of these
operators, which we refer to as the Lie algebra of the
generalized sky group, is given in (28), (29), (30). In the
non-Abelian case, the superselection also implies that
G(G), the group of maps from the spatial boundary
to the group G, is spontaneously broken. For the four-
dimensional gauge theory, we have also obtained a duality-
invariant action, which allows one to go from an electric
description of the generalized sky group to a magnetic
description, realizing the SL(2,Z) modular transforma-
tions on the complex coupling constant z. We emphasize
that supersymmetry, per se, does not play a role in
formulating the algebra of the operators Q(®) and
M(®) in a dual symmetric way, although it may be useful
in controlling the renormalization of the complex cou-
pling .

In Sec. VI, we have also commented on the definition of
charges in terms of the representations of the operators
Q(0®) and M(®D), and their implications for confinement.
Admittedly, there is more to be explored an clarified
regarding superselection sectors and confinement, but the
algebra of Q(®), M (®) and its dual-symmetric formulation
are the necessary first steps in that direction.
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APPENDIX: RELATED QUESTIONS

We will collect here a few remarks on some additional
mathematical structures associated with Q(®) and M(®),
even though their physical implications are still unclear.

1. Drinfel’d double

The Drinfel’d double arises from a Hopf algebra H and
the linear functionals H* on H with values in C with its
induced Hopf algebra structure. Then H X H*, the crossed
product of H with H* is also a Hopf algebra, the Drinfel’d
double of H.

Another manner in which it can arise is as follows. Let G
be a group with an action on another group N. Now CG and
CN are canonically Hopf algebras and the action of G on N
induces a Hopf algebra action of CG on CN. The crossed
product CG X CN is also a Hopf algebra, the Drinfel’d
double associated with G and N.

In our case, we can also give a pairing of Q(®) and
M(®) so that they are mutually dual. This is given by

(©©).M(@)) = [ dopa(iTr(®=0=)(a).  (AD

The implications of this structure are not clear.

But there is also another approach pioneered by
Doplicher, Haag and Roberts [28]. It is based on the
Cuntz algebra O, and the endomorphisms on the repre-
sentations of these electric and magnetic groups. We
can get the Cuntz algebra for gauge theories as follows.
Again, we introduce a basis ¢, for G with normalization
Trt,t, :%5ah and correspondingly, test functions ® =
®%%,, ® = ®“,. That gives

0(0) =" (@)1,  M(®):=p"(P)ty, (A2)
where y“ and p“ are complex-valued test functions of their
arguments. Under the adjoint action of G, y“(®) and p*(®)
can be chosen to transform by unitary matrices. Thus for
example

G 3 g>y*(®) - 4" (®)Dy,(g9), where D'D = DD =1.
(A3)

We can then consider the combination y(0%) + ip(©“) and
its polar decomposition
1°(0) +ip*(©) = w,[ly"(©) +ip*(®).  (A4)

Following Fredenhagen’s review [30], it is possible to show
that ||y?(®) + ip?(0®)|| is independent of a and that

l//a’l/Z = 5ab]] s (AS)

Zwéwa=ﬂ-

(A6)

These relations define the Cuntz algebra of partial iso-
metries OY and after its completion in the C*-norm, the
Cuntz algebra O,. Further, as may be expected,

0Oy, 0O =y, [U (O], (AT

o
With these preliminary statements, we can define the

Drinfel’d double. Functions on G(G) have the basis

fayapd,~a, =VaWa,  Wa,|0) <O|W22W224 ---wz,l. (A8)

k
At a point ¢'?®) of the group G(G), it has the value

fayapd—a (¢/2©))

k

= Oyl vl e O wa, e, |0). (A9)
The group G(G) acts on these functions by left translation:

iQ(® iQ(®
€lQ< )Dfil.u-ik;i’-ui; nd €lQ( )fi1_4..ik;i/1..4i2,

1

(A10)

(eiQ(el)fil,'-<ik;ia~'-ii)(eiQ(®2)) — fi],"'ik;i/]'--ii (e_iQ(G)I)eiQ(G)Z))'

(Al1)

So we have the structure of a Drinfel’d double.

2. The Manin triple

The Manin triple £ is a Lie algebra with two subalgebras
Ly and £, with £, n L, ={0} and L =L, & L,, and a
metric g for which £, and £, are isotropic subalgebras:

g(li,1;) =0, Lllel, i=12(Al2)
We can see that the pairing (A1) implies a Manin triple
for the gauge theory. Thus consider a Lie algebra £ defined
as L = Span(Q(®),M(®)) and the two subalgebras
L, = Span(Q(®)), L, = Span(M(®)). We have given
their commutators in (28), (29) and (30). With the pairing
in (A1), we can now define the metric g on L:

(A13)

9(0(©), M(®)) = g(M(®), 0(0))
- / Qg2 () TH(@=D=).  (Al4)
SH—2

It is clear from these equations that £, and £, are isotropic
subalgebras.

In finite dimensions, say d, it is such a metric which has
O(d,d) symmetry with the group O(d,d,Z) underlying
T-duality. What happens here, in infinite dimensions,
remains to be understood.
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3. A comment on magnetic monopoles

Classically, magnetic monopoles can be identified by
examining ®%, the test function for M(®) at infinity. Thus
consider G = SU(2) and let ®*(7) lie on a nonzero orbit
of this group. Since ®* (1) is now SU(2) Lie algebra
valued, and the stability group of a point here is U(1), its
possible values are in S%. But S¥=2 is also S? for N = 4. So
®>(7) is a map from S? to S2. Such maps with winding
number n are associated with the infinite number of test
functions for monopole charge n. Then the classical
observable M(®%) is a measure of the magnetic charge
n. In the quantum theory, M(®) is an operator. So we
need a quantum state with expectation value approximating
the classical answer. This will require a quantum operator
which acting on, say, the vacuum of the theory can create

such a state. As we saw earlier, an 't Hooft-Polyakov
monopole state twisted by the Chern-Simons term is a
semiclassical candidate. But this issue requires further
investigation.

4. On the local Cuntz algebras

The Cuntz algebras (A5), (A6) can be adapted to local
regions by restricting the supports of & to O. It is such
local algebras that arose in the papers of DHR [4-8].

The vector states transforming by the sky group are then
readily constructed as

VaWa,  Wal0). (A15)

They have unit norm by (AS5). They can replace (80) to geta
representation of the sky group and A(O).
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