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We consider the generators of gauge transformations with test functions which do not vanish on the
boundary of a spacelike region of interest. These are known to generate the edge degrees of freedom in a
gauge theory. In this paper, we augment these by introducing the dual or magnetic analog of such operators.
We then study the algebra of these operators, focusing on implications for the superselection sectors of the
gauge theory. A manifestly duality-invariant action is also considered, from which alternate descriptions
which are SLð2;ZÞ transforms of each other can be obtained. We also comment on a number of issues
related to local charges, definition of confinement and the appearance of interesting mathematical structures
such as the Drinfel’d double and the Manin triple.
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I. INTRODUCTION

Superselection sectors are a characteristic feature of
quantum field theories owing to the presence of an infinite
number of degrees of freedom. Their effects are particularly
significant and manifest in gauge theories such as QED or
QCD, where they can strongly constrain the nature of
observables. Thus in QED one has the constraint of the
Gauss law in the sense that all observables are required to
commute with it. The charge operator, which is closely
related to the Gauss law, commutes with it, and with all
local observables as well. In other words, the charge
algebra is a nontrivial commutant of the local algebra of
observables. This is a fundamental difference between
gauge theories and field theories without gauge symmetry.
But there are further implications of this framework,

even for the Abelian gauge group of QED. Let us recall the
meaning of the gauge group GðGÞ based on a compact Lie
groupG; the latter may be referred to as the “global” group.
Consider fields defined on an N-dimensional Minkowski

spaceMN . In this case, GðGÞ is generally isomorphic to the
group of maps from the spatial “boundary” of the spatial
slice MN−1, which is taken to be SN−2, to G. They are
generated by the Gauss law operator appropriately smeared
with test functions. A moderately careful treatment of these
test functions smearing the Gauss law shows that there is an
infinity of superselected operators [1,2]. These generate
what we have previously referred to as the sky group;
effectively, they measure the moments of the electric fields
at infinity. In Sec. II, we will recall some features of this
group and argue that there is a magnetic counterpart to the
sky group as well, which arises from the Bianchi identity.
Together these two sets constitute the superselected oper-
ators of QED. If we consider a compact region of MN−1,
say, a ball of finite radius, with the boundary SN−2, these
operators may also be thought of as generating the “edge
states” of the theory.
All these structures also exist for the case of non-Abelian

gauge theories such as QCD, with subtle consequences
which are still not fully understood [3]. Unlike the case of
the gauge group GðUð1ÞÞ of QED, the gauge group
GðSUð3ÞÞ of, say, QCD, is non-Abelian. Considerations
of locality show that, in this case also, the observables must
commute with it. As in QED, one may relate these
operators to the edge states as well. But there are additional
consequences due to the non-Abelian nature of the groups
GðGÞ. We will see that superselection sectors will be
labeled, at least partially, from a maximal Abelian algebra
or a complete commuting set (CCS) taken from CGðGÞ, the
group algebra of GðGÞ.
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The algebra of local observables A acting on a vector
state labeled by the eigenvalues of a CCS, cannot change
these eigenvalues. (Additionally, the state is left invariant
by the Casimir operators and the Cartan subalgebra of
CGðGÞ containing the chosen CCS.) But a nontrivial
representation of the generators of G in GðGÞ does change
these eigenvalues. So they cannot be implemented in an
irreducible representation of A, a feature similar to the
spontaneous breaking of the Lorentz transformations in the
charged sectors of QED. Notice that what is “broken” is the
global group, such as SUð3Þ.
As in the Abelian case, there is a magnetic analog of

CGðGÞ or rather its Lie algebra CQðGÞ, again following
from the Bianchi identity, which we shall refer to as
CMðGÞ. Its elements measure moments of the magnetic
field at infinity so that the full superselection group
becomes a Drinfel’d double. In Sec. III, we will formulate
and explore features of this generalized sky group. It is
interesting to ask how various features of the “breaking” of
G in an irreducible representation of A generalizes to the
larger context, including the magnetic analog CMðGÞ.
This is discussed in Sec. IV.
The addition of the Chern-Simons term to the (2þ 1)-

dimensional gauge theory brings in a new feature: the
group of “large” gauge transformations gets centrally
extended both for G ¼ Uð1Þ or for a non-Abelian G.
This has been shown for the theory on a disk D2 × time
[4]. A similar analysis works here. We discuss the Chern-
Simons twist in Sec. IV as well. Because of the extended
algebra, Chern-Simons modified gauge theories have to be
dealt with as non-Abelian theories with all the attendant
subtleties.
Another immediate and natural question which can arise

is the following: Given CGðGÞ and CMðGÞ, can we
identify duality transformations connecting these, and if
so, is there a “magnetic description” which exchanges the
role of these? In Sec. V, we construct a duality-invariant
action which realizes the algebra of CGðGÞ and CMðGÞ in
a canonical framework. We show that the standard “electric
description” and its dual, the “magnetic description,” can be
obtained from this as special gauge choices.
As mentioned earlier, the algebra CQðGÞ∨CMðGÞ

generates the edge states of the theory for a compact
region. The definition and meaning of local charges in this
case are briefly discussed in Sec. VI. We have also
mentioned that only a CCS belonging to CGðGÞ can be
unitarily implemented. If this is the case, what do we mean
by, or how do we define, the notion of color confinement?
We discuss this in Sec. VI as well, arguing that the only
meaningful definition is that confinement is equivalent to
the statement that the colored states do not belong to the
domain of the Hamiltonian.
There are also certain additional structures we can

identify within this framework, such as Cuntz algebras
and Drinfel’d double. We mention that Cuntz algebras were

introduced in algebraic quantum physics in the DHR papers
[5–8] and are also discussed in Doplicher and Roberts [9].
The latter used them to prove a deep generalization of
Tanaka-Krein duality. The key point for us is that gauge
transformations can be localized. If we consider local
observablesAðOÞ in a finite open causally complete region
O, such as a double diamond, we can localize all the gauge
transformations to Ō and consider Ō as our spacetime, with
∂O as the substitute for the infinity of the standard space-
times likeM4. Then for each suchO, there is a “large” gauge
group GðG; ∂OÞ which is just like GðGÞ on the full
spacetime. There is also a magnetic analog MðG; ∂OÞ
which together encode a Cuntz algebra O0

dðG; ∂OÞ. Once
more using CGðG; ∂OÞ and O0

dðG; ∂OÞ, we see the emer-
gence of both a Drinfel’d double and a Manin triple. An
implication is that each such local regionO has edge states
from these algebras and their representations. As relativity
has no role in this remark, it gives “topological” excitations
also in condensed matter systems. These structures are
discussed in the concluding section, although their full
impact on the physics is still not clear.
Superselection sectors are poorly understood in gauge

theories. Besides the electric and magnetic charge super-
selection sectors (for some recent work on electric-mag-
netic duality, see [10]), there are those due to infrared
effects [11,12] with theorems on the breaking of Lorentz
symmetry in the charged sectors. There are also arguments
that both the Lorentz group and the “global symmetry”
group G are broken because of infrared effects when G is
non-Abelian [1,13,14]. These effects are not expected in
local field theories with only global symmetries as they
require infrared photons or gluons. In contrast, both the
local and global algebras of gauge theories share the
superselection sectors from GðGÞ and MðGÞ. A more
comprehensive understanding of superselection sectors is
clearly important, particularly since such sectors are also
fundamentally important for the epistomology of quantum
field theory [15,16].
As argued beautifully by Fioroni and Immirzi [15] and

Wightman [16], superselection sectors are fundamentally
important for the epistemology of quantum physics. Thus
measurements necessarily observe Abelian subalgebras
associated with A (see for instance [17] and references
therein) and these can be the algebras generated by the CCS
labeling the superselection sectors. A better insight into
their properties is thus called for.

II. ASYMPTOTIC CHARGES AND MAGNETIC
MOMENTS: ABELIAN GAUGE THEORIES

We start with a review of old and familiar material on the
Gauss law when the gauge group GðUð1ÞÞ is Abelian and is
associated with the global group G ¼ Uð1Þ. Our study of
gauge transformations is in the canonical formalism, with
the splitting of Minkowski space MN as MN ¼ MN−1 ×R.
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On the spatial slice MN−1, we have the gauge potential Ai

and the electric field Ej, which form a canonically con-
jugate pair. In addition, there are matter fields with charge
density J0. The Gauss law

∂iEi þ J0 ≈ 0 ð1Þ

is a first class constraint in the classical theory. The
analogous statement in the quantum theory is that the
elements of the algebra of observables A must commute
with the Gauss law operators, that is to say they must be
gauge-invariant.
A state ω on A is, as usual, a positive linear functional

which is normalized to unity on the identity element 1 ∈ A,
i.e., ωð1Þ ¼ 1. The states of interest to us are given by
density matrices ρ, which are positive trace class operators
with Trρ ¼ 1. (There may be more general states onA, but
the requirement of subadditivity excludes them.) When ρ is
of rank 1, we get a vector state, ρ ¼ jψihψ j, where jψi is a
vector in the Hilbert space H on which A is represented.
It is worth remarking that while is often assumed that the

Gauss law operator should vanish on the vectors jψi, this is
rather too restrictive. For the purpose of maintaining gauge
invariance, it is sufficient if the action of the unitary
transformation generated by the Gauss law operator acts
as identity on jψi for “small” gauge transformations, and
generate the superselection sectors for “large” gauge trans-
formations as we explain below.
A very simple example from quantum mechanics illus-

trates our point. Consider a q-bit with its observables
M2ðCÞ of two-by-two matrices. The 2π-rotation ei2πS3
acting on an observable m ∈ M2ðCÞ cannot change it so
that we require ei2πS3me−i2πS3 ¼ m for all m ∈ M2ðCÞ. So
ei2πS3 ∈ CðM2ðCÞ, the center ofM2ðCÞ. The center consists
of all diagonal entries with equal entries. Imposing also
unitarity, we see that ei2πS3 ¼ eiθ1. For a q-bit, θ ¼ π is
picked out so that ei2πS3 ¼ −1.
ei2πS3 is a superselection operator, its values identifying

superselection sectors. In states where ei2πS3 ≠ �1, one has
anyons.
How does one measure ei2πS3 and get −1? For a pure

state jψihψ j, we can compute its mean value to get
Trðjψihψ jei2πS3Þ ¼ hψ jei2πS3 jψi ¼ −1 as we want. This
argument extends to all q-bit states.
Now a reasonably careful treatment of the Gauss law we

outline below shows the existence of “large” gauge trans-
formations and their magnetic flux analogs which commute
withA. They generate the “sky” group [1] and its magnetic
analog and commute with A as well. But they need not
vanish on vectors jψi which generate the density matrices
jψihψ j. Using the GNS construction, we can find a
representation of A and of the sky group and its magnetic
analog as well.
Turning to a more careful treatment of the Gauss law (1),

we introduce a test function Λ and the smeared operator

gðΛÞ ≔ −
Z

dN−1xð∂iΛÞEiðxÞ þ
Z

dN−1xΛðxÞJ0ðxÞ ≈ 0:

ð2Þ
This is in accordance with the fact that derivatives of
distributions are to be understood in terms of derivatives of
test functions such as Λ. But we would also need this
constraint (2) to be consistent with the classical imple-
mentation of the Gauss law as in (1), so we require that the
test functions Λ should vanish at spatial infinity. This will
ensure the passage from (2) to (1) via an integration by
parts. So (2) is interpreted to hold for all Λ ∈ C∞

0 ðRN−1Þ,
the superscript ∞ indicating infinite differentiability, and
the subscript 0 indicating that a Λ ∈ C∞

0 vanishes at
infinity. Thus

gðΛÞ ≈ 0 for all Λ ∈ C∞
0 ðRN−1Þ: ð3Þ

The smeared operator gðΛÞ is well defined even for test
functions which are nonzero at spatial infinity, even though
it does not vanish as a constraint on observables. We will
denote test functions which do not necessarily vanish at
spatial infinity asΘ, and define the corresponding operators
from (2) as QðΘÞ; i.e.,

QðΘÞ ¼
Z

dN−1x½−ð∂iΘÞEiðxÞ þ ΘðxÞJ0ðxÞ�;

ΘðxÞ ∈ C∞ðRN−1Þ: ð4Þ

Our aim is to analyze the properties of this operator and a
magnetic dual version of it, which we shall introduce
shortly.
First of all, notice that since

½gðΛÞ; QðΘÞ� ¼ 0; ð5Þ

QðΘÞ qualifies as an element of the set of operators of
interest. Further, if Θ vanishes at infinity, i.e., if
Θ ∈ C∞

0 ðMN−1Þ, then QðΘÞ is identical to gðΛÞ and it
vanishes on all vector states. For test functions Θ which go
to a constant Θ∞ at infinity, QðΘÞ is proportional to the
electric charge Qð1Þ, QðΘÞ ¼ Θ∞Qð1Þ. If it goes to an
angle-dependent function at infinity,

Θðx⃗ ¼ rx̂Þ → Θ∞ðx̂Þ; ð6Þ

we get the elements of what was referred to as the sky group
in [1].
Another important property of QðΘÞ is that it commutes

with all local observables. Let ϕðxÞ be a local tensorial field
and f a test function supported in O. Then ϕðfÞ ¼R
dN−1xf̄ðxÞϕðxÞ is localized in a bounded open region

O with compact closure Ō, and Λ is the restriction of Θ to
Ō, then by the locality of commutators,

SUPERSELECTION, BOUNDARY ALGEBRAS, AND DUALITY IN … PHYS. REV. D 106, 025001 (2022)

025001-3



½QðΘÞ;ϕðfÞ� ¼ ½QðΛÞ;ϕðfÞ�: ð7Þ

But now QðΛÞ ¼ gðΛÞ so that

½QðΘÞ;ϕðfÞ� ¼ 0: ð8Þ

In other words, QðΘÞ commutes with local observables.
The set of operators feiQðΘÞg form the quotient of the

gauge algebra by “small” gauge transformations (which
correspond to eigðΛÞ, with Λ ∈ C∞

0 ). Since QðΘÞ commute
with local observables, the full set of observables is made of
a complete commuting set from feiQðΘÞg and the local
observablesA. The complete commuting set from feiQðΘÞg
will define the superselection sectors of the theory. In the
present case of an Abelian gauge theory, the entire set
feiQðΘÞg, for all Θ, form the complete commuting set. Thus
A, which includes eiQðΘÞ in its center CðAÞ for a fixedA, is
not a factor.1

There is an elegant way to write (4). In four dimensions,
(i.e., for N ¼ 4), the Maxwell equation corresponding to
the Gauss law, written in terms of differential forms, reads

d

�
1

2
�Fijdxi ∧ dxj

�
≡ d�F ¼ J0d3x: ð9Þ

So we can write (4) as

QðΘÞ ¼
Z
R3

dðΘ�FÞ: ð10Þ

More generally, for arbitrary number of dimensions, we can
write this as

QðΘÞ ¼
Z
RN−1

dðΘ�FÞ: ð11Þ

In four dimensions, we can clearly write a dual version of
(10) defined as

MðΦÞ ¼
Z
R3

dðΦFÞ ¼
Z
R3

dΦ ∧ F ð12Þ

with a test function Φ ∈ C∞ðR3Þ. The second equality
follows from the Bianchi identity. For those functions Φ
which vanish at spatial infinity, evidently,

MðμÞ ≈ 0: ð13Þ

We have used μ to denote test functions which vanish at
infinity, i.e., μ ∈ C∞

0 ðR3Þ. The operatorsMðΦÞ need not be
weakly zero for Φ ∈ C∞ðR3Þ, which do not vanish at

infinity. With such test functions, MðΦÞ generate an
Abelian subalgebra, which is “localized at infinity,” since
formally

MðΦÞ ¼
Z
∂R3

ΦF: ð14Þ

As a result, MðΦÞ commutes with all local observables.
Thus they form another set of superselected operators for
the theory. So MðΦÞ ∈ CðAÞ, the center of the algebra of
observables.
In this way, for a Uð1Þ gauge theory, we obtain an

infinite number of superselected operators, QðΘÞ and
MðΦÞ, which are characterized by the asymptotic limits
of Θ and Φ.
Also, from canonical commutation relations, we can

work out the commutator algebra of the superselected
operators fQðΘÞ;MðΦÞg. It is given by

½QðΘ1Þ;QðΘ1Þ� ¼ ½QðΘ1Þ;MðΦÞ� ¼ ½MðΦ1Þ;MðΦ2Þ� ¼ 0:

ð15Þ

To summarize the key results of this section, we have two
sets of superselected operators, QðΘÞ and MðΦÞ, which
obey the algebra (15) given above. Clearly the interesting
question is about the observable consequences of these
operators. We will come back to this after discussing the
non-Abelian case, which also possesses a similar set of
superselected operators.

III. ASYMPTOTIC CHARGES AND MAGNETIC
MOMENTS: NON-ABELIAN GAUGE THEORIES

We take the gauged “symmetry” group G to be a
compact connected simple Lie group such as SUð3Þ, and
the spacetime as before to be the Minkowski manifold
RN ¼ RN−1 ×R1. On the spatial slice RN−1, we have the
Lie algebra valued connection one-form Aidxi and its
canonically conjugate field Ej. For specificity, we use a
set of matrices ta which span the Lie algebra G of G in its
defining representation (such as the triplet representation
for SUð3Þ) and fulfilling the normalization condition

TrðtatbÞ ¼
1

2
δab: ð16Þ

The fields Ai and Ej can be expanded in this basis as

Ai ¼ Aa
i ta; Ei ¼ Ei;ata: ð17Þ

The non-Abelian version of the Gauss law (1) is

DiEi þ J0 ≈ 0 ð18Þ

where J0 is the Lie algebra valued charge density
from matter fields, which can also be expanded in terms

1Although we use the same symbolA for the local algebra and
the local algebra extended by feiQðΘÞg, the meaning should be
clear from the context.
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of ftag as J0 ¼ J0;ata, and Di denotes covariant differ-
entiation,

DiEi ≔ ∂iEi − i½Ai; Ei�: ð19Þ

As before, we rewrite (18), after smearing it with test
functions Λ ¼ Λata, with Λa ∈ C∞

0 ðRN−1Þ, as

gðΛÞ ¼
Z

dN−1xTr½−DiΛEi þ ΛJ0� ≈ 0: ð20Þ

Since Λ vanish on SN−2 as r → ∞, the commutator of gðΛÞ
with any operator reduces to the commutator of the Gauss
law with the same operator. Thus all the observables must
commute with gðΛÞ.
We can now write down the non-Abelian charges by

extending the left-hand side of (20) to test functions
Θ ¼ Θata, where Θa ∈ C∞ðRN−1Þ do not necessarily
vanish at infinity. Explicitly, the charges are thus given as

QðΘÞ ¼
Z

dN−1xTrð−DiΘEi þ ΘJ0Þ: ð21Þ

QðΘÞ is not weakly zero if Θa ∉ C∞
0 ðRN−1Þ.

Turning to observables, as mentioned above, the local
observables commute weakly with QðΘÞ. It is useful to
work again through the reasoning for this result. Recall that
a local observable is either a field ψðxÞ at a point x, or its
smeared version

ψðfÞ ¼
Z
O
dN−1xfðxÞψðxÞ; ð22Þ

where O denotes a bounded open region which is the
support of fðxÞ. The locality of the commutation relations
implies that the commutator of QðΘÞ with a local observ-
able depends only onΘjO, the restriction ofΘ toO. We can
smoothly change Θ outside of O to zero, getting a new
function Θ̂ ∈ C∞

0 ðRN−1Þ. Thus, effectively, QðΘÞ in the
commutator with ψðfÞ can be taken to be QðΘ̂Þ and as a
result,

½QðΘÞ;ψðfÞ� ¼ ½QðΘ̂Þ;ψðfÞ� ¼ ½gðΘ̂Þ;ψðfÞ� ≈ 0: ð23Þ

We see thus that local observables weakly commute with
the charges QðΘÞ and that QðΘÞ are superselected oper-
ators for local observables. But the key point of distinction
with the previous case is that QðΘÞ generate non-Abelian
superselection rules since the commutator

½QðΘ1Þ; QðΘ2Þ� ≈Qð½Θ1;Θ2�Þ ð24Þ

is not identically zero. (Henceforth, we drop the symbol ≈
as we will deal with quantum theory.)

Using the Yang-Mills field equation D�F ¼ J0, we can
write (21) as

QðΘÞ ¼
Z

dTrðΘ�FÞ: ð25Þ

Again, in four dimensions, this naturally leads to a dual set
of operators

MðΦÞ ¼
Z

dTrðΦFÞ; ð26Þ

whereΦ ¼ Φata, with Φa ∈ C∞ðR3Þ. If μ ¼ μata vanishes
at infinity, i.e., μa ∈ C∞

0 ðR3Þ, then clearlyMðμÞ ¼ 0. Also,
as before, using Bianchi identity DF ¼ 0, we can rewrite
MðΦÞ in four dimensions as

MðΦÞ ¼
Z

TrðDΦÞ ∧ F: ð27Þ

We can generalize this equation to dimension N > 4, by
choosing Φ to be a differential form of rank N − 4, but for
most of the following discussions, we take N ¼ 4.
The components Fa

ij of the magnetic field 1
2
Fijdxi ∧ dxj

commute among themselves on the spatial slice R3, hence
MðΦÞ’s generate an Abelian algebra; i.e.,

½MðΦ1Þ;MðΦ2Þ� ¼ 0; Φa
1;Φa

2 ∈ C∞ðR3Þ: ð28Þ

Also, as is evident from (26), MðΦÞ is a surface term at
infinity. Therefore, it commutes with all local observables
and form another set of superselected operators.
However, unlike the Abelian case,QðΘÞ andMðΦÞ need

no longer commute; rather we obtain the commutation
relation

½QðΘÞ;MðΦÞ� ¼ Mð½Θ;Φ�Þ; ð29Þ

Returning to the algebra of theQðΘÞ, notice that we have
the algebraic relations

½QðΘ1Þ; QðΘ2Þ� ¼ Qð½Θ1;Θ2�Þ; ð30Þ

½QðΘÞ;gðΛÞ� ¼ gð½Θ;Λ�Þ; since ½Θ;Λ�∈C∞
0 ðMN−1Þ; ð31Þ

½gðΛ1Þ; gðΛ2Þ� ¼ gð½Λ1;Λ2�Þ: ð32Þ

From (31) above, we see that eigðΛÞ generate a normal
subgroup of the group of transformations eiQðΘÞ. In the
representation of these operators on the Hilbert space,
gðΛÞ → 0 and eigðΛÞ → 1. Hence the quotient feiQðΘÞg=
feigðΛÞg defines operators which intuitively are “localized at
infinity.” It is this group which is relevant in the quantum
theory, since, by Gauss law, gðΛÞ → 0 on the Hilbert space.
We will refer to the transformations generated by QðΘÞ,
MðΦÞ, with the commutation rules (28), (29), (30) as the
generalized sky group.
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The exponentials eiQðΘÞ give the group of maps from
∂MN−1 ¼ SN−2 to G as gðΛÞ vanishes. From this fact and
the algebraic relations (28), (29), we conclude that the set of
superselection operators is given by the semi-direct product
of Maps ðSN−2; GÞ with the Abelian algebra of MðΦÞ’s.
Once again, the key distinction with the case of Abelian
theories is that these generate a non-Abelian superselection
algebra.
Some further reduction will be useful before we can

deduce some of the consequences of the non-Abelian
nature of the superselection operators. Towards this, let
us set

Θ∞ðx̂Þ ¼ lim
r→∞

Θðrx̂Þ; Φ∞ðx̂Þ ¼ lim
r→∞

Φðrx̂Þ: ð33Þ

Thus Θ∞, Φ∞ are (Lie algebra valued) functions on the
sphere SN−2. On the Hilbert space of states, by virtue of the
Gauss law and the Bianchi identity, QðΘÞ and MðΦÞ
depend only on Θ∞ and Φ∞, so that they give operators
Q̂ðΘ∞Þ; M̂ðΦ∞Þ; i.e.,

QðΘÞ → Q̂ðΘ∞Þ; MðΦÞ → M̂ðΦ∞Þ: ð34Þ

The commutation relations can also be written in terms of
Θ∞, Φ∞ as

½Q̂ðΘ∞
1 Þ; Q̂ðΘ∞

2 Þ� ¼ Q̂ð½Θ∞
1 ;Θ∞

2 �Þ
½Q̂ðΘ∞Þ; M̂ðΦ∞Þ� ¼ M̂ð½Θ∞;Φ∞�Þ: ð35Þ

We see that we have an infinite-dimensional algebra of the
superselection operators labeled by Lie algebra valued
functions on the sphere SN−2. For our analysis, it is
important that the nature of the commutation relations
for this infinite-dimensional superselection algebra is
entirely determined by the structure of the Lie algebra G
of the finite-dimensional groupG. In fact, explicitly, we can
write

Θ∞
1 ¼Θ∞;a

1 ta; Θ∞
2 ¼Θ∞;a

2 ta; Φ∞¼Φ∞;ata; ð36Þ

where Θ∞;a
1 , Θ∞;a

2 , Φ∞;a are elements of MapsðSN−2;CÞ.
(We can complexify the functions as well, as indicated by
the target space of these maps.) The test functions for the
right-hand side of (35) then become

½Θ∞
1 ;Θ∞

2 � ¼ Θ∞;a
1 Θ∞;b

2 ½ta; tb� ð37Þ

½Θ∞;Φ∞� ¼ Θ∞;aΦ∞;b½ta; tb� ð38Þ

showing explicitly how the Lie algebra commutation rules
determine the structure of the superselection algebra (35).
We can now define a maximal Abelian subalgebra from

CMapsðSN−2; GCÞ. If Hi span a Cartan subalgebra of G,
then from (37,38), we see that Θ∞;j

1 Hj;Θ
∞;j
2 Hi and Φ∞;iHi

commute and, hence, Q̂ðΘ∞;j
α HjÞ, M̂ðΦ∞;iHiÞ generate an

Abelian algebra. It is infinite-dimensional as the functions
Θ∞;j;Φ∞;j span an infinite-dimensional space, being maps
from SN−2 to C. We can take these functions to belong to a
Hilbert space L2ðSN−2Þ with Lie algebra-valued elements
by introducing the scalar product

ðΘ∞;j
1 ;Θ∞;j

2 Þ¼
Z
SN−2

dΩn̂TrðΘ∞;j
1 ðn̂Þ�Θ∞;j

2 ðn̂ÞÞ; n̂∈ SN−2

ð39Þ

where dΩn̂ is the rotationally invariant volume form on
SN−2. It is convenient to choose the normalization

Z
SN−2

dΩn̂ ¼ 1: ð40Þ

Let Θ̂∞
n define an orthonormal basis on SN−2 for

L2ðSN−2Þ, where n now denotes a generic index for the
basis elements. We write

Q̂ðΘ̂∞
n Þ ¼ Q̂n; M̂ðΘ̂∞

n Þ ¼ M̂n: ð41Þ

The operators fQ̂n; M̂ng generate an Abelian algebra.
It is convenient to choose the basis functions Θ̂∞

n to be
real, with Θ̂∞

0 as the constant function, equal to 1, on SN−2,
whose integral over SN−2 is also 1, since we have the
normalization (40). With these choices, we also get

Q̂�
n ¼ Q̂n; M̂�

n ¼ M̂n: ð42Þ

IV. REALIZATIONS OF THE
SUPERSELECTION ALGEBRA

We now turn to some of the consequences of the non-
Abelian nature of the superselection algebra. Some of the
results to follow were anticipated in [1].

A. GðGÞ is spontaneously broken

From the arguments in the previous section, we see that a
vector state in a superselection sector can be labeled by the
eigenvalues q̂n; m̂m of a complete commuting set (CCS)
such as Q̂n; M̂m, with m; n ∈ Z, and possible additional
operators. Any element in the local algebra A acting on
such a vector state cannot change the eigenvalues q̂n; m̂m

since it commutes with Q̂n; M̂m. Thus fq̂n; m̂mg are labels
for a superselection sector of the local algebra A.
But the group GðGÞ has operators which do not commute

with Q̂n; M̂m. If Eα; E−α are the roots of the Lie algebra G
of G, it is enough to consider test functions Θ� ¼ Θ�αE�α

and the corresponding charges and magnetic fluxes

QðΘ�αE�αÞ ¼ Q�; MðΘ�αE�αÞ ¼ M�: ð43Þ
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Clearly, these do not commute with the chosen set
fQ̂n; M̂mg and so change the eigenvalues labeling a super-
selection sector. Thus fQ�;M�g cannot be implemented as
operators in a given superselection sector of A. In other
words, the group GðGÞ is spontaneously broken to the
group generated by Q̂n; M̂m. We will denote the unbroken
group as GðQ̂n; M̂mÞ.
This breakdown ofCGðGÞ, which includes the represent-

atives of the global group G, to one of its maximal Abelian
subalgebras, sayCGðQ̂n; M̂mÞ, is, at one level, similar to the
Higgs field ϕ breaking a symmetry groupG to the maximal
stability group Gc of its vacuum expectation value hϕi. The
group Gc is also the stability group of the asymptotic value
ϕ∞ ofϕ, so that we see thatGc also labels the superselection
sectors of the associated local observables.
But there are also differences. The unbroken algebra in

the gauge theory case is always Abelian. But for symmetry
breaking via the Higgs field, Gc can be non-Abelian.
An example is where G ¼ SUð3Þ, ϕ∞ ¼ constant × Y
(Y ¼ 2t8=

ffiffiffi
3

p
is the hypercharge) and Gc ¼ Uð2Þ ¼

ðSUð2Þ ×Uð1ÞÞ=Z2 ⊂ G. Again for the standard model,
G ¼ ½SUð3Þ × SUð2Þ ×Uð1Þ�=Z6 and GðQ̂n; M̂mÞ, uses
the commuting generators I3, Y of SUð3Þ, I3 of SUð2Þ
and the weak hypercharge, whereas the Higgs field breaks
it to Uð3Þ. Further, there are no Goldstone modes or gauge
boson mass generation for the symmetry breakdown
CGðGÞ → CGðQ̂n; M̂mÞ.
There is a deficiency in this analysis. We need a state ω, a

positive linear functional onAwith ωð1Þ ¼ 1, such that the
expectation values ωðeiQðΘÞÞ and ωðeiMðΦÞÞ are not zero
whenΘ∞ andΦ∞ are not zero. We plan to take up this issue
in detail in another paper. But see the next subsection for
remarks in this direction.

B. The Chern-Simons twist in 3 + 1 dimensions

Witten considered this case in his paper [18] showing
that magnetic monopoles acquire fractional charge propor-
tional to θ in the presence of θ-vacua (This θ is not our test
function). We will formulate his approach in another way.
Thus letG be our global group, A its connection field and

j0i its vacuum vector state. Consider the twisted state

jθi ¼ exp

�
iθ
Z

Tr

�
AdAþ 2

3
A3

��
j0i ð44Þ

(In this expression, Aidxi ¼ −itaAa
i dx

i.) Since the “small”
gauge transformations generated by gðΛÞ do not change
jθi, we have that gðΛÞjθi ¼ 0. Now our Ajθi gives us a
vector space giving a representation of A. We assume that
the scalar product of these vectors can be calculated by
quantum field theory techniques; the resultant space can be
completed into a Hilbert space.
Consider next the action of eiQðΦÞ on these states. Using

(35), one gets just a boundary term

eiQðΦÞAjθi ¼ eiθMðΦÞAjθi: ð45Þ

Thus if the magnetic flux at infinity is nonzero, the
eigenvalue of QðΦÞ is θMðΦÞ mod 2π.
In the presence of the ’t Hooft-Polyakov monopole,

where the global G is broken to Uð1Þ,MðΦÞ is, in fact, not
zero. Classically F is the magnetic field of the monopole
and inMðΦÞ, we take the moments of this field on S2 from
which we can reconstruct (the asymptotic form of) F itself.
For a spherically symmetric monopole with a Higgs triplet,
the connection one-form on S2 fulfills

Dðτ⃗ · n̂Þ ¼ dðτ⃗ · n̂Þ þ ½A; τ⃗ · n̂� ¼ 0; ð46Þ

so that, with τi as the Pauli matrices,

A ¼ 1

2
ðτ⃗ · n̂Þdðτ⃗ · n̂Þ; F ¼ −

1

4
τ⃗ · ðdn̂ ∧ dn̂Þ: ð47Þ

In the quantum theory, MðΦÞ is an operator and we need a
state where the expectation values lead to (47).
But semiclassically, we can interpret MðΦÞ as the

eigenvalue of QðΦÞ. In that case, the unbroken Uð1Þ
subgroup has the generator τ · n̂ and the charge is

θMðτ⃗ · n̂Þ ¼ −
θ

4

Z
S2
Trðτ⃗ · n̂Þτ⃗ · ðdn̂ ∧ dn̂Þ ð48Þ

¼ −
θ

2

Z
S2
n̂ · ðdn̂ ∧ dn̂Þ ¼ −2πθ; ð49Þ

which is Witten’s result.

C. The Chern-Simons twist in 2 + 1 dimensions

In this case, one adds the Chern-Simons term to the
Lagrangian. It has been treated by us in a few papers
[19,20] previously when the spatial slice is a disk D2 of
radius R. In that case, the gauge algebra is localized on
∂D2 ¼ S1 and fulfills the Kac-Moody algebra

½QðΘ1Þ; QðΘ2� ¼ Qð½Θ1;Θ2�Þ þ k
Z
S1
TrðΘ1dΘ2Þ: ð50Þ

SoQðΘÞ are generators of the Kac-Moody algebra with the
central term of level k if the Chern-Simons term in the
Lagrangian is

SC:S: ¼ k
Z

Tr

�
AdAþ 2

3
A3

�
: ð51Þ

Since (51) involves no term with the scale R, we can take its
limit as R → ∞. So the edge algebra for QðΘÞ is also (50),
in the limit of R → ∞. It is remarkable that even for
G ¼ Uð1Þ, we get a non-Abelian gauge algebra of charges.
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For Uð1Þ, QðΘ̂∞Þ generates an Abelian algebra. For
Θ̂∞ ¼ constant, it is in the center of the full Kac-Moody
algebra. Since QðΘ̂∞Þ ¼ Θ̂∞Qð1Þ and Qð1Þ is the charge,
we see that charge acts as a label for the Abelian Kac-
Moody irreducible representation. This is a basic and
known result, but is derived here in the present approach.
If G is non-Abelian, we get

½Q̂ðΘ̂∞
1 Þ; Q̂ðΘ̂∞

2 Þ� ¼ Q̂ð½Θ̂∞
1 ; Θ̂∞

2 �Þ þ k
Z
S1
TrðΘ̂∞

1 dΘ̂∞
2 Þ

ð52Þ

if the Chern-Simons term in the Lagrangian is as in (51). So
again, the charges, for which Θ̂∞ are constant, do not have
the k-term andQðtaÞ generate the Lie algebra ofG. We note
that (52) is the standard form of the Kac-Moody Lie
algebra. The highest weight representations of this algebra
are reviewed in [21].
The central term commutes with MðΦÞ and does not

affect the commutators between QðΘÞ and MðΦÞ, for
example, in verifying the Jacobi identity,

½½Q̂ðΘ̂∞
1 Þ; Q̂ðΘ̂∞

2 Þ�; M̂ðΦ∞Þ� þ cyclic ¼ 0: ð53Þ

V. A DUALITY-INVARIANT EDGE ACTION

In this section we will make some further observations
on the electric-magnetic type duality which relates the
operators QðΘÞ and MðΦÞ. A natural and interesting
question regarding these operators is whether we can
construct an action which has manifest duality-invariance
and which leads to the previously obtained algebra. The
most interesting situation will be, of course, for the four-
dimensional theory; this is the case we shall focus on.
The quest for actions which display manifest duality-

invariance has a long history, going back to the work of
Schwinger and Zwanziger in QED [22]. The evaluation of
QED partition functions in a dual-symmetric way was also
analyzed many years ago by Witten [23] and by Verlinde
[24]. Extensions to the N ¼ 4 supersymmetric Yang-Mills
theory have also been considered in [25]. Nevertheless
efforts toward the construction of an action with manifest
duality-symmetry have not really been successful, although
we may note that, for the Abelian theory, it is possible to
obtain such an action by dimensional reduction from a six-
dimensional theory [24,26]. Here we would like to pose a
more limited question: If we are only interested in the edge
modes, i.e., the algebra ofQðΘÞ andMðΦÞ, is it possible to
have an action with manifest duality symmetry? We will
see that the answer to this question is in the affirmative, it is
the subject of this section.
We start with the statement that the standard YM action

(perhaps with the addition of the θ-term, for full generality)
is sufficient to give a complete characterization of the

physics we are interested in. Thus, even though the theory
is presented in what might be called the “electric descrip-
tion,” it should be fully adequate to describe the dynamics.
Thus any attempt to make a duality-invariant theory must
take account of this fact. This means that electric and
magnetic descriptions must appear as equivalent but differ-
ent choices; i.e., they must be like different choices for
some larger gaugelike symmetry. We will construct an
action which has this property.
Let us start with the Yang-Mills action and choose the

A0 ¼ 0 gauge. The spatial components of the gauge
potential may be parametrized as

Ai ¼ UaiU−1 − ∂iUU−1 ð54Þ

with UðxÞ ∈ G. This is not simply a gauge transformation
of ai, sinceU will be taken to be time-dependent in general.
The components ai must obey one constraint such as
transversality (∂iai ¼ 0) or something similar to it, to avoid
redundancy of field variables. With such a restriction on ai,
(54) is a general parametrization for the gauge field.
Using this parametrization and the standard Yang-Mills

action, we can identify the canonical one-form W of the
theory as

W ¼ −
2

e2

Z
d3xTr½δAiF0i�

¼ 2

e2

Z
½Tr½DiðδUU−1ÞF0i� þ Tr½UδaiU−1F0i��

¼ −
2

e2

�Z
S2
dΩTr½δUU−1F0inir2�

þ
Z

Tr½UδaiU−1F0i� þ Gauss law

�
: ð55Þ

We are interested in edge states, which are generated by
the charge rotations U. This means that, on the space of
fields fU; ai; F0ig, we can restrict to the subspace where
δai ¼ 0, with a suitable restriction on its conjugate vari-
able. Notice that the magnetic field, according to (54), has
the form

F ¼ dA ¼ Uðdaþ aaÞU−1: ð56Þ

Asymptotically, the magnetic field in any monopole sector
has the form F ¼ UFDU−1, where FD, which is defined by
ai, corresponds to configurations of the Dirac monopole
type in any set of chosen Uð1Þ subgroups of G, as in the
GNO ansatz [27]. Thus considering fixed values for ai is
equivalent to considering a fixed configuration asymptoti-
cally, apart from an overall charge rotation. This is the case
we are considering. The canonical one-form, for action on
states which obey the Gauss law constraint, may then be
taken as
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W ¼ −
2

e2

Z
S2
dΩTr½δUU−1F0inir2�: ð57Þ

Define F0inir2 ¼ E. Further, we define the complex
parameter

τ ¼ θ

2π
þ i

4π

e2
: ð58Þ

We can then write

W ¼ i
e2Imτ

Z
Tr½δUU−1Eðτ − τ̄Þ�: ð59Þ

The addition of the θ-term gives the one-form

W ¼ i
e2Imτ

Z
Tr½δUU−1½Eðτ − τ̄Þ þ iBðτ þ τ̄Þ��: ð60Þ

The term Bðτ þ τ̄Þ ¼ θB=π arises from the θFF̃ term in the
action.
Even though we obtained this from the YM action plus

the θ-term, we can now write an action for fields defined on
the boundary S2 which leads to this canonical structure. It is
given by

S ¼ i
e2Imτ

Z
dt

Z
Tr½∂0UU−1½Eðτ − τ̄Þ þ iBðτ þ τ̄Þ��:

ð61Þ

It is trivial to check that the canonical one-form obtained
from (61) agrees with (60). As we will see again shortly, the
electric field-dependent term in (61) is also the action
which comes from exponentiating the action of QðΘÞ on
the wave functions. In this sense, the theory is indeed the
standard YM theory with a θ-term. Our goal now is to
construct a duality-invariant generalization of this.
As mentioned earlier, the “electric description” given by

(61) must emerge as one gauge choice (within a larger
gauge symmetry) of a duality-invariant action. This calls
for an enlargement of the space of fields. So, analogous to
U we introduce a group-valued field V and define

I0 ¼ D0UU−1 ¼ ∂0UU−1 þ Uα0U−1;

J0 ¼ V−1D0V ¼ V−1
∂0V − V−1α0V; ð62Þ

where α0 denotes a new gauge field. It gauges U on the
right and V on the left. Further, notice that underU ↔ V−1,

I0 → D0V−1V ¼ ∂0V−1V þ V−1α0V

¼ −ðV−1
∂0V − V−1α0VÞ ¼ −J0;

J0 → UD0U−1 ¼ U∂0U−1V −Uα0U−1

¼ −ð∂0UU−1 þUα0U−1Þ ¼ −I0;

i:e:; ðI0; J0Þ ↔ ð−J0;−I0Þ: ð63Þ

The action is now taken as

S ¼ i
e2

Z
dt

Z
L;

L ¼ 1

Imτ
Trf½I0½Eðτ − τ̄Þ þ iBðτ þ τ̄Þ��

þ ½J0½−Bðτ − τ̄Þ þ iEðτ þ τ̄Þ��g: ð64Þ

The overall 1=e2 is needed, but it is to be interpreted as some
overall constant. While τ will undergo transformations
under duality, the overall 1=e2 is held constant. (It may
be possible to absorb it into the definition of the fields.)
The duality transformations correspond to modular

transformations (SLð2;ZÞ) of τ. These are generated by

aÞ τ → τ þ 1; bÞ τ → −
1

τ
: ð65Þ

The first one is the same as θ → θ þ 2π. Under this, we find
from (60),

W → W −
Z

2Tr

�
δUU−1 B

4π

�
: ð66Þ

The invarianceofeiS is thusguaranteedby thequantizationof
the magnetic charge

H ðB=4πÞ. From Eðτ þ τ̄Þ term in (64),
by a similar argument, we will get quantization of electric
charge. Thus with the quantization of electric and magnetic
charges, the action (or rather eiS) from (64) is invariant under
the first of the modular transformations in (65).
Now consider the second transformation in (65). Under

τ → −ð1=τÞ, we find

1

Imτ
½Eðτ− τ̄Þþ iBðτþ τ̄Þ�→ 1

Imτ
½Eðτ− τ̄Þ− iBðτþ τ̄Þ�;

1

Imτ
½−Bðτ− τ̄Þþ iEðτþ τ̄Þ�→ 1

Imτ
½−Bðτ− τ̄Þ− iEðτþ τ̄Þ�:

ð67Þ

We can now accompany the second modular transformation
by a transformation of the fields defined as

E ↔ B; U ↔ V−1: ð68Þ

Using (67) and this transformation,
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I0
1

Imτ
½Eðτ − τ̄Þ þ iBðτ þ τ̄Þ� → I0

1

Imτ
½Eðτ − τ̄Þ − iBðτ þ τ̄Þ�; for τ → −1=τ

→ ð−J0Þ
1

Imτ
½Bðτ − τ̄Þ − iEðτ þ τ̄Þ�; using ð68Þ

¼ J0
1

Imτ
½−Bðτ − τ̄Þ þ iEðτ þ τ̄Þ�

J0
1

Imτ
½−Bðτ − τ̄Þ þ iEðτ þ τ̄Þ� → I0

1

Imτ
½Eðτ − τ̄Þ þ iBðτ þ τ̄Þ�: ð69Þ

Thus we have L → L in (64). The action is duality invariant
if we do not transform the overall 1=e2 factor.
It is useful to rewrite the duality transformations. The

two generating ones are
(1) τ → τ þ 1, ðE;B;U; VÞ → ðE;B;U; VÞ
(2) τ → −1=τ, ðE;B;U; VÞ → ðB;E; V−1; U−1Þ

Compositions of these two will generate all the duality
transformations. Thus we have shown the duality invari-
ance of eiS for the action S in (64).
Our next step is to show that the electric and magnetic

descriptions are obtained as gauge choices for the new
gauge field α0. This can be done using the canonical
analysis of the action. To carry out this analysis, define

E ¼ −
i

2e2Imτ
½Eðτ − τ̄Þ þ iBðτ þ τ̄Þ�;

B ¼ −
i

2e2Imτ
½−Bðτ − τ̄Þ þ iEðτ þ τ̄Þ�: ð70Þ

The action is thus given by

S ¼
Z

½−2Trð∂0UU−1EÞ − 2TrðV−1
∂0VBÞ

þ αa0½2TrðUtaU−1tbÞEb − 2TrðV−1taVtbÞBb��: ð71Þ

Notice that the first two terms are similar to the
co-adjoint orbit action. But the fields E and B are not
restricted to the Cartan subalgebra, so the results are
different from the case of the co-adjoint orbit actions. In
particular, the commutation rules are different. In fact, it is
easy to see that the basic nontrivial commutation rules are
given by

½UijðxÞ; UklðyÞ� ¼ 0;

½EaðxÞ; UðyÞ� ¼ −taUðxÞδðx; yÞ;
½EaðxÞ; EbðyÞ� ¼ ifabcEcδðx; yÞ: ð72Þ

½VijðxÞ; VklðyÞ� ¼ 0;

½BaðxÞ; VðyÞ� ¼ −VðxÞtaδðx; yÞ;
½BaðxÞ;BbðyÞ� ¼ −ifabcBcδðx; yÞ: ð73Þ

These relations also show that 2TrðUtaU−1tbÞEb will carry
out right translations on U and 2TrðV−1taVtbÞBb will carry
out left translations on V.
The equation of motion for α0 will give the Gauss law

type constraint

2TrðUtaU−1tbÞEb − 2TrðV−1taVtbÞBb ¼ 0: ð74Þ

These are evidently first class constraints and so one can
choose a gauge fixing conjugate constraint. Since the two
terms in (74) carry out right translations on U and left
translations on V, respectively, there are two natural gauge
choices:
(1) We can set V ¼ 1 as the conjugate constraint. In this

case, the Gauss law (74) shows that Ba is equivalent
to the generator of right translations on U. The
V-sector is eliminated and we have an “electric
description.”

(2) We can setU ¼ 1. In this case, (74) tells us that Ea is
equivalent to the generator of left translations on
V. The U-sector is eliminated and we have a
“magnetic description.”

The two dual descriptions appear as gauge choices now. It
is important that we can reduce to one or the other, so that
the degrees of freedom are as they are in the YM theory. As
we said at the beginning, the YM theory should provide a
complete accounting for all degrees of freedom.
There are also other gauge choices we can make,

corresponding to mixed electric-magnetic description.
Returning to the electric description, we can define the

operators QðΘÞ and MðΦÞ by

QðΘÞ ¼ −
Z

dTrðΘEÞ ¼
I

EaΘa;

MðΦÞ ¼
Z

TrðΦUFDU−1Þ: ð75Þ

From the fact that E generates left translations on the group
elementU, we see that the commutation relations (28), (29)
and (30) are easily obtained from (72). Further, notice that

Z
E ¼ 1

e2

Z
Eþ θ

2π

Z
B
4π

: ð76Þ
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The quantization of
R
E implied by the fact it generates

group translations thus shows that the electric charges have
the additional contribution, as expected from Witten’s
result.
While the canonical analysis and the commutation rules

can be realized in the fully interacting quantum theory,
there are difficulties with the modular transformation. Since
τ involves the coupling constant, the full set of modular
transformations cannot be realized in general due to the
running of the coupling constant. This problem is avoided
in theories with vanishing β-function, such as the N ¼ 4
supersymmetric theory or certain N ¼ 2 theories with
judicious choice of matter content.

VI. LOCAL CHARGES, FLUXES,
AND COLOR CONFINEMENT

So far, we have considered the edge effects defined on
the sphere at spatial infinity, namely, with r → ∞. In this
section, we comment on the case of the local algebra of
observables defined on a bounded set.
On the spatial slice, let O be a bounded open set and

AðOÞ the local algebra of observables. They are gauge
invariant operators of local fields smeared with complex
valued test functions f with support ⊂ O, i.e., operators
such as

F2ðfÞ ¼
Z
O
dN−1xfðxÞTrð½F2ðxÞ�Þ: ð77Þ

Suitable regularization may be needed to make these
well-defined; we can also consider their exponentiated
forms to get bounded operators.
Now consider QðΘÞ and MðΦÞ where the test functions

are supported in Ō, the closure of O. It is then clear that
they commute with the local observablesAðOÞ of operators
localized in O. For test functions Θ with support in open
sets V ⊂ O,QðΘÞ is an integral of the Gauss law and hence
vanishes. That is also the case for MðΦÞ iff SuppΦ ¼
V ⊂ O, as shown by an integration by parts and use of the
Bianchi identity. Thus the observables are in AðOÞ, with
the two-sided ideals generated by the Gauss law andMðΦÞ
with test functions having support in V quotiented out.
But the situation for QðΘÞ andMðΦÞ with support Ō for

Θ andΦ is different. They commute with the Gauss law and
are gauge-invariant. They also commute with observables
in O0 (the causal complement of O) by Einstein causa-
lity, and can be regarded as additional operators in
AðŌÞ ⊃ AðOÞ.
The center of the algebra generated by QðΘÞ and MðΦÞ

obviously also commutes with AðOÞ. The algebra gen-
erated by QðΘÞ and MðΦÞ define the edge observables of
AðŌÞ. It is non-Abelian and has the defining relations

½QðΘ1Þ; QðΘ2Þ� ¼ Qð½Θ1;Θ2�Þ;
½QðΘÞ;MðΦÞ� ¼ Mð½Θ;Φ�Þ;

½MðΦ1Þ;MðΦ2Þ� ¼ 0: ð78Þ

These are identical to (28), (29) and (30), but now for the
case of a bounded set Ō. We will also refer to the group
action generated by these operators as the generalized
sky group.
It is also useful to consider the action of these operators

on states. Consider first the vector states on AðOÞ obtained
from the vacuum density matrix j0ih0j and the GNS
construction. These vectors have zero charge and no edge
states, so that QðΘÞ and MðΦÞ acting on them give zero.
The vacuum sector has no charges or fluxes.
Consider next a complex quantum scalar field ϕα on

which the generalized sky group ofO generated by (45) has
an adjoint action. We next smear it with a test function fα

localized in O to get

ϕðfÞ ¼
Z
Ō
dN−1xϕαðxÞfαðxÞ: ð79Þ

We then consider the vector

ϕðfÞj0i ≔ jϕðfÞi: ð80Þ

For an interacting field ϕ, the normalization of (80) to 1,
leading to a density matrix

ωf ¼ jϕðfÞihϕðfÞj ð81Þ

can be rather problematic. For this reason, we take ϕ be a
free, in- or out-field with j0i as the corresponding vacuum.
This suffices to illustrate the point we are making. For free
fields, we can normalize ωf, that is, ensure that ωfð1Þ ¼ 1

so thatωf is a state onAðOÞ. Finally, given the state ωf and
the algebra AO, we can obtain a representation of AO
acting on a carrier Hilbert space HðOÞ (This construction,
known as the GNS construction, has been explained in
considerable detail in Chapter 3 of [28]. We can do this
even though jϕðfÞi is not annihilated by “small” gauge
transformations).
The Gauss law operators with test functions vanishing on

Ō=O vanish on states as implied by the preceding dis-
cussion. But the generalized sky group of Ō can act
nontrivially on states including vector states ωfðOÞ. So
we can extend this representation to the extension of AðOÞ
which includes the group algebra of the generalized sky
group. This is the representation built from a general
vector state.
Since the generalized sky group acts nontrivially on

these vector states, clearly they are the starting point toward
a definition of color confinement. In a conventional treat-
ment of first class constraints, such as those which arise in
gauge theory Lagrangians, the constraints for all test
functions are set to zero on the allowed state vectors.
The observables are also required to be gauge-invariant. No
constraints are placed on the test functions for the Gauss
law. In this approach, since both observables and states are
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color singlets, there is no notion of color left: there is no
observable operator with color whose zero expectation
value will signal color confinement.
The imposition of Gauss law on states with no con-

straints on the test functions eliminates all charged states.
The more general structure is to impose the Gauss law on
physical states with test functions which vanish at spatial
infinity. The operators QðΘÞ with a constant nonzero value
for ΘðxÞ as r → ∞ define the charge algebra with states of
nonzero charges transforming appropriately under the
action of eiQðΘÞ. Allowing for Θ to be asymptotically a
function on SN−2 as in [1,2,14] enhances this framework.
Since only the smeared Gauss law with test functions
vanishing at infinity is required to vanish on vector states,
the latter can in general transform nontrivially under the sky
group, which includes the global G. Thus colored states are
not a priori ruled out at the level of the gauge algebra, and
color confinement has to be understood dynamically as the
statement that the expectation values of the Hamiltonian in
the colored states are infinite. In other words, colored states
are not in the domain of the Hamiltonian. While the
expectation value of the Wilson loop or Polyakov loop
operators can serve as a diagnostic of confinement in
certain circumstances (e.g. in gauge theories invariant
under the action of the center of the group G), the proper
definition of confinement has to be phrased in terms of the
domain of the Hamiltonian.
This scenario is applicable in the even more general

approach suggested in this paper: we have required only the
observablesA to be gauge-invariant, then from any state on
A, gauge-invariant or not, using the GNS construction, we
can recover a �-representation of A (i.e. a representation of
A that carries an involution [28]). We can then extend this
representation by including the group for charges and
fluxes, QðΘÞ and MðΦÞ, as well.
We cannot claim that such a treatment of states is new.

The DHR analysis [28] where the observables A are
invariant under a group G, which from the context, we
can infer is the global symmetry group, is treated in this
manner. It has also appeared in the constraint analysis of the
action for gravity, under the guise of “frozen” formalism.
The algebra A is then the algebra of diffeo-invariant
observables with no notion of time. A �-representation
of A then defines the quantum theory. This approach was
applied in [29] to quantize the relativistic action (the
coadjoint action) of a point particle with reparametrization
invariance. This treatment does not require gauge fixing
and gives for A the Poincaré algebra with its center
generated by the mass and spin Casimirs fixed. So A
has only one representation, namely that with fixed mass
and spin, just as one wants.

VII. DISCUSSION

The duality of electric and magnetic descriptions has
long been viewed as being central to understanding gauge

theories. Dual superconductivity as the key idea behind
confinement was advanced in the early 1970s by Nambu, ’t
Hooft and others [30–32]. The dual symmetric algebra of
Wilson loops and ’t Hooft operators and the possible
classification of phases of gauge theories in terms of their
expectation values carried this idea further. A mathemati-
cally more precise realization was obtained later in super-
symmetric theories, see for instance [33,34]. Somewhat
parallel to these developments, a better appreciation of the
existence of superselection sectors in gauge theories has
emerged in the last few years, even though the basic idea
goes back to the 1970s. To date, a (even mildly) rigorous
discussion of the phases of gauge theories in terms of
superselection sectors is lacking. Clearly, in any attempt to
augment the description of phases of gauge theories by
taking account of superselection sectors as well, it is
important to look for a dual-symmetric characterization
of the algebra governing such sectors. This is what is done
in this paper, namely, to give a systematic description
of the asymptotic structure of states for non-Abelian
gauge theories that treats electric and magnetic charges
democratically.
Specifically, we have considered the operator QðΘÞ and

its magnetic dual MðΦÞ, which together define the super-
selection sectors of a gauge theory. The algebra of these
operators, which we refer to as the Lie algebra of the
generalized sky group, is given in (28), (29), (30). In the
non-Abelian case, the superselection also implies that
GðGÞ, the group of maps from the spatial boundary
to the group G, is spontaneously broken. For the four-
dimensional gauge theory, we have also obtained a duality-
invariant action, which allows one to go from an electric
description of the generalized sky group to a magnetic
description, realizing the SLð2;ZÞ modular transforma-
tions on the complex coupling constant τ. We emphasize
that supersymmetry, per se, does not play a role in
formulating the algebra of the operators QðΘÞ and
MðΦÞ in a dual symmetric way, although it may be useful
in controlling the renormalization of the complex cou-
pling τ.
In Sec. VI, we have also commented on the definition of

charges in terms of the representations of the operators
QðΘÞ and MðΦÞ, and their implications for confinement.
Admittedly, there is more to be explored an clarified
regarding superselection sectors and confinement, but the
algebra ofQðΘÞ,MðΦÞ and its dual-symmetric formulation
are the necessary first steps in that direction.
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APPENDIX: RELATED QUESTIONS

We will collect here a few remarks on some additional
mathematical structures associated with QðΘÞ and MðΦÞ,
even though their physical implications are still unclear.

1. Drinfel’d double

The Drinfel’d double arises from a Hopf algebra H and
the linear functionals H� on H with values in C with its
induced Hopf algebra structure. Then H ⋉ H�, the crossed
product of H with H� is also a Hopf algebra, the Drinfel’d
double of H.
Another manner in which it can arise is as follows. LetG

be a group with an action on another groupN. Now CG and
CN are canonically Hopf algebras and the action ofG on N
induces a Hopf algebra action of CG on CN. The crossed
product CG ⋉ CN is also a Hopf algebra, the Drinfel’d
double associated with G and N.
In our case, we can also give a pairing of QðΘÞ and

MðΦÞ so that they are mutually dual. This is given by

hQðΘÞ;MðΦÞi ¼
Z
SN−2

dΩSN−2ðn̂ÞTrðΘ̄∞Φ∞Þðn̂Þ: ðA1Þ

The implications of this structure are not clear.
But there is also another approach pioneered by

Doplicher, Haag and Roberts [28]. It is based on the
Cuntz algebra Od and the endomorphisms on the repre-
sentations of these electric and magnetic groups. We
can get the Cuntz algebra for gauge theories as follows.
Again, we introduce a basis ta for G with normalization
Trtatb ¼ 1

2
δab and correspondingly, test functions Θ ¼

Θata;Φ ¼ Φata. That gives

QðΘÞ ≔ χaðΘÞta; MðΦÞ ≔ ρaðΦÞta; ðA2Þ

where χa and ρa are complex-valued test functions of their
arguments. Under the adjoint action of G, χaðΘÞ and ρaðΦÞ
can be chosen to transform by unitary matrices. Thus for
example

G ∋ g⊳χaðΦÞ→ χbðΦÞDbaðgÞ; where D†D¼DD† ¼ 1:

ðA3Þ

We can then consider the combination χðΘaÞ þ iρðΘaÞ and
its polar decomposition

χaðΘÞ þ iρaðΘÞ ¼ ψakχaðΘÞ þ iρaðΘÞk: ðA4Þ

Following Fredenhagen’s review [30], it is possible to show
that kχaðΘÞ þ iρaðΘÞk is independent of a and that

ψaψ
�
b ¼ δab1; ðA5Þ

X
ψ�
aψa ¼ 1: ðA6Þ

These relations define the Cuntz algebra of partial iso-
metries O0

d and after its completion in the C�-norm, the
Cuntz algebra Od. Further, as may be expected,

eiQðΘÞψae−iQðΘÞ ¼ ψb½UðeiQðΘÞÞ�ba: ðA7Þ

With these preliminary statements, we can define the
Drinfel’d double. Functions on GðGÞ have the basis

fa1;���ak;a01���a0k ¼ ψa1ψa2 � � �ψak j0ih0jψ�
a0k
ψ�
a0k−1

� � �ψ�
a0
1
: ðA8Þ

At a point eiQðΘÞ of the group GðGÞ, it has the value

fa1;���ak;a01���a0kðeiQðΘÞÞ
¼ h0jψ�

a0k
ψ�
a0k−1

� � �ψ�
a0
1
eiQðΘÞψa1ψa2 � � �ψak j0i: ðA9Þ

The group GðGÞ acts on these functions by left translation:

eiQðΘÞ⊳fi1;���ik;i01���i0k → eiQðΘÞfi1;���ik;i01���i0k ; ðA10Þ

ðeiQðΘ1Þfi1;���ik;i01���i0kÞðeiQðΘ2ÞÞ ¼ fi1;���ik;i01���i0kðe−iQðΘ1ÞeiQðΘ2ÞÞ:
ðA11Þ

So we have the structure of a Drinfel’d double.

2. The Manin triple

The Manin triple L is a Lie algebra with two subalgebras
L1 and L2 with L1 ∩ L2 ¼ f0g and L ¼ L1 ⊕ L2, and a
metric g for which L1 and L2 are isotropic subalgebras:

gðl0i; liÞ ¼ 0; li; l0i ∈ Li; i ¼ 1; 2: ðA12Þ

We can see that the pairing (A1) implies a Manin triple
for the gauge theory. Thus consider a Lie algebra L defined
as L ¼ SpanðQðΘÞ;MðΦÞÞ and the two subalgebras
L1 ¼ SpanðQðΘÞÞ, L2 ¼ SpanðMðΦÞÞ. We have given
their commutators in (28), (29) and (30). With the pairing
in (A1), we can now define the metric g on L:

gðQðΘÞ; QðΘÞÞ ¼ gðMðΦÞ;MðΦÞÞ ¼ 0; ðA13Þ

gðQðΘÞ;MðΦÞÞ ¼ gðMðΦÞ; QðΘÞÞ

¼
Z
Sn−2

dΩSn−2ðn̂ÞTrðΘ̄∞Φ∞Þ: ðA14Þ

It is clear from these equations that L1 and L2 are isotropic
subalgebras.
In finite dimensions, say d, it is such a metric which has

Oðd; dÞ symmetry with the group Oðd; d;ZÞ underlying
T-duality. What happens here, in infinite dimensions,
remains to be understood.
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3. A comment on magnetic monopoles

Classically, magnetic monopoles can be identified by
examining Φ∞, the test function for MðΦÞ at infinity. Thus
consider G ¼ SUð2Þ and let Φ∞ðn̂Þ lie on a nonzero orbit
of this group. Since Φ∞ðn̂Þ is now SUð2Þ Lie algebra
valued, and the stability group of a point here is Uð1Þ, its
possible values are in S2. But SN−2 is also S2 for N ¼ 4. So
Φ∞ðn̂Þ is a map from S2 to S2. Such maps with winding
number n are associated with the infinite number of test
functions for monopole charge n. Then the classical
observable MðΦ∞Þ is a measure of the magnetic charge
n. In the quantum theory, MðΦ∞Þ is an operator. So we
need a quantum statewith expectation value approximating
the classical answer. This will require a quantum operator
which acting on, say, the vacuum of the theory can create

such a state. As we saw earlier, an ’t Hooft-Polyakov
monopole state twisted by the Chern-Simons term is a
semiclassical candidate. But this issue requires further
investigation.

4. On the local Cuntz algebras

The Cuntz algebras (A5), (A6) can be adapted to local
regions by restricting the supports of Θj to O. It is such
local algebras that arose in the papers of DHR [4–8].
The vector states transforming by the sky group are then

readily constructed as

ψ�
a1ψ

�
a2 � � �ψ�

ak j0i: ðA15Þ
They have unit norm by (A5). They can replace (80) to get a
representation of the sky group and AðOÞ.
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