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ABSTRACT

Recent years have witnessed the flourishing of podcasts, a unique

type of audio medium. Prior work on podcast content modeling fo-

cused on analyzing Automatic Speech Recognition outputs, which

ignored vocal, musical, and conversational properties (e.g., energy,

humor, and creativity) that uniquely characterize this medium. In

this paper, we present an Adversarial Learning-based Podcast Rep-

resentation (ALPR) that captures non-textual aspects of podcasts.

Through extensive experiments on a large-scale podcast dataset

(88,728 episodes from 18,433 channels), we show that (1) ALPR

significantly outperforms the state-of-the-art features developed

for music and speech in predicting the seriousness and energy of

podcasts, and (2) incorporating ALPR significantly improves the

performance of topic-based podcast-popularity prediction. Our ex-

periments also reveal factors that correlate with podcast popularity.
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1 INTRODUCTION

Podcast is a portable and on-demand form of spoken-word audio

content, which has emerged as a significant channel for information,

entertainment, and advertising. According to a recent national

survey [40], as of 2017, there are 67 million monthly and 42 million

weekly podcast listeners in the United States, and the per-listener

average listening time is over five hours per week. Compared to

text and video content, audio is easier to consume when users

have limited visual attention, which makes podcasts a perfect fit
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for commuting, exercising, cooking, and household chores. On the

content supply side, tens of thousands of high-quality podcasts

are produced on a daily basis. For example, most established news

media companies publish content in the form of podcasts.1

Prior work on podcast content modeling focused on the task of

spoken content retrieval [11, 27, 28, 36] aimed at indexing Auto-

matic Speech Recognition (ASR) outputs for media search. Whereas

transcriptions characterize important properties of podcasts (e.g.,

keywords, phrases, and topics), they do not capture conversational,

paralinguistic, vocal, and musical aspects of this medium. These

non-textual properties may inform search [28] and personalized

recommendation [51] as well as content production.

In this paper, we model non-textual characteristics of podcasts

and explore their benefits to podcast-popularity prediction. To

benchmark the modeling performance, we collected a podcast

dataset containing 88,728 episodes from 18,433 channels. In ad-

dition, we crowdsourced labels for a randomly sampled subset,

where each audio snippet was labeled with a seriousness and en-

ergy score. These non-textual characteristics were chosen based on

analysis of iTunes reviews and published literature.

We initially experimented with existing audio modeling algo-

rithms for the task of predicting the seriousness and energy of pod-

casts. These algorithms include state-of-the-art hand-crafted music

and speech features (MFCC [30], IS09 [49], IS13 [48]), and stan-

dard DNN-based representation learning frameworks (autoencoder

and variational autoencoder [12]). However, our experimental re-

sults suggest that these methods manifest suboptimal prediction

performance, because they are unable to capture complex vari-

ations in podcast audio. To address this limitation, we leverage

adversarial learning [13] and investigate an unsupervised learn-

ing algorithm that progressively builds podcast representations

from fine-grained spectrogram details. Adversarial Learning-based

Podcast Representation (ALPR) captures subtleties of complex au-

dio spectrograms and achieves significantly better performance in

predicting non-textual attributes.

In addition, we conducted a podcast-popularity-prediction exper-

iment with different features, including topics mined from transcrip-

tions, existing audio features, and ALPR. We observe significant

performance gain by incorporating ALPR into the topic-based pre-

dictor, whereas there is no improvement in cases where prior audio

features are used. Our experiments also reveal factors that correlate

with podcast popularity, including positively correlated factors (e.g.,

1NPR: http://www.npr.org/podcasts/; New York Times: https://www.nytimes.com/
podcasts/; Washington Post: https://www.washingtonpost.com/podcasts/.

Session 5: Understanding Conversation, Discussion, and Opinions WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

276



perceived energy and topics related to family, politics, crime, and

food), and negatively correlated factors (e.g., extensive use of func-

tional words). These findings may have implications for podcast

recommendation and production.

The main contributions of this paper are three-fold: (1) a labeled

podcast dataset that contains 88,728 episodes from 18,433 channels,

(2) a representation learning algorithm that captures non-textual

characteristics of podcasts and significantly outperforms existing

approaches from speech and music communities, and (3) enhanced

podcast-popularity prediction by incorporating improved podcast

representation. The code and dataset are available at: https://github.

com/ylongqi/podcast-data-modeling

2 PROBLEM FORMULATION AND
LITERATURE REVIEW

We set out to construct features or representations that are predic-

tive of non-textual podcast characteristics. End applications, such

as recommendation engines [52], can then leverage these features

as additional data inputs. This problem formulation is inspired by

research in other content domains [47]. For example, computer

vision has focused on designing informative image features for

object identification and classification, where these features were

hand-crafted [31] or were the outputs of the last layer of a Deep

Neural Network (DNN) [18].

Based on this problem formulation, we evaluate the modeling

performance of different features by using them for binary classi-

fication of non-textual attributes and measuring the classification

accuracy. Such an approach has been validated and widely adopted

in other fields [47]. We chose seriousness and energy attributes based

on analysis of iTunes reviews and related literature:

iTunes reviews analysis.We collected 850K reviews that iTunes

subscribers posted against 2.5K podcast channels and counted the

word frequencies in all of the five-star reviews. The top adjectives

that listeners mentioned were funny, entertaining, and hilarious,

which reveals that the humorousness or seriousness is an important

attribute of an appealing podcast.

Literature review. We also studied the music recommendation

literature [16, 46] to discover non-textual attributes that may be

important for podcasts. Previous work [16, 46] has suggested that

(fast or slow) rhythm and (energetic or calm) sound are important

attributes for context-aware music recommendation. Since consum-

ing contexts are significantly overlapped for music and podcasts,

the energy may become an important podcast characteristic.

Our work builds on prior research on speech modeling, spoken

content retrieval, and music information retrieval.

2.1 Speech modeling

A large portion of podcasts are in the form of conversational, in-

terview, or monologue speech, which have been widely studied by

the speech community in the context of Automatic Speech Recog-

nition (ASR) [15], dialog systems [29], and speech perception [21].

However, the datasets that have been studied so far are, by and

large, limited to the pure speech form, which lacks diversity and

variability compared to podcast audio. For example, TIMIT [9] con-

tains clean speech recordings of English speakers reading sentences,

TED-LIUM [42] transcribed TED talks for speech language model-

ing, LibriSpeech [38] collected clean speech from audiobooks, and

the command dataset [41] includes speech data for short spoken

command recognition. Recently, Google released AudioSet [10], a

large scale dataset that contains sound clips collected from YouTube

videos. Although it includes human speech as one of the categories,

it is unclear how it can be used beyond classifying sound events.

Our work builds upon and greatly extends models developed in

the speech community to analyze podcast audio. We compare our

algorithm against the state-of-the-art representations for speech

and demonstrate that our learned features are significantly more

representative of the non-textual properties of podcasts.

2.2 Spoken content retrieval

The spoken content retrieval community [11, 27, 28, 36] has studied

podcasts in the context of web search [3, 8, 14, 33, 37]. For exam-

ple, Fuller et al. [8] explored the usage of term clouds for podcast

visualization, Besser et al. [3] studied the user goals and strategies

for podcast search, and Goto et al. [14, 33, 37] built the Podcastle

system that used keywords to index podcast content. The existing

content modeling algorithms for podcasts are limited to transcrip-

tion analysis, which is insufficient in characterizing the diverse

nature of podcasts.

In this work, we investigate the problem of modeling non-textual

properties of podcasts, which was not studied previously. The de-

veloped model has applications not only to search, but also to other

podcast applications, e.g., recommendation and content production.

2.3 Music information retrieval

Research from the Music Information Retrieval (MIR) community

analyzed music audio to classify various aspects of musical content.

For example, genre [2], chord [19], and rhythm [4]. Prior work has

applied these analysis to many applications, such as music recom-

mendation [5, 44–46, 50]. Although many podcast audio snippets

contain background music, and it is an important aspect of this

medium, musical analysis alone does not capture vocal, paralinguis-

tic, conversational, and presentation aspects of podcasts.

In this work, we compare our learned representations to the

classical feature sets used in the music community. We demon-

strate that solely analyzing music yields suboptimal performance

in characterizing podcasts and predicting their popularity.

3 PODCAST AUDIO REPRESENTATIONS

Representations for podcast audio can either be hand-crafted with

expert knowledge or learned from data [12]. In this section, we

review existing solutions from various domains, discuss their limi-

tations, and propose an adversarial learning-based representation

learning approach tailored for complex podcast audio.

3.1 Existing approaches

Hand-crafted features. In the speech and music communities [1,

48, 49], researchers have designed many feature sets to encode

various audio properties. For example, MFCC [50], IS09 [49], and

IS13 [48]. These representations achieve state-of-the-art perfor-

mance (on par with supervised convolutional neural network based

models) in many prediction tasks, such as recommendation [50]
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and emotion recognition [1]. However, these feature sets fall short

in characterizing the diverse nature of podcasts because funda-

mentally, podcast audio includes both musical and heterogeneous

spoken components. Practically, due to the rapid growth of new

channels, it is labor-intensive to exhaustively explore the content

space of podcasts and manually design all the important features.

Standard feature learning approaches. Standard DNN-based

representation learning algorithms, such as AutoEncoder (AE) [12]

and Variational AutoEncoder (VAE) [12], tend to capture global

patterns of input data but lose nuanced details. For example, in the

image-to-image translation task, Isola et al. [22] demonstrated that

the encoder–decoder architecture produces images that are mostly

blurred. While such limitations are not critical for applications

that rely on global patterns (e.g., natural image classification), they

are vital for podcast audio modeling since the vocal and musical

variations are usually manifested locally in spectrograms.

3.2 Adversarial learning-based approach

To tackle the limitations of existing methods, we apply adversarial

learning [13] to learn podcast audio representations from data.

Motivations. Because of the heterogeneity of podcast audio, an

ideal feature learning algorithm needs to be able to attend to subtle

variations in the data, for which adversarial learning has shown

great promise. For example, recent work demonstrated the power of

Generative Adversarial Networks (GAN) in generating images with

fine-grained textures [39]. Adversarial networks achieve this by co-

evolving a generator and a discriminator. Throughout the process,

a weak component is easily defeated by its opponent, which results

in a final equilibrium where both components are relatively strong.

In other words, a strong generator urges the discriminator to learn

non-trivial feature representations that capture nuanced variations

of input data.

General Framework. As shown in Fig. 1, our proposed frame-

work operates on spectrograms, a commonly used raw representa-

tion of audio signals. It consists of two major components: a gen-

erator trained to generate spectrograms that are indistinguishable

from real ones, and a discriminator trained to distinguish between

real and generated spectrograms. After training, the discriminator

network is used as the feature extractor, and the corresponding

output is treated as the podcast audio representation.

Following the notation from [13], we use G(z;θд) to represent
the generator function (parameterized by θд ), which maps random

vectors z drawn from a fixed distribution pz (z) to generated spec-

trograms, and use D(x ;θd ) to represent the discriminator function

(parameterized by θd ) that takes (real or generated) spectrograms

as inputs and ouputs feature representations. Our adversarial frame-

work trains D and G networks to optimize a min-max criteria,

min
θд

max
θd ,W ,b

Ex∼ppodcast(x )[log(σ (W · D(x ;θd ) + b))]+

Ez∼puniform(z )[log(1 − σ (W · D(G(z;θд);θd ) + b))],

where σ (x) = 1
1+e−x , andW , b, θд and θd are trainable parameters.

To optimize for this objective, we alternately train (W , b, θd ) and
θд , as Fig. 1 shows. The parameters θд are fixed while training (W ,

b, θd ), and vice versa. Essentially, the generator is trained to fool

the discriminator by generating examples that the discriminator

Generator Discriminator CE

Label=1 (real)

CE

CE

Label=1 (real)

Label=0 (generated)

1. Training the generator

2. Training the discriminator and the classifier

Generator

Discriminator

vectors sampled from a uniform distribution features 

(ALPR)

spectrograms of real podcast audio

Figure 1: Our adversarial framework learns podcast audio

representations. We alternately execute two steps to train

the generator and the discriminator. The trainable compo-

nents are shaded in both steps, and the green vectors are

ALPR. CE: Cross Entropy.
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Figure 2: The architecture of the generatorG. The input z is

a random vector sampled from a uniform distribution, and

the output x is the generated spectrogram with depth of 1.

Each cube represents the output of a layer and is labeled

with its height, width and depth (i.e., the number of chan-

nels or feature maps).

perceives as real, and the discriminator is trained to attend to pat-

terns that reliably distinguish generated spectrograms from real

spectrograms. In reality, training such adversarial networks is noto-

riously hard and unstable [43]. To stabilize the training, we leverage

the feature matching technique proposed in [43]. The idea is to

replace the training objective for the generator with the objective

of matching features’ statistics, that is, minimizing the distances be-

tween the element-wise mean of D(G(z)) and D(x). Specifically, the
generator is trained to solve the following minimization problem:

min
θд

‖Ex∼ppodcast [D(x ;θd )] − Ez∼puniform [D(G(z;θд);θd )]‖
2
2

Next, we describe the detailed design of the two major components.

The generatorG . The design of the generatorG is summarized

in Fig. 2.G takes as input a random vector z drawn from a uniform

distribution and produces a spectrogram x of shape (h,w, 1), where
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Figure 3: The architecture of the discriminator D. The input
x is a real or generated spectrogram, and the output D(x) is
the ALPR feature representation (Legends follow Fig. 2).

h is the number of components used in the mel filter banks (i.e. the

frequency granularity) and w is the number of sliding windows

(time length). In this paper, we set h = 128 andw = 512.2

The generator consists of a fully connected layer and four de-

convolutional layers (i.e., fractionally-strided convolutions) [35].

The fully connected layer projects the random vector z into a 8 ×

32 × 1024 tensor that contains 1024 feature maps (channels) with

size (8, 32) (i.e., the value of each cell is a linear combination of the

elements in z). Afterwards, successive de-convolutional layers with
a stride of 2 and the filter size of (5, 5) gradually upsample feature

maps from size (8, 32) to (128, 512). In contrast to a convolutional

layer, a de-convolutional layer connects a single input to multiple

outputs in each filter window (See [35] for details). In our network,

after each deconvolutional layer, the width and height of feature

maps get doubled, and the number of channels get halved. At the

end, the generator outputs the spectrogram x (a single channel

with size (128, 512)). We apply Batch Normalization (BN) [20] and

Rectified Linear Units (ReLU) [34] to the outputs of each layer except

the last layer, for which we use element-wise tanh to normalize

output values to the range of [−1, 1]. ReLU adds non-linearity to the

network, and BN addresses the problem of vanishing and exploding

gradients during training [20].

The discriminator D. The design of the discriminator D is

illustrated in Fig. 3. Compared to the generator, D maps an input

spectrogram x to a dense feature vector D(x), which is consumed

by a classifier to predict the truthfulness (Fig. 1). Specifically, the

discriminator contains (1) an initial sequence of convolutional lay-

ers that downsample the input spectrogram from size (128, 512) to

(8, 32), and the number of channels is doubled whenever the width

or height is halved, (2) a global pooling layer that independently

averages every feature map and outputs a 512-dimensional feature

vector (the dimensionality is equal to the number of channels),

and (3) a fully connected layer that produces the high-dimensional

feature representation D(x). We apply BN and Leaky ReLU to the

outputs of all layers except the global average pooling layer, and

BN is not applied to the first convolutional layer. LeakyReLU, in-

stead of ReLU, is used to stabilize the model training [39]. We find

that the bottleneck structure (global pooling+fully connected) used

in the discriminator is critical for the feature learning, and the

same evidence was also found in other applications using deep

convolutional neural network (CNN) [18].

2With a window size of 2048, a step size of 1024, and a sampling rate of 44100Hz, a
spectrogram spans approximately 12s of audio.

0 1000 2000 3000

Society & Culture
Business

Arts
Sports & Recreation

Health
Comedy

Education
Games & Hobbies

TV & Film
Religion & Spirituality

Technology
News & Politics

Music
Science & Medicine

Kids & Family
Government & Organizations

Figure 4: Number of channels collected in each of the 16

iTunes podcast categories.

corpus:

88,728 episodes

(18,433 channels)

SA (ALPR training & attributes pred.):

42,370 episodes (2,160 snippets labeled)

SB (popularity pred.):

46,358 episodes (6,511 episodes labeled)

Table 1: Summary of the podcast corpus. The corpus is ran-

domly divided into two disjoint sets for different prediction

tasks. The length of the labeled audio snippets in SA is 12s.

Model generalization. Our framework is generally applicable

to podcast data — although the model has fixed parameters and

is trained using spectrograms with a fixed shape, it can be used

to extract features for spectrograms of any time length, because

convolutional filters are agnostic to input shapes, and the global

average pooling layer reduces feature maps of any size into a fixed

size (512-dimensional) vector.

4 DATASET COLLECTION AND ANNOTATION

We collected a large-scale podcast dataset for model training and

evaluation. Specifically, we scraped the iTunes podcast directory

and kept only active channels that published at least five episodes

from July 2016 to July 2017. For each channel, we downloaded the

raw audio of the most recent five episodes and deleted ill-formatted

files. Our podcast audio corpus (summarized in Table. 1) contains

88,728 episodes from 18,433 channels covering podcasts from awide

range of categories, as shown in Fig. 4. In this work, we used at most

the leading 10minutes of each episode. To test the generalizability of

different features, we evenly split episodes into two disjoint sets (SA
and SB ) for the attributes-prediction and the popularity-prediction

tasks, respectively (Table. 1).

4.1 Attributes annotation

Wedivided sound signals in SA into snippets of 12s each (i.e., 524,288

data points under standard sampling rate of 44100Hz) and randomly

sampled 2,160 audio snippets from distinct episodes to collect labels.

We used Amazon Mechanical Turk platform for annotations. Each

worker was instructed to indicate how energetic and serious is an

audio snippet by using sliders ranging from calm to energetic and

from humorous to serious respectively (we ensured that workers

played the entire sample) (Fig. 5). For each snippet, we collected

labels from five distinct workers. To calibrate the scale of the at-

tributes, we provided an audio sample for each adjective shown in

Fig. 5, and workers were required to listen to the samples before

starting the annotation task. To control label quality, we recruited

only workers who were located in United States, had over 90%
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How calm or energetic is the audio presentation?

calm energetic

How humorous or serious is the audio presentation?

humorous serious

Does the above audio presentation contain men’s or women’s voices?

Men’s Women’s Both Other

Figure 5: A sample user interface for the Amazon Mechan-

ical Turk task. Each task consists of 12 repetitive blocks

shown in this figure but with different audio sources. We

place the initial position of the sliders at the middle, and

the last question is single-choice.

0

250

500

serious (10)humorous (0) calm (0) energetic (10)

negative positive positivenegative

C
o

u
n

t

Figure 6: The distributions of the annotated seriousness and

energy scores. Under each attribute, the score is discretized

into 10 bins. Audio snippets that have scores higher than the

green dotted lines are treated as positive samples, and those

that have scores lower than the red dotted lines are treated

as negative samples.

approval rate, and were identified as masters by the mechanical

turk platform. In addition, we grouped audio chunks into batches

of size 12 (i.e., each task contained 12 snippets)3 and added a verifi-

cation question for each audio snippet, that is, does the above audio

presentation contain men’s or women’s voices? (Fig. 5). Workers who

submitted wrong answers4 to the verification question were ex-

cluded from the labeling task, and we recollected the corresponding

labels so that every audio snippet had five valid annotations. At the

end, 178 unique and valid workers participated in the annotation.

4.2 Evaluation dataset for attributes prediction

To build an evaluation dataset for snippet-level attributes, we con-

structed a balanced training set (i.e., it contains the same number

of positive and negative samples) and a disjoint, balanced, and

held-out testing set, for each attribute.

For each annotated audio snippet, we discretized workers’ rat-

ings from 0 (calm or humorous) to 10 (energetic or serious) based

on the position of the slider and regarded the median of five an-

notations to be the ground truth seriousness or energy score. In

Fig. 6, we show the distributions of both scores among 2,160 au-

dio snippets: the seriousness score is uni-modally distributed and

is skewed towards serious while the energy score is bi-modal. To

use numerical ground truth scores for binary classifications, we

treated the audio snippets that were scored at the top 25 percentile

as positive samples and the snippets that were scored at the bottom

3Workers were compensated for $0.5 per batch (Estimated hourly wage: $7.5).
4We manually checked inconsistent answers from different workers.

25 percentile as negative samples (Fig. 6), because the boundary

between somewhat energetic/serious and somewhat calm/humorous

may be blurry. Such a process is a widely adopted practice to alle-

viate potential ambiguity [6]. We also tried other score aggregation

methods5, and they produced significantly overlapped binary la-

bels. To demonstrate the reliability of the labels, we computed the

Krippendorff’s Alpha coefficient [17, 25] with interval distance [25],

that is, d = (a − b)2 where a and b are two labels. The coefficient

was chosen for its ability to handle numerical labels. The agree-

ment scores for attributes energy and seriousness were 0.64 and 0.77

respectively for snippets in our training and testing sets. According

to Landis et al. [26], annotations for both attributes have reached

substantial consensus. Finally, for each attribute, 540 samples were

identified as positive, and another 540 were identified as negative.

We split them evenly and randomly into a training set and a testing

set (i.e., each set contained 270 positive and 270 negative samples).

5 PREDICTING NON-TEXTUAL ATTRIBUTES

With the collected attributes-prediction dataset, we compared the

performance of ALPR to several baseline features.

5.1 Experimental setups

Training ALPR. We used all chunked audio snippets in SA to train

ALPR. For each audio snippet (with 524,288 data points each), we

calculated log-scaled mel-spectrograms with 128 components using

a window size of 2048 and a step size of 1024, which produced

spectrograms with shape (128, 512). The values in spectrograms

were capped to the range of [−4, 0] and then linearly re-scaled to

the range of [−1, 1]. Our final training set contains 2,081,325 unique

podcast audio spectrograms.

We used Adam [24] for optimization. During training, for each

iteration, the generator was trained twice, while the discriminator

was trained once. We found that this was critical in training the

adversarial network in order to prevent the training loss going

to zero while training the discriminator. Other hyperparameter

settings of our model include: the random vector z was set to be

100 dimensions and was sampled from a uniform distribution over

the range [−1, 1]; the dimensionality of the feature representation

(D(x)), was set to be 4096; and the model was trained for 75,000

iterations with the batch size of 64.

Baselines. The baselines include three advanced hand crafted

feature sets from music and speech communities, as well as AE and

VAE that learn features from unlabeled data using CNN:

MFCC. Mel-frequency Cepstrum Coefficients (MFCC) is a classi-

cal feature set used in many music and speech applications, such

as Music Information Retrieval (MIR) [30], recommendation [50],

and speech recognition [7]. The baseline MFCC feature set was

calculated as follows: (1) we computed 13 MFCCs from a window

of size 2048. With a step size of 1024, 512 vectors were derived

for each audio chunk in the dataset, then (2) we used the K-means

algorithm to learn a dictionary of 4096 elements from a randomly

selected subset of spectrograms, and each MFCC vector was as-

signed to the closest element (We set the size of the dictionary to

5The mean of five annotations produced labels overlapped 95% (seriousness) and 98%
(energy), and applying the z-score normalization for each worker before calculating
the median produced labels overlapped 82% (seriousness) and 80%(energy).
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be the dimensionality of ALPR). Finally, (3) for each audio chunk,

we counted the number of times that each element or cluster was

assigned, and the 4096-dimensional bag-of-words vector was the

MFCC representation of a podcast audio snippet.

IS09. IS09 [49] is the feature set used in the INTERSPEECH 2009

Emotion Challenge. It is a 384-dimensional feature vector that cov-

ers a wide range of low-level descriptors for various audio patterns,

e.g., frequency, pitch, harmonics, and frame energy.We refer readers

to the original challenge for feature details [49]. Until recently [1],

it still achieves performance on par with supervised CNN-based

algorithms in speech emotion recognition.

IS13. IS13 [48] is the feature set used in the INTERSPEECH 2013

computational paralinguistics challenge, which includes detecting

non-linguistic events such as laughter or sigh of a speaker, rec-

ognizing conflicts in group discussions, classifying emotions, and

determining the type of pathology of a speaker. Because of the

complexity and diversity of these tasks, 6373 hand-crafted features

were introduced, which is arguably the best feature set for speech

related tasks. Similar to IS09, IS13 also shows performance on par

with supervised CNN-based algorithms [1]. We used openSMILE

software [7] to extract IS09 and IS13 features for audio snippets.

Autoencoder (AE) and Variational AutoEncoder (VAE). Autoen-

coder [12] consists of an encoder that transforms input data to

fixed-sized representations and a decoder that reconstructs input

data from the representations. The training is driven by minimiz-

ing a reconstruction error, and the trained encoder is used as the

feature extractor. Different from AE, for VAE, the encoder outputs

a distribution parameterized by two vectors representing mean and

variance, respectively, and the decoder takes as input a sampled

vector from the distribution. During training, in addition to the

reconstruction error, VAE leverages KL-divergence to regulate the

generated distributions to a standard normal. Eventually, the mean

vectors are treated as representations. To design AE and VAE that

are directly comparable to our adversarial learning framework, we

used the structure of the discriminator D (Fig. 3) as the encoder

and the structure of the generator G (Fig. 2) as the decoder, that is,

we replaced the vector z in the generator with the direct (AE) or

sampled outputs (VAE) of the discriminator. We used element-wise

Mean Square Error (MSE) to quantify the reconstruction loss.

We trained the baseline AE and VAE with the same amount of

data (i.e., 2,081,325 samples), training procedure (i.e., Adamwith the

batch size of 64), and convergence criteria (i.e., 75,000 iterations) as

ALPR. We also used the same model parameter settings except that

we used 32 channels instead of 64 for the output of the first fully

connected layer in the decoder (generator) because the original fully

connected layer (4096×8×32×64) is memory intractable. Although

we cut the number of channels into half (only for the first layer of

the decoder), the model capacity of AE and VAE is still larger than

our adversarial framework (4096× 8× 32× 32 � 100× 8× 32× 64).

5.2 Evaluation protocol

Given a baseline feature or ALPR and a classifier, we performed a

model selection for the classifier’s regularization parameters via

5-fold cross-validation in the training set. We chose the parameters

that achieved the best cross-validation performance and retrained

the model on the whole training set. Finally, the performance on

the held-out testing set was measured using the classification ac-

curacy and the Area Under AUC Curve (AUC). To control for di-

mensionality, we additionally conducted experiments with reduced

384-dimensional feature vectors. 384 is the lowest dimensionality

among all baselines. Principle Component Analysis (PCA) was ap-

plied for the dimensionality reduction. We considered two major

classifiers, that is, logistic regression (LR) and linear support vector

machine (SVM).

5.3 Results and analysis

We present the Precision-Recall (PR) and ROC curves of different

LR-based seriousness and energy classifiers in Fig. 7 and Fig. 8 re-

spectively. The evaluation results demonstrate that, under most

scenarios, ALPR significantly outperforms other baselines, includ-

ing the state-of-the-art feature sets (MFCC, IS09, and IS13) and

classical DNN-based feature learning algorithms (AE and VAE).

However, under low-recall scenarios, the advantage of ALPR is in-

conclusive due to the sparse evaluation samples. The experiments

with SVM-based classifiers produced similar results.

To more deeply understand the underlying reasons of ALPR’s

superior performance, we examined the quality of generated spec-

trograms from AE, VAE, and the adversarial learning framework.

Intuitively, if generated samples are similar to real spectrograms,

the discriminator may learn stronger feature representations. We

generated spectrograms by sampling the generator inputs from the

exact or estimated input distributions. For the adversarial learning

framework and VAE, we sampled inputs from a [−1, 1] uniform

distribution and a standard normal distribution respectively. For

AE, we first computed representations D(x) for 40,000 randomly se-

lected spectrograms from SA, and then estimated a multivariate nor-

mal distribution through maximum likelihood, i.e., D(x) ∼ N(μ, Σ),
where μ is the mean vector, and Σ is the co-variance matrix. Finally,

the inputs were randomly sampled from the estimated distribution.

In Fig. 9, we present generated spectrograms from randomly

sampled inputs for AE, VAE and the adversarial learning framework

respectively. For comparison, we also include real spectrograms

randomly selected from SA. The spectrograms generated by the

adversarial network are almost indistinguishable from real ones,

and contain clear details of podcast audio, such as music, pauses,

conversations, and overlaps, whereas the generations from AE and

VAE lose most of the fine-grained signals, and there is hardly any

variation with different input vectors. This phenomenon resonates

with our original motivation of using adversarial learning to capture

subtle spectrogram variations.

6 PREDICTING PODCAST POPULARITY

The previous experiment demonstrates that ALPR significantly

outperforms existing audio modeling methods in characterizing

non-textual properties of podcasts. In this section, we further in-

vestigate to what extent ALPR can improve the performance of end

applications. Specifically, we focus on the task of popularity predic-

tion, which could enable popularity-based recommendations for

cold-start podcasts, and address fundamental questions of podcast

production, such as, what makes a podcast popular? and can we

predict the popularity of a podcast before it goes to public?
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Figure 7: Precision-Recall (PR) and ROC curves of the LR-based seriousness classifiers with different input features. Legends

in (a) and (b) show classification accuracy, and those in (c) and (d) show AUC values. We also experimented with SVM-based

classifiers, which produced similar results.

0 0.5 1
Recall

0.5

0.75

1

P
re
ci
si
o
n MFCC (0.772)

IS09 (0.811)

IS13 (0.831)

AE (0.815)

VAE (0.780)

ALPR (0.898)

(a) PR curve (original dim.).

0 0.5 1
Recall

0.5

0.75

1

P
re
ci
si
o
n MFCC (0.780)

IS09 (0.811)

IS13 (0.837)

AE (0.807)

VAE (0.778)

ALPR (0.896)

(b) PR curve (384 dim.).

0 0.5 1
False Postive Rate (FPR)

0

0.5

1

T
ru
e
P
o
si
ti
ve

R
a
te

(T
P
R
)

MFCC (0.865)

IS09 (0.884)

IS13 (0.921)

AE (0.885)

VAE (0.846)

ALPR (0.950)

(c) ROC curve (original dim.).

0 0.5 1
False Postive Rate (FPR)

0

0.5

1

T
ru
e
P
o
si
ti
ve

R
a
te

(T
P
R
)

MFCC (0.870)

IS09 (0.884)

IS13 (0.922)

AE (0.882)

VAE (0.846)

ALPR (0.950)

(d) ROC curve (384 dim.).

Figure 8: Precision-Recall (PR) and ROC curves of the LR-based energy classifiers with different input features. Legends in

(a) and (b) show classification accuracy, and those in (c) and (d) show AUC values. We also experimented with SVM-based

classifiers, which produced similar results.

A
E

V
A

E
A

d
v
.

R
ea

l

Figure 9: Real and generated podcast audio spectrograms.

We compare the generations fromAE, VAE and the adversar-

ial network (Adv.) to real spectrograms randomly sampled

from our dataset. The Adv. model captures more nuanced

details of podcast audio spectrograms.

6.1 Evaluation dataset

We built an evaluation dataset by leveraging episodes from set SB ,
which is disjoint from set SA used in the previous experiment. To

ensure the timeliness of popularity labels, we used only episodes

that were published in the most recent two weeks and were from

distinct channels; that is, for any podcast channel, at most one

episode was included in the dataset. We defined the popularity of a

channel as its ranking in the iTunes chart and collected popularity

labels from the iTunes RSS feed: channels that were listed as top

200 podcasts6 under any of the 16 categories were treated as top

channels, and episodes from these top channels were regarded as

popular ; otherwise, episodes were long-tail. Finally, the evaluation

dataset contains 6511 episodes, among which 837 were identified

as popular. We randomly split the dataset into a training set (60%)

and a testing set (40%)7.

6.2 Baselines and evaluation protocol

To understand the utility of non-textual features beyond text, we

constructed a topic-based baseline representation, referred to as TR.

Specifically, we used a state-of-the-art commercial speech recogni-

tion cloud service to transcribe all episodes in set SB and trained

a topic model on the transcriptions using Mallet toolkit [32]. We

chose to model 100 topics, because it produced the highest coher-

ence score among {10, 50, 100, 200}. The trained topic model was

then used to infer topic distributions for episodes in the evaluation

dataset. In addition, for each episode, we extracted ALPR and IS13.

IS13 was chosen because it achieved the best performance among

existing features in predicting non-textual attributes. For ALPR,

an episode representation was derived by taking the element-wise

average of representations of chunked audio snippets (12s each).

We chose such an approach because the average of vectors have

been shown to be powerful in representing sets and sequences,

such as sentences [23]. To make ALPR and IS13 directly compara-

ble to TR, we used PCA to reduce their dimensionality to 100. We

followed the same protocol as the previous experiment to train and

6The snapshot was taken at 10/02/2017.
7The training set contains 503 popular episodes and 3405 unpopular episodes, and the
testing set contains 334 popular episodes and 2269 unpopular episodes
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Figure 10: Podcast-popularity-prediction performance. Five

feature sets are compared against AUC, and are evaluated

with varied duration of podcast data for feature extraction.

Shaded areas represent Standard Error of Mean (SEM).

test logistic regression-based popularity classifiers, and all features

were z-normalized before feeding into classifiers.

6.3 Results and analysis

We explore how popularity-prediction performance may be af-

fected by the duration of podcast audio that representations were

computed on, that is, we varied the duration by feeding in only

the leading N minutes of podcast audio, where N ranges from 1

through 10. As shown in Fig. 10, in addition to raw features, we

experimented with two feature combinations, that is, ALPR+TR

and IS13+TR. These results show that (1) ALPR+TR achieves signifi-

cantly better performance than ALPR or TR alone, (2) IS13+TR does

not outperform TR, (3) ALPR achieves competitive performance

with TR and performs significantly better than IS13, and (4) incor-

porating more data to compute features improved performance

only initially, where N ≤ 5. In summary, ALPR brings significantly

performance gain relative to predictions based on text alone, or

with prior audio features. Also, the popularity of podcasts can be

predicted well with the leading five minutes of audio data.

Built on these predictive models, we also investigate textual and

non-textual properties that correlate with podcast popularity. For

textual factors, we compute average topic distributions for popular

and long-tail episodes respectively and conduct an one-sided inde-

pendent t-test for every topic dimension to test whether the topic is

more frequent in popular episodes than long-tail ones. To account

for false positives that may result from multiple significance tests,

we only report results that pass the Bonferroni-corrected signifi-

cance level (i.e., α = 0.05/100 = 5e-4). The results in Table 2 reveal

topics that indicate popularity, such as crime (T1 and T2), family

(T4 and T6), and politics (T9), as well topics that indicate long-tail,

such as functional words (T11 and T14).

For non-textual factors, we used best-performed logistic regres-

sion models from the previous experiment (Section 5) to predict the

energy and seriousness scores for chunked audio snippets of every

episode. Based on predicted scores, for each time slot, we calculated

an average score for popular episodes, as well as for long-tail ones.

As shown in Fig. 11, in general, the energy level decreases over

time. However, popular episodes have significantly higher energy

ID Topic (top words) Sig.

T1 police, crime, case, prison, murder, found ↑↑↑

T2 war, military, army, battle, attack, force ↑↑↑

T3 story, man, thought, night, back, told ↑↑↑

T4 world, human, people, idea, sense, reality ↑↑↑

T5 food, eat, make, restaurant, good, eating ↑↑↑

T6 kids, children, child, family, parents, home ↑↑↑

T7 show, tv, shows, watch, comedy, great ↑↑↑

T8 language, english, word, words, means, speak ↑↑↑

T9 trump, president, election, donald, political, news ↑↑↑

T10 free, show, site, podcast, check, support ↑↑↑

T11 yeah, good, kind, thing, guess, pretty ↓↓↓

T12 radio, show, talk, today, great, program ↓↓↓

T13 kind, yeah, stuff, lot, cool, good ↓↓↓

T14 man, year, son, la, de, car ↓↓↓

Table 2: Topics that pass the Bonferroni-corrected signifi-

cance level. For each topic, we select the top six words with

the highest weights. An one-sided independent t-test is used

to test whether a topic is more frequent in popular episodes

than long-tail episodes (↑↑↑: p < 0.001, ↓↓↓: p > 0.999).

* ** * ** ***
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** ***
** ***
***
***
***
***
***
***
***
***
** ***
* * * ***
** ***
** ***
** ** ***
** * ** ** * * * ***
***
***
** *
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S
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(a) Energy.
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** * * * *
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Figure 11: The average energy and seriousness scores for pop-

ular and long-tail episodes. An average score is computed

for every chunked time slot (12s each). For every slot, a two-

sided independent t-test is used to test whether the mean

score is different across two conditions (∗∗∗: p < 0.001, ∗∗:

p < 0.01, ∗: p < 0.05). Shaded areas represent SEM.

levels than long-tail episodes after one minute into an episode. Such

differences are not found in terms of seriousness levels.

7 CONCLUSIONS AND FUTUREWORK

We modeled non-textual characteristics of podcasts and presented

an Adversarial Learning-based Podcast Representation. Through ex-

tensive experimentation with attribute-classification tasks, as well

as a podcast-popularity-prediction task, ALPR was shown to signif-

icantly outperform existing approaches for capturing non-textual

properties of podcasts and improving performance of end applica-

tions. In addition, we also contributed a large-scale podcast dataset

that was partially labeled through crowdsourcing. This paper is an

early step in building algorithms to model podcast content. Future

work should address: (1) characterizing broader non-textual prop-

erties of podcast content, (2) modeling podcast content through

multi-channel data fusion, and (3) studying the effectiveness of

podcast content features in personalized recommendations.
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