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ABSTRACT
Traditionally, recommendation systems are built on the assumption
that each service provider has full access to all user data generated
on its platform. However, with increasing data privacy concerns
and personal data protection regulation, service providers such as
Google, Twitter, and Facebook are enabling their users to revisit,
erase, and rectify their historical profiles. Future recommendation
systems need to be robust to such profile modifications and user-
controlled data filtering. In this paper, we explore how recommen-
dation performance may be affected by time-sensitive user data
filtering, that is, users choosing to share only recent “N days” of
data. Using the MovieLens dataset as a testbed, we evaluated three
widely used collaborative filtering algorithms. Our experiments
demonstrate that filtering out historical user data does not sig-
nificantly affect the overall recommendation performance, but its
impact on individual users may vary. These findings challenge the
common belief that more data is essential to better performance,
and suggest a potential win–win solution for services and end users.
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1 INTRODUCTION
The classical personalization framework assumes that central ser-
vices have absolute control over user-generated data. Under such a
framework, recommender systems are built on the complete view
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of users’ historical profiles. However, with increasing data privacy
concerns and the emergence of personal data protection regulations,
users are being granted privileges to selectively share personal data.
For example, Google’s MyActivity [3] enables users to review their
account activities and delete specific items from the history. Simi-
larly, some users choose to delete all of their Facebook data. Since
the EU General Data Protection Regulation (GDPR) [1] took ef-
fect in May 2018, services have been required to provide greater
transparency regarding data usage and grant users with controls
over their own data. User-controlled data filtering will become a
common practice in the future.

The paradigm shift from central to distributed data control poses
challenges to the design of recommendation algorithms, as they
need to be robust to ad hoc user data manipulation. In this paper, we
take an initial step in exploring how the performance of different
recommendation algorithms may be affected by time-sensitive user
data filtering, that is, users choosing to share only recent “N days”
of data. Such a mechanism has been widely deployed by many
service providers [2].

Specifically, through an experiment using the MovieLens dataset
and three widely used recommendation algorithms, we show how
recommendation performance is affected by (a) the percentage of
users who filter their data and (b) the time span of the shared data
(i.e., the most recent N days). In addition, we investigate how the
changes in performance are attributed to different groups of users
(e.g., users who filter their data, users who share complete data, and
new users who have no historical data). Our main findings include:

• F1: Population-level recommendation performance is not af-
fected, as long as users keep at least 60 days’ worth of data.

• F2: Incorporating complete user interaction records results in
sub-optimal recommendation performance.

• F3: Data filtering has little impact on recommendations for cold-
start users and users who share their complete history. Users
who choose to filter may be negatively affected if N is small.

Our findings suggest a potential win–win solution for services
and end users: It is possible to achieve competitive or even better
performance while granting time-based user data control.

2 RELATEDWORK
Our work is inspired by two lines of research: privacy-aware rec-
ommendation and temporal collaborative filtering.

In regard to privacy-aware recommendation, Canny et al. [6] first
proposed a peer-to-peer collaborative filtering system where users
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have full control over their log data. Berkovsky et al.[5] investigated
the trade-off between privacy and accuracy in such a decentralized
setting. The authors studied how data modification techniques
such as obfuscation could protect user privacy without hampering
accuracy. Similar techniques were also evaluated in [14, 18]. Privacy-
aware collaborative filtering has also been explored in centralized
recommendation systems. Polat et al. [15] leveraged randomized
perturbation to disguise user data. However, user-controlled data
filtering techniques, such as removal of out-dated records based on
users’ time preferences, have not yet been investigated in either
setting. To the best of our knowledge, our work is the first to explore
this problem.

In terms of temporal collaborative filtering, previous work lever-
aged the time factor to improve recommender performance. For ex-
ample, Sugiyama et al. [17] designed an adaptive web search engine
by exploiting long-term and short-term user profiles. The authors
used browser history from the previous N days to construct persis-
tent interests and browser history for the current day to capture
ephemeral aspects; Ding et.al. [7] used a time-weighting scheme
to down-weight older user profiles; Baltrunas et al. [4] ensembled
overlapping sub-profiles that represent users in different time con-
texts; Koren et al. [11] developed temporal dynamics modeling into
factorization models and improved the quality of predictions. How-
ever, previous temporal recommendation models assumed access
to complete user records. Our work investigates how user-driven
data filtering may affect recommender performance.

3 EXPERIMENTS
The experiments were designed to understand how different time-
based user data filtering affects recommendation performance. We
considered two control variables: P , the percentage of users choos-
ing to filter, and N , the time span of the data shared by each user.
For example, P = 0.25 and N = 30 refers to the condition that 25%
of users share their most recent 30 days of data, while the remaining
75% of users share their complete profiles.

3.1 Experimental setup
The goal of the experiments was to compare the performance of
recommendation algorithms trained on different settings (P ,N ).
To achieve that goal, we leveraged the MovieLens 20M dataset [8],
along with three recommendation algorithms and two evaluation
metrics. Next, we discuss these experimental details.

3.1.1 Dataset and evaluation protocol. The MovieLens dataset1
contains movie ratings from 01/09/95 to 03/31/15. We used a testing-
before-training evaluation paradigm [12]. At each time point t ,
where t ∈ [01/01/15, 03/19/15], the recommendation algorithms
were first trained on partial data, which consisted of records within
the time interval [t − N , t] for users who filtered, and [01/01/14, t]
for users who shared complete data. Then the models were tested
on the ratings from the time interval [t , t + 7], as shown in Figure 1.
To conduct hyperparameter selection, for each user we randomly
held out a positive item from the training set to for validation.

3.1.2 Algorithms and metrics. We considered implicit-feedback
recommendations [10] (i.e., movies rated by a user were treated
1http://files.grouplens.org/datasets/movielens/ml-20m-README.html
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Figure 1: Recommendation algorithms were evaluated us-
ing the testing-before-trainingmechanism. For baseline (no
data filtering), at each time point t ∈ [01/01/15, 03/19/15],
an algorithm was trained on data from the time interval
[01/01/14, t] and tested on data from [t , t + 7]. The final rec-
ommendation performance was averaged over all t .

as “positive items”, not-yet-rated movies were treated as “negative
items”) and investigated three algorithms: Probabilistic Matrix Fac-
torization [13] (PMF), Bayesian Personalized Ranking [16] (BPR),
and Collaborative Metric Learning with Uniform Weights [9] (U-
CML). BPR and PMF were chosen because they are classical algo-
rithms used inmany recommendation systems. U-CMLwas selected
to represent one of the state-of-the-art recommendation solutions.
Each algorithm was evaluated against Hit Ratio (HR@10) and Nor-
malized Discounted Cumulative Gain (NDCG@10).

3.1.3 Implementations. We implemented the algorithms using
the OpenRec framework [19]. The code we used for the experi-
ments is available on github 2. Specifically, we set the user and
item embedding sizes to 50 and trained all the recommenders on
up to 10,000 iterations. During validation, we selected the optimal
number of training iterations and L2-regularization parameter (α ∈

{0.1, 0.01, 0.001, 0.0001}). For each algorithm and a given (P ,N )

setting, the validation was conducted only once, for t = 01/01/15,
and the selected optimal model parameters were used for all t .
We considered settings (P , N ) for P ∈ {0.25, 0.5, 0.75, 1.0} and
N ∈ {1, 7, 14, 30, 60, 90, 180}.

3.2 Results
F1: Population-level performance. We first investigated how user-
controlled data filtering may affect recommendation performance
at the population level. Figure 2 shows the relative performance
improvement under different settings (P , N ) compared to the no-
filter baseline (i.e., P = 0). We observe two trends: (1) A larger
P has a higher impact on the population-level performance. For
example, the degradation is less than 5% for HR@10 and 6.4% for
NDCG@10 when P = 0.25. (2) The performance generally improves
as N increases, and sometimes even outperforms the baseline. An
interesting observation is that when P = 1.0, the best performance
on HR@10 and NDCG@10 is achieved for N with 14 ≤ N ≤

180, suggesting that recent user profiles allow recommenders to
capture up-to-date user preferences. To sum up, population-level
recommendation performance is not necessarily affected by user data
filtering as long as N ≥ 60 on this dataset.

2https://github.com/whongyi/datafilter-recsys



Exploring Recommendations Under User-Controlled Data Filtering RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

N

Re
la

tiv
e 

pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n 

(%
)

H
R@

10
N

D
CG

@
10

U-CML BPR PMF

N N

Figure 2: Relative performance degradation compared to the no-filter baseline under different settings (P ,N ). The dashed
lines represent the baseline. Positive percentages indicate performance improvements, while negative percentages indicate
degradation. We observe an overall improvement in performance as N increases.

Start Date HR@10 NDCG@10
U-CML BPR PMF U-CML BPR PMF

2014/01 0.6373 0.6172 0.6020 0.3846 0.3697 0.3652
2013/07 0.6437 0.6077 0.5924 0.3796 0.3582 0.3535
2013/01 0.6416 0.6121 0.5816 0.3798 0.3474 0.3176
2012/07 0.6339 0.6009 0.5382 0.3705 0.3399 0.3098
2012/01 0.6298 0.5986 0.5361 0.3688 0.3368 0.3082
2011/07 0.6179 0.5875 0.5293 0.3560 0.3342 0.3005
2011/01 0.6094 0.5813 0.5254 0.3535 0.3370 0.3017
2010/07 0.5955 0.5491 0.5118 0.3436 0.3237 0.2948
2010/01 0.5819 0.5462 0.5048 0.3303 0.3052 0.2879

Table 1: Performance of the three recommenders on user
records over time intervals of different length. Recom-
menders trained on shorter time intervals outperformed the
ones trained on longer time intervals.

F2: Effect of length of history incorporated by recommender. As
stated earlier, recommenders trained on recent user data may out-
perform those that are trained on a one-year history. A natural
question to ask is whether including more data would improve the
one-year-trained recommender baseline. To answer this question,
we trained a recommender on complete user records for time in-
tervals of varying length: from 1 year to 5 years in multiples of
6 months. The results on performance are presented in Table 1.
We observe a significant improvement in performance in terms
of HR@10 and NDCG@10 when we trained the recommendation
models on a one-year history, which demonstrates that the baseline
used in the previous experiment is strong, and that more data does
not necessarily result in better performance.

F3: Disaggregated performance. Lastly, we examined the disag-
gregated recommendation performance for three groups of users.
The user group distributions are presented in Figure 3.

• G1: Users whose records were affected after applying the filter.
This group is a subset of the users who chose to filter their data.

• G2: Users whose records were unmodified, regardless of whether
they chose to filter. (The time span of a user’s data may be less
than N .)

• G3: Users who had no historical record (cold-start users).
We present the decomposed performance in Figure 4. For users

from G1, the recommendation performance is negatively affected
when N is small. This is because these users shared too few data
points for algorithms to build accurate profiles. However, as N in-
creases, the recommenders become more accurate and approach the
performance for users who shared their complete usage history (G2).
The convergence rate varies for different algorithms. For example,
PMF converges faster at N = 60 than U-CML and BPR at N = 180.
These findings demonstrate that it is possible for users to filter out
their historical data without suffering from accuracy degradation, as
long as more than 2 months’ worth of data are shared.

For users from G2, the recommendation performance is not sig-
nificantly affected under most settings (P ,N ), which suggests that
users who share their complete records won’t be affected by the
fact that others choose to filter data.

Finally, for users from G3, the impact of user data filtering is
algorithm dependent. For example, a minor change in performance
is observed for PMF and U-CML, but for BPR the recommender
may be positively or negative affected for different N .

4 CONCLUSION AND FUTUREWORK
We explored how recommendation algorithm performance may be
affected by time-based user data filtering. Our experimental results
suggest that filtering out-of-date data records can be a win–win
solution for service providers and end users to protect user pri-
vacy. Recommendation algorithms do not need complete historical
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Figure 3: Distributions for the three user groups in the testing set under different settings (P ,N ). As N increases, the size ofG1
decreases, as some users may have records for only the most recent N days.
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Figure 4: Relative performance degradation on the three groups of users compared to the no-filter baseline. G1 and G3 are
affected more than G2. U-CML and PMF perform more robustly than BPR, especially for cold-start users. Note that when
P = 1.0, G2 consists of users who had an interaction history of less than N days. (We also tested on NDCG@10 and found
similar trends.)

records to perform well. In fact, incorporating outdated data is
likely to degrade performance because users’ preferences change
over time. There are several limitations in our experiments, which
we plan to address in future work.

• The recommendation algorithms we explored are preliminary.
More sophisticated solutions, such as temporal models and mod-
els that incorporate auxiliary and contextual information, could
be explored, raising additional research questions as to how users
are going to selectively share their data beyond clicks and ratings.

• We assumed that every user who chooses to filter has the same
data-sharing behavior (i.e., that they all share data from the same
time period). However, in the real world, data-sharing patterns
may be much more complex, for example, with different values of
N across users and temporally changing privacy settings. Aside

from time-based data filtering, many other data control mecha-
nisms (e.g., sharing of data based on content, tags, and location)
could be explored. These techniques have the potential to provide
finer-grained user control on personal data.
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