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BAYESIAN MODEL ASSESSMENT FOR JOINTLY MODELING

MULTIDIMENSIONAL RESPONSE DATA WITH APPLICATION TO

COMPUTERIZED TESTING

Abstract

Computerized assessment provides rich multidimensional data including

trial-by-trial accuracy and response time (RT) measures. A key question in

modeling this type of data is how to incorporate RT data, for example, in aid of

ability estimation in item response theory (IRT) models. To address this, we

propose a joint model consisting of a two-parameter IRT model for the

dichotomous item response data, a log-normal model for the continuous RT data,

and a normal model for corresponding pencil-and-paper scores. Then, we

reformulate and reparameterize the model to capture the relationship between the

model parameters, to facilitate the prior specification, and to make the Bayesian

computation more efficient. Further, we propose several new model assessment

criteria based on the decomposition of deviance information criterion (DIC) and

the logarithm of the pseudo-marginal likelihood (LPML). The proposed criteria

can quantify the improvement in the fit of one part of the multidimensional data

given the other parts. Finally, we have conducted several simulation studies to

examine the empirical performance of the proposed model assessment criteria,

and have illustrated the application of these criteria using a real dataset from a

computerized educational assessment program.

Key words: Computerized tests, DIC decomposition, IRT models, LPML

decomposition, Pencil-and-paper tests, Response times.
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1. Introduction

The current gold standard for educational and neuropsychological assessment is the

use of pencil-and-paper assessments, individually administered by a trained assessor. Such

tests are of immense value for the early identification and appropriate intervention of

children at risk for learning disorders and long-term academic problems, which is a key

part of a response-to-intervention treatment model (Gilbert et al., 2012). However, mass

application of standard tests comes with considerable expenditures of both time and

resources. The computerized assessment provides a potential solution, and provides rich

multidimensional data including trial-by-trial accuracy and response time measures.

A case in point is the AppRISE data. In the AppRISE tablet assessment, participants

begin each trial by pressing a start button to play an audio recording of a pseudoword

(e.g., /feg/). An array of four printed response options (e.g., the target feg, and distractors

fep, fod, and fet) is displayed and the participant selects the correct printed word to

activate a machine and end the trial (see https://haskinsglobal.org/apprise/ for more

details). Both response accuracy and response time (RT) (from the option display) are

collected for each item and can be used to model participant-level pseudoword reading

skill. For comparison, the Phonemic Decoding Efficiency (PDE) subtest of the Test of

Word Reading Efficiency-Second Edition (Torgesen et al., 2012) was also administered. In

this pencil-and-paper test, participants read a list of regular pseudowords of increasing

complexity as quickly as possible. The number of items read correctly within 45 seconds is

converted to an age-normed standard score. Therefore, we have three types of data

available in the study, which are the item response and RT from computerized assessment

as well as standard score from paper-and-pencil PDE test.

To analyze the accuracy for item responses in the assessment, the item response theory

(IRT) has become a popular method (Fox, 2010; van der Linden, 2017). With the

increasing prevalence of computerized assessments, collecting RT has become much easier.



Psychometrika Submission March 21, 2022 2

There is increasing attention in the field of IRT to including the RT data in modeling item

responses. Several researchers have pointed out that the RT data is an important source of

information to refine the inference on one’s ability in a test (Luce, 1991; van der Linden,

2009). In fact, many current works have focused on the joint modeling of the item response

and RT data. For instance, Entink et al. (2009) built up a multivariate multilevel

regression for jointly modeling the item response and RT data, where they incorporated

covariates for explaining the variation of speed and accuracy between individuals and

groups of test takers. Loeys et al. (2011) proposed a Bayesian hierarchical framework for

jointly modeling the item response and RT data, where they can estimate the correlation

between speed and ability at the participant level. Wang et al. (2016) put forward a joint

model of the item response and RT in the longitudinal setting. Molenaar and de Boeck

(2018) built up a mixture model of the item response and RT data in order to describe the

heterogeneity in the data. Recently, Lu et al. (2020) extended this mixture model with a

higher-order structure of ability to detect participants’ rapid guessing behavior.

However, the responses collected from AppRISE tablet assessment and the Test of

Word Reading Efficiency Phonemic Decoding (PDE) paper-and-pencil test, including item

responses, RTs, and PDE scores, are multidimensional data, thus the current state of the

joint modeling for the item response and the RT data in the literature does not directly

apply to this data. Hence, in this paper, we propose a new joint model that can capture

the relationships among the item responses, RTs, and PDE scores in a coherent way. To be

specific, we propose a trivariate normal distribution among the latent traits of each

participant by adding a hierarchical layer upon the proposed joint model.

It is also important to ask whether certain parts of the multidimensional data can

help, for example, the model fit of the item response data when we jointly analyze these

different sources of information. From a practical perspective, it is important to understand

how multiple assessments may aid in quantifying information gain in latent ability

estimation so that assessments can be conducted efficiently in clinical and educational
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practice. In many papers relevant to the conjoint modeling of the RT and item response

data, the deviance information criterion (DIC) (Spiegelhalter et al., 2002) is commonly

used to evaluate the model fit (Johnson, 2003; Donkin et al., 2009; Rouder et al., 2015).

For example, Entink et al. (2009) compared four different multilevel joint models using the

DIC, and Loeys et al. (2011) applied the DIC to investigate joint modeling of the item

response and RT data versus modeling them separately. But in the current literature, the

DIC is seldom applied to assess the information gain in modeling the item response data by

conjointly modeling the RT data. Although Wang et al. (2016) proposed a partial DIC idea

to evaluate different RT models in contribution to the fit of the joint modeling, they

assumed the latent ability in the joint model is given for the computation of the partial

DIC. Since the latent ability is often unknown, their partial DIC lacks the power to fully

quantify the information gain of incorporating RT in the joint model.

Thus, inspired by D. Zhang et al. (2017), we propose a new model assessment method,

which enables us to fully quantify the information gain from each piece in the joint model.

The proposed model assessment method will be applied to a dataset from a novel gamified

tablet-based assessment (AppRISE) targeted towards assessing foundational pre-literacy,

literacy, and cognitive skills in early education.

There are several contributions we have made in this paper. First, we reformulate and

reparameterize the joint model to better describe multidimensional data from computerized

testing, facilitate prior specification for the model parameters, and make posterior

computations more efficient. Next, we propose a new Bayesian method for evaluating the

contributions of the RT and PDE data to the fit of the item response data, the item

response and PDE data to the fit of the RT data, as well as the RT and response data to

the fit of the PDE data within the joint modeling framework. Specifically, we decompose

the DIC and the logarithm of the pseudo-marginal likelihood (LPML) for the joint model

into several additive components, which allows us to quantify the contributions of different

parts of the data. The deviance functions in the DIC decomposition, the joint distributions,
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as well as the marginal distributions of the item responses, RTs, and PDEs involved in the

LPML decomposition depend only on one-dimensional integrals after analytically

integrating out latent speed variables. We then develop an efficient way using readily

available Markov chain Monte Carlo (MCMC) samples from the joint posterior distribution

to compute all quantities in the DIC and LPML decomposition. In addition, we carry out

extensive simulation studies to examine the performance of the model in recovering the

true parameters for the joint model and evaluate the empirical performance of the proposed

model assessment criteria based on the DIC and LPML decompositions over different

numbers of items and participants. Finally, we carry out residual analysis and item ranking

for the multidimensional data and the results are given in the Supplementary Materials.

The rest of the article is organized as follows. In Section 2, we introduce the joint

models of the item response, RT and PDE data. Section 3 presents the priors, the

likelihood and the posterior distribution. Then, we develop the DIC decomposition and

LPML decomposition in Section 4 and also discuss their computational details. In Section

5, we conduct two simulation studies. The AppRISE data is further analyzed to

demonstrate the proposed methods in Section 6. In the Supplementary Materials, we

propose some statistical tools that can be used in examining model adequacy and in

ranking item difficulty while considering uncertainty. Finally, we summarize our major

results and discuss some future directions of this work in Section 7.

2. The Proposed Method

2.1. Joint Model and Hierarchical Framework

In this section, we propose a joint model for the item response and the RT from the

AppRISE tablet assessment, and the age-normed standard score of Phonemic Decoding

Efficiency (PDE) from a paper-and-pencil test. Due to the test design of AppRISE, we use

the two-parameter IRT model (van der Linden & Hambleton, 2013) for item accuracy. To

account for the positive skew of the RT data, a log-normal distribution is specified to
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model the RTs (van der Linden & Guo, 2008; van der Linden, 2009; Fox & Marianti, 2016;

Man et al., 2019). A normal model is assumed for the standardized PDE score. Finally, we

assume a trivariate normal distribution for the latent ability parameter, the latent speed

parameter, and the error term of the PDE score to capture the association between the

AppRISE tablet assessment and the paper-based PDE score as well as to borrow the

strength of information among different types of data.

Let yij(i) denote the binary response for the ith participant taking the j(i)th item,

having a value of “0” or “1”, tij(i) be the response time in seconds for the ith participant

answering the j(i)th, and PDEi indicate the paper-based PDE score for the ith participant

for i = 1, · · · , N and j(i) ∈ {1, · · · , J} with J as the maximum number of items

administrated in the test. Notice that the subscript ij(i) is a nested structure, which allows

each participant to take a different number of items in a test. This is very common in

computerized test to decrease administration time in educational settings. To simplify the

notation in the subscript, we will suspend the (i) in the subscript throughout the paper

without causing any further confusion.

Then, the joint model is given by

pij = P(yij = 1 | aj, bj, θ∗i ) = F [aj(θ
∗
i − bj)] =

exp{aj(θ∗i − bj)}
1 + exp{aj(θ∗i − bj)}

, (2.1)

log tij = λj − τ ∗i + εij, (2.2)

PDEi = β0 + ζ∗i , (2.3)

and

(θ∗i , τ
∗
i , ζ

∗
i )′

i.i.d.∼ N3

(
(0, 0, 0)′ ,Σ

)
with Σ =


1 σ12 σ13

σ12 σ2
τ σ23

σ13 σ23 σ33

 . (2.4)

In equation 2.1, pij is the probability that the ith participant answers the jth item

correctly, F(·) is a continuous cumulative distribution function (cdf), θ∗i is the ith

participant’s latent ability, and aj and bj are item discrimination and item difficulty,
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respectively, of the jth item. We choose F(·) to be a logistic link function in equation 2.1

for our study. In equation 2.2, τ ∗i denotes the speed (the participant uses to complete items

during a test) of the ith participant, λj indicates the time intensity required (van der

Linden, 2009) for the jth item, εij is an error term following a normal distribution with

mean centered at zero and variance σ2
j , and 1/σ2

j quantifies the dispersion of the lognormal

distribution, implying the discrimination power of the jth item. In equation 2.3, β0 can be

regarded as the average PDE score across participants. Finally, in equation 2.4, we assume

(θ∗i , τ
∗
i , ζ

∗
i )′ follows a trivariate normal distribution, the variance of θ∗i is assumed to be 1 to

ensure identifiability, σ2
τ is the variance of τ ∗i , σ12/στ captures the correlation between θ∗i

and τ ∗i , σ33 is the variance of ζ∗i , σ13 is the covariance between θ∗i and ζ∗i , and σ23 is the

covariance between τ ∗i and ζ∗i .

2.2. Reformulation and Reparameterization

Since Σ in equation 2.4 has to be a positive definite covariance matrix, the

specification of the prior distributions for σ12, σ
2
τ , σ13, σ23, and σ33 is not straightforward.

In addition, sampling these parameters from the posterior distribution is challenging.

Therefore, we employ a reformulation and reparameterization to facilitate specification of

the prior distributions and to allow a convenient and more efficient implementation of

Bayesian computation.

First, let us consider the following reformulation

(θ∗i , τ
∗
i , ζ

∗
i )′ = Γ (θi, τi, ζi)

′with Γ =


1 0 0

στ sinϕ στ cosϕ 0

β1 β2 1

 ,

(θi, τi, ζi)
′ i.i.d.∼ N3

(
(0, 0, 0)′ , diag(1, 1, σ2

PDE)
)
. (2.5)
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yij (AC model) aj, bj

θi
tij (RT model) λj, σ

2
j

τi

στ

PDEi (“Paper” test model)

β0, σ
2
PDE

aj

στ sinϕβ1

στ cosϕ
β2

Figure 2.1: Relationships of the three model components in the joint model.

Then, we take the reparameterization

σ12 = στ sinϕ,

σ13 = β1,

σ23 = στ (β1 sinϕ+ β2 cosϕ),

σ33 = β2
1 + β2

2 + σ2
PDE,

στ = exp(w). (2.6)

With reformulation equation 2.5 and reparameterization equation 2.6, the joint distribution

of (θ∗i , τ
∗
i , ζ

∗
i )′ follows a trivariate normal distribution given in equation 2.4. We summarize

the three components of our joint model after the reformulation and reparameterization as

AC model : pij = P (yij = 1 | aj, bj, θi) =
exp{aj(θi − bj)}

1 + exp{aj(θi − bj)}
, (2.7)

RT model : log tij = λj − στ (θi sinϕ+ τi cosϕ) + εij, (2.8)

“Paper” test model : PDEi = β0 + β1θi + β2τi + ζi. (2.9)

Here, εij ∼ N (0, σ2
j ) and ζi ∼ N (0, σ2

PDE), which are independent of θi and τi. Figure 2.1
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presents the relationships among the model components in equation 2.7 to equation 2.9,

where the rectangle block indicates the model and its corresponding observations; the circle

indicates the unknown parameters; and the line between the circle and the rectangle

implies how the model and parameters relate to each other. It is apparent that the

reparameterization makes the interpretation for the relations of these model components

much simpler, where θi explicitly ties up all three model components, while τi obviously

connects the RT model and the “paper” test model. After the reparameterization, in

equation 2.6, −∞ < β1 <∞, −∞ < β2 <∞, σ2
PDE > 0, −∞ < w <∞, and

−π/2 < ϕ < π/2. Unlike Σ in equation 2.4, there are no other constraints on the

parameters β1, β2, σ
2
PDE, and ϕ. In addition, β1 = 0 implies σ13 = 0, indicating

independence between the item response and PDE, while the response time and PDE are

independent if β1 = β2 = 0 or ϕ = β2 = 0.

3. The Priors, Likelihood and Posterior Distribution

Due to the complexity of the joint model, we resort to Bayesian computation for the

inference of unknown parameters. First, we need to assume priors for all unknown

parameters. For the item discrimination parameter aj of the jth item, we assume it follows

a normal distribution truncated by zero at the left with its mean centered at 0 and

variance being 1, i.e., aj ∼ N+(0, 1) (c.f., Karadavut (2019)); for the item difficulty

parameter bj, we give a hierarchical normal prior N (µb, σ
2
b ) , where µb ∼ N (0, 10σ2

b ) and σ2
b

follows an inverse gamma distribution, i.e., IG(0.1, 0.1). As discussed in Section 2.2, there

are no constraints on the four reparameterized parameters β1, β2, σ
2
PDE, w, and ϕ. Thus, it

is reasonable to assume independent priors for these parameters. Specifically, we assume

β1 ∼ N (0, 102), β2 ∼ N (0, 102), σ2
PDE ∼ IG(0.1, 0.1), w ∼ N(0, 102), and ϕ ∼ U(−π/2, π/2).

For the intercept in the “paper” test model, we further assume β0 ∼ N (0, 102). Similarly,

we specify an inverse gamma prior, σ2
j ∼ IG(0.1, 0.1), for the variance σ2

j and a normal

prior, λj ∼ N (0, 102), for the time intensity parameter λj in the RT model.
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Next, we establish the joint posterior distribution of all model parameters in the

proposed joint model. Let a = (a1, · · · , aJ)′, b = (b1, · · · , bJ)′, λJ = (λ1, · · · , λJ)′,

γ1 = (a′, b′)′, γ2 = (β0, β1, β2, σ
2
PDE,λ

′
J , στ , ϕ, σ

2
1, · · · , σ2

J)′. Write γ2 = (γ ′21,γ
′
22)
′ with

γ21 = (β0, β1, β2, σ
2
PDE)′ being the vector of parameters in the “paper” test model and

γ22 = (λ′J , ϕ, στ , σ
2
1, · · · , σ2

J)′ being the vector of parameters in the RT model. Then,

γ = (γ ′1,γ
′
2)
′ = (γ ′1,γ

′
21,γ

′
22)
′ is a vector of all unknown parameters except unknown

participant parameters in the model. Further, denote ti = (log ti1, · · · , log tiJi)
′ and

yi = (yi1, · · · , yiJi)′ are the vectors for the RTs and item responses observed for each

participant, respectively, where Ji denotes the total number of the items that have been

administrated for the ith participant with Ji ∈ {1, · · · , J}. Thus, given γ1 and θi, the

conditional likelihood of yi in the AC model is

L(γ1, θi | yi) = f(yi | γ1, θi) =

Ji∏
j=1

exp{yijaj(θi − bj)}
1 + exp{aj(θi − bj)}

, (3.1)

while given the parameters γ22, θi and τi, the conditional likelihood of ti is

L(γ22, θi, τi | ti) = f(ti | γ22, θi, τi) =

Ji∏
j=1

1√
2π

exp{− [log tij − λj + στ (θi sinϕ+ τi cosϕ)]2

2σ2
j

}.

Assuming that given latent variables θi and τi for the ith participant, the observations

of item responses, RTs and PDE scores are conditionally independent. Then, the joint

probability density function (pdf) of Di,obs = (y′i, t
′
i,PDEi)

′ is written as

f(Di,obs | γ, θi, τi) = f(yi | γ1, θi)f(ti | γ22, θi, τi)f(PDEi | γ21, θi, τi), (3.2)

where f(PDEi | γ21, θi, τi) = 1√
2π

exp{− (PDEi−β0−β1θi−β2τi)2
2σ2

PDE
}. Next, by integrating out latent
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variables θi and τi, we obtain the marginal likelihood of γ as

L(γ | Dobs) =
N∏
i=1

f(yi, ti,PDEi | γ)

=
N∏
i=1

∫ ∫
f(yi, ti,PDEi | γ, θi, τi)φ(θi)φ(τi)dθidτi, (3.3)

=
N∏
i=1

∫
f(yi | γ1, θi)φ(θi)

[∫
φ(τi)f(ti | γ22, θi, τi)f(PDEi | γ21, θi, τi)dτi

]
dθi,

(3.4)

where Dobs = (D′1,obs, · · · ,D′N,obs)′ and φ(·) denotes the standard normal pdf, which

represents the prior assigned to θi and τi. In practice, the high dimensional numerical

integration is often expensive. However, in our case, we can reduce the two-dimensional

integration in equation 3.3 to one-dimensional integration as shown in equation 3.4. Based

on the normality of τi, ti and PDEi, it turns out that the second integrand of equation 3.4

is also a normal pdf and makes the integration of τi analytically tractable. After

integrating out the τi in closed form, the remaining component only depends on θi. Thus,

it is easy to numerically compute the one-dimensional integration of θi in equation 3.4.

Once the marginal likelihood of γ is computed, the joint posterior of γ is given by

π(γ | Dobs) =
L(γ | Dobs)π(γ)

c(Dobs)
, (3.5)

where π(γ) = π(β0)π(β1)π(β2)π(σ2
PDE)π(στ )π(ϕ)

[∏J
j=1 π(aj)π(bj | µb, σ2

b )π(λj)π(σ2
j )
]
×

π(µb)π(σ2
b ) is the joint prior of the unknown parameter vector γ and the prior of each

unknown parameter in this product is specified at the beginning of this section. Further, in

equation 3.5, c(Dobs) =
∫ N∏
i=1

f(yi, ti,PDEi | γ)π(γ)dγ is the normalized constant. Directly

sampling from equation 3.5 is somewhat difficult, thus, we propose to use the augmented

joint posterior density function of γ, θR and τR as below in our MCMC computation,

π(γ,θR, τR | Dobs) =

N∏
i=1

f(Di,obs | γ, θi, τi)π(θi)π(τi)π(γ)

c(Dobs)
,
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where f(Di,obs | γ, θi, τi) is defined in equation 3.2, θR = (θ1, · · · , θN)′ and

τR = (τ1, · · · , τN)′. Then, we can show that π(γ | Dobs) is the marginal posterior

distribution of π(γ,θR, τR | Dobs) by integrating out θR and τR.

The reformulation and reparametrization in Section 2.2 leads to a convenient and

efficient implementation of MCMC sampling from the joint posterior distribution in

equation 3.5 using an R package called nimble (de Valpine et al., 2017, 2020). In nimble,

we use the calling command getSampler() to sample a, b, θ, ϕ, and στ via the

Metropolis-Hastings adaptive random-walk sampler and draw τ , σ2, λJ , σ2
b , σ

2
PDE, β0, β1,

β2, and µb via the Gibbs sampler. Once MCMC samples are generated from nimble, we

compute the posterior means, posterior standard deviations, and 95% highest posterior

density (HPD) intervals for all of the model parameters using an R package boa. Then,

using the MCMC samples from nimble, we develop program codes written in Fortran 95

and Matlab to compute all of the proposed model assessment criteria in Section 4. The

detailed codes for nimble, Fortran, and Matlab are provided in Section S.6 of the

Supplementary Materials.

4. Model Assessment Criteria

In this section, we propose decomposition of two commonly used model selection

criteria to assess the contribution of any two parts of the multidimensional data in the

analysis of the remaining part of the data. The model assessment criteria we focus on are

the deviance information criterion (DIC) (Spiegelhalter et al., 2002) and a conditional

predictive ordinate (CPO) (Geisser & Eddy, 1979; Gelfand et al., 1992; Gelfand & Dey,

1994) related criterion called the logarithm of the pseudo-marginal likelihood (LPML)

criterion (Ibrahim et al., 2001).
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4.1. Deviance Information Criterion

The use of DIC for model comparison is abundant in the psychometric literature.

Examples of its use in joint modeling of RT and item response data include Johnson

(2003), Entink et al. (2009), Rouder et al. (2015), Bolsinova et al. (2017), and Lu et al.

(2020). Typically, when we perform Bayesian inference on latent variable models, we

directly sample the latent variables along with the model parameters. For convenience, the

conditional DIC is often constructed via the conditional likelihood in which the latent

variables are treated as “model parameters”.

However, several studies show that conditional DICs usually have much larger Monte

Carlo errors compared to the DICs based on the marginal likelihoods by integrating out

latent variables (Celeux et al., 2006; Chan & Grant, 2016; Merkle et al., 2019; X. Zhang et

al., 2019). For example, X. Zhang et al. (2019) found that the conditional DIC generally

selects a model that is more complex than the true model. Li et al. (2020) discussed the

problems of the conditional DICs in terms of the dimension of the parameter space,

frequentist justification, and asymptotic properties. They also proposed a new version of

DIC, called DICL, where they studied the large sample properties of DICL, and introduced

the expectation–maximization (EM) algorithm, Kalman and particle filtering algorithms to

compute this new DIC for latent variable models. DICL is potentially useful for evaluating

complex models such as the ones considered in this paper. Moreover, in the paper of

Merkle et al. (2019), they pointed out the model assessment criteria based on the

information of marginal likelihoods could be used to evaluate the predictive ability of a

model when it was applied to new clusters (e.g., countries, schools, or districts), which is a

desirable feature in many psychometric contexts, as we often wish to distinguish general

properties of items that are not specific to what we observed.

Hence, we define the DIC of the proposed joint model as

DIC = Dev(γ) + 2pD, (4.1)
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where γ is the posterior mean of γ, and pD = Eπ(γ|Dobs) [Dev(γ) | Dobs]−Dev(γ) is the

effective number of model parameters. Here, for pD, we take the expectation regarding to

the posterior distribution of γ and in practice, to compute Eπ(γ|Dobs) [Dev(γ) | Dobs], we

often take the posterior mean of Dev(γ), where Dev(γ) = −2 logL(γ | Dobs) is the

deviance function with the marginal likelihood L(γ | Dobs) defined in equation 3.3. Thus,

for DIC in equation 4.1, we integrate out all latent parameters related to a participant,

such as θi and τi, in the likelihood function. Since the deviance function Dev(γ) only

depends on L(γ | Dobs), which, as discussed in Section 3, needs to compute an

one-dimensional integral where we compute directly using the global adaptive quadrature

method (Visual Numerics, 2003).

4.1.1. DIC Decomposition

First, let us focus on the part of only modeling the RT and PDE data in the joint

model. With some algebra, given the parameters γ2 (only involved in the RT and PDE

model), (θi, t
′
i,PDEi)

′ follows a (Ji + 2)-dimensional multivariate normal distribution, i.e.,

[(θi, t
′
i,PDEi)

′ | γ2] ∼ NJi+2

((
0,λ′Ji , β0

)′
,Σi

)
(4.2)

with Σi =


1 −στ sinϕ1′Ji β1

−στ sinϕ1Ji σ2
τ1Ji1

′
Ji

+
⊕Ji

j=1 σ
2
j −(β1 sinϕ+ β2 cosϕ)στ1Ji

β1 −(β1 sinϕ+ β2 cosϕ)στ1
′
Ji

σ2
PDE + β2

1 + β2
2

 ,

where λJi = (λ1, · · · , λJi)′; 1Ji is a Ji-dimensional column vector with all elements being 1

and 1′Ji is its transpose;
⊕Ji

j=1 is the direct sum operator and
⊕Ji

j=1 σ
2
j is a Ji × Ji diagonal

matrix with the (j, j)th entry equal to σ2
j . By the marginal property of the multivariate

normal distribution and equation 4.2, the pdf f(ti,PDEi | γ2) is also a multivariate normal

pdf.

Then, the deviance function Dev[RT,PDE](γ2) = −2
N∑
i=1

log f(ti,PDEi | γ2) is just defined
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for jointly modeling the RT and PDE data; further, the DIC of the RT and PDE parts is

DIC[RT,PDE] = Dev[RT,PDE](γ2) + 2pD[RT,PDE],

where the corresponding effective number of model parameters pD[RT,PDE] equals to

Eπ(γ2|Dobs)

[
Dev[RT,PDE](γ2) | Dobs

]
−Dev[RT,PDE](γ2), γ2 is the posterior mean of γ2 and the

expectation Eπ(γ2|Dobs) is now taken with respect to the posterior distribution of γ2, as only

the parameter γ2 is involved in the model of the RT and PDE parts. Similarly, the

deviance functions for jointly modeling the RT and item response data as well as the item

response and PDE data are defined as Dev[AC,RT](γ22,γ1) = −2
N∑
i=1

log f(ti,yi | γ22,γ1) and

Dev[AC,PDE](γ21,γ1) = −2
N∑
i=1

log f(PDEi,yi | γ21,γ1), respectively, where the likelihood

functions f(ti,yi | γ22,γ1) =
∫ ∫

f(ti | γ22, θi, τi)f(yi | γ1, θi)φ(θi)φ(τi)dθidτi and

f(PDEi,yi | γ21,γ1) =
∫ ∫

f(PDEi | γ21, θi, τi)f(yi | γ1, θi)φ(θi)φ(τi)dθidτi, respectively.

Notice that the two-dimensional integrals in term of θi and τi in these likelihoods can be

reduced to one-dimensional integrals as shown in equation 4.3 and equation 4.4.

Proposition 1. The joint densities of f(ti,yi | γ22,γ1) and f(PDEi,yi | γ21,γ1) can be

expressed as the functions of one-dimensional integrals with respect to θi given by

f(ti,yi | γ22,γ1) =

∫
f(yi | γ1, θi)φ(θi)fN(ti | γ2, θi)dθi, (4.3)

f(PDEi,yi | γ21,γ1) =

∫
f(yi | γ1, θi)φ(θi)fN(PDEi | γ21, θi)dθi, (4.4)

where f(yi | γ1, θi) is given in equation 3.1, f(ti | γ22, θi) is the pdf of a multivariate normal

distribution NJi(λJi − στθi sinϕ1Ji ,Σti) with Σti = σ2
τ1Ji1

′
Ji

+
⊕Ji

j=1 σ
2
j − σ2

τ sin2 ϕ1Ji1
′
Ji

,

while fN(PDEi | γ21, θi) is the pdf of a normal distribution N (β0 + β1θi, β
2
2 + σ2

PDE).

Then, DIC[AC,PDE] = Dev[AC,PDE](γ1,γ21) + 2pD[AC,PDE] is the DIC of the AC and PDE

parts, where the corresponding effective number of model parameters pD[AC,PDE] equals to

Eπ(γ21,γ1|Dobs)[Dev[AC,PDE](γ21,γ1) | Dobs]−Dev[AC,PDE](γ21,γ1), γ21 and γ1 are the
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posterior means, and the expectation Eπ(γ21,γ1|Dobs) is taken with respect to the posterior

distribution of γ21 and γ1. Similarly, the DIC of AC and PDE parts is defined as

DIC[AC,RT] = Dev[AC,RT](γ1,γ22) + 2pD[AC,RT], where the corresponding effective number of

model parameter pD[AC,RT] = Eπ(γ22,γ1|Dobs)[Dev[AC,RT](γ22,γ1) | Dobs]−Dev[AC,RT](γ22,γ1),

γ22 is the posterior mean, and the expectation Eπ(γ22,γ1|Dobs) is taken with respect to the

posterior distribution of γ22 and γ1.

Since π(γ | Dobs) = π(γ1,γ21,γ22 | Dobs), the Markov chain Monte Carlo (MCMC)

samples of γ2, (γ22,γ1) and (γ21,γ1) from π(γ | Dobs) will be the same as drawn directly

from their corresponding marginal distributions π(γ2 | Dobs), π(γ22,γ1 | Dobs), and

π(γ21,γ1 | Dobs). Hence, there are no additional MCMC draws needed for estimating

Eπ(γ2|Dobs)

[
Dev[RT,PDE](γ2) | Dobs

]
, Eπ(γ22,γ1|Dobs)[Dev[AC,RT](γ22,γ1) | Dobs], and

Eπ(γ21,γ1|Dobs)[Dev[AC,PDE](γ21,γ1) | Dobs].

Next, based on the conditional property of the multivariate normal distribution, θi

given ti,PDEi and γ2 follows a normal distribution, i.e.,

[θi | ti,PDEi,γ2] ∼ N (µ̄, Σ̄), (4.5)

where µ̄ = Σ12Σ
−1
22

[
(t′i,PDEi)

′ − (λ′Ji , β0)
′], Σ̄ = 1−Σ12Σ

−1
22 Σ21, Σ12 = (−στ sinϕ1′Ji , β1),

and Σ′21 is a transpose of Σ12, and

Σ22 =

 σ2
τ1Ji1

′
Ji

+
⊕Ji

j=1 σ
2
j −(β1 sinϕ+ β2 cosϕ)στ1Ji

−(β1 sinϕ+ β2 cosϕ)στ1
′
Ji

σ2
PDE + β2

1 + β2
2

 .

Equation 4.5 can be viewed as the prior information of θi obtained from the RT and PDE

data given the parameter γ2. From equation 4.2, we see that for modeling the RT and

PDE data to be independent of θi, it requires that both ϕ and β1 are zero simultaneously,

which can be further verified by equation 4.5. This can be better explained by Figure 2.1,

when ϕ = 0, although there is no direct linkage between θi and the RT model, the influence

of modeling RT for the estimation of θi can be transmitted through τi.
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By putting the prior information of θi in equation 4.5 into the AC model, we can

derive a deviance function of item responses data by given the information from the RT

and PDE data as Dev[AC|RT,PDE](γ) = −2
N∑
i=1

log f(yi | ti,PDEi,γ1,γ2) for γ, where

f(yi | ti,PDEi,γ1,γ2) =

∫
f(yi | θi,γ1)f(θi | ti,PDEi,γ2)dθi (4.6)

with the pdf f(θi | ti,PDEi,γ2) defined in equation 4.5; further, we have the DIC of the

AC given the RT and PDE as

DIC[AC|RT,PDE] = Dev[AC|RT,PDE](γ) + 2pD[AC|RT,PDE], (4.7)

where pD[AC|RT,PDE] = Eπ(γ|Dobs)

[
Dev[AC|RT,PDE](γ) | Dobs

]
−Dev[AC|RT,PDE](γ) is its

corresponding effective number of parameters. Likewise, the deviance function of the RT

data by given the information from the item responses and PDE data, as well as the

deviance function of the PDE data by given the information from the item responses and

the RT data are defined as Dev[RT|AC,PDE](γ) = −2
N∑
i=1

log f(ti | yi,PDEi,γ) and

Dev[PDE|AC,RT](γ) = −2
N∑
i=1

log f(PDEi | yi, ti,γ), respectively, where the likelihood

functions f(ti | yi,PDEi,γ1,γ2) =
∫ ∫

f(ti | γ22, θi, τi)f(θi, τi | yi,PDEi,γ1,γ21)dθidτi and

f(PDEi | yi, ti,γ1,γ2) =
∫ ∫

f(PDEi | γ21, θi, τi)f(θi, τi | yi, ti,γ1,γ22)dθidτi. After some

algebra calculations, these two-dimensional integrals in the likelihoods can be reduced to

one-dimensional integrals. We formally state these results in Proposition 2.

Proposition 2. The conditional densities f(ti | yi,PDEi,γ1,γ2) and

f(PDEi | yi, ti,γ1,γ2) can be written as the ratios of two one-dimensional integrals, i.e,

f(ti | yi,PDEi,γ1,γ2) =

∫
f(yi | γ1, θi)φ(θi)fN(ti,PDEi | γ2, θi)dθi

f(PDEi,yi | γ21,γ1)
, (4.8)

f(PDEi | yi, ti,γ1,γ2) =

∫
f(yi | γ1, θi)φ(θi)fN(ti,PDEi | γ2, θi)dθi

f(ti,yi | γ22,γ1)
, (4.9)

where f(PDEi,yi | γ21,γ1) and f(ti,yi | γ22,γ1) are given in Proposition 1, while

fN(ti,PDEi | γ2, θi) is the pdf of a multivariate normal distribution N (µtpde,Σtpde) with

µtpde = (λ′Ji , β0)
′ + θiΣ21, and Σtpde = Σ22 −Σ21Σ12.
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Similarly, we can define the DIC for the RT given the AC and PDE as

DIC[RT|AC,PDE] = Dev[RT|AC,PDE](γ) + 2pD[RT|AC,PDE], (4.10)

with pD[RT|AC,PDE] = Eπ(γ|Dobs)

[
Dev[RT|AC,PDE](γ) | Dobs

]
−Dev[RT|AC,PDE](γ) being the

corresponding effective number of parameters. Also, the DIC for the PDE given the AC

and RT is

DIC[PDE|AC,RT] = Dev[PDE|AC,RT](γ) + 2pD[PDE|AC,RT], (4.11)

with pD[PDE|AC,RT] = Eπ(γ|Dobs)

[
Dev[PDE|AC,RT](γ) | Dobs

]
−Dev[PDE|AC,RT](γ) being the

corresponding effective number of parameters.

With all notations defined above, we propose to decompose the total DIC of the

proposed joint model in equation 4.1 into different parts as stated in Corollary 1 by

following the idea of D. Zhang et al. (2017) and F. Zhang et al. (2021).

Corollary 1. The DIC and pD defined in equation 4.1 for the proposed joint model

have the following decomposition:

DIC = DIC[RT,PDE] + DIC[AC|RT,PDE] (4.12)

= DIC[AC,PDE] + DIC[RT|AC,PDE] (4.13)

= DIC[AC,RT] + DIC[PDE|AC,RT]. (4.14)

Also, the total pD can decompose as

pD = pD[AC|RT,PDE] + pD[RT,PDE] (4.15)

= pD[RT|AC,PDE] + pD[AC,PDE] (4.16)

= pD[PDE|AC,RT] + pD[AC,RT]. (4.17)

In addition, we could do a further decomposition of DIC[RT,PDE] in equation 4.12 and

DIC[AC,RT] in equation 4.14. Since the PDE scores follow a normal regression model, we
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have [PDEi | γ21] ∼ N (β0, σ
2
PDE + β2

1 + β2
2) and thus the pdf of PDEi given γ21, i.e.,

f(PDEi | γ21), is a normal pdf. Then, the deviance function of the PDE data has the form

Dev[PDE](γ21) = −2
N∑
i=1

log f(PDEi|γ21), and then the DIC of the PDE data is

DIC[PDE] = Dev[PDE](γ21) + 2pD[PDE] and accordingly, pD[PDE], the effective number of

parameters equal to Eπ(γ21|Dobs)[Dev[PDE](γ21) | Dobs]−Dev[PDE](γ21). Similarly, let

f(ti | γ22) and f(yi | γ1) denote the marginal densities of ti and yi, respectively, in terms

of the joint density of (ti,yi), which is f(ti,yi | γ22,γ1) as shown in equation 4.3.

Accordingly, we can define the deviance functions for the RT model and the AC model, i.e.,

we have Dev[RT](γ22) = −2
N∑
i=1

log f(ti | γ22), where f(ti | γ22) is the pdf of a normal

distribution N (λJi , σ
2
τ1Ji1

′
Ji

+
⊕Ji

j=1 σ
2
j ), and Dev[AC](γ1) = −2

N∑
i=1

log f(yi | γ1), where

f(yi | γ1) =
∫
f(yi | γ1, θi)φ(θi)dθi. Then, we define DIC[RT] = Dev[RT](γ22) + 2pD[RT] as

the DIC for the RT and DIC[AC] = Dev[AC](γ1) + 2pD[AC] as the DIC for the AC. Here,

pD[RT] = Eπ(γ22|Dobs)[Dev[RT](γ22) | Dobs]−Dev[RT](γ22) is the effective number of parameters

for the RT model and pD[AC] = Eπ(γ1|Dobs)[Dev[AC](γ1) | Dobs]−Dev[AC](γ1) is the effective

numbers of parameter for the AC model. Again, although the expectations in pD[PDE],

pD[RT] and pD[AC], are taken with respect to π(γ21 | Dobs), π(γ22 | Dobs), and π(γ1 | Dobs),

respectively, we can still use the MCMC samples drawn from π(γ | Dobs) to estimate those

expectations since π(γ21 | Dobs), π(γ22 | Dobs), and π(γ1 | Dobs) are the marginal posteriors

of π(γ | Dobs).

By the conditional property of the multivariate normal distribution and equation 4.2,

[ti | PDEi,γ2] ∼ NJi

(
λJi − cστ (PDEi − β0)1Ji , σ2

τ [1− c(β1 sinϕ+ β2 cosϕ)] 1Ji1
′
Ji

+

Ji⊕
j=1

σ2
j

)
,

where c = (β1 sinϕ+ β2 cosϕ)/(σ2
PDE + β2

1 + β2
2). Then, f(ti | PDEi,γ2) is also a

multivariate normal pdf. According to equation 4.2 and the conditional formula above,

there are three cases that the PDE data is independent of the RT data and would not help

its analysis: (1) sinϕ = 0 (i.e., θi is not related to the RT model), β2 = 0, (2) cosϕ = 0

(i.e., τi is not related to the RT model), β1 = 0, and (3) β1 = 0 and β2 = 0. Scenario (3) is
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easy to see from the reparameterized PDE model, however, the first two scenarios can be

clearly interpreted from Figure 2.1.

Define DIC[RT|PDE] = Dev[RT|PDE](γ2) + 2pD[RT|PDE] as the DIC for the RT model given

the PDE data, with Dev[RT|PDE](γ2) = −2
N∑
i=1

log f(ti | PDEi,γ2) as the deviance function

for the RT given the PDE and pD[RT|PDE] as the effective number of parameters equal to

Eπ(γ2|Dobs)[Dev[RT|PDE](γ2) | Dobs]−Dev[RT|PDE](γ2). Likewise, we could define the DIC for

the AC model given the RT data as DIC[AC|RT] = Dev[AC|RT](γ1,γ22) + 2pD[AC|RT], where

Dev[AC|RT](γ1,γ22) = −2
N∑
i=1

log f(yi | ti,γ1,γ22) with the likelihood f(yi | ti,γ1,γ22)

computed through
∫
f(yi | γ1, θi)φ(θi)f(θi | ti,γ22)dθi and the effective number of

parameters pD[AC|RT] equals to Eπ(γ1,γ22|Dobs)[Dev[AC|RT](γ1,γ22) | Dobs]−Dev[AC|RT](γ1,γ22).

In a similar way, we obtain the DIC for the RT model given the item response data using

DIC[RT|AC] = Dev[RT|AC](γ1,γ22) + 2pD[RT|AC], where Dev[RT|AC](γ1,γ22) is the deviance

function equal to −2
N∑
i=1

log f(ti | yi,γ1,γ22) with the likelihood f(ti | yi,γ1,γ22) being∫
f(ti | γ22, θi)f(yi | γ1, θi)φ(θi)dθi/f(yi | γ1) and the effective number of parameters

pD[RT|AC] = Eπ(γ1,γ22|Dobs)[Dev[RT|AC](γ1,γ22) | Dobs]−Dev[RT|AC](γ1,γ22). Then, we

summarize the further decomposition of the DIC for jointly modeling the RT and the PDE

data as well as the RT and item response data in Corollary 2.

Corollary 2. The DIC value of joint modeling of the RT and PDE data as well as the

RT and item response data can be decomposed as below

DIC[RT,PDE] = DIC[PDE] + DIC[RT|PDE],

DIC[AC,RT] = DIC[AC] + DIC[RT|AC] = DIC[RT] + DIC[AC|RT], (4.18)

and the effective numbers of parameters are decomposed as

pD[RT,PDE] = pD[PDE] + pD[RT|PDE], and pD[AC,RT] = pD[AC] + pD[RT|AC] = pD[RT] + pD[AC|RT].

By combining Corollary 1 and Corollary 2, we obtain the full decomposition of the

DIC under the proposed joint model as shown in Proposition 3.
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Proposition 3. The total DIC under the proposed joint model can be decomposed as

DIC = DIC[AC|RT,PDE] + DIC[RT|PDE] + DIC[PDE] (4.19)

= DIC[PDE|AC,RT] + DIC[RT|AC] + DIC[AC] (4.20)

= DIC[PDE|AC,RT] + DIC[AC|RT] + DIC[RT], (4.21)

and the corresponding effective number of parameters pD can be partitioned as

pD = pD[AC|RT,PDE] + pD[RT|PDE] + pD[PDE] (4.22)

= pD[PDE|AC,RT] + pD[RT|AC] + pD[AC] (4.23)

= pD[PDE|AC,RT] + pD[AC|RT] + pD[RT]. (4.24)

4.1.2. ∆DICAC, ∆DIC∗AC, ∆DICRT, ∆DIC∗RT and ∆DICPDE

Instead of fitting a joint model, we can separately fit the item response, RTs and PDE

scores one by one, by using equation 2.1 for the AC model, equation 2.2 for the RT model

with εij ∼ N (0, σ2
j ) and equation 2.3 for the PDE model with ζ∗ ∼ N (0, σ2

PDE). Define

γPDE = (β0, σ
2
PDE)′ and γRT = (λ′J , σ

2
τ , σ

2
1, · · · , σ2

J)′; and DAC,obs = {yi, i = 1, · · · , N},

DRT,obs = {ti, i = 1, · · · , N}, and DPDE,obs = {PDEi, i = 1, · · · , N} as the observations for

each part of multidimensional data. Then, the respective DICs for the AC model, RT and

PDE alone are given by

DICo
[AC] = Devo[AC](γ̃1) + 2poD[AC], (4.25)

DICo
[RT] = Devo[RT](γ̃RT) + 2poD[RT], (4.26)

DICo
[PDE] = Devo[PDE](γ̃PDE) + 2poD[PDE]. (4.27)

Here, Devo[AC](γ1) = −2
N∑
i=1

log f(yi | γ1) = −2
∑N

i=1 log
∫
f(yi | γ1, θ∗i )φ(θ∗i )dθ

∗
i is the

deviance function for the AC model alone, with f(yi | γ1, θ∗i ) defined in equation 3.1 by

replacing θi with θ∗i . p
o
D[AC] = Eπ(γ1|DAC,obs)[Devo[AC](γ1) | DAC,obs]−Devo[AC](γ̃1) is the

effective number of parameters for the AC model alone, where the expectation is taken
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respect to the posterior distribution of γ1 based on the AC data and γ̃1 is its posterior

mean with π(γ1 | DAC,obs) ∝ f(yi | γ1)π(γ1) and π(γ1) as the prior distribution for γ1.

Likewise, the deviance function Devo[RT](γRT) = −2
N∑
i=1

log f(ti | γRT) is for the RT model

alone, with f(ti | γRT) =
∫
f(ti | γRT, τ ∗i )φ(τ ∗i )dτ ∗i and f(ti | γRT, τ ∗i ) is the pdf of the RT

model defined in equation 2.2. Further, poD[RT] is the effective number of parameters for the

RT model alone, which equals to Eπ(γRT|DRT,obs)[Devo[RT](γRT) | DRT,obs]−Devo[RT](γ̃RT), with

the expectation respect to π(γRT | DRT,obs) ∝ f(ti | γRT)π(γRT), π(γRT) as the prior for γRT

and γ̃RT as its posterior mean. Similarly, for the PDE data alone, Devo[PDE](γPDE) is its

deviance function, which equals to −2
N∑
i=1

log f(PDEi | γPDE) with f(PDEi | γPDE) as the

pdf of the normal distribution N (β0, σ
2
PDE). The effective number of parameters for the

PDE model alone is poD[PDE] = Eπ(γPDE|DPDE,obs)[Devo[PDE](γPDE) | DPDE,obs]−Devo[PDE](γ̃PDE),

with the expectation respect to the posterior distribution of γPDE given the PDE data

alone, i.e., π(γPDE | DPDE,obs) ∝ f(PDEi | γPDE)π(γPDE), where π(γPDE) is the prior

distribution for γPDE.

By comparing the DIC value of the AC model in equation 4.25 with DIC[AC|RT,PDE] in

equation 4.7 and DIC[AC|RT] in equation 4.18, the DIC value of the RT model in equation

4.26 with DIC[RT|AC,PDE] in equation 4.10 and DIC[RT|AC] in equation 4.18, as well as the

DIC value of the PDE model in equation 4.27 with DIC[PDE|AC,RT] in equation 4.11, we can

determine whether the additional information from the two parts of multidimensional data

will help us in modeling the remaining part of the multidimensional data. To be specific,

we subtract the difference between the pairs of DIC values, i.e.,

∆DICAC = DICo
[AC] −DIC[AC|RT,PDE], (4.28)

∆DIC∗AC = DICo
[AC] −DIC[AC|RT], (4.29)

∆DICRT = DICo
[RT] −DIC[RT|AC,PDE], (4.30)

∆DIC∗RT = DICo
[RT] −DIC[RT|AC], (4.31)

∆DICPDE = DICo
[PDE] −DIC[PDE|AC,RT]. (4.32)
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Here, ∆DICAC measures the gain in the fit of the item response data by conjointly

modeling with the RT and PDE data, ∆DICRT evaluates the gain in the fit of the RT data

via conjointly modeling with the item response and PDE data, and ∆DICPDE determines

the gain in the fit of PDE data through conjointly modeling with the item response and

RT data. While, ∆DIC∗AC measures the gain in the fit of the item response data by

incorporating only the RT data in the joint modeling, and ∆DIC∗RT calculates the gain in

the fit of the RT data by introducing only the item response data in the joint model. Our

proposed definitions for ∆DICAC, ∆DIC∗AC, ∆DICRT, ∆DIC∗RT and ∆DICPDE have taken

account of a penalty for the additional parameters in the proposed joint model. If the value

of ∆DICAC is large, it implies that by incorporating the information from the RT and PDE

data, the proposed joint model indeed helps us obtain a better fit for the item response

data. However, ∆DICAC can be negative, which suggests that fitting a AC model alone

might be a better option. Similar interpretations are also applied to ∆DICRT and

∆DICPDE, ∆DIC∗AC and ∆DIC∗RT.

4.2. The Logarithm of the Pseudo-marginal Likelihood Criterion

The Bayes factor (BF), defined as the ratio of the marginal likelihoods of the data

under the two competing models, is a fundamental criterion for model comparison under

Bayesian inference, which could be viewed as the Bayesian equivalent of the likelihood ratio

test. Often, for complex models, computing the marginal likelihoods in BF is not an easy

task. In practice, this marginal likelihood can be approximated using the conditional

predictive ordinate (CPO), which measures the accuracy of prediction using the idea of the

leave-one-out cross-validation (Geisser & Eddy, 1979; Gelfand et al., 1992; Gelfand & Dey,

1994). A summary statistic of CPO is then called the logarithm of the pseudo-marginal

likelihood (LPML), which has emerged as an alternative to assess model fit in the field of

IRT (Bolt et al., 2012; G. Chen & Luo, 2018; Fujimoto, 2018). In this subsection, we focus

on the decomposition of CPO and its summary statistic LPML.
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4.2.1. CPO Computation

Let D(−i)
obs = {(y′k, t′k,PDEk)

′, k = 1, · · · , i− 1, i+ 1, · · · , N} denote the observed data

with the ith participant deleted. Then, for the ith participant, the corresponding

conditional predictive ordinate (CPO) is defined through the posterior predictive density of

(y′i, t
′
i,PDEi)

′, that is,

CPOi = π(yi, ti,PDEi | D(−i)
obs ) =

∫
f(yi, ti,PDEi | γ)π(γ | D(−i)

obs )dγ, (4.33)

where π(γ | D(−i)
obs ) is computed via π(γ | D(−i)

obs ) =
N∏

k=1,k 6=i
f(yk, tk,PDEk | γ)π(γ)/c(D(−i)

obs )

and c(D(−i)
obs ) =

∫ N∏
k=1,k 6=i

f(yk, tk,PDEk | γ)π(γ)dγ is the normalizing constant. Following

M.-H. Chen et al. (2000), CPOi in equation 4.33 can be rewritten as

CPOi =

[∫
[f(yi, ti,PDEi | γ)]−1 π(γ | Dobs)dγ

]−1
, (4.34)

which makes the Monte Carlo estimate of CPOi much easier by drawing MCMC samples

from the posterior distribution given Dobs instead of D(−i)
obs . The expression of CPOi given

in equation 4.34 is also called the CPO Identity I as discussed in D. Zhang et al. (2017).

Assuming that M is the total number of iterations in the MCMC sample and

{γ [m],m = 1, · · · ,M} are the M values of γ drawn from π(γ | Dobs), a Monte Carlo

estimate of CPOi is given by

ĈPOi = M

/ M∑
m=1

[
f(yi, ti,PDEi | γ [m])

]−1
. (4.35)

As discussed in Section 3, f(yi, ti,PDEi | γ [m]) depends only on a one-dimensional integral

(see equation 3.4 for more details), which makes the use of the CPO Identity I possible for

computing ĈPOi. Similarly, we can define the item response data alone without the ith

participant as D(−i)
AC,obs = {yk, k = 1, · · · , i− 1, i+ 1, · · · , N}, the RT data alone without the

ith participant as D(−i)
RT,obs = {tk, k = 1, · · · , i− 1, i+ 1, · · · , N} and the PDE data alone
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without the ith participant as D(−i)
PDE,obs = {PDEk, k = 1, · · · , i− 1, i+ 1, · · · , N}. Then,

CPOi,AC =
[∫

[f(yi | γ1)]−1 π(γ1 | DAC,obs)dγ1
]−1

is the CPO for the ith participant with

respect to the AC alone, CPOi,RT =
[∫

[f(ti | γRT)]−1 π(γRT | DRT,obs)dγRT
]−1

is the CPO

of the ith participant for the RT alone, and the CPO of the ith participant for the PDE

model alone is CPOi,PDE =
[∫

[f(PDEi | γPDE)]−1 π(γPDE | DPDE,obs)dγPDE

]−1
. Then we

can estimate them using

ĈPOi,AC = M

/ M∑
m=1

[
f(yi | γ̃ [m]

1 )
]−1

, (4.36)

ĈPOi,RT = M

/ M∑
m=1

[
f(ti | γ̃ [m]

RT )
]−1

, (4.37)

ĈPOi,PDE = M

/ M∑
m=1

[
f(PDEi | γ̃ [m]

PDE)
]−1

(4.38)

with {γ̃ [m]
1 ,m = 1, · · · ,M} drawn from the posterior distribution π(γ1 | DAC,obs),

{γ̃ [m]
RT ,m = 1, · · · ,M} drawn from the posterior distribution π(γRT | DRT,obs), and

{γ̃ [m]
PDE,m = 1, · · · ,M} drawn from the posterior distribution π(γPDE | DPDE,obs).

4.2.2. CPO Decomposition

We are going to introduce three ways of decomposition for the CPO to facilitate our

comparisons below, which include 1) the AC model alone versus the AC model given the

additional information from the RT and PDE data, 2) the RT model alone versus the RT

model given the additional information from the item response and PDE data, and 3) the

PDE model alone versus the PDE model given the additional information from the RT and

item response data. From equation 4.33, we can also write CPOi as

CPOi =
c(Dobs)
c(D(−i)

obs )
=
f(yi, ti,PDEi | γ)π(γ|D(−i)

obs )

π(γ | Dobs)
. (4.39)
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Notice that the joint pdf of (y′i, t
′
i,PDEi)

′ can be written as the product of the conditional

pdf and the marginal pdf in three different ways as follows

f(yi, ti,PDEi | γ) = f(yi | ti,PDEi,γ1,γ2)f(ti,PDEi | γ2) (4.40)

= f(ti | yi,PDEi,γ1,γ2)f(PDEi,yi | γ21,γ1) (4.41)

= f(PDEi | yi, ti,γ1,γ2)f(ti,yi | γ22,γ1), (4.42)

Here, f(yi | ti,PDEi,γ1,γ2), f(ti | yi,PDEi,γ1,γ2) and f(PDEi | yi, ti,γ1,γ2) are given in

equation 4.6, equation 4.8, and equation 4.9, respectively; f(ti,PDEi | γ2) is a multivariate

normal pdf derived from equation 4.2, while f(PDEi,yi | γ21,γ1) and f(ti,yi | γ22,γ1) are

defined in equation 4.4 and equation 4.3, respectively. Further, we can partition the

posterior distributions of γ given D(−i)
obs and Dobs, respectively, as

π(γ | D(−i)
obs )= π(γ2 | D(−i)

obs )π(γ1 | γ2,D(−i)
obs ) (4.43)

= π(γ1,γ21 | D(−i)
obs )π(γ22 | γ1,γ21,D(−i)

obs ) (4.44)

= π(γ1,γ22 | D(−i)
obs )π(γ21 | γ1,γ22,D(−i)

obs ), (4.45)

and π(γ | Dobs)= π(γ2 | Dobs)π(γ1 | γ2,Dobs) (4.46)

= π(γ1,γ21 | Dobs)π(γ22 | γ1,γ21,Dobs) (4.47)

= π(γ1,γ22 | Dobs)π(γ21 | γ1,γ22,Dobs). (4.48)

Using equation 4.39 together with equation 4.40-equation 4.48, we can decompose the

value of CPO for the ith participant in three different ways as

CPOi = CPOi,[RT,PDE]CPOi,[AC|RT,PDE] (4.49)

= CPOi,[AC,RT]CPOi,[PDE|AC,RT] (4.50)

= CPOi,[AC,PDE]CPOi,[RT|AC,PDE]. (4.51)

Here, CPOi,[RT,PDE] = f(ti,PDEi | γ2)π(γ2 | D(−i)
obs )/π(γ2 | Dobs), by analogy, can be viewed

as the CPO of the ith participant for jointly modeling the RT and PDE data; CPOi,[AC,RT]
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can similarly be viewed as the CPO of the ith participant for jointly modeling the item

response and RT data, which equals to f(ti,yi | γ1,γ22)π(γ1,γ22 | D(−i)
obs )/π(γ1,γ22 | Dobs);

and CPOi,[AC,PDE] = f(yi,PDEi | γ1,γ21)π(γ1,γ21 | D(−i)
obs )/π(γ1,γ21 | Dobs) can be

interpreted as the CPO of the ith participant for jointly modeling the item response and

PDE data. While, CPOi,[AC|RT,PDE], CPOi,[PDE|AC,RT] and CPOi,[RT|AC,PDE] are our major

focuses in the CPO decomposition, and it is not hard to derive their corresponding

formula, where CPOi,[AC|RT,PDE] = f(yi | ti,PDEi,γ1,γ2)π(γ1 | γ2,D(−i)
obs )/π(γ1 | γ2,Dobs) is

regarded as the CPO of the item responses given the additional information from the RT

and PDE data for the ith participant; CPOi,[PDE|AC,RT], interpreted as the CPO of the PDE

data given the additional information from the item response and RT data for the ith

participant, equals to f(PDEi | ti,yi,γ1,γ2)π(γ21 | γ1,γ22,D(−i)
obs )/π(γ21 | γ1,γ22,Dobs);

CPOi,[RT|AC,PDE] = f(ti | yi,PDEi,γ1,γ2)π(γ22 | γ1,γ21,D(−i)
obs )/π(γ22 | γ1,γ21,Dobs) is the

CPO of the RT data given the additional information from the item response and PDE

data for the ith participant. With some algebra, we can rewrite conditional CPOs via the

following identities:

CPOi,[AC|RT,PDE] =

[∫
[f(yi | ti,PDEi,γ1,γ2)]

−1 π(γ1 | γ2,Dobs)dγ1
]−1

, (4.52)

CPOi,[PDE|AC,RT] =

[∫
[f(PDEi | ti,yi,γ1,γ2)]−1 π(γ21 | γ1,γ22,Dobs)dγ21

]−1
, (4.53)

CPOi,[RT|AC,PDE] =

[∫
[f(ti | yi,PDEi,γ1,γ2)]

−1 π(γ22 | γ1,γ21,Dobs)dγ22
]−1

, (4.54)

which imply that we can mimic the idea of Monte Carlo estimation of CPOi in equation

4.35 to estimate CPOi,[AC|RT,PDE], CPOi,[PDE|AC,RT], and CPOi,[RT|AC,PDE]. Some similar

identities can also be derived for CPOi,[RT,PDE], CPOi,[AC,PDE], and CPOi,[AC,RT], however,

since those are not our major focus, we omit the details.

To show why equation 4.52 holds, first, we manipulate relationships between the joint

and conditional distributions, which yields

π(γ2 | D−iobs)/π(γ2 | Dobs) = CPOi

∫
[f(yi, ti,PDEi | γ1,γ2)]−1 π(γ1 | γ2,Dobs)dγ1.
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Then, by plugging this equation above into the expression of CPOi,[RT,PDE], we obtain that

CPOi,[RT,PDE] = CPOi

∫
[f(yi | ti,PDEi,γ1,γ2, )]

−1 π(γ1 | γ2,Dobs)dγ1 and then comparing

CPOi,[RT,PDE] derived here with equation 4.49, we can conclude equation 4.52 holds. It is

clearly seen that if only CPOi,[AC|RT,PDE] is of interest, it is not necessary to compute the

overall CPOi. Similar discussions are also applied to equation 4.53 and equation 4.54.

As γ2 is unknown, following the discussion of D. Zhang et al. (2017), we plug the

posterior mean of γ2 (i.e., γ2) into equation 4.52 and then assuming {γ [m]
1 ,m = 1, · · · ,M}

is drawn from π(γ1 | γ2,Dobs), we have

ĈPOi,[AC|RT,PDE] = M

/ M∑
m=1

[
f(yi | γ [m]

1 ,γ2, ti,PDEi)
]−1

. (4.55)

Similarly, we also have

ĈPOi,[PDE|AC,RT] = M

/ M∑
m=1

[
f(PDEi | γ1,γ

[m]
21 ,γ22, ti,yi)

]−1
, (4.56)

ĈPOi,[RT|AC,PDE] = M

/ M∑
m=1

[
f(ti | γ1,γ21,γ

[m]
22 ,yi,PDEi)

]−1
(4.57)

with {γ [m]
21 ,m = 1, · · · ,M} is drawn from π(γ21 | γ1,γ22,Dobs) and {γ [m]

22 ,m = 1, · · · ,M} is

drawn from π(γ22 | γ1,γ21,Dobs).

4.2.3. LPML and LPML Decomposition

Following Ibrahim et al. (2001), we define the LPML of the proposed joint model as

LPML =
N∑
i=1

log ĈPOi, where ĈPOi is computed using equation 4.35. Further, it is easy to

see that the LPML of the proposed joint model can be decomposed as

LPML = LPML[RT,PDE] + LPML[AC|RT,PDE] (4.58)

= LPML[AC,RT] + LPML[PDE|AC,RT] (4.59)

= LPML[AC,PDE] + LPML[RT|AC,PDE], (4.60)
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by using equation 4.49, equation 4.50, equation 4.51 and the property of the logarithm that

the logarithm of a product is the sum of the logarithms of the factors. Here,

LPML[RT,PDE] =
N∑
i=1

log ĈPOi,[RT,PDE], where ĈPOi,[RT,PDE] is the estimate of CPOi,[RT,PDE];

LPML[AC,RT] =
N∑
i=1

log ĈPOi,[AC,RT] with ĈPOi,[AC,RT] being the estimate of CPOi,[AC,RT];

and LPML[AC,PDE] =
N∑
i=1

log ĈPOi,[AC,PDE] with ĈPOi,[AC,PDE] being the estimate of

CPOi,[AC,PDE]. We also have LPML[AC|RT,PDE] =
N∑
i=1

log ĈPOi,[AC|RT,PDE], where

ĈPOi,[AC|RT,PDE] is estimated by equation 4.55; LPML[PDE|AC,RT] =
N∑
i=1

log ĈPOi,[PDE|AC,RT]

with ĈPOi,[PDE|AC,RT] estimated by equation 4.56; and let ĈPOi,[RT|AC,PDE] is estimated by

equations 4.55, then LPML[RT|AC,PDE] =
N∑
i=1

log ĈPOi,[RT|AC,PDE].

4.2.4. ∆LPMLAC, ∆LPMLPDE and ∆LPMLRT

Since a larger value of LPML suggests a better model fit, by analogy to the derivations

of ∆DICAC, ∆DICPDE, and ∆DICRT, we can define the differences of LPML as

∆LPMLAC = LPML[AC|RT,PDE] − LPML[AC], (4.61)

∆LPMLRT = LPML[RT|AC,PDE] − LPML[RT], (4.62)

∆LPMLPDE = LPML[PDE|AC,RT] − LPML[PDE], (4.63)

where LPML[AC] =
∑N

i=1 log ĈPOi,AC, LPML[RT] =
∑N

i=1 log ĈPOi,RT, and

LPML[PDE] =
∑N

i=1 log ĈPOi,PDE with ĈPOi,AC, ĈPOi,RT, and ĈPOi,PDE estimated through

equations 4.36, 4.37, and 4.38, respectively. To save the space in this paper, we haven’t

reported ∆LPML∗AC (analogy to ∆DIC∗AC) to quantify the gain in the fit of the item

response data by only conjointly model with the RT data, as well as ∆LPML∗RT (analogy

to ∆DIC∗RT) to measure the gain in the fit of the RT data by introducing only the item

response data in the joint model. The formula for ∆LPML∗AC and ∆LPML∗RT are similar to

those in equation 4.61 and equation 4.62.
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As an example, if we take an exponential on both sides of equation 4.61, the right side

will become a ratio of two pseudo likelihood functions, which compares the likelihood

function of the item response data given additional information from the RT and PDE

data to the likelihood function of item response data alone. Thus, we can view

exp(∆LPMLAC), (similarly, for exp(∆LPMLRT) and exp(∆LPMLPDE)) as a pseduo-BF,

and use it to quantify the gain in the fit of the item response data (similarly, for the RT

data or the PDE data) due to the joint model. A model with a large value of ∆LPML

(corresponding to a large pseudo-BF value) means the joint model is more favorable.

Following the rule of thumb for the scale of BF suggested by Jeffreys (1961) or Kass and

Raftery (1995), we can determine which models we are going to support.

5. Simulation Study

In this section, we first investigate the performance of the MCMC methods in recovery

of the true parameters for the joint model using the simulation data. Next, we evaluate the

empirical performance of model assessment criteria, including ∆DICAC, ∆DIC∗AC, ∆DICRT,

∆DIC∗RT, ∆DICPDE, ∆LPMLAC, ∆LPMLRT, and ∆LPMLPDE, over different numbers of

items and participants.

5.1. The Recovery Study of Parameters in the Model

We generate the simulated data from the reparameterized and reformulated joint

model proposed in equation 2.7 to equation 2.8 of Section 2, which is equivalent to generate

the data directly from equation 2.1 to equation 2.4. The true parameters in the model are

set in a way to resemble the posterior means from the empirical data as follows. First, we

draw item discrimination parameters ajs from a uniform distribution U(0.3, 1.9), item

difficulty parameters bjs from N (0, 1) and item intensity parameters λjs from U(0.8, 1.9).

Also, we assume the variances of εijs in the RT model, i.e, σ2
j s are sampled from a uniform

distribution U(0.14, 0.75). For the latent attribute parameters θis and τis at the participant
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level, we assume both are drawn from a standard normal distribution N (0, 1). We set the

coefficients β0, β1, β2 and σ2
PDE in equation 2.9 to be 93.8, 14.5, 3.5, and 57, respectively.

Further, let the correlation related parameter ϕ in equation 2.8 be 0.411 and the standard

deviation parameter of speed στ in equation 2.8 be 0.367. Notice these settings are

corresponding to using σ12 = 0.147, σ13 = β1 = 14.5, σ2
τ = 0.135, σ23 = 3.30 and

σ33 = 279.5 in equation 2.4 under the original joint model.

For the number of participants, we consider two cases, N = 125 and N = 250, and for

the number of items in a test, we also consider two cases, J = 20 and J = 40. Hence, there

are a total of 2× 2 = 4 different scenarios. For the scenario of J = 20 items, we use the

same values of item parameters selected from the scenario of J = 40 items. Similarly, for

the case of N = 125 participants, we use the same values of the latent attribute parameters

selected from the case of N = 250 respondents. For each scenario, we independently

simulate 500 replications of the data. The running time depends on the numbers of

participants and items as well as the length of the MCMC chain. In the simulation

scenario of N = 125 and J = 20, for each simulated data set, it takes 3.9 minutes for run a

25,000 MCMC iterations in R codes on an Intel i7 processor machine with 16 GB of RAM

memory using a Windows 10 operating system. To compute all of the model assessment

criteria based on the decomposition of DIC, it takes about 22 minutes to run the Fortran

95 codes on an Intel i686 processor machine with 16 GB of RAM memory using a

GNU/Linux operating system. The running time increases proportionally when the

numbers of individuals and items increase.

For each replication of the data, using 25,000 MCMC iterations with a burn-in period

of 5000 iterations and thinning the sample for every two iterations, we compute the

posterior mean and 95% highest posterior density (HPD) intervals (M.-H. Chen & Shao,

1999) for each parameter. Then, we compare the posterior means of the parameters

relative to their true values among 500 replications. By averaging these values, we obtain

the bias using Bias =
R∑
r=1

(ϑ̂r − ϑ)/R and the mean squared error (MSE) through
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MSE =
R∑
r=1

(ϑ̂r − ϑ)2/R, where ϑ is the parameter of interest, ϑ̂r is the posterior mean of

the parameter in the rth replication, with r = 1, · · · , R and R = 500. In addition, we

compute the frequentist coverage probability (CP) by counting among 500 replications how

many the 95% HPD intervals of the parameter will contain the true value of the parameter.

Further, we report the sample standard deviation (SD) of the posterior estimates over

replica datasets, i.e., SD =
R∑
r=1

√∑M
m=1(ϑ

[m]
r − ϑ̂r)2/(M − 1)/R, where ϑ

[m]
r is the mth

iteration of the MCMC sample for the parameter ϑr in the rth replication of the data and

m = 1, · · · ,M ; and we compute the simulation standard error (SE) via

SE =

√
R∑
r=1

(ϑ̂r − 1
R

R∑̀
=1

ϑ̂`)2/(R− 1).

Table 5.1 shows a summary of the simulation results for a = (a1, · · · , aJ)′,

b = (b1, · · · , bJ)′ and λJ = (λ1, · · · , λJ)′, respectively. Due to a large number of items, in

Table 5.1, the content in the intersection of Column ‘Bias’ and Row ‘a (Min,Max)’

presents the median value of the bias among all ajs and the bracket shows the range of the

bias values for all ajs. Similar interpretation can be applied to Bias, MSE, CP and SD for

all other columns and rows in the table. In analogy, we summarize the latent attribute

parameters of respondents by grouping them as θ and τ shown in Table 5.2, where

θ = (θ1, · · · , θN)′ and τ = (τ1, · · · , τN)′. For example, the content in Column of ‘Bias’

intersected with Row ‘θ (Min,Max)’ provides the median value of the bias among all θis

and the bracket there is the range of the bias for all θis. The rest columns and rows of

Bias, MSE, CP and SD can be interpreted accordingly in Table 5.2. To save space, we put

the SE results of all unknown parameters in Table S.1 of the Supplementary Materials.

Based on these tables, we can draw some conclusions for the recovery performance of

item and latent attribute parameters. First, the values of Bias and MSE for the items

parameters decrease substantially as the number of participants increases from N = 125 to

N = 250. In most cases of N = 250, the median values of MSE for the item parameters are

below 0.05. Second, the values of Bias and MSE for latent attribute parameters have
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Table 5.1: Summary of item parameters in the simulation

N J Bias SD MSE CP(%)

125 20 a (Min,Max) -.064 (-.296, .101) .267 (.175, .401) .069 (.029, .162) .936 (.866, .984)

b (Min,Max) .108 (-.171, .183) .298 (.186, .547) .091 (.031, .155) .967 (.926, 1.000)

λ (Min,Max) .011 (.006, .017) .066 (.050, .084) .003 (.002, .006) .976 (.956, .988)

β0 -1.740 1.483 3.502 .940

β1 -.230 1.165 .755 .986

β2 -.109 1.050 1.153 .944

σ2
PDE -1.382 12.850 178.797 .930

40 a (Min,Max) -.118 (-.315, .213) .262 (.161, .392) .076 (.022 , .175) .920 (.838, .994)

b (Min,Max) .154 (-.221, .282) .271 (.178, .557) .097 (.023, .177) .963 (.900, .992)

λ (Min,Max) .008 (.006, .013) .065 (.049, .084) .003 (.001, .006) .978 (.958, .998)

β0 -1.625 1.425 3.088 .964

β1 -.992 1.010 1.458 .926

β2 -.021 .885 .720 .968

σ2
PDE -1.348 10.067 107.075 .950

250 20 a (Min,Max) -.014 (-.120, .075) .198 (.133, .329) .037 (.019, .090) .954 (.930, .982)

b (Min,Max) .091 (-.058, .121) .199 (.118, .441) .037 (.014, .125) .951 (.926, .990)

λ (Min,Max) -.002 (-.005, .001) .046 (.035, .059) .002 (.001, .003) .978 (.960, .988)

β0 -1.220 1.049 1.708 .968

β1 -.173 .842 .335 .998

β2 .086 .885 .452 .960

σ2
PDE .296 8.794 81.879 .942

40 a (Min,Max) -.041 (-.130, .171) .201 (.123, .320) .038 (.012, .087) .944 (.912, .976)

b (Min,Max) .105 (-.053, .251) .177 (.116, .457) .037 (.013, .151) .955 (.898, .984)

λ (Min,Max) -.002 (-.006, .001) .046 (.034, .059) .002 (.001, .003) .976 (.958, .992)

β0 -1.198 1.023 1.678 .942

β1 -.605 .757 .609 .966

β2 .103 .608 .373 .950

σ2
PDE .259 6.856 46.750 .936
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Table 5.2: Summary of latent attribute parameters for respondents in the simulation

J N Bias SD MSE CP(%)

20 125 θ (Min,Max) .103 (-.337, .510) .355 (.341, .430) .120 (.095, .370) .954 (.810, .984)

τ (Min,Max) -.025 (-.372, .386) .406 (.396, .473) .137 (.107, .263) .966 (.892, .996)

250 θ (Min,Max) .080 (-.379, .554) .341 (.329, .429) .111 (.082, .434) .954 (.776, .984)

τ (Min,Max) -.035 (-.528, .500) .380 (.374, .420) .135 (.097, .389) .956 (.776, .986)

40 125 θ (Min,Max) .095 (-.070, .344) .299 (.282, .398) .085 (.066, .208) .958 (.876, .992)

τ (Min,Max) -.024 (-.243, .209) .312 (.298, .395) .077 (.064, .127) .970 (.934, .996)

250 θ (Min,Max) .071 (-.192, .387) .276 (.262, .399) .073 (.056, .245) .954 (.824, .980)

τ (Min,Max) -.029 (-.425, .333) .285 (.277, .337) .077 (.057, .250) .956 (.762, .986)

similar results, that is, the values of Bias and MSE for ability and speediness parameters

decrease as the number of items increases from J = 20 to J = 40. Third, based on the

results of CP values, almost all parameters are around the nominal level 0.95, and

additionally, most SD and SE values are comparable to each other, which shows that our

MCMC sampling can obtain a very good recovery of the truth for each parameter.

5.2. Performance of the Proposed Criteria

Since our MCMC algorithm yields the satisfactory results of Bayesian estimation for

our proposed joint model, next we investigate the empirical performance on the proposed

decomposition of DIC and LPML. Following Subsection 5.1, we also consider the same four

scenarios, i.e., N = 125, J = 20; N = 125, J = 40; N = 250, J = 20 and N = 250, J = 40

and run 500 replications for each scenario. Figure 5.1 shows the boxplots of the ∆DICAC,

∆DIC∗AC, ∆DICRT, ∆DIC∗RT, ∆DICPDE, and ∆LPMLAC, ∆LPMLRT, ∆LPMLPDE for the

four scenarios. From these plots, we see that the values of these assessment criteria become

larger when the numbers of items or participants increase. These results are intuitively

appealing since there is more information in the data when more items and participants are
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added. In Figure 5.1, all those values are far away from zero which indicates the criteria

support that there are gains in fitting the third part of the data with additional

information from the other two parts of the data. The median values of ∆DICAC

(∆DIC∗AC) for 500 replications are 121.565 (16.383), 143.657 (19.285), 246.573 (22.528),

and 294.548 (26.431) for N = 125, J = 20; N = 125, J = 40; N = 250, J = 20 and

N = 250, J = 40, respectively, while the median values of ∆LPMLAC for 500 replications

are 62.894, 74.075, 125.449, and 149.494, respectively. The median values of ∆DICRT

(∆DIC∗RT) for 500 replications are 37.809 (14.964), 40.919 (18.211), 65.126 (20.210), and

71.151 (25.022), respectively, while the median values of ∆LPMLRT are 20.261, 21.930,

33.939, and 37.070, respectively. By comparing ∆DICAC with ∆DIC∗AC (or ∆DICRT with

∆DIC∗RT), we could see in the simulation data, besides the RT data (or the item response

data), the PDE data indeed helps a lot in the fit for the joint model. Moreover, the median

values of ∆DICPDE are 144.630, 166.949, 290.020, and 336.068, respectively, while the

median values of ∆LPMLPDE are 74.089, 84.335, 147.005, and 169.241, respectively.

Further, we have examined the empirical performance of the proposed criteria under

three different parameter settings in equation 2.9: (i) β1 = 0 and β2 = 0 (i.e., the PDE

model is independent of the AC model and the RT model), (ii) β1 = 0 and β2 = 3.5, and

(iii) β1 = 14.5 and β2 = 0. For these three settings, we generate the simulation data using

N = 250 and J = 20 and the true values of all other parameters are set to be the same as

those in Section 5.1. The results of the different DICs and LPMLs are reported in Table

5.3 for the three settings of (β1, β2). We see from Table 5.3 that under the setting (i), the

respective ranges of ∆DICPDE, ∆LPMLPDE, ∆DICAC −∆DIC∗AC, and ∆DICRT −∆DIC∗RT

include zero which is expected since there is no relationship between the PDE model and

the rest two model components in the joint model. Further, under the setting (ii), from

equation 2.9, we see that the PDE data should help improve the fit of the RT data but not

the AC data, which are precisely confirmed empirically by the results shown in Table 5.3,

since the range of ∆DICAC −∆DIC∗AC includes zero while the range of ∆DICRT −∆DIC∗RT
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Table 5.3: The Range (Min, Max) Results of Model Assessment Criteria

(i) β1 = 0, β2 = 0 (ii) β1 = 0, β2 = 3.5 (iii) β1 = 14.5, β2 = 0

∆DICAC (5.196, 39.722) (6.685, 50.640) (213.487, 341.163)

∆DIC∗AC (6.734, 40.051) (7.079, 40.923) (7.387, 41.957)

∆DICAC −∆DIC∗AC (-2.037, 11.292) (-1.968, 28.621) (196.374, 320.359)

∆LPMLAC (4.673, 21.936) (5.417, 27.693) (108.792, 172.787)

∆DICRT (3.924, 39.271) (25.570,106.766) (6.428, 38.282)

∆DIC∗RT (5.868, 38.937) (5.840, 38.701) (5.885, 39.240)

∆DICRT −∆DIC∗RT (-2.005, 8.209) (10.404, 81.322) (-3.034, 15.362)

∆LPMLRT (3.661, 20.706) (14.747, 55.110) (4.313, 20.821)

∆DICPDE (-4.146, 9.319) (8.404, 80.754) (219.660, 340.188)

∆LPMLPDE (-2.266, 4.862) (4.186, 40.416) (111.297, 172.808)

does not include zero. Moreover, under the setting (iii), the PDE data should help improve

the fit of the AC data but not the RT data, which is consistent with the results given in

Table 5.3 since the range of ∆DICAC −∆DIC∗AC does not include zero while the range of

∆DICRT −∆DIC∗RT includes zero. In addition, we note that under all of the three

simulation settings, we set ϕ = 0.411, implying that the AC data are associated with the

RT data, and hence, the AC data should help improve the fit of the RT data and vice

versa. We see from Table 5.3 that the lower bounds of the ranges of ∆DICAC, ∆DIC∗AC,

∆DICRT, and ∆DIC∗RT are larger than zero as they should be. Finally, from Table 5.3, we

can see that when the absolute value of β1 (or β2) gets bigger, the value of ∆DICPDE and

∆LPMLPDE) increase. These results further demonstrate good performance of our

proposed model assessment criteria.
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Figure 5.1: ∆DICAC, ∆DIC∗AC, ∆LPMLAC, ∆DICRT, ∆DIC∗RT, ∆LPMLRT, ∆DICPDE, and

∆LPMLPDE results for different samples sizes of items and respondents.
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6. Empirical Analysis

The AppRISE data consists of the item response and the RT for 43 items from 117

participants, and the PDE score from these participants. There are 65 participants at 5

years old, 51 participants at 6 years old and 1 participant at 7 years old. Among all

participants, 51 are female, while 66 are male. The distributions of item accuracies,

response times, and PDE scores are shown in Figure S.4 (a)-(c) of the Supplementary

Materials, respectively.

In our study, there are two major goals of analyzing the AppRISE and PDE test data.

The first major goal is to investigate whether any two parts of this multidimensional data

can contribute to the fit of the remaining part of the data. Also, we specifically investigate

whether the AC model can be improved by only including the RT data. The second major

goal is to establish criterion validity of the tablet test assessment, based on the correlation

between PDE scores and ability.

6.1. Bayesian Model Assessment

To compare Bayesian model assessment criteria, we analyze the multidimensional data

from AppRISE and PDE tests in four situations: (1) apply the AC model in equation 2.7

alone to the item response data; (2) apply the RT model in equation 2.2 alone to the RT

data; (3) apply the model N (µPDE, σ
2
PDE) alone to the paper-based PDE data; and (4) apply

the joint model from equation 2.7 to equation 2.9 to the item response, RT and PDE data

together. In Table 6.1, we present the total values and decomposition of DIC, pD, and

LPML as well as the results of ∆DICAC, ∆DIC∗AC, ∆DICRT, ∆DIC∗RT, ∆DICPDE,

∆LPMLAC, ∆LPMLRT, and ∆LPMLPDE. It is clearly seen that all values of ∆DICAC,

∆DICRT, ∆DICPDE, ∆LPMLAC, ∆LPMLRT, and ∆LPMLPDE are positive, which suggests

the joint model is supported by the data and shows the additional data (i.e., the

availability of the RT and PDE data, the RT and item response data, the item response
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and PDE data) provides much information in fitting the third part of the data. Those

results indicate to incorporate the RT and PDE data into the joint model might be an

important source for refining our estimations of the AC model. In addition, the positive

value for ∆DIC∗AC shows the introduction of the RT model alone to conjointly modeling the

item response data indeed provides the gain in the fit of the AC model. Similarly, by

incorporating the item response data alone in the joint modeling with the RT data, it truly

helps the fit for the RT model, which is verified through the positive value of ∆DIC∗RT.

6.2. Posterior Estimation

To analyze the multidimensional data from AppRISE tablet assessment and PDE

paper-and-pencil test, we use the same prior specification as in Section 5 for all unknown

parameters in the model. For Bayesian analysis, we have run 60, 000 MCMC samples with

a burn-in period of 10, 000 iterations for all four situations and then we have thinned the

MCMC samples for every 5 steps to compute the posterior estimates. We have looked at

the traceplots and autocorrelated plots of all unknown parameters for informally checking

about the convergence and found all parameters are converged after 10,000 iterations. We

found the posterior means of b13 and b42 (2.106 and 2.151, respectively) have the largest

values compared to other items, which is expected as these two items have the lowest

correct rates among all items. The posterior estimates of ajs, bjs , λjs, θis and τis are

shown in Table S.2 to Table S.8 of the Supplementary Materials.

To examine whether the paper-based PDE test and the tablet-based AppRISE test

assess the similar latent construct, we have calculated the empirical correlation between

PDEis and θ∗i s, which has a posterior mean of 0.867 with a 95% HPD interval

(0.773, 0.941). This suggests the PDE are highly correlated with the latent ability θ∗i s used

in the AC model for the AppRISE data. However, the empirical correlation σ12 between

θ∗i s and τ ∗i s has a posterior mean of 0.134 with a 95% HPD interval (0.062, 0.199), which

implies the correlation between the latent ability and speediness of a participant is
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Table 6.1: The Results of Model Assessment Criteria

Situations DIC pD LPML

(1) AConly 2496.413 45.119 -1254.638

(2) RTonly 4493.838 79.809 -2267.229

(3) PDEonly 1006.761 1.942 -503.521

(4) Joint Model 7854.472 132.911 -3954.526

[AC | RT,PDE] 2390.392 49.168 -1199.618

[RT,PDE] 5464.080 83.743 -2754.908

[RT | AC,PDE] 4458.223 82.887 -2247.706

[AC,PDE] 3396.249 50.024 -1706.820

[PDE | AC,RT] 873.551 3.463 -434.834

[AC,RT] 6980.921 129.448 -3519.692

[AC | RT] 2484.589 48.434 -

[RT] 4496.332 81.014 -

[RT | AC] 4481.462 81.914 -

[AC] 2499.459 47.534 -

∆DICAC ∆DIC∗AC ∆LPMLAC ∆DICPDE

106.021 11.824 55.020 133.210

∆DICRT ∆DIC∗RT ∆LPMLRT ∆LPMLPDE

35.615 12.376 19.523 68.687

Table 6.2: The posterior estimations of parameters for modeling the PDE scores

Parameter Posterior Mean HPD Interval Parameter Posterior Mean HPD Interval

β0 93.820 [90.826, 96.752] β1 14.563 [12.052, 17.065]

β2 3.534 [1.122, 5.959] σ2
PDE 57.188 [24.882, 89.070]
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relatively low in this test. In addition, σ23, which is the covariance between τ ∗i and ζ∗i , has a

posterior mean of 3.056 with a 95% HPD interval (1.889, 4.220). While for the variance of

ζ∗i , σ33 has a posterior mean of 284.867 with a 95% HPD interval (222.009, 353.544). Notice

that to present the results, we have transformed θis and τis used in the computation back

to their original definitions θ∗i s and τ ∗i s in the joint model. We can further justify a common

latent ability for the PDE test and the AppRISE test by establishing a hypothesis test that

H0 : β1 = 0 versus H1 : β1 6= 0, as β1 = 0 indicates that the construct assessed by two tests

have no correlations. By Lindley’s method (Lindley, 1965), we can test this hypothesis in

an ad hoc way and we reject the hypothesis of β1 = 0 at the significance level α = 5% since

the 95% HPD interval of β1 does not include zero (c.f., Table 6.2). This provides additional

evidence to support the PDE test and AppRISE test can be used to assess a common

latent ability. In Table 6.2, the 95% HPD interval for the coefficient β2 in the PDE normal

model is also far away from zero with a posterior mean estimate of 3.534, which indicates

the speediness of a participant also have an impact on the traditional paper-based test.

In Section S.2 of the Supplementary Materials, we propose a Bayesian procedure to

compare and order item difficulties, which will help rank the item difficulty in the

AppRISE. The result for ordering the item difficulty can be used to improve the item bank

and the adaptive testing design of the AppRISE tablet assessment in the future. In Section

S.3, we develop Bayesian residuals for assessing the model adequacy of the joint model in

fitting the item response, RT and PDE data, which shows the distribution assumption of

the proposed joint model in equation 2.1 to equation 2.4 (or equivalent to equation 2.7 and

equation 2.9) are reasonable. A calibration algorithm for quantifying uncertainty of the

DIC and LPML assessment criteria is developed in Section S.5. The details of these

developments and the analysis results of the data from the AppRISE tablet test and PDE

paper-based test are given in the Supplementary Materials.
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7. Conclusion and Discussion

In this paper, a joint model is proposed for the item response and the response time

from the AppRISE tablet assessment, and the age-normed standard score of Phonemic

Decoding Efficiency (PDE) from a paper-and-pencil test. The reformulation and

reparameterization of the proposed joint model is one of the major developments in this

paper as it facilitates more convenient specification of the prior distributions and makes it

possible to implement MCMC sampling from the joint posterior distribution using an R

package called nimble. Another major development in this paper is the decomposition of

DIC and LPML, which enable us to separately evaluate the contribution of different

sources of the data in a joint model. Also, we have put forward novel Bayesian criteria,

∆DICAC, ∆DIC∗AC, ∆DICRT, ∆DIC∗RT, ∆DICPDE, ∆LPMLAC, ∆LPMLRT, and

∆LPMLPDE, which can be used to assess the gain of modeling one part data by

incorporating additional parts data. Both the simulation and the real data analysis

demonstrated that those novel criteria are effective and promising. Moreover, we have

proposed some new ideas to rank item difficulty for AC models with uncertainty and to

assess the model adequacy for the RT, item response and PDE data.

In addition, as demonstrated in de la Torre and Patz (2005), in the IRT model with a

multidimensional ability, the benefit of correlated dimensions is that the correlations

among the dimensions provide additional information, which may lead to more precise

ability estimates for each dimension. Based on our proposed approach, this similar type of

benefits for correlated dimensions can be assessed by using our difference measures such as

∆DICAC,PDE, ∆DICAC,PDE, and ∆DICRT,PDE for the AppRISE data. These difference

measures can quantify the gain in the fit of certain correlated multidimensional data by

incorporating the data from an additional correlated dimension. Table S.10 of the

Supplementary Materials show the values of the difference measures for the two

dimensional data by incorporating the data from the third dimension for the AppRISE
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data, which are quite consistent with the posterior estimates of the covariance and

correlation parameters for all of the three correlated dimensions (AC, RT, PDE) given in

Table S.9 of the Supplementary Materials. These results provide a further justification of

modeling the item responses, RTs, and PDE scores jointly.

Finally, the decomposition of DIC can be extended to the decomposition of DICL

proposed by Li et al. (2020). Recently, WAIC (Watanabe, 2010) has become a popular

Bayesian model comparison criterion. WAIC is constructed based on the posterior

predictive density, which bears a resemblance with LPML. Thus, the decomposition of

LPML can be extended to the decomposition of WAIC. However, these two extensions are

quite extensive in terms of both analytical derivations and computational developments,

which is beyond the scope of the current paper. Therefore, these extensions are deserved to

be another interesting topic of future research.
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