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BAYESIAN MODEL ASSESSMENT FOR JOINTLY MODELING
MULTIDIMENSIONAL RESPONSE DATA WITH APPLICATION TO
COMPUTERIZED TESTING

Abstract

Computerized assessment provides rich multidimensional data including
trial-by-trial accuracy and response time (RT) measures. A key question in
modeling this type of data is how to incorporate RT data, for example, in aid of
ability estimation in item response theory (IRT) models. To address this, we
propose a joint model consisting of a two-parameter IRT model for the
dichotomous item response data, a log-normal model for the continuous RT data,
and a normal model for corresponding pencil-and-paper scores. Then, we
reformulate and reparameterize the model to capture the relationship between the
model parameters, to facilitate the prior specification, and to make the Bayesian
computation more efficient. Further, we propose several new model assessment
criteria based on the decomposition of deviance information criterion (DIC) and
the logarithm of the pseudo-marginal likelihood (LPML). The proposed criteria
can quantify the improvement in the fit of one part of the multidimensional data
given the other parts. Finally, we have conducted several simulation studies to
examine the empirical performance of the proposed model assessment criteria,
and have illustrated the application of these criteria using a real dataset from a

computerized educational assessment program.

Key words: Computerized tests, DIC decomposition, IRT models, LPML

decomposition, Pencil-and-paper tests, Response times.
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1. Introduction

The current gold standard for educational and neuropsychological assessment is the
use of pencil-and-paper assessments, individually administered by a trained assessor. Such
tests are of immense value for the early identification and appropriate intervention of
children at risk for learning disorders and long-term academic problems, which is a key
part of a response-to-intervention treatment model (Gilbert et al., 2012). However, mass
application of standard tests comes with considerable expenditures of both time and
resources. The computerized assessment provides a potential solution, and provides rich
multidimensional data including trial-by-trial accuracy and response time measures.

A case in point is the AppRISE data. In the AppRISE tablet assessment, participants
begin each trial by pressing a start button to play an audio recording of a pseudoword
(e.g., /feg/). An array of four printed response options (e.g., the target feg, and distractors
fep, fod, and fet) is displayed and the participant selects the correct printed word to
activate a machine and end the trial (see https://haskinsglobal.org/apprise/ for more
details). Both response accuracy and response time (RT) (from the option display) are
collected for each item and can be used to model participant-level pseudoword reading
skill. For comparison, the Phonemic Decoding Efficiency (PDE) subtest of the Test of
Word Reading Efficiency-Second Edition (Torgesen et al., 2012) was also administered. In
this pencil-and-paper test, participants read a list of regular pseudowords of increasing
complexity as quickly as possible. The number of items read correctly within 45 seconds is
converted to an age-normed standard score. Therefore, we have three types of data
available in the study, which are the item response and RT from computerized assessment
as well as standard score from paper-and-pencil PDE test.

To analyze the accuracy for item responses in the assessment, the item response theory
(IRT) has become a popular method (Fox, 2010; van der Linden, 2017). With the

increasing prevalence of computerized assessments, collecting RT has become much easier.
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There is increasing attention in the field of IRT to including the RT data in modeling item
responses. Several researchers have pointed out that the RT data is an important source of
information to refine the inference on one’s ability in a test (Luce, 1991; van der Linden,
2009). In fact, many current works have focused on the joint modeling of the item response
and RT data. For instance, Entink et al. (2009) built up a multivariate multilevel
regression for jointly modeling the item response and RT data, where they incorporated
covariates for explaining the variation of speed and accuracy between individuals and
groups of test takers. Loeys et al. (2011) proposed a Bayesian hierarchical framework for
jointly modeling the item response and RT data, where they can estimate the correlation
between speed and ability at the participant level. Wang et al. (2016) put forward a joint
model of the item response and RT in the longitudinal setting. Molenaar and de Boeck
(2018) built up a mixture model of the item response and RT data in order to describe the
heterogeneity in the data. Recently, Lu et al. (2020) extended this mixture model with a
higher-order structure of ability to detect participants’ rapid guessing behavior.

However, the responses collected from AppRISE tablet assessment and the Test of
Word Reading Efficiency Phonemic Decoding (PDE) paper-and-pencil test, including item
responses, RTs, and PDE scores, are multidimensional data, thus the current state of the
joint modeling for the item response and the RT data in the literature does not directly
apply to this data. Hence, in this paper, we propose a new joint model that can capture
the relationships among the item responses, RTs, and PDE scores in a coherent way. To be
specific, we propose a trivariate normal distribution among the latent traits of each
participant by adding a hierarchical layer upon the proposed joint model.

It is also important to ask whether certain parts of the multidimensional data can
help, for example, the model fit of the item response data when we jointly analyze these
different sources of information. From a practical perspective, it is important to understand
how multiple assessments may aid in quantifying information gain in latent ability

estimation so that assessments can be conducted efficiently in clinical and educational
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practice. In many papers relevant to the conjoint modeling of the RT and item response
data, the deviance information criterion (DIC) (Spiegelhalter et al., 2002) is commonly
used to evaluate the model fit (Johnson, 2003; Donkin et al., 2009; Rouder et al., 2015).
For example, Entink et al. (2009) compared four different multilevel joint models using the
DIC, and Loeys et al. (2011) applied the DIC to investigate joint modeling of the item
response and RT data versus modeling them separately. But in the current literature, the
DIC is seldom applied to assess the information gain in modeling the item response data by
conjointly modeling the RT data. Although Wang et al. (2016) proposed a partial DIC idea
to evaluate different RT models in contribution to the fit of the joint modeling, they
assumed the latent ability in the joint model is given for the computation of the partial
DIC. Since the latent ability is often unknown, their partial DIC lacks the power to fully
quantify the information gain of incorporating RT in the joint model.

Thus, inspired by D. Zhang et al. (2017), we propose a new model assessment method,
which enables us to fully quantify the information gain from each piece in the joint model.
The proposed model assessment method will be applied to a dataset from a novel gamified
tablet-based assessment (AppRISE) targeted towards assessing foundational pre-literacy,
literacy, and cognitive skills in early education.

There are several contributions we have made in this paper. First, we reformulate and
reparameterize the joint model to better describe multidimensional data from computerized
testing, facilitate prior specification for the model parameters, and make posterior
computations more efficient. Next, we propose a new Bayesian method for evaluating the
contributions of the RT and PDE data to the fit of the item response data, the item
response and PDE data to the fit of the RT data, as well as the RT and response data to
the fit of the PDE data within the joint modeling framework. Specifically, we decompose
the DIC and the logarithm of the pseudo-marginal likelihood (LPML) for the joint model
into several additive components, which allows us to quantify the contributions of different

parts of the data. The deviance functions in the DIC decomposition, the joint distributions,
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as well as the marginal distributions of the item responses, RTs, and PDEs involved in the
LPML decomposition depend only on one-dimensional integrals after analytically
integrating out latent speed variables. We then develop an efficient way using readily
available Markov chain Monte Carlo (MCMC) samples from the joint posterior distribution
to compute all quantities in the DIC and LPML decomposition. In addition, we carry out
extensive simulation studies to examine the performance of the model in recovering the
true parameters for the joint model and evaluate the empirical performance of the proposed
model assessment criteria based on the DIC and LPML decompositions over different
numbers of items and participants. Finally, we carry out residual analysis and item ranking
for the multidimensional data and the results are given in the Supplementary Materials.
The rest of the article is organized as follows. In Section 2, we introduce the joint
models of the item response, RT and PDE data. Section 3 presents the priors, the
likelihood and the posterior distribution. Then, we develop the DIC decomposition and
LPML decomposition in Section 4 and also discuss their computational details. In Section
5, we conduct two simulation studies. The AppRISE data is further analyzed to
demonstrate the proposed methods in Section 6. In the Supplementary Materials, we
propose some statistical tools that can be used in examining model adequacy and in
ranking item difficulty while considering uncertainty. Finally, we summarize our major

results and discuss some future directions of this work in Section 7.

2. The Proposed Method
2.1. Joint Model and Hierarchical Framework

In this section, we propose a joint model for the item response and the RT from the
AppRISE tablet assessment, and the age-normed standard score of Phonemic Decoding
Efficiency (PDE) from a paper-and-pencil test. Due to the test design of AppRISE, we use
the two-parameter IRT model (van der Linden & Hambleton, 2013) for item accuracy. To

account for the positive skew of the RT data, a log-normal distribution is specified to
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model the RTs (van der Linden & Guo, 2008; van der Linden, 2009; Fox & Marianti, 2016;
Man et al., 2019). A normal model is assumed for the standardized PDE score. Finally, we
assume a trivariate normal distribution for the latent ability parameter, the latent speed
parameter, and the error term of the PDE score to capture the association between the
AppRISE tablet assessment and the paper-based PDE score as well as to borrow the
strength of information among different types of data.

Let y;;(;) denote the binary response for the ith participant taking the j(¢)th item,
having a value of “0” or “1”, t;;;) be the response time in seconds for the ith participant
answering the j(i)th, and PDE; indicate the paper-based PDE score for the ith participant
fori=1,---,N and j(i) € {1,---,J} with J as the maximum number of items
administrated in the test. Notice that the subscript ij(7) is a nested structure, which allows
each participant to take a different number of items in a test. This is very common in
computerized test to decrease administration time in educational settings. To simplify the
notation in the subscript, we will suspend the (i) in the subscript throughout the paper
without causing any further confusion.

Then, the joint model is given by

. . exp{a;(0F —b;
i = Plosy = 1 035, 07) = Flay(0] — b)) = oo b )
VAN J

logti; = \j — 7" + €5, (2:2)
PDE; = By + ¢/, (2.3)

and
I o1 o3
(07,77, 6) '~ NG ((0,0,0) 2 with B= |01, 02 ons | - (2.4)
013 023 033
In equation 2.1, p;; is the probability that the ith participant answers the jth item

correctly, F(+) is a continuous cumulative distribution function (cdf), 67 is the ith

participant’s latent ability, and a; and b; are item discrimination and item difficulty,
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respectively, of the jth item. We choose F(-) to be a logistic link function in equation 2.1
for our study. In equation 2.2, 77 denotes the speed (the participant uses to complete items
during a test) of the ith participant, A; indicates the time intensity required (van der
Linden, 2009) for the jth item, ¢;; is an error term following a normal distribution with
mean centered at zero and variance 0]2-, and 1/ JJZ quantifies the dispersion of the lognormal
distribution, implying the discrimination power of the jth item. In equation 2.3, 3, can be
regarded as the average PDE score across participants. Finally, in equation 2.4, we assume
(0F, 77, ) follows a trivariate normal distribution, the variance of 67 is assumed to be 1 to
ensure identifiability, o2 is the variance of 7}, 012/0, captures the correlation between 67

and 7, o33 is the variance of (7, 013 is the covariance between 07 and (7, and o3 is the

covariance between 7" and (.

2.2. Reformulation and Reparameterization

Since Y in equation 2.4 has to be a positive definite covariance matrix, the
specification of the prior distributions for o19, 02, 013, 093, and o33 is not straightforward.
In addition, sampling these parameters from the posterior distribution is challenging.
Therefore, we employ a reformulation and reparameterization to facilitate specification of
the prior distributions and to allow a convenient and more efficient implementation of
Bayesian computation.

First, let us consider the following reformulation

1 0 0
0:,77,¢) =T (6;,7,G) with T'=| o, sing o.cosp 0],
I B2 1

(05,7, G) "~ N5 ((0,0,0), diag(1,1,02,,)) - (2.5)
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B0, ObpE Yi; (AC model) —

@;

PDE; (“Paper” test model) 51 UT sm<p i; (RT model) —

/ \

Figure 2.1: Relationships of the three model components in the joint model.

Then, we take the reparameterization

O12 = 078N Y,
o13 = P,
093 = 0 (B18in p + B cos ),
o33 = B + B3 + O,
o, = exp(w). (2.6)
With reformulation equation 2.5 and reparameterization equation 2.6, the joint distribution

of (07, 77,¢) follows a trivariate normal distribution given in equation 2.4. We summarize

the three components of our joint model after the reformulation and reparameterization as

exp{a;(6; — b;)}
AC model: p;; = P(y;; = 1| a;,b;,0; , 2.7
J ( J | VR ) 1+exp{a]( b])} ( )
RT model: logt;; = \j — o.(0;sinp + 7, cos p) + €5, (2.8)
“Paper” test model : PDE; = By + £10; + Pa1i + (. (2.9)

Here, €;; ~ N(0,07) and {; ~ N'(0,02,,;), which are independent of 6; and 7;. Figure 2.1
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presents the relationships among the model components in equation 2.7 to equation 2.9,
where the rectangle block indicates the model and its corresponding observations; the circle
indicates the unknown parameters; and the line between the circle and the rectangle
implies how the model and parameters relate to each other. It is apparent that the
reparameterization makes the interpretation for the relations of these model components
much simpler, where 6; explicitly ties up all three model components, while 7; obviously
connects the RT model and the “paper” test model. After the reparameterization, in
equation 2.6, —oo < 3; < 00, —00 < f33 < 00, 02, > 0, —00 < w < 00, and

—m/2 < ¢ < /2. Unlike ¥ in equation 2.4, there are no other constraints on the
parameters 31, (2, 02,., and ¢. In addition, 8; = 0 implies 013 = 0, indicating

independence between the item response and PDE, while the response time and PDE are

independent if §; = 8o =0 or ¢ = B = 0.
3. The Priors, Likelihood and Posterior Distribution

Due to the complexity of the joint model, we resort to Bayesian computation for the
inference of unknown parameters. First, we need to assume priors for all unknown
parameters. For the item discrimination parameter a; of the jth item, we assume it follows
a normal distribution truncated by zero at the left with its mean centered at 0 and
variance being 1, i.e., a; ~ Ny (0,1) (c.f., Karadavut (2019)); for the item difficulty
parameter b;, we give a hierarchical normal prior N (p, 07) , where p, ~ N(0,1007) and o7
follows an inverse gamma distribution, i.e., /G(0.1,0.1). As discussed in Section 2.2, there
are no constraints on the four reparameterized parameters 31, (2, 02, w, and ¢. Thus, it
is reasonable to assume independent priors for these parameters. Specifically, we assume
By ~ N(0,10%), By ~ N(0,10%), 62, ~ IG(0.1,0.1), w ~ N(0,10%), and o ~ U(—7/2,7/2).
For the intercept in the “paper” test model, we further assume 3y ~ N(0,10?). Similarly,

we specify an inverse gamma prior, o7 ~ IG(0.1,0.1), for the variance o7 and a normal

prior, A\; ~ N (0,10%), for the time intensity parameter ); in the RT model.
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Next, we establish the joint posterior distribution of all model parameters in the
proposed joint model. Let @ = (a1, -+ ,a;), b= (b1,--+ ,b;), Ay = (A, -, \;),
Y= (a',0), v2 = (Bo, Bu, B2, 0 Ny, 070, 08, -+, 07). Write v = (3, ¥52)" with
~Yo1 = (Bo, B1, B2, 02,;) being the vector of parameters in the “paper” test model and
Yoz = (N, 0,0,,0%, .-+ 0%) being the vector of parameters in the RT model. Then,
v = (v, ¥5) = (71, Y51, Vhe)' is @ vector of all unknown parameters except unknown
participant parameters in the model. Further, denote ¢t; = (logt;1,--- ,logt;;,)" and
y: = (Y1, -+ ,¥i5,) are the vectors for the RTs and item responses observed for each
participant, respectively, where J; denotes the total number of the items that have been
administrated for the ith participant with J; € {1,---,J}. Thus, given ~; and 0;, the
conditional likelihood of y; in the AC model is

exp{yija;(0; — bj)}

Ji
L(v1,0i | yi) = f(yi | 71,0:) = H

: (3.1)
e 14 exp{aj(éi — bj)}
while given the parameters 799, 6; and 7;, the conditional likelihood of ¢; is
1 logtij — \j + 0. (0;sinp + 7, cos @)

Ji
L(v22,0i,7 | t;) = f(ti | Y22,0i, 1) = expy— .
(40 = 10 0070 =TT e = )

Assuming that given latent variables #; and 7; for the ith participant, the observations
of item responses, RTs and PDE scores are conditionally independent. Then, the joint

probability density function (pdf) of D; s = (yi, t;, PDE;)" is written as

F(Diovs | 7. 0i,7:) = f(yi | 71,0:) f (i | Yo2,0i, 1) f(PDE; | 421, 6;,75), (3.2)

PDE; —B0—810:—B27;
208pE

ki }. Next, by integrating out latent

where f(PDE; | 71,0, 7:) = - exp{—!
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variables 0; and 7;, we obtain the marginal likelihood of ~ as

N
L(Y | Doss) = [ [ f(yi. ;. PDE; | v)

i=1

N
=11 / / f(yi, t;, PDE; | 7, 0, 7.)0(0:) b (7;)dbyds, (3.3)
=1

N
= H/f(yi ’ ’)’1,91')¢(9i) {/ ¢(Ti)f(ti \ 72279ia7—i)f(PDEi | 721,91',71')(171’ dei,
i=1

(3.4)

where Dops = (D] s "+ » Div.ops)’ and ¢(+) denotes the standard normal pdf, which
represents the prior assigned to #; and 7;. In practice, the high dimensional numerical
integration is often expensive. However, in our case, we can reduce the two-dimensional
integration in equation 3.3 to one-dimensional integration as shown in equation 3.4. Based
on the normality of 7;, t; and PDE;, it turns out that the second integrand of equation 3.4
is also a normal pdf and makes the integration of 7; analytically tractable. After
integrating out the 7; in closed form, the remaining component only depends on 6;. Thus,
it is easy to numerically compute the one-dimensional integration of 6; in equation 3.4.

Once the marginal likelihood of 4 is computed, the joint posterior of ~ is given by

Y ‘ Dobs)”(’y)
C<Dobs) ’

where () = 7(5o)m(81)m (B2)(2pe)m (o) () | [Tz wlag)m(by | o, o) m(Ng)m(o7) |

7(pp)m(0?) is the joint prior of the unknown parameter vector v and the prior of each

71-(7 | Dobs) = L( (35)

unknown parameter in this product is specified at the beginning of this section. Further, in
N

equation 3.5, ¢(Dus) = [ T] f(yi, ti, PDE; | v)m()d~ is the normalized constant. Directly
i=1

sampling from equation 3.5 is somewhat difficult, thus, we propose to use the augmented

joint posterior density function of «, 8% and T as below in our MCMC computation,

f(Diobs | 7,0, 1) (0;)7(13)7 ()
C(Dobs) 7

e

1

7T(779R7TR | Dabs) =1
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where f(D;ops | v, 0:,7) is defined in equation 3.2, 8% = (6,--- ,0y) and
T8 = (11,-++ ,7n)". Then, we can show that 7(v | Dus) is the marginal posterior
distribution of 7(vy, 8%, 7% | D) by integrating out 8% and 7.

The reformulation and reparametrization in Section 2.2 leads to a convenient and
efficient implementation of MCMC sampling from the joint posterior distribution in
equation 3.5 using an R package called nimble (de Valpine et al., 2017, 2020). In nimble,
we use the calling command getSampler () to sample a, b, 8, ¢, and o, via the
Metropolis-Hastings adaptive random-walk sampler and draw 7, 2, A;, 02, 02,5, Bo, b1,
B2, and py, via the Gibbs sampler. Once MCMC samples are generated from nimble, we
compute the posterior means, posterior standard deviations, and 95% highest posterior
density (HPD) intervals for all of the model parameters using an R package boa. Then,
using the MCMC samples from nimble, we develop program codes written in Fortran 95
and Matlab to compute all of the proposed model assessment criteria in Section 4. The

detailed codes for nimble, Fortran, and Matlab are provided in Section S.6 of the

Supplementary Materials.

4. Model Assessment Criteria

In this section, we propose decomposition of two commonly used model selection
criteria to assess the contribution of any two parts of the multidimensional data in the
analysis of the remaining part of the data. The model assessment criteria we focus on are
the deviance information criterion (DIC) (Spiegelhalter et al., 2002) and a conditional
predictive ordinate (CPO) (Geisser & Eddy, 1979; Gelfand et al., 1992; Gelfand & Dey,
1994) related criterion called the logarithm of the pseudo-marginal likelihood (LPML)
criterion (Ibrahim et al., 2001).
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4.1. Deviance Information Criterion

The use of DIC for model comparison is abundant in the psychometric literature.
Examples of its use in joint modeling of RT and item response data include Johnson
(2003), Entink et al. (2009), Rouder et al. (2015), Bolsinova et al. (2017), and Lu et al.
(2020). Typically, when we perform Bayesian inference on latent variable models, we
directly sample the latent variables along with the model parameters. For convenience, the
conditional DIC is often constructed via the conditional likelihood in which the latent

“model parameters”.

variables are treated as

However, several studies show that conditional DICs usually have much larger Monte
Carlo errors compared to the DICs based on the marginal likelihoods by integrating out
latent variables (Celeux et al., 2006; Chan & Grant, 2016; Merkle et al., 2019; X. Zhang et
al., 2019). For example, X. Zhang et al. (2019) found that the conditional DIC generally
selects a model that is more complex than the true model. Li et al. (2020) discussed the
problems of the conditional DICs in terms of the dimension of the parameter space,
frequentist justification, and asymptotic properties. They also proposed a new version of
DIC, called DICy, where they studied the large sample properties of DIC,, and introduced
the expectation-maximization (EM) algorithm, Kalman and particle filtering algorithms to
compute this new DIC for latent variable models. DIC is potentially useful for evaluating
complex models such as the ones considered in this paper. Moreover, in the paper of
Merkle et al. (2019), they pointed out the model assessment criteria based on the
information of marginal likelihoods could be used to evaluate the predictive ability of a
model when it was applied to new clusters (e.g., countries, schools, or districts), which is a
desirable feature in many psychometric contexts, as we often wish to distinguish general
properties of items that are not specific to what we observed.

Hence, we define the DIC of the proposed joint model as

DIC = Dev(%) + 2pp, (4.1)
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where % is the posterior mean of v, and pp = Ex(4p,,.) [Dev(7Y) | Dobs| — Dev(¥) is the
effective number of model parameters. Here, for pp, we take the expectation regarding to
the posterior distribution of 7 and in practice, to compute E(yp,,.) [Dev(7) | Dops), we
often take the posterior mean of Dev(«), where Dev(y) = —2log L(y | Deps) is the
deviance function with the marginal likelihood L£(7 | Do) defined in equation 3.3. Thus,
for DIC in equation 4.1, we integrate out all latent parameters related to a participant,
such as 6; and 7;, in the likelihood function. Since the deviance function Dev(y) only
depends on L(7 | Dyps), which, as discussed in Section 3, needs to compute an
one-dimensional integral where we compute directly using the global adaptive quadrature

method (Visual Numerics, 2003).

4.1.1. DIC Decomposition

First, let us focus on the part of only modeling the RT and PDE data in the joint
model. With some algebra, given the parameters v, (only involved in the RT and PDE

model), (0;,t;, PDE;)" follows a (.J; + 2)-dimensional multivariate normal distribution, i.e.,

[(017 t; PDE%)/ ’ 72] ~ NJH-? ((07 Aih? 50)1 ) El) (42)
1 —0osinpl’), B
with 3; = | —o, sin 1}, 01,1 + @;};1 o3 —(Bysing + Pacosp)o1y, |
B —(Brsin @ + Bz cos p)o, 1) ofpe + A1 + 53
where Aj, = (A1,--- ,Ay;)"s 1, is a J;-dimensional column vector with all elements being 1
and 1/, is its transpose; @}]:1 is the direct sum operator and @}]:1 0]2 is a J; x J; diagonal

matrix with the (7, j)th entry equal to 032-. By the marginal property of the multivariate
normal distribution and equation 4.2, the pdf f(¢;, PDE; | 72) is also a multivariate normal
pdf.
N
Then, the deviance function Devigr ppgj(v2) = —2 ) log f(t;, PDE; | v2) is just defined
i=1
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for jointly modeling the RT and PDE data; further, the DIC of the RT and PDE parts is

DIC[RT,PDE] = DeV[RT,PDE} (72) + 2pD[RT,PDE}7

where the corresponding effective number of model parameters pprr ppr) equals to

B (72 Doss) [Dev[RT,pDE] (72) | Dobs] — Devigr,poE|(2), 7, is the posterior mean of «, and the
expectation Er(y,p,,,) is now taken with respect to the posterior distribution of ~,, as only
the parameter 7y, is involved in the model of the RT and PDE parts. Similarly, the
deviance functions for jointly modeling the RT and item response data as well as the item

N
response and PDE data are defined as Deviac rr)(Y22,71) = —2 > 1og f(t;, Yi | Y22, 71) and
i=1

N
Deviac,por) (Y21, 71) = —2 Y log f(PDE;, y; | ¥21,71), respectively, where the likelihood

i=1
functions f(t;, y; | yo2, M) = [ [ f(ti | Yoo, 05, 7) f(yi | 71, 65)0(6;) () db;dr; and
f(PDE;, y; | Yo1,m) = ff f(PDE; | vo1, 05, 73) f(ys | 71, 0:)6(0:)p(73)db;d;, respectively.

Notice that the two-dimensional integrals in term of 6; and 7; in these likelihoods can be

reduced to one-dimensional integrals as shown in equation 4.3 and equation 4.4.

Proposition 1. The joint densities of f(t;,y; | Yo2,7v1) and f(PDE;, y; | ¥o1,71) can be

expressed as the functions of one-dimensional integrals with respect to 0; given by

fi, i | vo2,m) = /f(yi | 1, 0:)(0:) fn (Ei | 2, 0:)d0;, (4.3)

f(PDE;, yi | va1,m) = /f(yi | 71, 0:)9(0;) fn (PDE; | 21, 6;)d0;, (4.4)

where f(y; | y1,0;) is given in equation 3.1, f(t; | 22, 0;) is the pdf of a multivariate normal
distribution Nj,(Xj, — 0.0;sin @1, 3y,) with 3y, = 0211, + @jzl 03 —oZsin® 1,1/,

while fxy(PDE; | ~a1,0;) is the pdf of a normal distribution N'(Bo + 516;, 55 + 02,,)-

Then, DIC[AC’pDE] = DeV[AQpDE] (71,721) + 2pD[AC,PDE] is the DIC of the AC and PDE

parts, where the corresponding effective number of model parameters ppjac ppg equals to

Bt (21 71 Dons) D€V [AC,PDE] (Y21, Y1) | Dobs] — Deviac,por) (Va1, V1) Y21 and 7, are the
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posterior means, and the expectation Er(y,, 41p...) 15 taken with respect to the posterior

obs
distribution of 75 and ~;. Similarly, the DIC of AC and PDE parts is defined as
DICac,rr) = Deviac.rr (1, ag) + 2pplac,rT], Where the corresponding effective number of
model parameter ppac Rt = Er(ys.9Dope) [PViacRT) (Y22, Y1) | Dobs] — Deviac gty (Va2 1),
2o is the posterior mean, and the expectation Er(y,, 4p,,.) 15 taken with respect to the
posterior distribution of ~99 and .

Since (v | Dops) = m(¥1, Y21, Y22 | Dobs), the Markov chain Monte Carlo (MCMC)
samples of 2, (722, v1) and (va1,71) from 7(7 | Dyps) will be the same as drawn directly
from their corresponding marginal distributions 7(s | Dops), 7(Y22, Y1 | Dops), and
T(¥21,71 | Dops). Hence, there are no additional MCMC draws needed for estimating
Er(y2Do) [DeV[RT, OB (V2) | Dobs] s Ernyon i [Done) [DeVIACRT) (Y22, 71) | Dons, and
B (21,9 Done) [DGV[AQPDE] (v21,71) | Dobs|-

Next, based on the conditional property of the multivariate normal distribution, 6;

given t;, PDE; and =, follows a normal distribution, i.e.,
0, | £, PDE;, %] ~ N (i, ), (45)

where Fl, = 2122521 [(t;, PDEZ), - ( t]i,ﬁo)/], 2 =1- 2122521221, 212 = (-O’T sin QO]_ZIZ, 51),

and XY, is a transpose of 35, and

0—72'1J11{]Z + @:7]2:1 o7 _<51 sin ¢ + 32 cos SO)UTlJi
—(Bysinp + By cos p)o,1; oipp + B+ 52

E22 =

Equation 4.5 can be viewed as the prior information of 6; obtained from the RT and PDE
data given the parameter «5. From equation 4.2, we see that for modeling the RT and
PDE data to be independent of 6;, it requires that both ¢ and [, are zero simultaneously,
which can be further verified by equation 4.5. This can be better explained by Figure 2.1,
when ¢ = 0, although there is no direct linkage between 6; and the RT model, the influence

of modeling RT for the estimation of #; can be transmitted through ;.
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By putting the prior information of #; in equation 4.5 into the AC model, we can
derive a deviance function of item responses data by given the information from the RT

N
and PDE data as Deviacirr,por)(7) = —2 > log f(y; | t;, PDE;, 71, 72) for ~, where
i=1

f(yi | t;, PDE;, v1,72) = /f(yz | 0;,v1)f(0; | t;, PDE;, ~2)d6; (4.6)

with the pdf f(6; | t;, PDE;,y,) defined in equation 4.5; further, we have the DIC of the
AC given the RT and PDE as

DICiacjrr,poE] = Deviacirr,por) (F) + 2PpjacirT,PDE], (4.7)

where ppiacirr.PpE] = Ex(4D,,.) [DeViacirr,rpE)(Y) | Dovs| — Deviacirr,pom () is its
corresponding effective number of parameters. Likewise, the deviance function of the RT
data by given the information from the item responses and PDE data, as well as the
deviance function of the PDE data by given the information from the item responses and

N
the RT data are defined as Devigriac,por)(v) = —2 > log f(t; | y;, PDE;, v) and
i=1

Devippgrjacrr(7) = —2 % log f(PDE; | y;,t:,7y), respectively, where the likelihood
functions f(¢; | yhPDE:i;l/??) = [ [ ft:|v22,0i,7)f (05,7 | yi, PDE;, v1,¥21)db;d7; and
f(PDE; | yi, ti,v1,72) = [ [ f(PDE; | ¥o1,6:,73) f (05, 7 | Yis ti, Y1, Y22)d0idT;. After some
algebra calculations, these two-dimensional integrals in the likelihoods can be reduced to

one-dimensional integrals. We formally state these results in Proposition 2.

Proposition 2. The conditional densities f(t; | y;, PDE;, v1,72) and

f(PDE; | yi, ti,v1,7v2) can be written as the ratios of two one-dimensional integrals, i.e,

_ S Wi |1, 0:)6(0:) fn (£, PDE; | v, 0;)d0;

f(PDE;, y; | v21,7) 7

_ S Wi |1, 0:)6(0:) fn (£, PDE; | v, 0;)d0;
[ yi [ 22, m)

where f(PDE;, y; | ¥21,7v1) and f(t;,y; | Yo2,71) are given in Proposition 1, while

f(tl ’ yi7PDEi771772)

(4.8)

f(PDEZ | Yi, ti7 71, 72) s (49)

In(t;, PDE; | v2,0;) is the pdf of a multivariate normal distribution N (fipde, Litpde) With
Hipde = ()\f]i, Bo)' + 0291, and B4 = Xop — g1 X10.
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Similarly, we can define the DIC for the RT given the AC and PDE as
DIC[RT|AC,PDE] = DGV[RT\AC,PDE] (’_Y) + QPD[RT\AC,PDE], (4-10)

with pprriac,ppE] = Er(yip.,.) [Devirriac,ppr) (Y) | Pobs] — Devirrjac,por) () being the
corresponding effective number of parameters. Also, the DIC for the PDE given the AC
and RT is

DICppgjac,rr] = Devippejac,rt)(¥) + 2PpPDEAC,RT): (4.11)

with ppppEAcRT] = Er(viD,.) [Devippeac,rr)(Y) | Dobs| — Devipprjac,rr) () being the
corresponding effective number of parameters.

With all notations defined above, we propose to decompose the total DIC of the
proposed joint model in equation 4.1 into different parts as stated in Corollary 1 by

following the idea of D. Zhang et al. (2017) and F. Zhang et al. (2021).

Corollary 1. The DIC and pp defined in equation 4.1 for the proposed joint model

have the following decomposition:

DIC = DIC[RTprE] + DIC[AC|RT,PDE] (4.12)
= DICjac,ppE] + DICRT|AC,PDE] (4.13)
= DICac,rr] + DICppEjAC,RT]- (4.14)

Also, the total pp can decompose as

PD = PD[AC|RT,PDE| T PD[RT,PDE] (4.15)
= PD[RT|AC,PDE] T PD[AC,PDE] (4.16)
= PD[PDE|AC,RT] T PD[ACRT]- (4.17)

In addition, we could do a further decomposition of DICkr ppg) in equation 4.12 and

DICac,rr) in equation 4.14. Since the PDE scores follow a normal regression model, we
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have [PDE; | ¥a1] ~ N (B0, 02, + 87 + 53) and thus the pdf of PDE; given 7y, i.e.,
f(PDE; | 491), is a normal pdf. Then, the deviance function of the PDE data has the form
Devippr)(Y21) = —2 i log f(PDE;|v21), and then the DIC of the PDE data is

DICppg) = Dev[pDE]Z (:721) + 2ppppr) and accordingly, ppppr), the effective number of
parameters equal to Er (v, p,,.)[Devippr (Y21) | Dobs] — Devippg) (Fo1). Similarly, let

f(t; | v22) and f(y; | 1) denote the marginal densities of ¢; and y;, respectively, in terms
of the joint density of (¢;,y;), which is f(%;,y; | ¥22,71) as shown in equation 4.3.
Accordingly, we can define the deviance functions for the RT model and the AC model, i.e.,

N
we have Devigr)(v22) = —2 Z log f(t; | ¥o2), where f(t; | ¥22) is the pdf of a normal

distribution N'(Aj,, 0211’ + @j 1 07), and Deviacy (1) = —2 Z log f(y; | 71), where
fi |l v) = f(yi | 71.,0:)¢(6;)d0;. Then, we define DICgr = Dev[RT} (F22) + 2pp(RT) as
the DIC for the RT and DIC[s¢) = Deviac)(¥;) + 2ppjac) as the DIC for the AC. Here,
PORT] = Er(yoeDoye) [DeVRT) (Y22) | Dobs] — Devirr(Fa2) is the effective number of parameters
for the RT model and ppiac) = Ex(y, D) [PeViac)(71) | Dobs] — Deviac)(7,) is the effective
numbers of parameter for the AC model. Again, although the expectations in ppppg,
porr) and pppac), are taken with respect to (a1 | Dobs), T(Y22 | Dobs), and 7(y1 | Dops),
respectively, we can still use the MCMC samples drawn from 7(7y | Dyps) to estimate those
expectations since m(¥a1 | Dobs), (Va2 | Dobs), and m(vy1 | Dops) are the marginal posteriors
of T(7y | Dops)-

By the conditional property of the multivariate normal distribution and equation 4.2,

J;
[t; | PDE;, 2] ~ N, (Aji — co.(PDE; — fy)1,,,02[1 — c(B1sinp + B cos )] 1,1/, + @ 0']2-> :

j=1
where ¢ = (fysinp + 2 cos ) /(oppg + 57 + F3). Then, f(t; | PDE;, v2) is also a
multivariate normal pdf. According to equation 4.2 and the conditional formula above,
there are three cases that the PDE data is independent of the RT data and would not help
its analysis: (1) sing = 0 (i.e., §; is not related to the RT model), 8 = 0, (2) cosp =0
(i.e., 7; is not related to the RT model), 8; =0, and (3) 51 = 0 and f; = 0. Scenario (3) is
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easy to see from the reparameterized PDE model, however, the first two scenarios can be
clearly interpreted from Figure 2.1.

Define DICgrppr) = Devigrpor) (F2) + 2pprrppE) as the DIC for the RT model given
the PDE data, with Devigrppg (v2) = —2 f} log f(t; | PDE;,2) as the deviance function
for the RT given the PDE and pprrppg| z;?the effective number of parameters equal to
B (y1Doss) [DeViRTPDE] (V2) | Pobs) — Devirrppr) (¥2). Likewise, we could define the DIC for
the AC model given the RT data as DICacirr] = Deviacirr) (F1: ¥22) + 2Pp[acirr], Where
Deviacirr) (71, Yo2) = —2 i log f(yi | ti,v1,Ye2) with the likelihood f(y; | £i,v1,¥e2)
computed through [ f (yZ:|1'yl, 0:)0(0;) f(0; | t;, y22)db; and the effective number of
parameters ppiacirr) equals to Ex(y, vu(py.) [DeViackr) (Y15 ¥22) | Dobs] — Deviacrr)(F1, Vaz)-
In a similar way, we obtain the DIC for the RT model given the item response data using
DICrriac) = Devirriac) (71, ¥22) + 2Pp[mr)ac), Where Devigriac) (Y1, ¥22) is the deviance
function equal to —2 gj log f(t; | Yi, Y1, Ye2) with the likelihood f(¢; | yi,¥1,Y22) being
[ ] va2,6:) f (i | fyzltﬁl)qﬁ(ﬁl)d@,/f(yl | 1) and the effective number of parameters
PDRTIAC) = By 22 Dose) [DEVIRTIAC)H (V15 Y22) | Dobs] — Devirriac) (F1,¥22). Then, we
summarize the further decomposition of the DIC for jointly modeling the RT and the PDE

data as well as the RT and item response data in Corollary 2.

Corollary 2. The DIC value of joint modeling of the RT and PDE data as well as the

RT and item response data can be decomposed as below

DICgr,ppE) = DICppE) + DICRTIPDE)s
DIC[AC,RT} = DIC[AC] -+ DIC[RT|AC] = DIC[RT] -+ DIC[AC\RT], (4.18)

and the effective numbers of parameters are decomposed as

PD[RT,PDE] = PD[PDE] + PD[RT|PDE], and Pp[ac,RT] = PD[AC] + PD[RT|AC] = PDIRT] + PDJAC|RT]-

By combining Corollary 1 and Corollary 2, we obtain the full decomposition of the

DIC under the proposed joint model as shown in Proposition 3.
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Proposition 3. The total DIC under the proposed joint model can be decomposed as

DIC = DIC[AC|RT,PDE} -+ DIC[RT|PDE] -+ DIC[pDE} (4.19)
= DIC[PDE|AC,RT} + DIC[RT|AC] + DIC[AC] (4.20)
= DICppgjac,rt) + DICacirT) + DICRT), (4.21)

and the corresponding effective number of parameters pp can be partitioned as

PD = PD[AC|RT,PDE] T PD[RT|PDE] T PD[PDE] (4.22)
= PDI[PDE|AC,RT] + PDRTIAC] + PDIAC] (4.23)
= DDIPDE|AC,RT] + PDIAC|RT] + PDRT]- (4.24)

4 1.2. ADICAc, ADICAC, ADICRT, ADIC RT and ADICPDE

Instead of fitting a joint model, we can separately fit the item response, RTs and PDE
scores one by one, by using equation 2.1 for the AC model, equation 2.2 for the RT model
with €;; ~ N(0,07) and equation 2.3 for the PDE model with ¢* ~ N(0, 03py). Define

“YPDE = (6070-131315) and YRT = (AJ,O'T,O'%, Tt 70-J)/; and DAC,ObS - {yial = ]-7 e 7N}7

Drrobs = {ti,i =1,--- , N}, and Dppg s = {PDE;,i =1,--- , N} as the observations for
each part of multidimensional data. Then, the respective DICs for the AC model, RT and

PDE alone are given by

DIC{s¢) = Deviaey(71) + 20Djacys (4.25)
DICfry = Devipr (Yrr) + 20D R (4.26)
DIC{pr = Devippr) (YepE) + 20 pDE)- (4.27)

Here, Deviyg(v1) = —2 Z log f(yi | 71) = =23, og [ f(ys | 1, 07)6(6;)d6; is the
deviance function for the AC model alone, with f(y; | v1,0;) defined in equation 3.1 by

replacing 0; with 07. pfyac) = Er(vi1Dac o) [D€Viac) (11) | Dacobs] — Devipg (1) is the

effective number of parameters for the AC model alone, where the expectation is taken
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respect to the posterior distribution of «; based on the AC data and 4, is its posterior
mean with (1 | Dac.obs) X f(yi | ¥1)7(v1) and 7m(~1) as the prior distribution for ~;.
Likewise, the deviance function Deviyy (YrT) = —2 lé log f(t; | yrr) is for the RT model
alone, with f(¢; | yrr) = [ f(t: | vrr, 77)@(77)d7; and f(¢; | yrr,7;) is the pdf of the RT
model defined in equation 2.2. Further, Phrr is the effective number of parameters for the
RT model alone, which equals t0 Er(yupiDrr ope) [DeViRT) (YRT) | PRT,0bs] — Devigy (Yrr), with
the expectation respect to m(Yrr | Drrovs) X f(t; | Yrr)7(YrT), T(YRT) 8s the prior for gy
and gy as its posterior mean. Similarly, for the PDE data alone, Devi{ppg (vppE) is its
deviance function, which equals to —2 iv: log f(PDE; | vppr) with f(PDE; | vppr) as the
pdf of the normal distribution N (S, 012,1) The effective number of parameters for the
PDE model alone is p3ppg; = Er(yeps/Deoe,ons) DV ppE) (YPDE) | PPDE,0bs] — Devippg (YpE),
with the expectation respect to the posterior distribution of ~ppg given the PDE data
alone, i.e., 7(vppE | DrpEws) X f(PDE; | vppr)7(ypDE), Where 7(yppg) is the prior
distribution for vppg.

By comparing the DIC value of the AC model in equation 4.25 with DIC{sc|rr,ppE| in
equation 4.7 and DIC|scrr) in equation 4.18, the DIC value of the RT model in equation
4.26 with DICgrjac,ppE) in equation 4.10 and DICgrjac) in equation 4.18, as well as the
DIC value of the PDE model in equation 4.27 with DICppgjac,rr) in equation 4.11, we can
determine whether the additional information from the two parts of multidimensional data
will help us in modeling the remaining part of the multidimensional data. To be specific,

we subtract the difference between the pairs of DIC values, i.e.,

ADIC ¢ = DICY ¢ — DIC[acirr,PDH. (4.28)
ADIC}¢ = DIC{,¢ — DICiaciray, (4.29)
ADICgr = DICy, — DICRT/AC,PDH), (4.30)
ADICy = DICy — DICRT/AC), (4.31)
ADICpp = DICpg — DICppEac k- (4.32)
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Here, ADICa¢ measures the gain in the fit of the item response data by conjointly
modeling with the RT and PDE data, ADICgr evaluates the gain in the fit of the RT data
via conjointly modeling with the item response and PDE data, and ADICppg determines
the gain in the fit of PDE data through conjointly modeling with the item response and
RT data. While, ADIC} measures the gain in the fit of the item response data by
incorporating only the RT data in the joint modeling, and ADIC} calculates the gain in
the fit of the RT data by introducing only the item response data in the joint model. Our
proposed definitions for ADICA¢, ADIC, o, ADICgr, ADIC;t and ADICppg have taken
account of a penalty for the additional parameters in the proposed joint model. If the value
of ADIC ¢ is large, it implies that by incorporating the information from the RT and PDE
data, the proposed joint model indeed helps us obtain a better fit for the item response
data. However, ADIC,¢ can be negative, which suggests that fitting a AC model alone
might be a better option. Similar interpretations are also applied to ADICgt and

ADICPDE, ADIC*AC and ADIC;{T

4.2. The Logarithm of the Pseudo-marginal Likelihood Criterion

The Bayes factor (BF), defined as the ratio of the marginal likelihoods of the data
under the two competing models, is a fundamental criterion for model comparison under
Bayesian inference, which could be viewed as the Bayesian equivalent of the likelihood ratio
test. Often, for complex models, computing the marginal likelihoods in BF is not an easy
task. In practice, this marginal likelihood can be approximated using the conditional
predictive ordinate (CPO), which measures the accuracy of prediction using the idea of the
leave-one-out cross-validation (Geisser & Eddy, 1979; Gelfand et al., 1992; Gelfand & Dey,
1994). A summary statistic of CPO is then called the logarithm of the pseudo-marginal
likelihood (LPML), which has emerged as an alternative to assess model fit in the field of
IRT (Bolt et al., 2012; G. Chen & Luo, 2018; Fujimoto, 2018). In this subsection, we focus
on the decomposition of CPO and its summary statistic LPML.
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4.2.1. CPO Computation

Let D(();:) ={(y,t,,PDE;), k=1,--- ;i—1,i+1,--- , N} denote the observed data
with the ith participant deleted. Then, for the ¢th participant, the corresponding
conditional predictive ordinate (CPO) is defined through the posterior predictive density of
(y., t., PDE;), that is,

CPO; = w(y;, t;, PDE; | D.,”) = / f(yi, t:, PDE; | v)x (v | D)) d, (4.33)
. , N .
where (7 | D(()b_;)) is computed via (7 | 'D(();;)) = JI f(yk, ty, PDE | 'y)w('y)/c(ng_;))
k=1 ki

N
and C(Dggsi)) = / H f(yg, tg, PDEg | v)7(7)d~ is the normalizing constant. Following
k=1,k#i
M.-H. Chen et al. (2000), CPO; in equation 4.33 can be rewritten as

-1
cPO; = | [ 17wt PDE [ )] 5l | Dy (4.34)

which makes the Monte Carlo estimate of CPO; much easier by drawing MCMC samples

from the posterior distribution given D, instead of Dg;:). The expression of CPO; given

in equation 4.34 is also called the CPO Identity I as discussed in D. Zhang et al. (2017).

Assuming that M is the total number of iterations in the MCMC sample and

{~4lm m =1,---, M} are the M values of v drawn from 7(v | Dys), a Monte Carlo

estimate of CPO; is given by
CPO; = M / > [f(yi i, PDE; [ 4] . (4.35)
=1

As discussed in Section 3, f(y;,t;, PDE; | ¥I™!) depends only on a one-dimensional integral
(see equation 3.4 for more details), which makes the use of the CPO Identity I possible for
computing C/P\OZ Similarly, we can define the item response data alone without the ith
participant as D(Aé)obs ={yr,k=1,---,i—1,i+1,--- N}, the RT data alone without the
ith participant as Dﬁ&i’)obs ={ty,k=1,---,i—1,i+1,--- | N} and the PDE data alone
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without the 7th participant as Déﬁ%wbs ={PDE;,k=1,--- ;i—1,i4+1,--- ,N}. Then,
CPO;ac = U [f(y;: | '71)]_1 (v | DAC,obs)d%]fl is the CPO for the ith participant with
respect to the AC alone, CPO,; g = [f [f (¢t | ')/RT)]_1 (YR | DRTiobs)d'yRT}_l is the CPO
of the ¢th participant for the RT alone, and the CPO of the ith participant for the PDE
model alone is CPO;ppg = [ [ [f(PDE; | ~ppe)] " 7(YpDE | DppE,obs)dYPDE] ' Then we

can estimate them using

M
— ~[m -1
CPOjac = M/ > [f(yi i ])} : (4.36)
m=1
_ M -1
PO, = M / S [ amh] (4:37)
m=1
_ M -1
CPO, ppe = M / S [ f(PDE, | %’QE)} (4.38)
with {'ﬂm], m=1,---, M} drawn from the posterior distribution 7 (71 | Dac,obs),
{’71[{'%}, m=1,---, M} drawn from the posterior distribution m(yrr | Drr obs), and
{%L"]S}E, m=1,---, M} drawn from the posterior distribution 7(vppg | DrpE obs)-

4.2.2. CPO Decomposition

We are going to introduce three ways of decomposition for the CPO to facilitate our
comparisons below, which include 1) the AC model alone versus the AC model given the
additional information from the RT and PDE data, 2) the RT model alone versus the RT
model given the additional information from the item response and PDE data, and 3) the
PDE model alone versus the PDE model given the additional information from the RT and

item response data. From equation 4.33, we can also write CPO; as

PO, - Do) _ (1,1 PDE: | 1)n(4]D”)

(D7) (Y | Dobs)

(4.39)
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Notice that the joint pdf of (y/,t;, PDE;)" can be written as the product of the conditional

pdf and the marginal pdf in three different ways as follows

f(yi, ti, PDE; | v) = f(yi | t;, PDE;, v1,72) f (ti, PDE; | 72) (4.40)
= f(t; | ¥i, PDE;, v1,72) f(PDE;, yi | v21,71) (4.41)
= f(PDE; | yi, ti, v1,72) f (i, ¥i | Y22, 71), (4.42)

Here, f(y; | ti, PDE;, v1,72), f(t: | i, PDE;, v1,72) and f(PDE; | y;, ti,v1,72) are given in
equation 4.6, equation 4.8, and equation 4.9, respectively; f(t;, PDE; | 742) is a multivariate
normal pdf derived from equation 4.2, while f(PDE;, y; | 721, v1) and f(t;,y; | ¥22,71) are

defined in equation 4.4 and equation 4.3, respectively. Further, we can partition the
(

O;sz) and Dy, respectively, as

posterior distributions of v given D

m(y | D)= 72 | Dy )m(n | 2. D) (4.43)
= (.72 | D )m(en | 1721, D) (4.44)
= (1,722 | Dg;;))ﬂ(’Ym | ’)’17’)’2271)51;_;)); (4.45)
and (Y | Dovs)= m(v2 | Dovs)m (71 | Y2, Dobs) (4.46)
= (Y1, Y1 | Dovs) (Va2 | Y1, Y1, Dobs) (4.47)
= (v, Y22 | Dovs)7 (Y21 | Y15 Y225 Dobs)- (4.48)
Using equation 4.39 together with equation 4.40-equation 4.48, we can decompose the
value of CPO for the ith participant in three different ways as
CPO; = CPO; rr,ppE)CPO; [Ac|RT,PDE] (4.49)
= CPO; ac,r1)CPO; [ppE|AC,RT] (4.50)
= CPO; (ac,ppr)CPO; [rT|AC,PDE]- (4.51)

Here, CPO; gr,ppE) = f(ti, PDE; | v2)7 (72 | Dg;si))/ﬂ(vg | Dobs), by analogy, can be viewed
as the CPO of the ith participant for jointly modeling the RT and PDE data; CPO; ac k]
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can similarly be viewed as the CPO of the ith participant for jointly modeling the item

response and RT data, which equals to f(&;, y; | v1, ¥o2) 7 (71, Y22 | Dl();:))/ﬂ'(’)’l,’)’gg | Dops);

and CPO; ac.ppr) = [ (¥, PDE; | v1,v21)7 (71, 721 | D(()b_;))/ﬂ(’)’1,’721 | Dops) can be

interpreted as the CPO of the ith participant for jointly modeling the item response and
PDE data. While, CPO; jacjrr,ppE], CPO; ppEjAC,RT] and CPO; [rT|AC,PDE] are our major
focuses in the CPO decomposition, and it is not hard to derive their corresponding
formula, where CPO; jacjrr,por] = f(¥i | ti, PDE;, v1,%2)m(71 | ’Y%D,();;))/W(’h | Y2, Dobs) is
regarded as the CPO of the item responses given the additional information from the RT
and PDE data for the ith participant; CPO; ppgjac,rr), interpreted as the CPO of the PDE
data given the additional information from the item response and RT data for the ith
participant, equals to f(PDE; | t;, yi, v1,¥2)7 (Y21 | 71, Y22, ngj))/ﬂ<721 | Y1, %22, Dobs);
CPOz‘,[RT\Ac,PDE] = f(tz | Yi, PDEi771772>7T(722 | 71,721,7)(()1:;))/7T(722 | Y1, Y21, Dobs) is the
CPO of the RT data given the additional information from the item response and PDE
data for the ith participant. With some algebra, we can rewrite conditional CPOs via the

following identities:

—1
CPO; jac|rT,PDE] = /[f(yi | t;, PDE;, v1,72)] ' 7(71 | 72,Dobs)d’>’1] , (4.52)

-1
CPO@’,[PDE|AC,RT} = /[f(PDEz' ’ tiyyi771772)]_1ﬂ-(721 | 7177227Dobs)d721] , (4.53)

-1
CPOL[RT|AC,PDE] = /[f(ti | yuPDEz‘,’Yb’h)]il (o2 | 7177217D0bs)d722:| , (4.54)

which imply that we can mimic the idea of Monte Carlo estimation of CPO; in equation
4.35 to estimate CPO; jacirr,ppE]; CPO; ppE/ACRT], and CPO; rrjac,ppE). Some similar
identities can also be derived for CPO; g1 ppr), CPO; ac,ppE), and CPO; jac rr), however,
since those are not our major focus, we omit the details.

To show why equation 4.52 holds, first, we manipulate relationships between the joint

and conditional distributions, which yields

T(v2 | Dyt) /(2 | Dovs) = CPOz‘/[f(yiythDEz‘ | Y1, 92)] " T (Y1 | Yas Dovs)d1-
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Then, by plugging this equation above into the expression of CPO; gt ppE), We obtain that
CPO; rr,poE) = CPO; [ [f(y: | t;, PDE;, v1, Y2, )]_1 7(¥1 | 72, Dobs)dy1 and then comparing
CPO; rr,ppE) derived here with equation 4.49, we can conclude equation 4.52 holds. It is
clearly seen that if only CPO; acjrr,ppE) is of interest, it is not necessary to compute the
overall CPO;. Similar discussions are also applied to equation 4.53 and equation 4.54.

As 7y, is unknown, following the discussion of D. Zhang et al. (2017), we plug the
posterior mean of v, (i.e., 7,) into equation 4.52 and then assuming {’y{m}, m=1,--- , M}

is drawn from (7, | 74, Dops), We have

-1
GO —— M/ Fly | ™. 7,4, PDE)] (4.59)

Similarly, we also have

M

- 1

CPO;,jppE/AC,RT] = M/ Z [f(PDEi | 71a’7£1]>722,ti,yi)] ; (4.56)
1

CPO J[RT|AC,PDE] = M/ Fs | 71, a1, 755, yi, PDE; )] (4.57)

with {vI™, m =1,---, M} is drawn from 7(¥a1 | 7y, ¥z Dovs) and {¥2 m =1,--- , M} is
drawn from (72 | 71, Y15 Dobs)-

4.2.3. LPML and LPML Decomposition

Following Ibrahim et al. (2001), we define the LPML of the proposed joint model as

LPML = Z log CPOZ, where CPO is computed using equation 4.35. Further, it is easy to
=1

see that the LPML of the proposed joint model can be decomposed as

LPML = LPMLgr pprj + LPML{acirr pDE] (4.58)
== LPML[AC,RT] + LPML[PDE|AC,RT} (459)

= LPMLsc,ppE)] + LPML{RT|AC PDE]s (4.60)
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by using equation 4.49, equation 4.50, equation 4.51 and the property of the logarithm that

the logarithm of a product is the sum of the logarithms of the factors. Here,
N

LPML[RTyDE] = Z log C/I)\()i,[RT,PDE]a where CP/?OL[RT,PDE] is the estimate of CPOi,[RT,PDE];
i=1

N: _— _—
LPMLac,rr) = > log CPO; jac,rr) with CPO; (ac rr) being the estimate of CPO; jac rry;
i=1
N o e
and LPML[AC’FDE] = Z IOg CPOi7[AC7pDE] with CPO@',[AC,PDE} being the estimate of
i=1

N —
CPO@',[AC,PDE}- We also have LPML[AC\RT,PDE} = Z log CPOi,[AC\RT,PDE}; where
i=1

—_— N —_—

CPO; jacjrr,ppE) is estimated by equation 4.55; LPMLppgjac,rr = . log CPO; ppEjac kT
i=1

with CPO; ppgjac,r] estimated by equation 4.56; and let CPO; grjac,ppr) is estimated by

N —
equations 455, then LPML[RT|AC,PDE} = Z log CPO@',[RT|AC,PDE}'
i=1

4.2.4. ALPMLac, ALPMLppg and ALPMLgy

Since a larger value of LPML suggests a better model fit, by analogy to the derivations
of ADICA¢, ADICppg, and ADICgr, we can define the differences of LPML as

ALPML ¢ = LPMLiacirr,por; — LPMLiaq, (4.61)
ALPMLgr = LPMLigrac.ppr — LPMLgr), (4.62)
ALPMLppg = LPMLippgjac.rr] — LPMLpp, (4.63)

where LPMLsc) = Zi\il log C/P\OLAC, LPMLgr = Zfil log C/P\OLRT, and

LPMLppg) = ZZNZI log C/P\OLPDE with C/P\Oz’,ACa C/P\OLRT, and C/fi)i’pDE estimated through
equations 4.36, 4.37, and 4.38, respectively. To save the space in this paper, we haven’t
reported ALPML} . (analogy to ADIC} ) to quantify the gain in the fit of the item
response data by only conjointly model with the RT data, as well as ALPML}; (analogy
to ADICLr) to measure the gain in the fit of the RT data by introducing only the item
response data in the joint model. The formula for ALPML} . and ALPMLp are similar to

those in equation 4.61 and equation 4.62.
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As an example, if we take an exponential on both sides of equation 4.61, the right side
will become a ratio of two pseudo likelihood functions, which compares the likelihood
function of the item response data given additional information from the RT and PDE
data to the likelihood function of item response data alone. Thus, we can view
exp(ALPMLc), (similarly, for exp(ALPMLgt) and exp(ALPMLppg)) as a pseduo-BF,
and use it to quantify the gain in the fit of the item response data (similarly, for the RT
data or the PDE data) due to the joint model. A model with a large value of ALPML
(corresponding to a large pseudo-BF value) means the joint model is more favorable.
Following the rule of thumb for the scale of BF suggested by Jeffreys (1961) or Kass and

Raftery (1995), we can determine which models we are going to support.

5. Simulation Study

In this section, we first investigate the performance of the MCMC methods in recovery
of the true parameters for the joint model using the simulation data. Next, we evaluate the
empirical performance of model assessment criteria, including ADIC ¢, ADIC}~, ADICgy,
ADICyr, ADICppg, ALPMLsc, ALPMLgyr, and ALPMLppg, over different numbers of

items and participants.

5.1. The Recovery Study of Parameters in the Model

We generate the simulated data from the reparameterized and reformulated joint
model proposed in equation 2.7 to equation 2.8 of Section 2, which is equivalent to generate
the data directly from equation 2.1 to equation 2.4. The true parameters in the model are
set in a way to resemble the posterior means from the empirical data as follows. First, we
draw item discrimination parameters a;s from a uniform distribution U(0.3,1.9), item
difficulty parameters b;s from N(0,1) and item intensity parameters A;s from U(0.8,1.9).
Also, we assume the variances of ¢;;s in the RT model, i.e, (7]2~S are sampled from a uniform

distribution U(0.14,0.75). For the latent attribute parameters 6;s and 7;s at the participant
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level, we assume both are drawn from a standard normal distribution N'(0,1). We set the
coefficients 3y, 1, 32 and o2, in equation 2.9 to be 93.8, 14.5, 3.5, and 57, respectively.
Further, let the correlation related parameter ¢ in equation 2.8 be 0.411 and the standard
deviation parameter of speed o, in equation 2.8 be 0.367. Notice these settings are
corresponding to using oy = 0.147, 013 = 31 = 14.5, 02 = 0.135, 093 = 3.30 and

033 = 279.5 in equation 2.4 under the original joint model.

For the number of participants, we consider two cases, N = 125 and N = 250, and for
the number of items in a test, we also consider two cases, J = 20 and J = 40. Hence, there
are a total of 2 x 2 = 4 different scenarios. For the scenario of J = 20 items, we use the
same values of item parameters selected from the scenario of J = 40 items. Similarly, for
the case of N = 125 participants, we use the same values of the latent attribute parameters
selected from the case of N = 250 respondents. For each scenario, we independently
simulate 500 replications of the data. The running time depends on the numbers of
participants and items as well as the length of the MCMC chain. In the simulation
scenario of N = 125 and J = 20, for each simulated data set, it takes 3.9 minutes for run a
25,000 MCMC iterations in R codes on an Intel i7 processor machine with 16 GB of RAM
memory using a Windows 10 operating system. To compute all of the model assessment
criteria based on the decomposition of DIC, it takes about 22 minutes to run the Fortran
95 codes on an Intel 1686 processor machine with 16 GB of RAM memory using a
GNU/Linux operating system. The running time increases proportionally when the
numbers of individuals and items increase.

For each replication of the data, using 25,000 MCMC iterations with a burn-in period
of 5000 iterations and thinning the sample for every two iterations, we compute the
posterior mean and 95% highest posterior density (HPD) intervals (M.-H. Chen & Shao,
1999) for each parameter. Then, we compare the posterior means of the parameters

relative to their true values among 500 replications. By averaging these values, we obtain
R
the bias using Bias = ) (¥, — ¥)/R and the mean squared error (MSE) through

r=1
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MSE = i (9, — ¥)?/R, where 9 is the parameter of interest, ¥, is the posterior mean of
the pararr;teter in the rth replication, with r =1,--- | R and R = 500. In addition, we
compute the frequentist coverage probability (CP) by counting among 500 replications how
many the 95% HPD intervals of the parameter will contain the true value of the parameter.

Further, we report the sample standard deviation (SD) of the posterior estimates over

R =
replica datasets, i.e., SD = > \/Z%Zl(ﬁlm] —9,.)2/(M —1)/R, where 9™ is the mth
r=1

iteration of the MCMC sam;gle for the parameter 9, in the rth replication of the data and

m=1,--+, M; and we compute the simulation standard error (SE) via
R R _.
SE — \/zwr LS /(R 1),
r=1 /=1
Table 5.1 shows a summary of the simulation results for a = (a1, -+ ,ay)’,
b= (b, - ,by) and A; = (A\,--- , As)’, respectively. Due to a large number of items, in

Table 5.1, the content in the intersection of Column ‘Bias’ and Row ‘a (Min, Max)’
presents the median value of the bias among all a;s and the bracket shows the range of the
bias values for all a;s. Similar interpretation can be applied to Bias, MSE, CP and SD for
all other columns and rows in the table. In analogy, we summarize the latent attribute
parameters of respondents by grouping them as @ and 7 shown in Table 5.2, where
0= (0, - ,0n) and 7 = (7y,--- ,7n)". For example, the content in Column of ‘Bias’
intersected with Row ‘@ (Min, Max)’ provides the median value of the bias among all 6;s
and the bracket there is the range of the bias for all #;s. The rest columns and rows of
Bias, MSE, CP and SD can be interpreted accordingly in Table 5.2. To save space, we put
the SE results of all unknown parameters in Table S.1 of the Supplementary Materials.
Based on these tables, we can draw some conclusions for the recovery performance of
item and latent attribute parameters. First, the values of Bias and MSE for the items
parameters decrease substantially as the number of participants increases from N = 125 to
N = 250. In most cases of N = 250, the median values of MSE for the item parameters are

below 0.05. Second, the values of Bias and MSE for latent attribute parameters have
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Table 5.1: Summary of item parameters in the simulation
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N J Bias SD MSE CP(%)
125 20 a (Min, Max) | -.064 (-.296, .101) | .267 (.175, .401) | .069 (.029, .162) | .936 (.866, .984)
b (Min, Max) | .108 (-.171, .183) | .298 (.186, .547) | .091 (.031, .155) | .967 (.926, 1.000)
A (Min,Max) | .011 (.006,.017) | .066 (.050,.084) | .003 (.002, .006) | .976 (.956, .988)
Bo -1.740 1.483 3.502 940
B -.230 1.165 755 986
Ba -.109 1.050 1.153 944
02 -1.382 12.850 178.797 1930
40 @ (Min,Max) | -.118 (-.315, .213) | .262 (.161, .392) | .076 (.022 , .175) | .920 (.838, .994)
b (Min, Max) | .154 (-.221, .282) | .271 (.178, .557) | .097 (.023, .177) | .963 (.900, .992)
A (Min, Max) | .008 (.006, .013) | .065 (.049, .084) | .003 (.001,.006) | .978 (.958, .998)
Bo -1.625 1.425 3.088 964
By -.992 1.010 1.458 926
Ba -.021 885 720 968
02 -1.348 10.067 107.075 950
250 20 a (Min,Max) | -.014 (-.120, .075) | .198 (.133, .329) | .037 (.019, .090) | .954 (.930, .982)
b (Min,Max) | .091 (-.058, .121) | .199 (.118, .441) | .037 (.014, .125) | .951 (.926, .990)
A (Min, Max) | -.002 (-.005, .001) | .046 (.035, .059) | .002 (.001, .003) | .978 (.960, .988)
Bo -1.220 1.049 1.708 968
By -173 842 335 998
Ba 086 885 452 1960
02 296 8.794 81.879 942
40 @ (Min,Max) | -.041 (-.130, .171) | .201 (.123, .320) | .038 (.012, .087) | .944 (.912, .976)
b (Min,Max) | .105 (-.053, .251) | .177 (.116, .457) | .037 (.013, .151) | .955 (.898, .984)
A (Min, Max) | -.002 (-.006, .001) | .046 (.034, .059) | .002 (.001, .003) | .976 (.958, .992)
Bo -1.198 1.023 1.678 942
By -.605 757 609 966
Bo 103 608 373 950
020 259 6.856 46.750 936
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Table 5.2: Summary of latent attribute parameters for respondents in the simulation

J N Bias SD MSE CP(%)

20 125 @ (Min, Max) | .103 (-.337, .510) | .355 (.341, .430) | .120 (.095, .370) | .954 (.810, .984)

7 (Min, Max) | -.025 (-.372, .386) | .406 (.396, .473) | .137 (.107, .263) | .966 (.892, .996)

250 O (Min,Max) | .080 (-.379, .554) | .341 (.329, .429) | .111 (.082, .434) | .954 (.776, .984)

7 (Min, Max) | -.035 (-.528, .500) | .380 (.374, .420) | .135 (.097, .389) | .956 (.776, .986)

40 125 @ (Min, Max) | .095 (-.070, .344) | .299 (.282, .398) | .085 (.066, .208) | .958 (.876, .992)

7 (Min, Max) | -.024 (-.243, .209) | .312 (.298, .395) | .077 (.064, .127) | .970 (.934, .996)

250 6 (Min,Max) | .071 (-.192, .387) | .276 (.262, .399) | .073 (.056, .245) | .954 (.824, .980)

7 (Min, Max) | -.029 (-.425, .333) | .285 (.277, .337) | .077 (.057, .250) | .956 (.762, .986)

similar results, that is, the values of Bias and MSE for ability and speediness parameters

decrease as the number of items increases from J = 20 to J = 40. Third, based on the

results of CP values, almost all parameters are around the nominal level 0.95, and

additionally, most SD and SE values are comparable to each other, which shows that our

MCMC sampling can obtain a very good recovery of the truth for each parameter.

5.2. Performance of the Proposed Criteria

Since our MCMC algorithm yields the satisfactory results of Bayesian estimation for

our proposed joint model, next we investigate the empirical performance on the proposed

decomposition of DIC and LPML. Following Subsection 5.1, we also consider the same four

scenarios, i.e., N =125, J = 20; N =125, J =40; N = 250, J = 20 and N = 250, J = 40

and run 500 replications for each scenario. Figure 5.1 shows the boxplots of the ADICz¢,

ADICZC? ADICRT, ADICI*{T, ADICPDE, and ALPMLAc, ALPMLRT, ALPMLPDE for the

four scenarios. From these plots, we see that the values of these assessment criteria become

larger when the numbers of items or participants increase. These results are intuitively

appealing since there is more information in the data when more items and participants are
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added. In Figure 5.1, all those values are far away from zero which indicates the criteria
support that there are gains in fitting the third part of the data with additional
information from the other two parts of the data. The median values of ADIC ¢
(ADIC} ) for 500 replications are 121.565 (16.383), 143.657 (19.285), 246.573 (22.528),
and 294.548 (26.431) for N = 125,J = 20; N = 125, J = 40; N = 250, J = 20 and
N = 250, J = 40, respectively, while the median values of ALPML¢ for 500 replications
are 62.894, 74.075, 125.449, and 149.494, respectively. The median values of ADICgr
(ADIC},p) for 500 replications are 37.809 (14.964), 40.919 (18.211), 65.126 (20.210), and
71.151 (25.022), respectively, while the median values of ALPMLgt are 20.261, 21.930,
33.939, and 37.070, respectively. By comparing ADIC ¢ with ADICY (or ADICgr with
ADIC}r), we could see in the simulation data, besides the RT data (or the item response
data), the PDE data indeed helps a lot in the fit for the joint model. Moreover, the median
values of ADICppg are 144.630, 166.949, 290.020, and 336.068, respectively, while the
median values of ALPMLppg are 74.089, 84.335, 147.005, and 169.241, respectively.
Further, we have examined the empirical performance of the proposed criteria under
three different parameter settings in equation 2.9: (i) 8; = 0 and 3, = 0 (i.e., the PDE
model is independent of the AC model and the RT model), (ii) ; = 0 and 3, = 3.5, and
(iii) By = 14.5 and By = 0. For these three settings, we generate the simulation data using
N =250 and J = 20 and the true values of all other parameters are set to be the same as
those in Section 5.1. The results of the different DICs and LPMLs are reported in Table
5.3 for the three settings of (31, 52). We see from Table 5.3 that under the setting (i), the
respective ranges of ADICppg, ALPMLppg, ADICsc — ADIC}, and ADICgy — ADIC}¢
include zero which is expected since there is no relationship between the PDE model and
the rest two model components in the joint model. Further, under the setting (ii), from
equation 2.9, we see that the PDE data should help improve the fit of the RT data but not
the AC data, which are precisely confirmed empirically by the results shown in Table 5.3,
since the range of ADIC,c — ADICY includes zero while the range of ADICgp — ADIC}



PSYCHOMETRIKA SUBMISSION March 21, 2022 35

Table 5.3: The Range (Min, Max) Results of Model Assessment Criteria

(1) B1=0,8, =0 | (i) 1 =0, 8> = 3.5 | (iii) B; = 14.5, B = 0

ADICc (5.196, 39.722) (6.685, 50.640) (213.487, 341.163)
ADIC . (6.734, 40.051) (7.079, 40.923) (7.387, 41.957)

ADICxc — ADIC., | (-2.037, 11.292) | (-1.968, 28.621) (196.374, 320.359)

ALPML ¢ (4.673, 21.936) (5.417, 27.693) (108.792, 172.787)
ADICgy (3.924, 39.271) | (25.570,106.766) (6.428, 38.282)
ADIC} (5.868, 38.937) (5.840, 38.701) (5.885, 39.240)
ADICgr — ADICSy | (-2.005, 8.209) |  (10.404, 81.322) (-3.034, 15.362)
ALPMLgr (3.661, 20.706) | (14.747, 55.110) (4.313, 20.821)

ADICppg (-4.146, 9.319) (8.404, 80.754) (219.660, 340.188)

ALPMLppg (-2.266, 4.862) (4.186, 40.416) (111.297, 172.808)

does not include zero. Moreover, under the setting (iii), the PDE data should help improve
the fit of the AC data but not the RT data, which is consistent with the results given in
Table 5.3 since the range of ADICsc — ADIC} does not include zero while the range of
ADICgrr — ADICj includes zero. In addition, we note that under all of the three
simulation settings, we set ¢ = 0.411, implying that the AC data are associated with the
RT data, and hence, the AC data should help improve the fit of the RT data and vice
versa. We see from Table 5.3 that the lower bounds of the ranges of ADIC,¢, ADIC),
ADICgr, and ADIC%y are larger than zero as they should be. Finally, from Table 5.3, we
can see that when the absolute value of 5; (or fB2) gets bigger, the value of ADICppg and
ALPMLppg) increase. These results further demonstrate good performance of our

proposed model assessment criteria.
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Figure 5.1: ADICac, ADICY ., ALPMLyc, ADICgr, ADICYy, ALPMLgr, ADICppg, and

ALPMLppg results for different samples sizes of items and respondents.
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6. Empirical Analysis

The AppRISE data consists of the item response and the RT for 43 items from 117
participants, and the PDE score from these participants. There are 65 participants at 5
years old, 51 participants at 6 years old and 1 participant at 7 years old. Among all
participants, 51 are female, while 66 are male. The distributions of item accuracies,
response times, and PDE scores are shown in Figure S.4 (a)-(c) of the Supplementary
Materials, respectively.

In our study, there are two major goals of analyzing the AppRISE and PDE test data.
The first major goal is to investigate whether any two parts of this multidimensional data
can contribute to the fit of the remaining part of the data. Also, we specifically investigate
whether the AC model can be improved by only including the RT data. The second major
goal is to establish criterion validity of the tablet test assessment, based on the correlation

between PDE scores and ability.

6.1. Bayesian Model Assessment

To compare Bayesian model assessment criteria, we analyze the multidimensional data
from AppRISE and PDE tests in four situations: (1) apply the AC model in equation 2.7
alone to the item response data; (2) apply the RT model in equation 2.2 alone to the RT
data; (3) apply the model N(pupps, 02;,) alone to the paper-based PDE data; and (4) apply
the joint model from equation 2.7 to equation 2.9 to the item response, RT and PDE data
together. In Table 6.1, we present the total values and decomposition of DIC, pp, and
LPML as well as the results of ADICs¢, ADIC}, ADICgy, ADICEy, ADICppg,
ALPMLAc, ALPMLgr, and ALPMLppg. It is clearly seen that all values of ADIC ¢,
ADICgr, ADICppg, ALPMLAc, ALPMLgt, and ALPMLppg are positive, which suggests
the joint model is supported by the data and shows the additional data (i.e., the
availability of the RT and PDE data, the RT and item response data, the item response



PSYCHOMETRIKA SUBMISSION March 21, 2022 38

and PDE data) provides much information in fitting the third part of the data. Those
results indicate to incorporate the RT and PDE data into the joint model might be an
important source for refining our estimations of the AC model. In addition, the positive
value for ADIC} shows the introduction of the RT model alone to conjointly modeling the
item response data indeed provides the gain in the fit of the AC model. Similarly, by
incorporating the item response data alone in the joint modeling with the RT data, it truly

helps the fit for the RT model, which is verified through the positive value of ADIC}.

6.2. Posterior Estimation

To analyze the multidimensional data from AppRISE tablet assessment and PDE
paper-and-pencil test, we use the same prior specification as in Section 5 for all unknown
parameters in the model. For Bayesian analysis, we have run 60,000 MCMC samples with
a burn-in period of 10, 000 iterations for all four situations and then we have thinned the
MCMC samples for every 5 steps to compute the posterior estimates. We have looked at
the traceplots and autocorrelated plots of all unknown parameters for informally checking
about the convergence and found all parameters are converged after 10,000 iterations. We
found the posterior means of b3 and by (2.106 and 2.151, respectively) have the largest
values compared to other items, which is expected as these two items have the lowest
correct rates among all items. The posterior estimates of a;s, b;s , Ajs, ;s and 7;s are
shown in Table S.2 to Table S.8 of the Supplementary Materials.

To examine whether the paper-based PDE test and the tablet-based AppRISE test
assess the similar latent construct, we have calculated the empirical correlation between
PDE;s and 6}s, which has a posterior mean of 0.867 with a 95% HPD interval
(0.773,0.941). This suggests the PDE are highly correlated with the latent ability 6Fs used
in the AC model for the AppRISE data. However, the empirical correlation o5 between
0fs and 7/'s has a posterior mean of 0.134 with a 95% HPD interval (0.062,0.199), which

implies the correlation between the latent ability and speediness of a participant is
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Table 6.1: The Results of Model Assessment Criteria

Situations DIC PD LPML
(1) ACon1y 2496.413 45.119 -1254.638
(2) RT oy 4493.838 79.809 -2267.229
(3) PDEon1y 1006.761 1.942 -503.521
(4) Joint Model 7854.472  132.911 -3954.526
[AC | RT,PDE] 2390.392 49.168 -1199.618
[RT, PDE] 5464.080 83.743 -2754.908
[RT | AC,PDE] 4458.223 82.887 -2247.706
[AC, PDE] 3396.249 50.024 -1706.820
[PDE | AC,RT] 873.551 3.463 -434.834
[AC, RT] 6980.921  129.448 -3519.692
[AC | RT] 2484.589 48.434 -
[RT] 4496.332  81.014 :
[RT | AC]  4481.462  81.914 .
[AC] 2499.459 47.534 -
ADICx¢ ADIC,» ALPMLsc ADICppg
106.021 11.824 55.020 133.210
ADICgr ADIC,r ALPMLgr ALPMLppg
35.615 12.376 19.523 68.687
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Table 6.2: The posterior estimations of parameters for modeling the PDE scores

Parameter

Posterior Mean

HPD Interval

Parameter

Posterior Mean

HPD Interval

Bo
o

93.820
3.534

[90.826, 96.752]
[1.122, 5.959]

A

2

UPDE

14.563
57.188

[12.052, 17.065)
[24.882, 89.070)]
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relatively low in this test. In addition, a3, which is the covariance between 7 and (', has a
posterior mean of 3.056 with a 95% HPD interval (1.889,4.220). While for the variance of
¢}, 033 has a posterior mean of 284.867 with a 95% HPD interval (222.009, 353.544). Notice
that to present the results, we have transformed 6;s and 7;s used in the computation back
to their original definitions s and 7;'s in the joint model. We can further justify a common
latent ability for the PDE test and the AppRISE test by establishing a hypothesis test that
Hy: By =0 versus Hy : B # 0, as f; = 0 indicates that the construct assessed by two tests
have no correlations. By Lindley’s method (Lindley, 1965), we can test this hypothesis in
an ad hoc way and we reject the hypothesis of 5; = 0 at the significance level a = 5% since
the 95% HPD interval of §; does not include zero (c.f., Table 6.2). This provides additional
evidence to support the PDE test and AppRISE test can be used to assess a common
latent ability. In Table 6.2, the 95% HPD interval for the coefficient 5 in the PDE normal
model is also far away from zero with a posterior mean estimate of 3.534, which indicates
the speediness of a participant also have an impact on the traditional paper-based test.

In Section S.2 of the Supplementary Materials, we propose a Bayesian procedure to
compare and order item difficulties, which will help rank the item difficulty in the
AppRISE. The result for ordering the item difficulty can be used to improve the item bank
and the adaptive testing design of the AppRISE tablet assessment in the future. In Section
S.3, we develop Bayesian residuals for assessing the model adequacy of the joint model in
fitting the item response, RT and PDE data, which shows the distribution assumption of
the proposed joint model in equation 2.1 to equation 2.4 (or equivalent to equation 2.7 and
equation 2.9) are reasonable. A calibration algorithm for quantifying uncertainty of the
DIC and LPML assessment criteria is developed in Section S.5. The details of these
developments and the analysis results of the data from the AppRISE tablet test and PDE

paper-based test are given in the Supplementary Materials.
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7. Conclusion and Discussion

In this paper, a joint model is proposed for the item response and the response time
from the AppRISE tablet assessment, and the age-normed standard score of Phonemic
Decoding Efficiency (PDE) from a paper-and-pencil test. The reformulation and
reparameterization of the proposed joint model is one of the major developments in this
paper as it facilitates more convenient specification of the prior distributions and makes it
possible to implement MCMC sampling from the joint posterior distribution using an R
package called nimble. Another major development in this paper is the decomposition of
DIC and LPML, which enable us to separately evaluate the contribution of different
sources of the data in a joint model. Also, we have put forward novel Bayesian criteria,
ADICac, ADIC, ¢, ADICgr, ADIC}, ADICppg, ALPMLAc, ALPMLgy, and
ALPMLppg, which can be used to assess the gain of modeling one part data by
incorporating additional parts data. Both the simulation and the real data analysis
demonstrated that those novel criteria are effective and promising. Moreover, we have
proposed some new ideas to rank item difficulty for AC models with uncertainty and to
assess the model adequacy for the RT, item response and PDE data.

In addition, as demonstrated in de la Torre and Patz (2005), in the IRT model with a
multidimensional ability, the benefit of correlated dimensions is that the correlations
among the dimensions provide additional information, which may lead to more precise
ability estimates for each dimension. Based on our proposed approach, this similar type of
benefits for correlated dimensions can be assessed by using our difference measures such as
ADICac,ppe, ADICac ppE, and ADICgy ppg for the AppRISE data. These difference
measures can quantify the gain in the fit of certain correlated multidimensional data by
incorporating the data from an additional correlated dimension. Table S.10 of the
Supplementary Materials show the values of the difference measures for the two

dimensional data by incorporating the data from the third dimension for the AppRISE
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data, which are quite consistent with the posterior estimates of the covariance and
correlation parameters for all of the three correlated dimensions (AC, RT, PDE) given in
Table S.9 of the Supplementary Materials. These results provide a further justification of
modeling the item responses, RTs, and PDE scores jointly.

Finally, the decomposition of DIC can be extended to the decomposition of DICy,
proposed by Li et al. (2020). Recently, WAIC (Watanabe, 2010) has become a popular
Bayesian model comparison criterion. WAIC is constructed based on the posterior
predictive density, which bears a resemblance with LPML. Thus, the decomposition of
LPML can be extended to the decomposition of WAIC. However, these two extensions are
quite extensive in terms of both analytical derivations and computational developments,
which is beyond the scope of the current paper. Therefore, these extensions are deserved to

be another interesting topic of future research.
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