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Abstract
The observables associated with a quantum system S form a non-commutative algebra Ag. It
is assumed that a density matrix p can be determined from the expectation values of observables.

La,u e Ag, v*u = uwu* = 1, so that its individual

But Ag admits inner automorphisms a — uau™
elements can be identified only up to unitary transformations. So since Trp(uau*) = Tr(u*pu)a,
only the spectrum of p, or its characteristic polynomial, can be determined in quantum mechanics.
In local quantum field theory, p cannot be determined at all, as we shall explain. However, abelian
algebras do not have inner automorphisms, so the measurement apparatus can determine mean
values of observables in abelian algebras Ay, C Ag (M for measurement, S for system). We study
the uncertainties in extending p|4,, to p|as (the determination of which means measurement of
Ag) and devise a protocol to determine p|4, = p by determining p|4,, for different choices of
Apr. The problem we formulate and study is a generalization of the Kadison-Singer theorem. We
give an example where the system S is a particle on a circle and the experiment measures the
abelian algebra of a magnetic field B coupled to S. The measurement of B gives information
about the state p of the system S due to operator mixing. Associated uncertainty principles for

von Neumann entropy are discussed in the appendix, adapting the earlier work of Biatynicki-Birula

and Mycielski [1] to the present case.
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I. INTRODUCTION

Ever since Dirac introduced the notion of “complete commuting sets of observables”
(CCS), abelian algebras are routinely used in quantum physics for labeling basis vector
states,[2] both in quantum mechanics and in quantum field theory. There have also been
several publications on the appearance of commutative algebras in measurements, notably
by Hepp [3], Araki and Yanase [4], Fioroni and Immirzi [5], and Wightman [6]. Significant
is the work of Klaas Landsman [7, [§], who has argued that the classical /quantum distinc-
tion can be adapted, with a few caveats, to that of commutative /non-commutative algebras.
Some of the issues motivating the use of C*-algebras as a unified language for both classical
and quantum observables stem from the early days of quantum physics, in particular from
the Einstein-Bohr debate [9,[10], as Landsman’s notion of “Bohrification” illustrates. His ap-
proach distinguishes studying commutative C*-subalgebras of non-commutative C*-algebras
and extending commutative C*-algebras to non-commutative ones. The first strategy is par-
ticularly relevant for this paper since we want to address the following problem posed by
Kadison and Singer [11]: when the operators of a CCS have a discrete spectrum, does a pure
state on said CCS extend uniquely and as a pure state to the full algebra of observables?
They conjectured in 1959 that this is indeed the case when H is separable and Ag, the (in
general non-commutative) algebra of observables of a quantum system, is equal to B(H),
the algebra of all bounded operators on the Hilbert space H. The conjecture was established
as a theorem only in 2015 by Marcus, Spielman, and Srivastava [12]. The difficulties in the
proof are caused by the so-called non-principal “normal” states on B(#), which can only
be proved to exist using the axiom of choice. These states, apparently, seem irrelevant for

physics [13]. We note that the Kadison-Singer theorem does not extend to the case where a
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CCS contains operators with continuous spectra. The corresponding vector states, routinely
used in many contexts in physics, are not normalizable and hence do not belong to H.

The problems we address in this paper center around the possibility of using the expecta-
tion values of the abelian subalgebras of Ag for the case where Ag is non-commutative. This
possibility will be explained in more detail in section [[]. The ambiguities or uncertainties
that arise in this process are present both for a simple qubit and local algebras of algebraic
quantum field theory. If we measure just one abelian subalgebra A, C Ag, the best we
can do is to determine a state p when restricted to Ay, the latter being generated by the
CCS, and then study its extensions to Ag. As already mentioned, when p|4,, is pure, the
extension is unique and pure, and that is the lucky case. However, this is not the case if p|4,,
is not pure. It is in this sense that our paper goes along the same line as the Kadison-Singer
theorem.

A simple quantum tomographic protocol for implementing the recovery of p|a, is dis-
cussed in section @ in terms of measurements of plya,,u+, u € Ag, where u*u = 1 = uu*.
(We will use “«” to denote the hermitian adjoint henceforth.) Thus one measures the re-
striction of p to various abelian subalgebras u.A,u* which are x-isomorphic. We then show
how p can be uniquely recovered as a state on Ag by Fourier transform on the group of ’s,
or rather on its orbit of A);. We remark that this orbit is the real Grassmannian Gr(1, Ry).
This tomographic procedure works fine if A), is a finite-dimensional algebra such as By (H)
and perhaps in its limit B(#) for large N. In short: the complete determination of p requires
measurements of different commutative subalgebras, generated by automorphisms on a par-
ticular abelian subalgebra we will specify below. Actually, we can do better: it is enough
to measure finitely many abelian subalgebras to recover the full state, as we will explain. A
more complete description of the protocol, which takes into account the coupling between
system and apparatus, is presented in section [[V] There, we will show how an additional
uncertainty in the determination of the system’s state arises. This is an intrinsic uncertainty,
due to the non-ideal character of the measurement scheme.

It is uncertain whether this algorithm can be extended to the local algebras of algebraic
quantum field theory, which are hyperfinite type I1I; von Neumann factors. We will discuss
some difficulties pointing in that direction. Our method of recovering p from the Grass-
mannian is not new. It is due to Man’ko and Man’ko [14]. We will explain the connection

between their work and ours later. However, our motivations differ from theirs. We also

4



mention that there are several notable papers on quantum tomography by Alberto Ibort,
Margarita and Vladimir Man’ko, Giuseppe Marmo, and Franco Ventriglia (cf. [I5] [16] and
references therein).

Other material in this paper concerns the determination of a state of a particle on a
circle by coupling it to a magnetic field. In the appendix we discuss entropic inequalities for
Fourier transforms on Lie groups, adapting the known inequalities for quantum mechanical

systems and Fourier transforms on RY.

II. AMBIGUITIES IN THE DETERMINATION OF A STATE ON Ag

The algebra Ag is a non-abelian *-algebra with identity 1. We use the term “state”, w,,
on Ag in the usual sense, as a positive linear functional on Ag which gives 1 on the identity
of Ag. We also require the state to be normal so that mean values w,(a) of observables a
are given by a density matrix p, a non-negative trace 1 operator (we always assume that the

relevant Hilbert space, H, is separable):
wy(a) = Tr(pa), a€ As. (I1.1)

Henceforth we will identify w, with p and refer to the latter as a state.

We start with the presentation of the basic problem we are addressing. In order to clarify
the physical origin of the uncertainties we want to discuss, we note that, unless an external
labeling of observables is available, the identity Tr((u*pu) - a) = Tr(p - (uau*)) leads to the
conclusion that we cannot have access to the full state p, we have no intrinsic (with respect
to the algebra Ag) means to distinguish p from upu*.

In an actual experiment, we perform a specified set of operations that correspond to
the measurement of some observable, for some state. Now, according to the point of view
we are adopting, which is strongly influenced by Bohr’s doctrine of classical concepts, the
observables to which we have access all belong to an abelian algebra A,;. This abelian algebra
(which is part of the mathematical description of the measuring apparatus) is coupled to
the system of interest. If we accept this point of view, then our measurements are with
respect to abelian algebras, for which the ambiguity is absent. Thus, by means of this
coupling we can “induce” an external labeling of the elements in Ag. The price we pay is,

then, that we only get access to the restricted (or reduced) state p | 4,,. Thus, the labeling
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problem disappears, but at the expense of introducing an uncertainty in our knowledge of p.
Mathematically, this uncertainty is related to the following extension problem: How many
states on the full (system + apparatus) algebra A4, V Ag are compatible with a single state
which is completely specified on A;;? The mathematical problem we are confronted with is,
then, the following one:

Study the set of all extensions of a given state py; on Ay to states p on Ay, V Ag, the

condition on p to be an extension being that

plaw = par (IL2)

We will present the discussion for now in the finite-dimensional case, but it can probably
be adapted to infinite dimensions, so long as we stay within B(H), the algebra of “quasi-
local” observables such as those in scattering theory in the absence of superselection sectors.
However, local algebras are type III; factors and require special considerations.

Let us consider the situation where Ag is presented abstractly, say in terms of generators

a; and relations among them as
As={a;,i=1,2,...: aa; = Nfay). (I1.3)

Ag is typically non-abelian so that le; #+ Nfi in general. For that reason, there exist non-
trivial inner automorphisms, i.e., there are operators af unitarily related to a; for u € Ag,

and they too generate Ag and have the same relations:

*

U __ * K, u U k_u
aif =uau’, wu' =uu=1, afaj= Na. (I1.4)

There is no way to identify a particular a; € Ag from (IL.3)): there is always the ambiguity

of (II.4). Since
Tr(pay) = Tr(u” pua;), (IL.5)

two different experimentalists seeking to identify the state from its mean values for ob-
servables in Ag can determine it only up to unitary transformations, unless some external
labeling of the elements of Ag has been done, as explained above. This means that only its
spectrum or characteristic polynomial can be determined, knowing just . This is the
case for By(H) or B(H). We will come to the local algebras below.

One option which seemingly can overcome this ambiguity is to couple Ag to a reference

algebra Aj;, which may be external or a subalgebra of Ag. If A, is external, we can



consider Ag V Ay, and take this as the relevant Ag, but now Ay C Ag. In other words,
a reference algebra A,; C Ag covers the general case. However, if A, is also non-abelian,
the same problem is encountered for measurements of A,;, leading to a continued recursion
rather than resolving the problem. This motivates us to assume the point of view that the
measured algebra Ay, C Ag must be abelian to go towards a determination of pg = p.
This conclusion is acceptable, as abelian algebras determine classical systems, and p|4,, is
a classical probability distribution satisfying Kolmogorov’s axioms. In such a situation, we
may note that, happily, there is also no Schrodinger’s cat paradox for Ay,.

However, once we are at this point, the Kadison-Singer question becomes the necessary
next step that one must address: How do we extend p| 4,, to the full ps on Ag and what are
the attendant ambiguities? Any experiment will have to confront this issue. We will take
this up in section [[1I]

Turning to the local case, recall that the local algebras of observables Ag of algebraic
quantum field theory are (hyperfinite) type III; von Neumann factors. Here we are con-
fronted by the profound theorem of Connes and Stgrmer [17], which proves that, given two
normal states p and o on Ag and any € > 0, there exists a unitary element u € Ag such
that

|u*pu — ol < e. (I1.6)
See for the definition of || - ||;. The theorem shows that this property is necessary
and sufficient to characterize a von Neumann factor of type IIl;. Given that individual
elements of Ag can be determined only up to inner automorphisms, it is clear that it is
impossible to distinguish two normal states by measurements on a local algebra. Compare
this with the quantum mechanical (matrix) case we addressed before: the Kadison-Singer
ambiguity is due to the extension, but in this case we have problems determining states from
the outset. Note that if the algebra is of any other type than III; we do have to some extent
the possibility to distinguish between the states on the algebra by purely intrinsic means.
The point is that, in cases other than ITI;, the space of equivalence classes (under the action
of unitaries from Ag) is non-trivial, and the (metric) space of the orbits will have a finite
size. For example, it will be equal to 2(1 — 1/n) for type I, algebras. Clearly, this will allow
to distinguish between the states belonging to different orbits (in contrast to the type III;
case). See [18] for the details.

The Connes-Stgrmer theorem is applicable for non-gauge quantum field theories with
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a mass gap (to avoid infrared problems). For such theories, a natural question is: how
do we see the emergence of the CCS accessible to experiments? In an interesting paper,
Fioroni and Immirzi [5] have argued that the measurable operators emerge from the labels
of superselection sectors. And, since these labels take constant values in each sector, they
are simultaneously diagonal and hence commute. They have also argued that the measuring
apparatus should be in an unstable quantum state, which then undergoes a first-order phase
transition to (perhaps a mixture of) superselection sectors because of the disturbance caused
by the switching on of its coupling with Ag for observations. See also Wightman [6].

Concrete models for the emergence of commutative algebras from time evolution have
also been constructed by Hepp [3]. Hepp’s work is based on the concept of “observables at
infinity” by Lanford III and Ruelle [19] and can probably be adapted to the phase transitions
of Fioroni and Immirzi [5].

In gauge theories, including QED, many superselection sectors arise from infrared effects
and are physically natural. Whether a gauge theory should be an essential underlying feature
for all physical measurements is an intriguing question. We will return to gauge theories

elsewhere.

III. A TOMOGRAPHY TO DETERMINE pgs FROM A, C By(H)

An affirmative answer to the feasibility of identifying ps by measurements on different
abelian subalgebras Aj; has still to be identified. We need to know how this can be car-
ried out in practice. In other words, a protocol for the reconstruction of pg from p|4,, is
important. We now turn to this issue.

Our reconstruction below of pg from p| 4,, applies only to By (H) or the quasi-local algebra
B(H). We do not need to consider superselection sectors in either case since they have only
one irreducible *-representation, up to unitary x-equivalence.

The density matrix p is a positive-definite trace 1 matrix. We will focus on By, in which
case it is an N x N matrix. By definition, p is of rank & if the image of C under p is C*.
In this case, k rows of p (or, equivalently, k columns of p) are linearly independent.

The evaluation of p as a state on the maximal abelian subalgebra [20]

Ap = {AD = Zmaum € BN(%> ©a, € C, (Pm)zj = 5i,j6i,m} (IIIl)
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gives

TrpAp = Z oy Priim, (I11.2)

m

which, since a,, are known and can be chosen to be any element of C, fixes the diagonal

elements of p. Thus measurement of Ap gives the diagonal map (we denote pp = p|a,)

p = pp,  (pD)mm = (P)mm, (pp)ij =0 if i #j. (1IL.3)
For example, for N = 2, the general form of p is

)\104

0= LN >0,) N=1a€eC M- af >0, (I11.4)
a Ao i
while
A0
pp = . (I11.5)
0 Ao

Thus it remains to determine a. Let us do this explicitly. If N = 2, the maximal abelian
subalgebra Ap is generated by hg = 1 and h; = o03. Since hg is the identity matrix, its
expectation value gives \; + Ay = 1, i.e., the normalization condition on p. Measuring h; we
obtain

(h1) = Tr (pos) = A\; — Aa. (I1L.6)

As stated above, this is all the information we can get if we measure on the abelian sub-
algebra Ap. In particular, notice that all density matrices of the form will give
the same result. Thus, we cannot unambiguously reconstruct p with this (incomplete) in-
formation. This ambiguity can be quantified in terms of the distance formula (IIL.7), as
defined below. A full reconstruction of the state, in this simple case, requires two additional
measurements. We can, for example, measure o; and o,. Notice that these Pauli matrices
are linear combinations of roots from su(2). The generalization of this fact to general values
of N will be used below in order to determine a specific set of measurements from which
the state can be reconstructed. In the present case we get (oq) = Tr(po1) = a + @ and
(09) = Tr(poy) = i(a — @). This example can be readily reformulated in order to discuss
polarization states of light and their reconstruction in terms of Stokes parameters.

At this point, our previous comment on the impossibility to determine the whole state
p from performing measurements only on a diagonal subalgebra should be clear. There is

a family of “lifts” of a given state pp to the full state on By(#H). In the 2 x 2 case, it
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is parameterized by o € C satisfying the condition in ([II.4). There is a natural way to
characterize the emergent uncertainty. If one defines a distance between two states, p; and
P2, by

dprps = |lp1 — p2lli = sup Tr |pra — peal, (I11.7)
a€BN (H);|lal|<1

(this is the distance in ([1.6))) then it is natural to define the uncertainty App as the maximum

distance between two lifts of the same diagonal state, pp,

App = sup |lp"—p"[|1, (111.8)
o .p"E€Lp

where Lp denotes the set of all lifts of pp. In the 2 x 2 case it is not difficult to calculate

this explicitly, the result being
APD = 2\/ )\1)\2. (IIIQ)

So, if the original state was pure (A\; = 0 or Ay = 0), we would have App = 0, in agreement
with the Kadison-Singer theorem.
Our strategy to determine p is to measure it on all abelian subalgebras Ap *-isomorphic

to Ap. They are obtained by unitary transformations of Ap:

L ={A"= Zagngu*, wu* = u'u = 1}. (I11.10)
‘

It turns out to be sufficient to measure p on the orbit under U(N) of one rank 1 projector,
say P;. This can be shown explicitly as follows. Notice that u is an element of the N x N
irreducible representation of the group U(N). The CCS labeling the basis of Ag is a Cartan
subalgebra of u(N), with basis h; (i = 1,...,N — 1) and hy = \/%]l. They have the
canonical normalization

and of course Trh; =0 if ¢ > 1.

Now consider the orbit of P, under the action of u, given by uPju* = uPju~?

, namely,
(uP1Uu)ap = Ua1]g (I11.12)

Notice that Ad(U(N))P, = U(N)/Up, = Ad(SU(N))P,, where Up, is a stability subgroup.
Hence, elements of the form e??"0 being overall phases, cancel out in ([11.12).

But there is more that we can factor out. Write

P => phi, peER (I11.13)
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It is convenient to choose h; so that

2N 1'? 1
Then if {EL} is an orthogonal basis for the Lie algebra of SU(N) with the normalization
Tr By Ey = 2050 and with E; = hq, we get

N -1 1
uPu ™t = [

1/2
—_— E.D —1 I1I.1
| EDu+ g1, (1115

where D(u) is the adjoint representation of u. Thus if AASU(N — 1) is the subgroup of
AdSU(N) with elements of the form

110 0
0 (N-1)x(N-1) |, (I11.16)
0 AdSU(N —1)

its action on the right of u does not affect the point of the orbit. The orbit is thus the real
Grassmannian

AdSU(N)/AASU(N — 1) = Grg(L, N), (IIL.17)

which is the space of lines through the origin in RY. The reality is due to the fact that
AdSU(N) is a real representation.
Let
pr = Tr(pEy). (II1.18)

Since 1 and {E)} form a basis for Maty(C), and Tr p1 = 1, we can fully reconstruct p from

1

knowing pr. We can do that from the evaluation of p on uPyu~"'. (This reconstruction is

identical to the one due to M. Manko and V. Manko [I4] as we will also show.) Now

1
Trp(uPut) = i + [

N 172
QN_} prD () k1. (II1.19)
This can be inverted for p; in a straightforward way using group orthogonality. If du is the
invariant measure for a compact Lie group G and D), D) are two of its unitary irreducible
representations, then we have the orthogonality relation
1

| @)D @D 0) = bt (111.20)
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where d,, denotes the dimension of the representation D*) and we have normalized the Haar

measure as
/ du(g) = 1. (II1.21)
G
For the adjoint representation, d, = N? — 1. Hence

! 5
(N + )(2N(N — 1))12Pp%1

/Gd,u(u)D(u)Zﬂ Trp(uPu™t) = (IT1.22)

This determines p fully.

Although integration over u does yield p, a finite number of u’s suffices if they are judi-
ciously chosen. This can be seen as follows. The basis { £} for u(N) consists of {h;}, which
is the basis for the Cartan subalgebra h, and {E;} which are (real combinations of) the
roots. The measurements yield p evaluated on the Cartan subalgebra. We need p evaluated
on the roots as well to complete the set of py. This can be done by a suitable “rotation”
of the initial Cartan subalgebra. Consider a particular root E;. The adjoint orbit of Ej,
(under the action of SU(N)) intersects h in exactly one point. In other words, there is a
u € SU(N) such that uZEkuk € h. Equivalently, uizhuj, is another Cartan subalgebra such
that £}, € ughuy. Evaluation of p (via another measurement) leads to pg. Since we have
N(N —1) roots, with the suitable choice of N(N —1) such u’s, one can completely determine
p-

Note that, in this construction, we assumed that we measure a state on the whole abelian
subalgebra h. But we can also recover p by measuring all N pairwise orthogonal rank one
projectors P; using just N? — 1 unitary transformations. Namely, take P, € h as before.
Then, it is trivial to see that u, := ZlgsgN Ps s4k—1 will map P, to P, € h. Here, Py is a
partial isometry mapping the k' basis vector to the s one and s + k — 1 is mod N. So,
in this case, we need N(N — 1) + N — 1 = N? — 1 unitary rotations. If we include the first
measurement on Pj, we will get N? measurements, as one would expect for a system with
N? degrees of freedom.

Another observation which is worthy of remark is about the relevance of stochastic maps
in the context of measurements of different abelian subalgebras. The evaluation of the
diagonal density matrix pp(A) = D>, AP, on the abelian algebras u() _ a,Ps)u* is equivalent

to measuring pp(T\), where

(TA)r = Tk, T=(lugl), A= (A, A..., AN). (111.23)
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The key point is that 7" is a doubly stochastic matrix since

T, >0, > Ty=>» Ty=1 (I11.24)
It is straightforward to obtain the result (I11.23). We have

Tr pp(N) (u(D,arPr)u”) = Z As Qg Uny = Z s |2 s @y
= Z(T)\)rar

=Trpp(TA(D_a,P)). (I11.25)

This shows the result. Note that entropy, being concave, is non-decreasing under the stochas-
tic maps 7.

It is also worth remarking on a couple of known structural results on stochastic matrices
T. First, they form a compact convex set. Second, by a theorem of Birkhoff and von
Neumann [21], their extremal points are permutation matrices of dimension N2, and every
p is a convex combination of at most N? — 2N + 2 such matrices [22]. Therefore, the further
study of the relevance of doubly stochastic matrices for our measuring protocol might be
beneficial.

We now turn to the question of relating our considerations to the work of Man’ko and
Man’ko. Their excellent review article [14] and, in particular, their equation (27) give the

basis for the comparison. They define the tomogram of p as

W(m,u) = (mlupu*|m), m = _(N2— 1)’_(N2— 1)

(N=1)
2

+1,..., ,u e U(N) (I11.26)

and discuss the reconstruction of p from W(m,u). To conform to their notation, let P,, =

|m)(m| be a rank one projector. Then
W(m,u) = Tr p(u* P,u). (II1.27)

But this is our equation for m = 1 and with our u replaced by u*. They also consider
the case where u is the spin j representation of the SU(2) group. Since the crucial group
orthogonality is valid for SU(2), we can see that our approach is not significantly
different from theirs (see also section . However, the motivation is different.

To summarize, after discussing the reconstruction problem for N = 2 and explicitly

computing the ambiguity when measurements are restricted to the diagonal subalgebra, we
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have discussed the case of general N. In that case, if { E}}, is a basis for the Lie algebra of
SU(N) (here regarded as observables), knowledge of the parameters p; defined in (III.18)
amounts to a full reconstruction of the state. However, only part of the basis belongs to a
CCS, namely the Cartan subalgebra. What we do afterwards is to explain how to recover
the remaining parameters of p. In particular, we explain how this can actually be done with

a finite set of measurements.

IV. A MODEL FOR QUANTUM TOMOGRAPHY

The previous section can be thought of as dealing with the measurements on the algebra
of observables by the apparatus. In other words, it pertains to the process of registering the
outcomes of measurements by an apparatus. For a complete description, we need to couple
the measurement apparatus M to the system S and outline how to recover the pre-coupling
state p using both the system and the apparatus. We now suggest a method to do so. It is
an amalgamation of much of the previous work we have cited.

We will assume that S and M are decoupled at times t < t(, so that the state p is a tensor
product ps(t) ® pa(t) which might be time-dependent. During these times, it evolves by
the Hamiltonian of the system plus apparatus, which is of the form H = Hs® 1 + 1 ® Hy,.
It is assumed that we know these Hamiltonians and pj;, but not pg. We want to determine
ps- To simplify the presentation, we will assume that H is time-independent.

During the time interval t5 < t < tog + T, we couple S and M through an interaction
Hamiltonian H;(t). In quantum field theory, it should be a local coupling to avoid causality
problems like the ones of Sorkin’s protocol [23], but there is no such restriction in finite
dimensions. We switch off the interaction H;(t) for ¢ > ty+ T. The state pg(t) ® pp(t) will

then evolve by the unitary operator
V<t7t0) = ‘/O(tv to)%(t, tO)? t > to,
Vo(t, to) = e~ "0,
t
Vittto) = Texp (=i [ armo).

to

Hy(1) = T Hy(1)e 17, (IV.1)

For times t >ty + 1, V(t,to + 1) again becomes Vy(t,to + T').
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It is assumed, as is natural, that the coupling H;(t) for to < t < to + T is sufficiently

strong that it leaves a significant imprint on the time-evolved state
p(t) = V(t, to) (ps(to) ® pM(to)) V(t, to)*, t>tyg+T. (IVQ)

This state generically will be entangled even though the state at time ¢y was not.

The experimentalist measures expectation values of the abelian algebras
(I®u)(1®) aP)(1l®u") (IV.3)

of the measurement observables for the state ([V.2). As in the last section, one gets the
mean values

Trp(t) (1 ® uPu™). (IV.4)

Now we encounter a difference with the last section. Let n and N be the dimensions of
Hs and Hpr. Then p(t) € Mat,n(C) while P, € Maty(C). So integrating over AASU(N)

and using Tr p(t) = 1, we can only extract
Tep(t)(1 ® Ey), Ej € su(N). (IV.5)

This determines the traceless part of the N x N submatrix of p, but as before, the trace is
1 (from Trp = 1). That is, only the restriction of p to 1 ® Ay, gets determined. The key
point is thus to determine pg from the knowledge of the evaluation of p(t), for ¢t > to + T,
on 1 ® Ajy,. Significantly, this will depend on pg.

We can see this explicitly in a simple example. Let us take n = N = 2. For pg(tg) we

take the density matrix defined in ([I1.4) and for the interaction Hamiltonian we choose

aq 0
H]IAS®O'1, AS: . (IV6)
0 a9
If the initial state of the apparatus is given by
pu(to) = [tho)(Wol,  |tho) = B+l+) + B-]—), (IV.7)

then a measurement of 1 ® 03 € 1 ® Ay at t =ty + T yields
Te [p(0)(1 @ 03)] = Ar (1842 — cos(2Tan) |8 [2) + X (18412 — cos(2Taz)|8_[2) . (IV.8)

Comparing with ([I1.6) we realize that, in order to determine A\; and s, more measurements

are needed.
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More generally, for arbitrary values of n and N we can proceed as follows. One can

expand pg(to) ® par(to) in a basis for U(nN) as

ps(to) @ par(to) = D psalto) park(to) a © By (IV.9)

(We include the n x n identity as ey, N x N identity as Fy. Also pgo(to) pao(to) is fixed by
the trace of p.) The evaluation of p(t) from (IV.2) on 1 ® A, is of the form

Trp(t) (1 ® Ei) = Y psalto) pare(to) Daror(V), (IV.10)

a,k

where Dy 0:(V) denotes the adjoint representation of V' (in U(n/N)). This is the basic data
obtained from the measurement. If N > n and there is sufficient freedom in choosing H;
(e.g., Hr = > Careq ® Ey and the coefficients Cyy, can be chosen freely), one can invert
to obtain pg,(ty) which determines pg(tp). In this sense, a knowledge of
constitutes a measurement. In reality, each apparatus is tied to one or a small number
of possible choices for Hy, so only limited information about pg can be obtained in any
experiment. This analysis also makes clear that for a good experiment, we need N, the
number of degrees of freedom of the apparatus to be large enough to cover the degrees of
freedom of the system, and we also need a good theory that controls the couplings H;.

As N — oo, perhaps when the matrix elements of u are fixed (weak convergence), asymp-
totic formulae may exist for u. It would be very interesting to examine such limits in the

analysis above.

V. AN EXAMPLE: A PARTICLE ON A CIRCLE

The system in this example is a particle on a circle with the free Lagrangian

1 .
Ls = §¢2, e e S (V.1)

Measurements are performed on a spatially constant magnetic field B coupled to S for a

time interval 0 <t < T'. For t < 0, we take the Lagrangian £, for B to be

1. 1
Ly =-B*>— -B% V.2
w=gB 2 (V2

This and other choices are for illustrative purposes.
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The coupling of S and M is taken to be
Lr=At)pB, At)eR, At)=0 for t<0 or t>T. (V.3)

The state at time ¢ = 0 is assumed to be

Q=05 ® Ay, (V.4)
where
Qs = [n)(n], (e¥|n) =e™, nel, (V.5)
and
Qar =10)(0], (V.6)

|0) standing for the harmonic oscillator ground state.

For t < 0, M measures the abelian algebra with generator

1® B, (V.7)
the hat denoting an operator. At time ¢ > 0, the state becomes Q' and the mean value of
1 ® B becomes

QN1 ® B) =Q |1 ® B)e | . (V.8)

The argument of €2 also generates an abelian algebra isomorphic to that of 1 ® B. We
will now solve for e'!(1 @ B)e‘th. Due to operator mixing, it involves operators of both S
and M. So its expectation value in €2 involves (25 evaluated on a system observable such as
its momentum in this example. In this way we get information on Qg.

We can find by solving the equation of motion governing 1 ® B := 1 ® B(0). We
simplify notation notation by writing 1 ® B(0) as B(0), with a similar notation elsewhere.

The momentum 7 conjugate to ¢ is

~

T =¢+ \t)B, (V.9)
while that of B is
P =B. (V.10)
The Hamiltonian Hg for the system is
L. )2
Hg = 5(71’ — A(t)B)?, (V.11)



while the apparatus Hamiltonians is

1., 1.
Hy = 5P2 + 532. (V.12)

The equations of motion following from the total Hamiltonian H = Hg + H),; are

2ot d

o T (ABB(1) = — () =0, (V.13)
50 4 By - x0d0)
= (1) [#(1) = A®B()] (V.14)
or, using also , -
dstQ(t) L+ (1 AP B(E) = AB)7(0). (V.15)

Eq. (V.15) can be analyzed in the following way. Consider the usual (not operator)
differential equation:

i+ (1 4+ M)*)u = A(t) (V.16)
and the corresponding homogeneous equation:
iig + (1 + A(#)*)up = 0. (V.17)

Here u and wg are usual functions. By the standard arguments (V.17) has two linearly

independent solutions u; and wuy that we will fix by the initial conditions at ¢t = 0:

0) =1, 11(0) =0
wi(0) u(0)=0" (V.18)
Note that the Wronskian is
W (t) := uy(t)ug(t) — uq(t)us(t) = W(0) =1 (V.19)
and a partial solution to (V.16)) is as usual given by
¢ ¢
Upar(t) = —/ AT A (T)us(T)uy(t) +/ AT A (T)up (T)us(t). (V.20)
0 0

It is then obvious that we can write the corresponding partial solution of (V.15)) as

A~

Bpar(t) = 7(0)tpar (t). (V.21)
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Then the general solution to (V.15) subject to the initial conditions B(0) = B and B(O) =P
is given by
B(t) = Fupar(t) + Buy (t) + Pus(t). (V.22)
For t > 7 this takes the form
B(t) = (B — \ait)uy () + (P + M )ua(t), (V.23)
where
T
A = / dTN(T)u; (7). (V.24)
0

So we see that the result does not have a very strong dependency on the actual form of
the interaction, A(¢). The main effect will be the same: The apparatus algebra generated
by B and P is mixed with the system algebra. This will give the possibility to extract
the information about 2g by measuring the abelian subalgebra generated by B () (as was
explained in general in the previous section).

It is noteworthy that if Dy is the domain for the Hamiltonian , then it is isospectral
to the Hamiltonian

72 (V.25)

with domain

Dy = e M98 D, (V.26)

The example of this section also illustrates that the determination of {2g involves theory.
The measurement we have illustrated only partially determines (g, namely its restriction
to the abelian algebra generated by . If we confine our measurements to only that
abelian subalgebra, the information we obtain will be the same for all those states which
have the same restriction to the subalgebra. Therefore, the uncertainties discussed in section
will be present and can, in principle, be computed using the distance formula . This
uncertainty is to be expected, as measurements of more observables reveals more about (g,

a feature reflected in actual experiments.

VI. CONCLUSIONS

We have studied the uncertainties in the determination of a state from its restriction to

an abelian subalgebra. A protocol to determine the state from measurements of different
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abelian subalgebras has been proposed and illustrated by means of an explicit example,
where a particle on a circle is coupled to a magnetic field. An important aspect of the
problem discussed here is the intrinsic nature of the uncertainties introduced by the coupling
between system and apparatus. This is an unavoidable feature of fundamental importance
and of direct relevance for applications. The reconstruction of the states discussed here
resembles a Fourier transform and lead naturally to entropic inequalities which are obtained
as generalizations (from R to Lie groups) of known ones. As mentioned in section [IV] the
study of our protocol for large N can be of interest. In particular, it would be interesting

to obtain asymptotic formulas for the uncertainties.

APPENDIX

The reconstruction we outlined involved a transition from
o) = 3 Tr(pEy) Dia (u) (VL1)
k

to Tr(pEx) and hence to p. This may be regarded as a transition from a function p on
U(N) (or rather the Grassmannian Grg(1, N)) to the Fourier coefficients Tr(pE}). This is
analogous to the transformation of a wave function ¥ on RY to its momentum space function

¥ in quantum theory.

Now for the latter, there are a number of entropic inequalities connecting

(In () 2) := / Aol (@) P Infp(@)P and  (n[p)P) = / A pld(p) 2 In [ (p)]2,
(VL.2)
with the interpretation of ¢ and @Z as configuration and momentum space wave functions.
They are discussed in [1] and elsewhere. We will comment on them below as well. It is

natural to wonder what their analogues are for (VI.1).

Only one irreducible representation (of SU(N)) occurs in (VLI). So let us consider the
case where several irreducible representations occur, following a remark by M. Manko and
V. Manko [14]. For this purpose, let us replace SU(N) by the spin J = (N — 1)/2 unitary
irreducible representation of SU(2). Under the adjoint action of this SU(2), the projectors
P; will split into the direct sum of matrices AJ , m € {—j,—j+1,...,5}, j=0,1,...,2J.

m?
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We can write

where
[Js, AJ] = imAJ, Tr(AAY ) = 26 6, (V1.4)

J3 being the third component of angular momentum. Then, if U is the unitary representation
of SU(2),
U@PRU(9) " = ) chliuDinle). g€ SUQ). (VL5)

im*m/

m,m’,j
Thus U(g) replaces the u in ([I1.10) while D’ is the angular momentum j representation of
SU(2). The new abelian algebra is

AR = U(g)ApU(g)™". (VL6)
The expectation values of (VI.5) are
Tr p(U(g) => b, (TrpN ) D2, (9). (VL)

This equation clearly shows the “Fourier” expansion in rotation matrices: the Fourier coef-
ficients are

Tr pAZn, =0

m

. (VL8)

From a knowledge of (VI.8), we can write down p. But we can find pf;@, as before. With
[t =1, (VL)
geSU(2)
we get, using ([11.20),

/ dy1(9) Dl (9)" (Tr p(U () PU(9) ™)) = =

2N

(VI.10)

We are done.

What are the entropic inequalities governing ?

The emergence of entropic inequalities from certain Banach spaces were first noted by
Bialynicki-Birula and Mycielski [1].

Thus consider the Banach space LP(R™) of functions ¥ on R” for p > 1 and with norm

ol = ([ aelotar) " (VL)
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The space dual to LP(R™) which gives the linear functionals on LP(R") is L4(R™), where

1 1
S+ =1 (VL12)
P g

Let us restrict p to the interval (1,2] so that ¢ > 2:

pe(L,2; ¢=>2, (VI.13)

and let ¢ be the Fourier transform of 1:

U(k) = CoLE / d"ze” * T (x). (VI1.14)

Then ¢ € LY(R"™) and
k0, @) [l — ||1EHq > 0, (VL.15)

and ¢ is determined by (VI.12)) in terms of p.
At ¢ = 2,p is also 2 and |[¢]|2 = ||¢||2 by the Parseval-Plancherel theorem. At g = 2,
therefore, L.H.S. of (VI.15]) is zero. So it cannot decrease as ¢ increases from 2 or the

where

derivative of (VI.15) on ¢ must be greater or equal than zero as ¢ approaches 2 from above.

This gives the entropic inequality

n 1 n 2 2
ZN(l +1In7) — N d x| (x)|* In |y ()|
— % k| (k) *In[(k)|* + NIn N >0, (VL17)
where
N = [[¢]l2 = [[¢]l2. (VL18)

For normalized wave functions, N = 1.

The inequality [|¢]|, > ||¢|l, is known as the Hausdorff-Young (HY) inequality [24]. The
determination of the precise coefficient k(p,q) came later and is due to Babenko [25] and
Beckner [26].

The HY inequality has been generalized to Fourier transforms on groups and are discussed

with references in [27]. As an example, we reproduce the inequality for U(1) reported in [1].
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Let @ be a function on U(1). It has the Fourier expansion

(p) = D cme™ (VI.19)
Then with (VI.13]),
2T dQD 1/p [oe) 1/q
ot = ([ Secor) 2 ( > |cm|q> (VL.20)

At ¢ = 2, the inequality is saturated. So again by differentiating with respect to ¢ and

evaluating at ¢ = 2, we get the entropic inequality

o0

27 d
- [ AP mIBIF ~ 3 fenIalenf 2 0 (VI21)

m=—00
between canonically conjugate variables.
We now generalize this result to a generic compact connected Lie Group G. We can then

adapt the result to (VL.7).
From ([11.20) we can get an orthonormal basis d; for L*(G):

dgﬁ = \/dngﬁ, (VI.22)
/G du(g)d;5(9)"d55(9) = Spo0ardpy- (V1.23)
For a function f on GG, we can then write
Fl9) = foudls. (VL.24)
Py

This enables us to introduce LP spaces for functions on G and its Fourier coefficients, fol-
lowing (VI.19):
1/p
1= ([ autolsar)

1/q
11l = (Z |f§g|q> : (VI.25)

Py,
We the have the HY inequality

5 1 1
1fllp = [1f1lg; q=2, ]_j + & =1, (VL.26)
as in (VI.20) and the corresponding entropic inequality
= [ @I @)W £ ~ 3 172, w12, > 0. (V127)
G
pa,B

Identifying the LHS of (VL.7) with f(g) and (2j + 1)"2¢] TrpAJ, with fZ,  (both with
fixed i), we get the entropic inequalities for (VI.7).
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