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1 Introduction

Three-dimensional N/ = 2 superconformal field theories with flavor symmetry admit su-
persymmetric “real mass” deformations [1]. As explained in [1], the real mass parame-
ters, denoted here generically by m, are introduced by first coupling the conserved current
multiplet to a background vector multiplet, and then giving the vector multiplet scalars
supersymmetry-preserving expectation values proportional to m. These real mass defor-
mations can be constructed not only in flat space, but also on curved manifolds, and in
this work we will be interested in the case of the round sphere S2. As explained in [2, 3],
the mass-deformed S3 free energy Fgs(m) can be computed exactly in any Lagrangian
N = 2 theory using the technique of supersymmetric localization (see [4-6] for reviews
and references). Although we will not make use of this fact explicitly, we should point out
that the mass-deformed sphere free energy is related by analytic continuation to the trial
R-charge deformations used in the F-maximization procedure [2, 7], so we will not make a
distinction between trial R-charges and mass parameters in the following discussion.

The focus of our work is to study Fgs(m) in holographic theories at leading order in
the bulk derivative expansion. In recent work [8], it was pointed out that, in a holographic
setup, Fgs(m) receives contributions only from a restricted class of supersymmetric terms
in the bulk effective action in AdSy. In the terminology introduced in [8], the bulk defor-
mations that affect the sphere free energy are chiral F-terms and flavor current terms. On
the other hand, Fgs(m) is independent of bulk D-terms, 1/4-BPS terms, and non-chiral
F-terms. At the two-derivative level in the bulk effective action, the only chiral F-terms are
prepotential interactions, so in theories without flavor current terms, one concludes that
the mass-deformed sphere free energy should be completely determined by the prepotential
of the bulk supergravity theory on AdSy.

In this paper we study SO(4)-invariant “domain wall” solutions of ' = 2 supergravity
theories with asymptotically AdS; metrics, which are putatively dual to 3d N’ = 2 super-
conformal field theories (SCFTs) on S? deformed by the mass parameters m. We conjecture
a simple formula relating the classical prepotential of the theory to its mass-deformed free
energy Fgs(m). Since the free energy can be viewed as an observable of the bulk theory, this
formula should follow from the structure of the bulk Lagrangian, whether or not a theory
has an AdS/CFT dual. The conjectured formula is verified in several explicit models with
only vector multiplets, and in models with an added hypermultiplet. We next introduce
the essential machinery of vector multiplet models needed to present our conjecture with
details to be further explained in section 2.

1.1 The conjecture

The Lagrangian of a model containing ny vector multiplets is determined by its prepotential
F(XT), a homogeneous function of degree two, i.e. F(AXT) = N2F(X). The X!, with
I =0,1,...ny, are holomorphic projective coordinates of a special Kahler manifold of
complex dimension ny. The X! are related to physical scalar fields 7, a = 1,2, ..., ny,
which provide intrinsic coordinates for this manifold. In Lorentzian signature, the fields 7¢
have 7@ as their complex conjugates; however, in Euclidean signature the two sets of fields



are independent, and in order to emphasize this fact we use the notation 7% instead of
7%. The Kéhler potential K(7, 7) is determined by the prepotential. As usual, the Kihler
metric is ]CaB = 8Q8BIC;1 the Kéahler covariant derivative of X! is Vo, X! = 9, X1+ %ICQXI,
with ICp, = 0.K.

The conjecture may be stated in terms of the boundary limits of the quantities above,?
and it employs a complex frame basis for the boundary Kéhler metric

~b *
eZCB(SaB = ’CO‘B (11)

with frame fields e, their inverses e, and their conjugates é%.?’ The physical real masses
of the boundary CFT, called m® in the frame basis, are related to the coefficients of next-
to-leading terms in the boundary expansion of 7¢ and its conjugate, as explained in more
detail in the next section. The sphere free energy Fgs(m) can then be immediately obtained
from the prepotential F(X7) via

2 'LQ .
ZN FYh, vi=xly %eg(vaxf)*ma, (1.2)

Fgs =

where Gy is the 4d Newton constant. To resolve the projective ambiguity of the X', we
impose the conditions

XI=xI (V. XD, = (VaXT).. (1.3)

The conjectured relation (1.2) provides a far simpler way to find the sphere free en-
ergy Fgs(m) than the traditional method which starts from the BPS equations of a given
bulk theory. Next, one must obtain the BPS solutions which is never easy, often requir-
ing numerical work. Then come holographic renormalization of the on-shell action, and
implementation of a Legendre transform because the real mass deformation involves some
operators whose bulk dual fields obey alternate quantization [9]. The conjecture delivers
the same information simply by substituting X! — Y in the prepotential.

1.2 Background

That, at leading order in the supergravity approximation, Fgs(m) is related to the bulk
prepotential had also been noticed in certain examples in [10] (see also [11] for a review).
The logic described in [10] is as follows. First, in explicit 3d N' = 2 SCFTs with holographic
duals where the sphere free energy scales as N3/2 or N°/3 at large N, it was noticed that, at
leading order in 1/N, the mass-deformed sphere free energy and the topologically twisted
index [12] on S? x S! are related. In particular, the sphere free energy and the “Bethe
prepotential,” which is an auxiliary quantity used in the index computation, are given by
matrix models that can be derived using supersymmetric localization. At large IV, these
matrix models agree precisely up to normalization. Second, in supergravity, the topologi-
cally twisted index is computed by the entropy of certain extremal black holes. In the few

'We use the notation 9, = B% and 05 = 6%,

2We use the subscript . to indicate a quantity evaluated at the boundary, e.g. X!, (VQXI)*.
3In all the examples we consider, we will be able to choose e2 to be real, so 6% = eZ.



known top-down examples of such black holes, the attractor mechanism [13] implies that
the Bethe prepotential agrees with the prepotential of the supergravity theory. Thus, in a
set of examples where one knows both an explicit Lagrangian description of the SCFT and
also the bulk dual of this SCFT in enough detail to construct supersymmetric black hole
solutions, ref. [10] argued that the sphere free energy is proportional to the bulk prepoten-
tial. One can also incorporate gauged hypermultiplets, at least in principle. Indeed, in the
attractor mechanism, hypermultiplets yield algebraic constraints [14, 15], which suggests
that the equivalence between the sphere free energy and the bulk prepotential should hold
provided that certain constraints associated with the hypermultiplets are obeyed.

A particularly simple and important example is an N' = 2 supergravity theory with
three vector multiplets, no hypermultiplets, and prepotential F = —2iv X0X1X2X3, This
theory can be embedded as a consistent truncation of N' = 8 gauged supergravity and
it has an AdSy solution of curvature radius L. This theory thus describes a subsector
of the U(N)x x U(N)_r ABJM theory [16], when the Chern-Simons level is k¥ = 1 or
2 and the ABJM theory has N' = 8 superconformal symmetry. For ABJM theory at
k = 1, it was shown in [17] that sphere free energy in this case takes the form Fgs =
%\/m , where A; are the R-charges of the bifundamental fields of the theory
obeying Y, A; = 2. (As mentioned above, the trial R-charges are related to the real mass
deformations by analytic continuation.) Thus, in this case, it is clear that the sphere free
energy is proportional to the prepotential, provided that one identifies the A; parameters
with the X7,

Part of our goal in this work is to show that it is possible to prove more directly
the relation (1.2) between Fgs(m) and the bulk prepotential. Indeed, the relation (1.2)
should follow solely from bulk physics, without invoking either the explicit form of the
matrix models obtained after supersymmetric localization in the boundary theory, or the
attractor mechanism, or the supersymmetric index computation. The sphere free energy
can be viewed as an observable of the asymptotically AdS bulk theory, so the existence of
an SCFT dual should not be necessary. In the case of ABJM theory, such a direct proof is in
fact available: ref. [18] constructed asymptotically AdS, backgrounds in 4d A" = 8 gauged
supergravity that are dual to mass deformations of ABJM theory on S3.# The on-shell
action of these solutions does reproduce the sphere free energy Fgs = %\/m
given above, and therefore the correspondence between the sphere free energy and the bulk
prepotential is explicitly proven without making reference to the properties of the boundary
SCFT. We will thus generalize the construction of [18] to other AdSy supergravity theories
and derive the relation (1.2) in the examples we study.®

This rest of this paper is organized as follows. In section 2, we introduce all the
ingredients needed to compute the free energy for AdS, supergravity theories with vector
multiplets only, and we check that the direct computation of the free energy agrees with our
conjecture in a few examples. In section 3 we state our conjecture for theories who contain
hypermultiplets as well, and work out other examples with one added hypermultiplet. We

4These solutions can be uplifted to solutions of eleven-dimensional supergravity.
5For other examples where there is agreement between the sphere free energy and the bulk prepotential,
see [19-22].



end with a discussion of our results and future directions in section 4. Several technical
details are relegated to the appendices.

2 The free energy in the absence of hypermultiplets

2.1 Setting up the computation

Let us begin by considering an N = 2 supergravity theory with ny Abelian vector multi-
plets and no hypermultiplets. The construction of the bulk action for such a theory is well
known, so we give a rather minimalist presentation based on Chapter 21 of [23]. With two
exceptions, we adhere to the conventions of this reference:

1. The gravitational coupling 1/x? = 1/87Gy is scaled out as an overall factor of the
action. Thus scalar fields are dimensionless.

2. Starting in section 2.3, expressions valid in Lorentzian signature are converted to
Euclidean signature. Quantities related by complex conjugation in Lorentzian quan-
tum field theory are independent in Euclidean. We will use X/ rather than X/ as a
reminder of this fact, and the same for other quantities. We use the conventions for
Euclidean supersymmetry from appendix A of [18].

There are ny complex scalars 7%, the “physical” fields, which parametrize a special
Kahler manifold. The basic data of a specific model is contained in its prepotential F (X 1 ),
with I = 0,...,ny, a homogeneous function of degree 2 in the X’ which determines the
kinetic term and the scalar potential. To relate the X! to the physical scalars, we use the
homogeneous coordinates

X =yzl(r%), (2.1)

where the Z!(7%) are holomorphic functions.

To proceed toward the physical action we need the two matrices:®

Npj = —i(Frj— Fr5) = 23F1;,

= . NigZE(r)Njp 2 (r) (2:2)
Nij(r,7) = Fry(7) +1i NunZM (O ZN(7)

Note that Fr = N7;X? . The Kihler potential is then defined by two equivalent formulas:
e = —i(Z1F(2) - Z'Fi(2)) = —N1; 2127 =1/yy. (2.3)

The last equality defines the product v, leaving the freedom to redefine y — ty, § — t~17,
with [t[ = 1. As usual, the Kahler metric is K5 = 0,05K. In our case of Abelian vector
multiplets and no hypermultiplets, the scalar potential is given by

1 _ _ Lo
V(r,7) = (—2 (SN 4XIXJ> P;-P;. (2.4)
SDerivatives of the prepotential are indicated by subscripts, e.g. Fr (X) = 6;)(()5).




The ]31 are triplet moment maps. If there are no hypermultiplets, they are the Fayet-
Iliopoulos couplings and must point in a common direction fixed by the unit vector é;
hence P; = gré and P, P = 919 [24]. We will make the choice é = (0,0,1).

Since the domain wall solutions of our N' = 2 theories involve only scalars and no
vectors, it is valid to truncate to an N/ = 1 description for which the formalism is far
simpler (see Chapter 18 of [23]). The N = 1 truncation contains a graviton multiplet
(consisting of the metric and a gravitino) and ny chiral multiplets (each consisting of a
complex scalar and a Weyl fermion). With the help of (20.190) of [23], the potential can
be written in the standard form of an F-term interaction:

V = K (3WW + KPPV W VW) (2.5)
which contains the usual Kahler covariant derivative:
VoW = 0, W + (0, K) W . (2.6)

Comparing with (2.4), we see that the holomorphic superpotential is related to the N = 2
data by
W(r)=g1Z" (7). (2.7)

We can now write the bosonic action of the N’ =1 truncation (in mostly plus Lorentzian
signature):

Sbulk = / 04 /=g Lot = —— / d*z\/—g [173 — K007 —V(r,7)| . (28)
8GN 2 a

2.2 AdS, solution, N' = 2 SCFT interpretation, and alternate quantization

In the examples we study, the potential V' (7, 7) has a critical point at 7¢ = 72, 7B =7 ,
which yields an AdSy solution of the theory (2.8), where
Guw = Guv| pgs - T =7, =7, (2.9)

and all other fields vanish. This supersymmetric critical point is defined by the 2ny
conditions V, W = VBV_V = 0; these, in turn, imply that 9,V = 8BV = 0. The value
of the potential at the critical point is then related to the AdS curvature radius L by

-3

V*:ﬁ

= 3MW(r )W (7). (2.10)
2

In the N = 2 theory that truncates to (2.8), the condition (2.10) reads ’gIXf =1/L? as

can be seen from combining (2.10) with (2.1), (2.3), and (2.7). Here and in the following

discussion, we denote with a subscript . quantities evaluated at the critical point of the

potential, namely X! = X!(7,,7.), etc. Upon using the transformation y — ty, j — t~ '3
with [t| = 1, we can assume without loss of generality that

= 1
g1 X} =grX{ = I (2.11)



In the NV = 2 theory, this AdS solution preserves eight linearly-independent supersymme-
tries. With the choice in (2.11), the Killing spinor equations obtained from the vanishing
of the gravitino variations (51% = 09, = 0 (see eq. (21.42) of [23]) take the form

1 i

, ; 1 ;
D,e" = —ﬁ%ﬂhjej ) Dyei = —E'Yumijej ’ (212)

where i, j are SU(2)g indices raised and lowered” with the epsilon symbol, and (73);/ =
i(03):7.

Via the AdS/CFT duality, the AdSy solution is dual to a 3d N' = 2 SCFT that lives
on the boundary in cases where the model (2.15) can be obtained from a top-down string
theory or M-theory construction. We do not attempt to embed the model (2.15) into ten-
dimensional or eleven-dimensional supergravity, however, so the existence of a boundary
SCFT is an assumption that we make. The fluctuations of the metric, scalar fields, gauge
fields, gravitino, and fermions are dual to certain operators in the boundary SCFT. In
particular, these operators belong to the stress tensor multiplet of the boundary SCFT,
which is dual to the N/ = 2 Weyl multiplet in the bulk, as well as ny conserved current
multiplets, which are dual to the ny vector multiplets.

An important subtlety in the details of the AdS/CFT dictionary involves the bound-
ary conditions on the scalar and fermion fields. The ny vector multiplets contain 2ny
real scalars and 2ny Majorana fermions. When expanded around the AdS solution to
quadratic order, one can prove that all the scalar fields are conformally coupled, i.e. they

2 = —2/L?% and all the fermions are massless — see appendix A. In

have squared mass m
AdS, scalar fields of this mass can obey regular boundary conditions or alternate boundary
conditions depending on whether they are dual to boundary operators of dimension 2 or 1,
respectively [9]. In fact, both cases should occur for us, because each of the ny conserved
current multiplets in the boundary theory contains a scalar superconformal primary J¢ of
dimension 1 and another scalar conformal primary K of dimension 2. The question then
is: which scalar fields in the bulk obey regular boundary conditions, and which ones obey
alternate boundary conditions? A similar question can be asked about the fermions. The
massless bulk fermions correspond to dimension 3/2 operators in the boundary theory. In
the bulk it is a priori not clear which boundary components of the fermions correspond to
field theory sources and which ones correspond to VEVs. It is important that no similar
ambiguity occurs for the gauge fields, gravitino, or the metric fluctuations, which all obey
the regular quantization that identifies the coefficient of the leading behavior close to the
boundary as the source for the dual boundary operator.

The boundary conditions for scalars and fermions can be determined by examining
the asymptotic behavior of the fluctuations around the AdSy solution and how the vari-
ous coefficients in the asymptotic expansion transform under supersymmetry. The guiding
principle is that, under supersymmetry, sources for boundary operators should transform
into sources. Since we know which coefficients in the asymptotic expansions of the guage
fields correspond to sources for the boundary conserved currents, the supersymmetry trans-
formations would then determine which coefficients should be interpreted as sources for the

"For details, see appendix 20A of [23].



operator | dual field | A
J R 1

K“ STEE

Table 1. Correspondence between bulk fields and boundary operators in the A/ = 2 SCFT.

fermions and the scalar fields as well. Note that A/ = 2 supersymmetry is crucial in this
case, because N’ = 1 supersymmetry transformations do not relate scalars to gauge fields.
We perform the analysis outlined above in appendix B. For the scalar fields, the result

is that
B =3 ((r" = 70)(VaX").) (2.13)

should be quantized with regular quantization, while
AL =R (7 = 72)(VaX").) (2.14)

should obey alternate quantization. Alternatively, one can say that (X! — XI) obeys
regular boundary conditions while (X! — XI) obeys alternate boundary conditions.

In practice and with no loss of generality, one can take 7¢ = 0 and (V,X7), real, and
then 7% will be regularly quantized while 7% will obey alternate quantization. In this
simplified setup, the correspondence between bulk fields and SCFT operators is given in
table 1. We will discuss the precise normalization of the boundary operators J* and K¢
later on in section 2.3.4.

2.3 Solutions with sphere slicing

In the rest of this section we work in Euclidean signature, where the action (2.8) becomes
1 4 1 iy -
Shulk = SiGn /d /g {—272 + ICQBGMTO‘(?“TB +V(r,7)| . (2.15)

As mentioned in the Introduction, we are interested in constructing classical solutions of
the theory (2.15) that correspond to real mass deformations of the putative dual N' = 2
SCFT on S3. Such solutions have an SO(4)-invariant asymptotically AdS metric tensor
that conforms to the ansatz (see [18]):

ds® = L262A(T)ds%3 + 2B g2 (2.16)

The frame fields are
el = LeAMe! et = eP0ar (2.17)

where the index i runs over i = 1,2, 3 and the é’ are a choice of S3 frame fields. With &%
denoting an S® connection, the spin connection for (2.17) is

W = &Y, w = Ale Bel . (2.18)

It is redundant to specify two radial functions in (2.16), but it is convenient since we

will use two different gauges. The conformally flat (CF) gauge, with eZ(") = %GA(T), is



somewhat more convenient in the search for analytic solutions of the BPS equations, while
the Fefferman-Graham (FG) gauge, with B = log L, is better suited for numerics and for
holographic renormalization.

The scalar fields 7(r), 7(r) of the domain wall approach a supersymmetric critical
point of the potential (2.5) at the AdS boundary, i.e. 7%(r) — 72, %B(T) & asr o oo
in the FG gauge. The real mass parameters appear in the asymptotic expansion close to

the boundary of the fields 7% and 7%, as made explicit below.

2.3.1 The BPS equations

The next item of business is the BPS equations satisfied by supersymmetric SO(4)-invariant
solutions of the theory. These are first order partial differential equations derived from
the requirement that SUSY variations of the fermions vanish. Any solution of the BPS
equations is also a solution of the bosonic equations of motion. Our discussion follows
the treatment in [18]. In the Euclidean signature AN/ = 1 truncation of a theory without
hypermultiplets, the BPS equations are

1o i 1 "
5%1 = <8H + Zwuba[acrb} — 2./4#) €+ §O'M€K/2W€ =0,

_ 1 ; 1 B

(S?/JN = (8H + szba'[an} + ;AH> €+ §5H€’C/2W€ = 0, (219)
ox* = ot0, 7% — e’c/ggo‘ﬂﬁgVT/e =0,

0x% = 519, 7% — 2gPv We=0,

where A, is the Kéahler connection, A, = % (8u7'0‘5alC - &ﬁ'“éalC).

We are interested in solutions where the scalars 7¢(r) are strictly radial and the frame
and connection come from (2.16)—(2.18) above. The 2-component spinors € and € are
Killing spinors. Due to rotational symmetry, a given solution has either the structure
e=1i(r)¢, €=1i(r)C or e = j(r)€, € = j(r)€, where ¢, £ are Killing spinors of S and satisfy

Vi = %UiC7 Vi€ = —%Uif. (2.20)

The choice of the ¢ or £ structures determines whether the solution is invariant under the
left or right SU(2) factor of the isometry group of the sphere, SO(4) = SU(2); x SU(2),.
We choose the ( structure and look for solutions of the BPS equations in this case. (In
solutions with the & structure, the roles of 7¢ and 7% are switched.)

We now group the BPS equations for the spin 1/2 fermions and the gravitinos (for
p =1 1,2, or 3) into a (2ny + 2) x 2 dimensional matrix. After insertion of A(r), B(r)
from (2.16) and (2.17) and use of (2.20), we obtain

1+ LAA™B  —iLeAWel/?
—iLeAWel/2 1 —LAeAB (e) 0
— 2BV W —ie B .
ie”B(#8)  —elI2ReBV W

(2.21)



A non-trivial solution of these equations is possible only if all 2 x 2 minors of this
matrix vanish. In this way we look for solutions for the scalar fields 7%, 7 and the metric
functions. Once this is achieved, we can rewrite the BPS equations 61, = 0 and 61, = 0
as the 2 x 2 linear system that determines the spinors € and €

€ %i.AT %eB Wek/2 €

Oy = 2 : 2.22
é —LeBWel2 —1iA, é =

2.3.2 Computation of the renormalized on-shell action:

The next step in the evaluation of the sphere free energy is to compute the on-shell action
obtained by substitution of a solution of the field equations, in our case a solution of the
BPS equations, in the bulk action Spy of (2.15). However, the radial integral diverges
near the AdS boundary. So the integral must be cut off at » = r. and boundary coun-
terterms added to cancel the divergences. This is the well known process of holographic
renormalization [25], adapted to our application in section 6.1 of [18].

As usual when working in a spacetime with boundary, we introduce the Gibbons-
Hawking-York term

1
= _ dxVh K
Scuy 87TGN/6 xVh

: (2.23)

r=rc

where h;; is the induced metric at the cutoff and K is the trace of the extrinsic curvature.®

Its role is to provide a well defined variational principle for the /gR term in the bulk
Lagrangian. We then need two other counterterms, the first because the boundary metric
is curved with Ricci scalar Ry, = 24e~2" /L2

L
Sh = / d*z VhR 2.24
h 167Gy Jo z Vh h r=re ( )
The second is needed to cancel divergences while maintaining supersymmetry:
1
Ssusy — / &Px VT Lsvsy = —— / dz VR (2.25)
o 47’[‘GN o r=r¢

Let us begin to put these ingredients together, working with the redundant met-
ric (2.16). The goal is to obtain an integral formula for the sum of the on-shell action
plus the three counterterms which converges at short and long distances and depends only
on the metric functions A(r), B(r). Since fields and metric depend only on r, the integra-
tion over coordinates of S? produces the volume factor of hoij which is 272, The first step
is to take Spuk + Sguy and integrate by parts to cancel the A” term. The boundary term
is cancelled by the counterterm, leaving

L [
Shulk+Scay = % dretB [73 <1+ (eA_BLA’)2) + L% (e_QBICagarTo‘ar%BJrV)} .
o (2.26)

8In the FG gauge, where the metric behaves asymptotically as ds? = L2 (dr2 + %d(ﬁss), then the
induced metric is h;; = (Le™® /2)2h0ij, where ho;; is a metric on the unit sphere. Then K = L718TC log Vh.

~10 -



The Euler variation of this expression with respect to A(r) then produces
L2228 (2P 50, 700,77 + V) = P — L2624 (3(A)2 = 24'B' +24") . (2.27)

We insert this in the integrand of (2.26), which then reads
_ L o [Te A+B 2,24-2B(3( A2 _ A'B' 1+ A"
Sbulk + SCHY |op_shell = STel dre 14 L%e (3(A4") B'+ A")| . (2.28)

Now let’s look at the counterterms. We can simplify Ssysy using the BPS equations.

In particular the vanishing of the determinant of the first two lines of (2.21) gives the
equation

1— (LA A B2 4 L2 AW = 0. (2.29)

Thus we can write

Ssusy = e [ VR - s LQA\/(LA’e“HB)2 -1 (2.30)
4rGN Jg3 r=rc 2G N — ) )
Similarly,
nL?

Sp = ——3eAre). 2.31
h 8Gy € ( )

The sum of Spuk plus all counterterms can then be written as

— L A+B 2 2A— QB / I ! "
Sreg——mrcgf%\/(/ dre {I—I—L ((A) — A'B _|-A)} _

(2.32)

_Le3A

3 —2A — —2A
56 +\/(LA’6 B)2 — 2 ]TZT) )

Further simplification occurs in the FG gauge, where B = log L. We can use the
asymptotic form of A for large r,

2r

e = % + constant + ... , (2.33)

to further simplify the boundary term

e3A §e—2A + (A’)2 —_ e 24

5 ~ A L et L O(e™). (2.34)

Then (2.32) becomes

Sreg = —;Té; rcli_tgloo {/Orc dr (eA (1 +3e24(4")? + e2AA")) —ef <€2AA/ + 1)

} (2.35)

We can write the boundary term as an integral of a total derivative, with no contribution

A(r) ~ 1 as r — 0 is required for a non-singular bulk metric. Sweet

in the IR, since e
cancellations occur and we are left with the convergent final result for the renormalized

on-shell action:

L2
Sreg = QGN/ dret(A' —1). (2.36)
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2.3.3 Legendre transform

It might be tempting to identify S,es with the sphere free energy, but one needs to be
careful because, as discussed in section 2.2, some of the bulk scalar fields are dual to
boundary operators of dimension 1 and therefore require alternate quantization. Working
under the simplifying assumptions 7¢ = 0 and (V,X'), real mentioned at the end of
section 2.2, the fields requiring alternate quantization are 7% + 7%; these fields are the
Euclidean continuations of 2R7* from Lorentzian signature. As instructed by [9], the free
energy in the boundary theory is given by the Legendre transform of S..; with respect to
the leading coefficients in the asymptotic expansions of 7% + 7.

In more detail, a general SO(4)-invariant solution of the second order equations of
motion in the FG gauge has, close to the boundary, the following asymptotic form

T =% "+ b% T 4.,

= g% % L (2:37)

Rl

The on-shell action Sreg is naturally a function of (a®,a®) (as well as other boundary
sources) because when deriving the second order equations of motion from the Lagrangian,
one has to hold (a®,a%) fixed. The alternate quantization procedure amounts to a Legendre
transformation that takes us from Sieg(a®,a®) to a function of a* —a® and the canonically
conjugate variable to a® + a®:

1 O0Sreg ~ OSreg )

Fgo = Suegla®,0%) — 5 Y (a" + %) ( gy e (2.38)

This is our final formula that we will evaluate in several examples below. To compute the
variations of Syee With respect to the a®’s, it is convenient to use the fact that

oS
"6 — 9723 lim e "
Oa® r—00

34 (L OLpuik . 8£SUSY> 7 (2.39)

0(0,1%) ore

which will be written out explicitly on a case by case basis.

2.3.4 Real mass deformation in the boundary theory

Let us now make the connection between the asymptotic expansion (2.37) and the boundary
real mass parameters m® appearing in our conjecture (1.2). As already mentioned, our work
does not necessarily assume that the bulk supergravity theory is dual to a boundary QFT,
so the boundary mass parameters m® written below can simply be taken as a definition.
However, in cases where there is a boundary dual description, the definition of m® is
motivated by the field theory description, so let us take that perspective in the following
discussion.

As discussed in section 2.2, each vector multiplet in the bulk corresponds to a conserved
current multiplet, which contains scalar operators of dimension 1 and 2. Let us denote these
scalar operators by J® and K* and normalize them so that, in flat space, they give the

- 12 —



two-point functions

B < LN 7
(J*(%)J°(0)) = 1672 7 - 2nGy (2.40)
(K @R0) = |

With this normalization, after mapping these operators to an S of unit radius, we can
write the real mass deformation as [7]

Zm“/3 d?’x\/r iJ(Z) + K*(Z)] . (2.41)

In particular, the mass parameters m® are sources for the dimension 2 operators K. Thus,

they must be linear combinations of the coefficients of e™"

in the boundary expansion of
T — 7% since it is the 7% — 7¢ fields that are regularly quantized.

In order to relate the boundary mass parameters to the asymptotic expansions (2.37),
we first rescale the scalar fields 7® and 7% so that, close to the boundary, they become
canonically normalized. This is achieved by defining
oTe, T4=el7, (2.42)
where the frame fields are defined in (1.1), and we assumed that e? is real, as will be the case
in all our examples. Because 7% — 7¢ is regularly quantized then so is 7 — 7®. This means
that the coefficient of e™" in the large r expansion of 7¢ — 7% is proportional to the source
for the dual operator K¢ = e K*, which is the mass parameter m®. In particular, we define

¢ 2.43
@2 ( )
Here, the normalization was chosen in a way consistent with (2.40)—(2.41). In particular,
from (2.41), it follows that to quadratic order in the small m® expansion, we have’

O*RFgs 3., 3, " b
“ y)) — (K“(2)K°(y))]| - 2.44
iy = [, A8 o@ [ d5\Ja@ (@) - @K @] . )
With (2.40), the integrals over S® can be performed as in [7] with the result

82%FS3 _ 5abl20 _ 5(11) L*m

2.45
Omaom? 2 4GN (24)

We will see that the normalization in (2.43) ensures that (2.45) is obeyed in all models we
study.

With this definition, the sphere free energy Fgs from (2.38) can be expressed in terms
of m?. As we will see in the examples below, the frame vectors e will cancel in all practical
computations, and the free energy will take a simpler form in terms of m®.

9We take the real part of Figs because, as explained in [7], the imaginary part may also receive scheme-
dependent contributions from contact terms in the (J*K?) correlators.
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2.3.5 Independence of the FI parameters

When written in terms of m® and L, the free energy Fgs should not depend on the FI
parameters gr. As discussed in the Introduction, this follows from the general arguments
presented recently in [8], and we will check it for generic g; in examples in sections 2.4
and 2.5 and appendix C. One practical consequence is that if we are interested in the
expression for Fgs in a given supergravity theory, we do not have to compute it for arbitrary
gr. Instead, we can compute it for a convenient choice of g7 that simplifies the computation.

2.4 F=linyXIXx’

The first example we study is a model with ny multiplets, described by the quadratic
prepotential .

F= imJXfXJ : (2.46)
where I =0,...,ny and n;; = diag(—, +, ..., +). Black hole solutions in this model were
studied in [26]. It is convenient to parametrize the Z! coordinates as

1 , ;
gl _ (1_§.;’71_*g’> : (2.47)
90 go
where i = 1,...,ny and the scalar product denotes §- 7 = g;7°. This parametrization was

chosen after some exploration; one advantage is that the fields 7¢ and 7 vanish at the AdS
boundary (as we will see).
Using the formulae in section 2.1, we find that

Fi(Z) =7, (2.48)

where the I index of Z! is lowered by 777, and the Kihler potential is

_ g 413 7P — gl

e_lc = —ZIZ[ 2
90

, (2.49)

with g2 = —grgsn'’. Another advantage of the choice (2.47) is that the superpotential is

particularly simple,
2

W=gz =% (2.50)
go
The scalar potential, computed using (2.5), is
302 4 17712 — 2|72 212 _ q. 2
_ _ 299 +19- 717 — g7 — 2342 golrl* —1g - 7| (2.51)

g*+1g- 7 — g5I71? g =gl +1g - 7I?
The unique extremum!® of the potential is at 7! = 0, where it takes the value (see (2.10)):

V. = —3¢° = —3/L%. (2.52)

10This extremum is a maximum, and the mass eigenvalues are m? = —2 / L?, as expected for the scalars
of vector multiplets.
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This determines the radius of AdS as a function of the couplings, and we require g% > 0,
as appropriate for AdS.

We now have all the ingredients needed to search for non-trivial solutions of the BPS
equations. We consider the 2 x 2 minors of (2.21) as well as the equations of motion
obtained by extremizing (2.15). The first step is to set up a series expansion around r = 0,
and solve for the first few orders. We require regularity at the origin; the scalars 7¢ are
finite at » = 0 while e?(r) ~ r in the CF coordinates that we use. In this model the
series expansion allows us to guess the full solutions. The non-trivial solution to the BPS
equations (2.21) and (2.22) is

94 492

T =c(1-1%), =0, &= T (2.53)

with ¢ arbitrary constants, and the Killing spinors are

€ 1 T
(é.) S/ (_2) ¢. (2.54)

If we were to consider the Killing spinors proportional to £ (see (2.20)), then we would find
a solution with the 7% and 7 swapped.

The metric tensor of this solution is undeformed Euclidean AdS. There is no back-
reaction on the metric, despite the presence of non-constant scalar fields. This might seem
surprising at first, but it is allowed in Euclidean signature because the fields 7% and 7% are
independent. The scalar stress tensor contains only products such as 777 or Out® 7.
Since the 7 fields vanish, there is no back-reaction on the metric. This behavior would not
be possible in Lorentzian signature where 7% and 7 are related by complex conjugation.

We now compute the free energy of the boundary theory. For this we pass to the
FG gauge, via the coordinate transformation is » — tanhr/2, and evaluate (2.36). The
transformed metric is

ds® = L? (d?"2 + ¢24() dsgg) . (2.55)
and the BPS solutions are
7% = @sech? - , 7¢=0, e = sinh?r. (2.56)
We get )
Sreg = 2” éN . (2.57)

The next step is the Legendre transform. To prepare for this we record the asymptotic
form of the scalars and identify a® and b“:

T = 4c% " — 8c%e T ... =a% " +b% T, (2.58)

Since the 7% vanish, the general form in (2.38) reduces to

1 00556
Fgs = Srog — 5 Y a %ag . (2.59)
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We then use the “conjugate” of (2.39),

6Sreg 2+3 - —r 3A < aﬁbulk aﬁSUSY) 71'L4 2
—_— = 271 L 1 m r L - bOé « b’y N
oa” rhee ¢ 0(0,79) o7« 32G N 70 g ; H

(2.60)
We insert this information in (2.59) and, using g = L~2 as well, we write the free energy
of this model as

L? 1
Fgs = — [

- 55 1= (o= @22 (2.61)

We observe that the quadratic expression above involves the boundary Kéhler metric,
which is real,

. _ 1 b
’Caﬁ = 7 (gédafg - gagg) = €a0ab€ s, (2.62)

whose frame field form from (1.1) is given in the final equality. Using this, we can re-
cast (2.61) as
nL?

Fgz =
o 2G N

1—c kK*-d. (2.63)

Next, we combine (2.43) and (2.58) to express ¢ in terms of the real mass parameters:

@ = %e‘;ma. (2.64)
Using e%e? = 6¢, the free energy becomes
L? 1.
Fgs = ;TGN {1 + 4m-m] . (2.65)

No trace of the frame field and thus no trace of the g; couplings remains in the final formula,
in agreement with the discussion in section 2.3.5.

Comparison with the conjecture. We now reproduce the result (2.65) from the con-
jecture (1.2). The only ingredients needed are

X! = \;gﬁ(go,—gi), (2.66)
(Vo XT)s = L(—go“goég). (2.67)

Vo2

Using XInry X! = -1, XInrj(VoX7) = 0 and (Vo X))y (VeX1). = —K? 5, We evalu-
ate the prepotential as instructed in (1.2), obtaining

w2

L2
e yy? = 2
QGNTUJ

[1+ 11?1-1?1] . (2.68)

This agrees with (2.65) and thus verifies the conjecture.
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25 F=-2ivX0X1X2X3

We now discuss the holographic free energy for the STU model which includes three vector
multiplets and is described by the prepotential

F=—-2iVX0X1X2X3. (2.69)

The S? free energy for the specific choice of equal couplings g; was first calculated in [18]
without use of the prepotential.'’ We review that calculation briefly, with emphasis on the
role of the prepotential and our conjectured relation with the free energy, and afterwards
we generalize this computation to the case of non-equal couplings.

2.5.1 All couplings equal

Following [27], we parametrize the Z! as

(1+7H(1+ 7)1 +77)
1 |(1+Ha -1 —-73
71 _ ( +7 )( T )( T ) (270)
22 | (1 —mH(a +75H)(1 - 73)
1-H(1 -1+ 713)
The formula (2.3) gives the Kahler potential.
K_T 1
= —_— 2.71
= li=pp e
For the specific choice of equal couplings, the superpotential (2.7) is
W =+2g (1 + 717'273) , (2.72)

which agrees with [18]. The scalar potential (2.5) has a supersymmetric critical point at
7% = 7% = 0, with AdS scale L = 1/1/2g. These are all the ingredients needed to find the
solutions of the BPS equations discussed in section 5 of [18]. In the conformally flat gauge,
the solutions are

1—r2 B ct?e? 1—r2
T4 = 7= —

1+cle2e3r?? @ 1+clEc3r?’
9A 47’2(1 + 610203)(1 + 0102037"4)
(1 =r2)2(1 4 cteRc3r?)?

(2.73)

The final result of [18] is the sphere free energy, which is the Legendre transform renor-
malized on-shell action:
mL? (1—(c)?*)(1 = (*)*) (1 = (¢*)?)

Fgs = . 2.74
ST (14 cle?e?)? (2.74)

1When the couplings gr are equal, this model can be obtained as a consistent truncation of 4d SO(8)
gauged supergravity. Ref. [18] used it to compute the holographic dual of the mass deformation of the S®
free energy for ABJM theory [16].
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In [18], this was shown to agree with the free energy in the dual SCFT, obtained by the
method of supersymmetric localization in [17].

Now we can identify the boundary real mass parameter in terms of the bulk quantities
c®. We make a coordinate transformation to go to the FG gauge. Its near boundary form is

r—1—2e"+2 7+ 0> ). (2.75)
In this gauge, the scalar fields close to the boundary behave as
4 (07
P =ate T = e
1+ cle?e?
423 (2.76)
T“=a% "+, =—————e "4 ...

_Ca(l + cle2e3)
A simplification occurs in our model, since the Kéhler metric is the identity at the boundary,
so we can choose our frame fields to be ef = §¢. This means that

g e
mOé = ¢ - ¢ = —- C . (277)
2i i1+ cle2e3
Now that we have all the ingredients to relate ¢ and m®, we find that
2 . . . .
Fss—;év\/{1+;(ml+m2+m3)} [1+%(m1—m2—m3)} {1+%(—m1+m2—m3)} {1+%(—m1—m2+m3)}.
(2.78)

As discussed in section 1.2, the free energy of ABJM theory with trial R-charges was
computed in [17], and found to be Fgs ~ v/A1AyA3A,, where A, are the R-charges of the
scalar fields transforming as bifundamentals of the U(N) x U(N) gauge group. The four
terms under the square root in (2.78) are proportional to these R-charges when we choose

pure imaginary mass parameters.'?

Comparison with the conjecture. In this model the algebra needed to investigate
the conjecture is quite simple, yet instructive, so we will outline the process. Given (2.70)
and (2.71), we have the boundary values

1
XI'=——1,1,1,1)7, 2.79
Wik ) (2.79)
and
. 11 —-1-1
VoXN=—F011-11 -1 . 2.80
(VaX"). = 5= (2.50)
1-1-11
al
Then, remembering that the boundary Kahler metric is flat, and therefore e = d5, we
build the objects (1.2)
2 —m! —m? —m3
1 |2i—-ml+m?2+m?
! ' (2.81)

4iV2 | 2+ m! — m? 4 m?
2i +m! +m? —m3

When plugging this into F, as instructed by (1.2), we obtain exactly (2.78).

12Gee also [28-30] for a discussion of interesting phenomena when the real mass parameters are taken to
be large.
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2.5.2 Unequal couplings in the STU model

Let us now consider the case of unequal couplings g;. The equations become more com-
plicated. We will work out one case explicitly where g; = g2 = g3 = g, but gy = ng with
n? > 0. Solutions for general g; are presented in appendix C.

We parametrize the Z! as

I+yh) 1+y*) (1+y°)
1 1 1— 2 1— 3
2v2 | (1-y") (1+y°) (1 -¢?)
1-y") Q-9 (1+y°)
with y® = L‘r—z + 7%. The parametrization is slightly different from the earlier one since we

prefer to work with fields that vanish on the boundary of AdS.
Following the usual procedure, we compute the Kéhler potential

3

e =TI (1-1v"1) . (2.83)

a=1

and the superpotential

W= QL\E (02 +3) (1+9'9%%) + (02 = D'+ +0° + 0" + 7 + 4" -
(2.84)
Computing the scalar potential, we find an extremum at 7% = 7* = 0, and we identify the
AdS radius as L = (v/2ng) !
We insert W in the BPS equations (2.21), and look for zeros of the minors. In the
conformally flat gauge we find the BPS solutions

7O o 1—7"2 , Fo_ o 1—~’l“2 ’
1 4 vor? 1+ g2 (2.85)
oa 414 w)(1 +wr?) '
(1 —=r2)2(1 +wr?)?
with ) )
—1 -1
va:w%—(nzm)(w+1)ca, O w—|—(n4n )(w—{—l)éo‘
o _010203 2(n +1)2
- 1,2.,3
¢ 8n+2(n% —1) Y gse P+ (n+1)2(n —1)20 (2.86)
cle?e3

w = i
Mo (e + 551e)
One can check that, for n = 1, these formulas reduce to those in (2.73).

We use (2.32) in the conformally flat gauge, plug in the form of A from (2.85), integrate
and take the r. — 1 limit. The result is

47212 1

Sreg = -
® 8GN 1+ w

(2.87)
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The next step is the Legendre transform. As before, we use the FG gauge, and the
asymptotic coordinate transformation (2.75) is applicable again. In this gauge, we use
equation (2.39)!3

8Slreg . L27T (1 +n)4 261,1@2(13

e = G e G —4nb® + (n? — 1)(a*)% + (14 n) — | (2.88)
as well as the variation with respect to a®. The final result for the free energy is
Fen = 27262 16n ], [4n +2(n? — 1)c® —1(12 J; n)%(c®)?] _
N32n2+8n(n? — 1)y, c*+2(n?2 12y, <55+ (1+n)3(3+ n2)clc2(c23 )

For n = 1, we reproduce the result (2.74).

We can now use the explicit expressions (2.85) and (2.86) in order to relate the bulk
quantities ¢® to the boundary real mass parameter m,. Since the boundary Kéhler metric
is proportional to the identity, we can choose the frame fields

(1+n)?
We go to the FG gauge, r — 1 —2e™" + 272" + O(e~?"), and we extract the asymptotic
behaviors of 7@ and 7 from (2.85). As before, the boundary real mass parameters are

given by

a® —a
2

At the end of the day, we obtain again (2.78). This quantity is independent of the couplings

(2.91)

a__ _a
m- =e,

g1, as expected.

Comparison with the conjecture. As done in the previous section, we now reproduce
this result using our conjecture (1.2). Using (2.82) and (2.83), we find

x! vn (1 1,1,1)T, (2.92)

x 2\/5 ﬁv
and
(14 n)? L1 -1-1
1+n
1o1-11
n ol

Then, using (2.90), we build
& (20 —m! —m? —m?)
[ Wn 2 —m! +m? + m?
4iv2 | 2i4+m! —m? 4 md

2i +m! +m? —m3

(2.94)

When plugging this into the prepotential F(Y), the n dependence drops out and we
recover (2.78), showing again agreement between our conjecture and the direct computa-
tion.

13For n = 1 this result agrees with (6.12) of [18], after correcting the overall minus sign missing there.
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3 Adding hypermultiplets

We now consider two examples of theories with both vector multiplets and hypermultiplets,
where we deform the boundary SCFTs both by real mass parameters, as in the previous
section, as well as by a scalar operator dual to one of the hypermultiplet scalars. The bulk
BPS equations are more complicated, and analytic solutions seem beyond reach. So we
resort to numerics, but we are still able to verify the conjecture analytically. Both examples
contain one hypermultiplet, ng = 1, frequently called the universal hypermultiplet, based
on the quaternionic space My = SU(2,1)/SU(2) xU(1) [31]. Its structure is reviewed in ap-
pendix D. The most important feature is that the moment maps are no longer constant, but
are functions of the hyperscalars which are related to Killing vectors of the hypermanifold.

The first example we treat is the special case of section 2.4 with ny = 1 and essentially
generic couplings. We will discuss its BPS equations with the hyper added in detail. The
second example is the special case of the STU model with the specific choice of couplings
of [32]. We do not repeat the numerical analysis of that paper, but we apply the results to
our conjecture. In both models we find perfect agreement between the direct computation
of the free energy and our conjecture.

We briefly mention the extra ingredients needed to specify the bulk theory with ngy
hypermutiplets; more details can be found in Chapter 20 of [23]. There are 4ny real'#
hyperscalar fields ¢* and metric tensor h,,. We must specify the commuting Killing vectors
kY which correspond to the isometries of My which are gauged by the Abelian vector fields
Al{ of the theory. The moment maps Py are related to the Killing vectors. These ingredients
determine the entire bosonic action of theory. We report here the form the scalar potential:

V= (—; (SN) "M — 4XIXJ> Pr- Py + 2X X7k kS By (3.1)

The structure indicates how basic quantities from the vector and hypermultiplets combine
when they interact.

The AdS/CFT dual of a bulk hypermultiplet is an N = 2, d = 3 chiral multiplet plus
its conjugate. The chiral multiplet contains the following operators: the superconformal
primary, which is a scalar operator of dimension A and R-charge A; a spinor operator of
dimension A + 1/2 and R-charge A — 1; another scalar operator of scale dimension A + 1
and R-charge A — 2. The conjugate operators have the same dimensions and opposite
R-charges. For more information see section 4.2 of [8].

One can consider a supersymmetry-preserving deformation of the SCFT by adding to
the Lagrangian a linear combination of the operator of dimension A 4+ 1 and its conjugate,
provided that A < 2. On S3, such a deformation preserves the entire supersymmetry
algebra osp(2]4). In examples of N' = 2 gauge theories with chiral multiplet charged matter,
such a deformation can arise, for instance, as a relevant superpotential deformation. In
such a case, one adds to the superpotential the superconformal primary of dimension A,
and this modification of the superpotential induces a deformation of the Lagrangian by the
scalar superconformal descendant of dimension A + 1.

1For the universal hypermultiplet, the four real ¢* can be combined into two complex scalars z1, z2 and
the metric hy, becomes a Kahler metric of dimension two.
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3.1 The conjecture in the case of hypermultiplets

Given the new ingredients in the ny # 0 theory, we need to refine our conjecture. The
objects we need to build are still the Y/ defined in the same way as (1.2). However, per-
turbing the boundary theory by the scalar superconformal descendants dual to the various
hypermultiplet scalars, as discussed above, breaks some of the flavor U(1) symmetries, and
we end up with fewer independent real mass parameters. We conjecture that for every
hypermultiplet in the bulk theory for which we turn on such a source for the corresponding
superconformal descendant, we have a further constraint

QY'=0. (3.2)

Here, the Q7 are the charges under the gauge fields A{L of the hypermultiplet scalars dual
to the superconformal primary operators.

In principle, we expect to find a supersymmetric solution if ng < ny. In the case
nyg = ny our conjecture takes a particularly simple form. Remember that, in the case
without hypermultiplets, we had the objects Y/, defined in (1.2); it is easy to show that
they satisfy the property g;¥! = 1/L, where the g; are the FI constants. This can be
seen by the explicit form of the scalar potential (2.5), and by the critical point conditions
(VaW)i = 91(VaZ!), = 0 and V, = —3/L?, together with the fact that we are working in
a convention where X! = X[

The same property holds in the case with hypermultiplets, with the only caveat that
since here the moment maps are not constants, but nontrivial functions of the hyperscalars,
we need to say what the gy correspond to exactly. We define the g; through the boundary
limit of the moment maps, or equivalently the values attained for the AdS4 vacuum. In
particular, at the boundary, we have P. 1 = g1€, where € is some unit vector. With this
definition, we again have g; X! = 1/L and g;(VoX'), = 0,'> meaning that

gYl=1/L. (3.3)

Therefore, we have ny + 1 variables Y/ satisfying ng + 1 constraints. In the case ny = ny,
when the charges @ are non degenerate, the Y/ are completely fixed by these constraints.
We will see this in the example of section 3.2.

3.2 F=inyXxIx’

We first consider the case ny = 1 of the theory with prepotential F = ﬁX Inis X7, as
described in section 2.4, but now coupled to the universal hypermultiplet [31]. For the
hypermultiplet we consider the gauging with Killing vectors

kr = (91¢ + q1€) (3.4)

15This can be seen by imposing the conditions for a critical point. See for example [23]; the critical point

condition corresponds to vanishing of the Goldstino, which implies the vanishing of the quantities W/ and
N'4, defined in (21.40) there. The condition W& = 0 implies, in our notation, g;(VeX’). = 0. Then,
from equation (21.46), with the definition (21.39), we obtain the relation gr X{ = 1/L.
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where ¢ and £ are defined in (D.14); they are commuting Killing vectors as needed in our
Abelian theory.
In complex coordinates, the gauge invariant scalar kinetic term in Lorentzian signature
is
2 2 2 * * 2
|07 [Dypz1|” + [Dyzo| |21 Dyz1 + 25Dy
Escalar kin — — o2 - 3 D) + 5 s (35)
(L=1[*) 1= [z1]” = [22] (1—|zly2—\zQ|2)

where the covariant derivatives are defined as

1 1
Dyz1 = 9uz1 — 5 AL (90 + q0)z1 — 5 A, (1 + @)z
2 2 (3.6)

i i
Dz = Opze — 5142(—90 +qo)z2 — §AL(—91 +q1)z2.

Although the necessary ingredients to compute the detailed form of the potential (3.1)
are given in appendix D, this form is very complicated. One simplification, with no loss of
generality'® is to focus on the choice of Killing vectors (3.4) with go = 1/L, g1 = 0. The
potential has a stationary point at 7 = 7 = z; = z; = 0, where it has value V = —%. We
now set L = 1 in the rest of this section to simplify the notation (hence gy = 1). Expanding
close to the stationary point, we find

Vi=-3-277+(q0 +1)(q0 — 2)z121 + (g0 — 1)(q0 + 2)2z222 + ... . (3.7)

From this we can determine the correspondence between bulk fields and boundary opera-
tors: the real and imaginary parts of 7 are dual to SCFT operators J and K of dimension
1 and 2, as in the case with no hypers; then z; and z; are dual to complex operators Oy
and O; of dimension Ay = ¢y + 1; finally 25 and 2, are dual to complex operators Oy and
Oy of dimension Ay = gy + 2.

The UV boundary theory has a U(1)¥Y and a U(1)¥Y symmetry, with Ag and Alll their
respective bulk gauge fields.!” Therefore, we see from (3.6), that the UV R-charge of Oy
is go + 1 and that of Oy is gg — 1. This means that O; is a BPS superconformal primary,
since its dimension and its R-charge coincide, and Os is its descendant.'® From (3.6), we
can read off the charges of the fields under the U(1)r symmetry in the UV. All the UV
data for the hyperscalars z; are collected in table 2.

The simplest strategy now is to construct a solution of the BPS equations in which only
one of the two scalars z1, 29 is turned on. As per the discussion above, we should deform the
boundary theory by the scalar superconformal descendant Oy (and its conjugate), which
corresponds to z2 (and its conjugate). Therefore we simply set z; = 0 and call 23 = z from

'%One can check that the potential obtained with the parametrization (2.47) and the Killing vectors (3.4)
is invariant if we rotate the g and the g; by the same SO(1,1) rotation: g; — R;7g; and ¢ — Ri”qy,
cosh @ sinh 6
sinh @ coshd |
"The bulk field dual to the UV R-symmetry can be obtained by the boundary limit of X! and Im A7 .
See (6.80) of [24] for details.
8 Another possibility from (3.7) is to assign A1 = 2 — qo and Az = 1 — qo; this is consistent with O

with R =

being the superconformal primary and O; its descendant.
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operator | dual field A UV R-charge UV | UV flavor charge f
J R 1 0 0
K ST 2 0 0
Oy z1 qo+1 qo+1 T
@) 22 qo + 2 qo— 1 a1

Table 2. UV scaling dimensions and charges.

here onwards. (See also [32] and [33] where the same choice was made.) This choice is
consistent since

a~2’1Vv|z1:51:0 = 621V’z1:21:0 =0. (38)

Deforming the boundary theory by Oy breaks both the UV R-symmetry and the flavor
symmetry, but preserves a linear combination of the two. This remaining U(l)%ow is the
subgroup of U(1)%Y x U(1)¥Y under which O, is invariant. This means that the charges of
the fields under the U(1)%°" symmetry are related to those of the UV symmetries by (see

table 2)
_l=q

r=r9V +tf, t , (3.9)
0

where the value of t was determined from table 2 and the requirement that O3 has vanishing
charge.

In the bulk theory, we expect that in the flow toward the IR, the gauge field Aff remains
massless, while the gauge field for the broken flavor symmetry Aj}' becomes massive. We
now show that these gauge fields are

m 1
AR =AY +tA,, AT =ANg-1)+Aq = (0—1) <Ag — tA‘IL> : (3.10)
First, we can rewrite the second line of (3.6) as
=0 ! AY Allz=20 iAm
D,z = uz_§ [((Jo—l) T a H}z— ”2_5 - (3.11)

and see that z is uncharged under Af, which is consistent with the fact that the dual

operator Oy is neutral under (3.9). Second, the vector mass term along the flow is contained
in the scalar kinetic term. A short calculation shows this contains only Aj':

1
DyzD"% D 4 2E(AA™), (3.12)

since z(r), Z(r) # 0 in the RG flow. The field Aﬁ is absent and thus remains massless.
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3.2.1 The BPS equations and their simplification

Let us start by writing the fermion transformation rules of the theory:'?
i 1
5¢£ = <8ﬂ 4 # ’Yab 2./4#) e + qupﬁq + §’YMSpq6q,

1 1

5X§( = @T"ep + oB Wqueq,

" i ) (3.13)
P = PP + ICﬂaVVgpqeq ,
i _
P 3 P 0q ey + N2e?
)
0C4 = _iquugquBﬁﬁquep + NP a6p.
The transformation rules contain the quantities
i a —an
Au =3 (aﬂ OalC — O, 7 aa/c) :
=V ) = —wug"Ouq"
Spq (Spg)* = PPIXT (3.14)
( pa) =—PPVLXT,
= (N'a)" = —ieyd* g 7P ki X',

and we have also used (D.7). The moment maps P77 are expressed as rank-two symmetric
tensors with SU(2) fundamental indices, equivalent to the 3-vector notation in (D.15) (see
appendix 20A of [23] for more information).

Grouping together all the equations without derivatives of the spinors €9, ¢, and pass-

ing from Lorentzian to Euclidean signature, we have

(1+ LA eA=B)sp —iLeASPd
—iLeAS), (1— LA A B)ot
BT1i7. . —-B /
KW e ~(Ta) % . =0 (3.15)
ie B(7*)op KePwea €
Nt 317 P (")
3PP wepappae P (") Ny

As already stated, we are interested in BPS solutions with zo = z and Z2 = Z non-vanishing,
but z; and Z; set to zero. Important simplifications occur. First, we get decoupled systems
of equations for (e, €?) and for (ez,e'). Further, by taking, for example, the third line
of (3.15), solving for the ¢, and plugging this solution back in the last two lines, we find that

/

N

(3.16)

!/

IS
ST IR

9These are written in Lorentzian signature in which the spinors are chiral projections of Majorana
spinors.
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This means that z and Z are proportional. Therefore, we simplify our equations henceforth
by defining
X =2z (3.17)
We look at the system of equations for (e!,e3). With 2y = Z; = 0, moment maps
vanish, except in the direction P}i. This allows us to introduce the “superpotential”

2Z(1+qo+q7) — 2

W=-pPz = 3.18
I 2(1 — 22) ’ (3.18)

which is quadratically related to the scalar potential
V= (<3WW + KTVWVW 4 4hF0, W0 W ) | (3.19)

where h?* is the inverse of the quaternionic metric.
We write the simplified BPS equations in the FG gauge, which is most convenient for

numerics:
1+ AleA eAel 2w
_eAK 2y 1— Ale4
VI=7F 27X (7(q0+1)+q1) / 1
p 1-) T “J=o 3.20
= VI—77 27— X (F(qo+D)+q1) | ° - (3.20)
2 1-X) €2
1—q; 71 X’
\/?\/ﬁ VX
X! 1—qr 2
2VX V¥ Vi-rF

Here, W is defined in (3.18), and we have omitted overall constants and common factors
Le) — (2,6).
Again, we require all 2 x 2 minors of (3.20) to vanish. We start with the equations

of (1 — X). The same system of equations holds for (e

obtained from three of these minors and check later that other minors also vanish. The
determinant of the third and fifth line gives an equation for 7’; the fourth and sixth line
give us an equation for 7/; finally, the last two lines give us an equation for X”:

L X +7((1+q)X —2) 1—77 Y

4X(1 - X) aZl -1
X+ 7((1 X—2) 1—77
1X(1—X) wZl -1
(X/)2 — 4‘(1 _ qIZI)(l _ qIZ[)XQ
(1—77) '

An advantage of the FG gauge is that these equations do not involve the metric. With
some work, we can derive an algebraic equation for e24. Let us take the determinant of the
first and sixth line, and the determinant of the second and fifth line of (3.20); this gives
two equations for X':

(1-X)X(1-q2")
X(1+qrzh) -2
(1-X)X(1—q 2"
X(1+qz!) -2

X' =4

(A" + ™),
(3.22)

X' =4 (A — e 4.
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By summing these two equations with the appropriate coefficients, we can eliminate A’,
and obtain an equation for X’ in terms of A only. Then we plug this into the third line
of (3.21) and obtain

(1—77). (3.23)

The equations (3.21) are symmetric under exchange of 7 and 7 (as is (3.23)). However,
there are other minors in (3.20) which are symmetric only under the combined swap 7 <+ 7
and e4 + —e. We choose one solution of (3.20) for which all minors vanish. There
is another solution obtained by the combined swap. The Killing spinors of these two
branches are invariant under opposite choices of the SU(2) factor of the isometry group
SO(4) = SU(2); x SU(2), of the sphere. The computation of the free energy is the same

for both solutions.

3.2.2 Asymptotic analysis

The goal now is to solve egs. (3.21), and a numerical approach appears necessary. The first
step is to work out the behavior of solutions in the UV and IR. We will then obtain nu-
merical solutions which interpolate between these limits. In order to simplify our analysis,
we will focus on a specific range for gg. Remember that gy determines the dimension of the
CF'T operators dual to z and Z,

0%V
= 2 —1)+... 3.24
5255 — (@W0+2(@—-1)+..., (3.24)
and recall the AdS4 mass formula
3 9
It is convenient to parameterize Ay = 2 4 qg and A_ = 1 — qp, which is compatible with

the bounds Ay > 3/2, A_ < 3/2 in the range

1 1
— = - 2
5 < <5 (3.26)

within which we will work.20

UV analysis. For large 7, we assume the following series representations for the fields:2!

T_Zfe”%— ST fage Bna-tir

n=1,7=0
~ —jr —(QnA,—‘r j)r
T—ij J +n§Of r (3.27)
X — Z Tp i€ —(2nA—+j)r

n=1,j=0

20This also avoids the complication of mixing of the leading exponents among 7,7, and X that would
happen for go > 1/2. See (3.27).

21For some special values of go, for which A_ € Z/2, then we can also have powers of r appearing in the
expansion. We will avoid such special values.
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—A_r

The radial mode e corresponds to a source for the operators @ and O,. Notice

that, naively, one would expect powers of e "2+" to appear as well. Indeed, the equations
of motion obtained from the bulk action allow both e2+" and et2+" behavior for the
hyperscalars z and Z. However, we see from solving the BPS equations (3.21) that only
the e~2+" behavior is allowed.

We can substitute these series in (3.21) and solve order by order for higher mode
coefficients in terms of f1, fi and x1,0. However, we have the freedom to shift ; we use this

to reduce the number of UV parameters by one by requiring the convenient normalization

A= 4 (3.28)

of the asymptotically AdS metric. Examining (3.23), the condition (3.28) gives us the
further constraint

- 1—
fi=h+4a—2. (3.29)
q
The first subleading terms, after shifting r, are given by
fa=2f1,
- 1—
fo=—2 (f1 +4 qlqo) : (3.30)

r11 = —2 (*2(10 + fig1 + 2) T10-

In practice, we compute a few orders further in order to extrapolate fi and z1,0 from the
numerical solutions to good accuracy.

IR analysis. We now derive the asymptotic behavior in the IR, namely where the sphere
shrinks to zero size. Let us assume this happens at some r = r,, where e4(™) = 0. We've
already used the freedom to shift  to control the UV behavior (see (3.28)), and therefore
we cannot shift away r.. Defining Ar = r — r,, we can solve the BPS equations (3.21) for
small Ar. The solutions contain only even powers of Ar:

=0 j=0 =0

Solving the BPS equations at leading order in Ar gives the condition on the leading terms

_1—q 2t
to=—, Yo

- 3.32
@ a1 + to(1+ qo) (3:32)

One can then work out further subleading orders. We see that our solutions only depend
on one IR parameter, t.

3.2.3 Numerics

We have seen that we can solve our BPS equations as a series expansion in the UV and in
the IR. However, we are interested in solutions which are regular all the way from the UV
to the IR, and in order to see if they exist, we need to solve these equations numerically.
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0.8+
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0.4 ’//"1/7 5
O
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(a) o = 1/3, 1 = 4/5, T = 2/5. (b) @0 =2/5, @1 = —1/2, o = ~2/5.

Figure 1. Example of numerical solutions for different values of g; and ¢y. Orange: 7(r), blue:
7(r), green: X (r).

Furthermore, we have seen that in the IR asymptotic analysis we have one free parameter,
while in the UV we have two. This means that, in the case of regular solutions, the two
UV parameters are not independent, and we will find numerically how they depend on the
IR parameter.

When doing the numerics, we first make a shift » — r+r,; then, we would like, in prin-
ciple, to integrate the BPS equations from r = 0 to » = co. However, in practice, we choose
a very small 1 and a very large ro and numerically integrate the solutions from r; and 7.
Then we use the asymptotic expansions to extrapolate from r; to 0 and from 79 to oc.

We notice that regular solutions all the way to infinity exist if £y is in the range between
and

72—, We show examples of solutions in figure 1.

q1
1+q0 q"

3.2.4 Computation of the free energy

Compared to the models in section 2, new counterterms may be needed to regulate the
on-shell bulk action because of the presence of hypermultiplets. These counterterms might
depend on the value of qg, since this determines the scaling of X’ in the UV (see (3.27)).
It turns out that, by explicit check, the choice (2.25) with the new superpotential (3.18)
makes the action finite. One can exclude additional finite counterterms due to X because
they do not occur at generic qq.

The computation of Siee proceeds as in section 2.3.2. The extra kinetic term for the
hyperscalars and the different potential are absorbed via the EOM for A, leading again
to (2.28) (now in the FG gauge). The vanishing of the determinant of the first two lines
of (3.20) gives again (2.29). The net result is that S, takes the same form as before,
which we repeat here with L = 1:

. o Arpr
Stes = 50 /0 dr (A~ 1). (3.33)

The integral converges, so it is well suited for numerical computation.
To very good numerical accuracy, and for several values of gy and g1, we observe that

T (1—qo;
reg = —— 1). .34
Sreg 2GN<2q1 f1+> (3.34)

This can be seen in figure 2.
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,3_
(a) o = 1/3, g1 = 4/5, to = 2/5. (b) o =2/5, 1 = —1/2, {o = —2/5.

Figure 2. Value S, in a few examples. The blue points are values of S..s computed numerically
and the orange lines are the fit (3.34).

The expression (3.34) can be checked analytically as follows. First, let us point out
that the on-shell action Seg is naturally a function of the leading coefficients in the near-
boundary asymptotic expansions (3.27), i.e. Sreg = Sreg(fl,fl,xl’o), because when de-
riving the second order equations of motion that follow from the action, we should hold
(f1, f1,71,0) fixed. (See also the discussion in section 2.3.3.) The expression (3.34) equals
Sreg = Sreg([f1, fl,xLo) evaluated on supersymmetric solutions where f; is related to fi
via (3.29) and x; ¢ is still arbitrary. However, if we do not use the supersymmetry assump-
tion, we can calculate the partial derivatives

aSreg(fla fla 371,0)

oL oL T 7
e 9y oy 34 bulk susy'\ _
8f1 =2 rll)l’élo € ¢ < or' + or ) - 32GN f2 ’ (3 35)
OSree(f1, f1,710) o 21—y 34 <6£bu1k Gﬁsusy> o .
ofi =l e o T ) T ey

In order to consider the variation of Sreg(f1, fl, x1,0) with respect to x1 o, let us remem-
ber that we defined X = zZ. If we assume, as the EOMs predict, an asymptotic behavior

2= hie BT 4 hoe B+ 4 . ., and similarly for Z, then we have z1 9 = hihy and we find
OSreg(f1, f1.710) _ 1 98eg(f1, fi,210) N 1 OSyeg(f1, f1,210) (3.36)
9710 h dhi h Ohy ‘ ‘
Then one can check that ~
8Sre 9 ) 7
sV /u710) g (3.37)

Ohy
as well as its tilded version. Remember, however, that the BPS solutions behave asymp-
totically as (3.27), meaning that hg = hy = 0. Therefore we will have

aSng(flaflaxl,O)

T =0 (3.38)

BPS

when evaluated on the BPS solution.
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Then, when evaluated on the supersymmetric solutions parametrized by fl and 1 o,
we can use the chain rule:

OSreg(f1,710)  OSreg(f1, f1.71,0) n OSreg(f1, f1.71,0) f1(f1,71,0)

of1 afi of1 df1 ’ (3.30)
OSreg(f1,21,0) _ OSreg(f1, /1, 21,0) n 0Sreg(f1, f1,210) Of1(f1,21,0)
01 01 of oxip
Using (3.29) and (3.39) and then (3.30), we find
OSreg(f1,71,0) = T 1—qo OSreg(f1,71,0)
LT _ - L 4
of 32Gn (f2 - f2) 4Gy @1 O0x1 0 (3.40)

This, together with the fact that Sieg(0,0) = 55— as evaluated in (2.57), gives indeed (3.34).
As explained previously, since the field 7 + 7 is dual to a dimension one operator,

in order to compute the free energy for our boundary theory, we need to do a Legendre

transform of the on-shell action. The free energy is

oS 08 )

FS3:Sreg_%(fl+f1) <0fl+af1

s

e A+ f)(fo+ fo) =

5[5

We see that the dependence on f; drops out, and the free energy is just a constant.

= Sreg +
(3.41)

We now reinstate L in the final result

nL? 1— Lgo\?
Fgs = 1-— . .42
7 26y [ < Lag > (3.42)

3.2.5 Comparison to the proposal

Since here ny = nyg = 1, we do not need to actually solve the bulk theory in order to
compute the sphere free energy: the constraints g;Y! = 1/L = go and Q;Y' = 0 fix
uniquely Y/ = (Y, Y1), The quantities Q; are the UV charges of the field z under the
gauge potentials A/IL, and they can be read off from the covariant derivatives appearing in
the kinetic terms. Indeed, we have

Dyz D —iQA]z (3.43)
meaning that Q7 = %(—go + qo, q1).2? Imposing the two constraints, we get
Lqgo—1
vl = (1, 1 ) . (3.44)
Lq,

Therefore, according to our proposal, the free energy is

P 7 L2 [1 - <1 - quﬂ | (3.45)

T 2Gy Lq:

which agrees with our direct computation (3.42).
In terms of boundary charges of the chiral operator, the free energy can be written as

FUV 2
1— <f> ] . (3.46)

In can be checked that this is the value predicted by our conjecture for g; # 0 as well.

22We remind the reader that we choose go = 1/L and g; = 0.
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3.3 STU model with hypermultiplets

The case of the STU model with the universal hypermultiplet was considered in [32], for a
specific choice of couplings. The authors find BPS solutions numerically and compute the
free energy analytically, thanks to some simplifications similar to those of our section 3.2.1.
We will show that their result fully agrees with our conjecture.

The choice of gauging in [32] corresponds to the Killing vectors (3.4) with the gy = 1,
forall I = 0,...,3, and qo = —3¢; = 3, with i = 1,2,3 — see eq. (B.23) of [27];?% the

AdS scale has been fixed to L = %, see equation (4.1). Notice that the conventions of
our paper and [32] are different: 7%, = —Z25 .. and 7L, = —2§ oe- We will thus translate

everything into our notation.
This theory is the bulk dual of ABJM theory perturbed by a superpotential deformation

AW ~ Tr(TMA})?, (3.47)

where A; is the one of the four bifundamental scalars, and T() is a monopole operator
with appropriate gauge charges so as to make the superpotential deformation (3.47) gauge
invariant.

The authors of [32] found through their numerical analysis that the profiles of the
scalars 7; change in a very simple way when the hyperscalar is included. They introduce
the parameter zo = X'(r.), where X is again the product of the hyperscalars X = zZ, such
that the hyperscalar decouples completely when xg = 0. The boundary behavior of the 7;
depends on xg, i.e.

T =a%(xg)e "+ ..., 7¢=a%(xo)e "+ ..., (3.48)
but all quantities a® and a® shift by the single function f(x¢):
0 (20) = a®(0) + f(zo) G (z0) = A(0) + (o). (3.49)

The values a®(0), a*(0) are those known from section 2.5. The fact that a®(z¢) —a“(xo) =
a®(0) — a*(0) is independent of xg, i.e. the profile of the hyperscalars, is a major simplifi-
cation which ultimately allows the authors to find the free energy analytically.

Several quantities are the same as in section 2.5: we parametrize the Z! as in (2.70)
so that the Kéhler potential is (2.71). The scalar potential can be computed, and there is
an extremum at 7® = 7 = X = 0. This means that the objects needed to construct Y/,
X[ and (VoX7),, are unchanged, see (2.79) and (2.80). Therefore we again find

2 —m! —m? —m3

;1 | 2i—ml 4 m?+md
4iv2 | 2i + m! —m2 4+ m3

2i +m! + m? —m?

(3.50)

ZThe scalar potential is invariant if we flip signs of both the gr and the g;, so we choose the g; to be
positive.
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operator | R Fy Fy F3
Ay 12] 12 | 1/2 | 12
Ay | 1/2] 172 | —1/2 | —1/2
By 12| —1/2| 1/2 | —1/2
Bo | 1/2| -1/2| —1/2| 1/2

Table 3. UV R and flavor charges of the chiral multiplet superprimaries.

We must now impose the constraint Q;Y! = 0. To do this, we first discuss the charges
Qg of the field z. As before, we determine the charges from the covariant derivative, namely

. i .
Dyz > —iQrAyz = S(gr — an) Az = =i (A} = A} = A} - A7) =, (3.51)
so that we find
Qr=(1,-1,-1,-1). (3.52)

Then, the constraint Q;Y ! = 0 gives

2i+m! +m? +m®=0. (3.53)
Remember that the real mass parameters are defined as

e = a®“(xg) 2—Z a“(zo) _ a®(0) 2_2 a“(0) : (3.54)

where in the second equality we used the property (3.49). The relation between real mass
parameters and IR values of the fields ¢® = 7%(0) then is the same as in the case with no
hypermultiplets, (2.77).
Again, the free energy can be written as (2.74)
mL? (1—(c")?)

1— (A (1 = (3)?

where the extra constraint (3.53) translates to

A+ +AE 4+ A3+ A
1+ cle2ed

=1. (3.56)

here _ __ there

This is the same constraint as (4.26) in [32], remembering that ¢"® = —¢;

We can also consider more general perturbations of ABJM theory, of the form
AW ~ Tr(TW A;)P (3.57)

(Only the cases p = 2,3 correspond to relevant perturbations.) We can find the free energy
of the perturbed theories quite easily using the conjecture. The R and flavor charges of
the bifundamental chiral superprimaries can be found in table 3.
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R F F F;
Ao+ A1+ Ay +As | Ag+ A1 — Ay —As | Ag— A1+ Ay — Az | Ag — A — Ay + A

Table 4. Bulk gauge field duals to the UV symmetries.

On the boundary, there are two operators, with charges

A R
0| 2 4 (3.58)
Oy | E+1]5-2

and F charges F| = F, = F3 = p/2. As in previous cases, we turn on the operator Os.
Using table 4, the covariant derivative of its dual hyperscalar field z can be worked out. It
contains the terms
i (p ip
DMZD —5 B -2 (A0+A1+A2+A3)Z— Z(3A0—A1 —AQ—Ag)Z

= —’i(p — 1)AOZ + Z(Al + A2 + Ag)z

(3.59)

From this, we read off the charges @y = (p — 1, —1,—1,—1). Then the free energy is given
by the usual (2.78), plus the constraint Q;Y! = 0, that is
3 _ 8

m—w—m%m1=p, (3.60)

which fixes Y0 = %.

4 Discussion

The main goal of this paper was to make more precise and provide additional evidence for
the conjecture first explored in [10, 11] that relates the mass-deformed S* free energy in
holographic theories to the bulk prepotential, at the two derivative level in the bulk deriva-
tive expansion. In the case where the bulk theory can be consistently truncated to only
vector multiplet matter, this relation can be succinctly summarized in (1.2). In short, from
the real mass parameters m® of the boundary theory one constructs quantities Y/ defined
in (1.2), and then the sphere free energy is proportional to the prepotential evaluated at YZ.
If the effective bulk theory contains charged hypermultiplets and one deforms the boundary
theory by the operator dual to one of the hypermultiplet scalars while preserving super-
symmetry, the only modification of our conjecture is that the possible real mass parameters
(or equivalently the Y/) obey one additional constraint for each such hypermultiplet.

We tested our conjecture in several examples with and without hypermultiplets by
explicitly constructing SO(4)-invariant solutions to the bulk BPS equations, evaluated
their regularized on-shell action, and performed a Legendre transform corresponding to
the fact that some of the bulk scalars obey alternate quantization. In the examples with
only vector multiplets, we were able to find analytical solutions to the BPS equations,
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but in the examples with both vector multiplets and hypermultiplets we had to resort
to numerical work. The main open question that we leave for future work is to prove
our conjecture (1.2) for any bulk supergravity theory coupled to vector multiplets and
hypermultiplets. We hope that the explicit examples worked out in this paper constitute
the basis for such a proof.

Besides proving our conjecture, a natural question to ask is how to generalize it. One
class of generalizations would be to consider higher-derivative interactions in the bulk.
Given the result of [8] stating that the mass-deformed S? free energy is independent of bulk
D-terms, 1/4-BPS terms, and non-chiral F-terms, we expect that, in absence of real mass
terms for the hypermultiplets, the S3 free energy would still depend only on the prepoten-
tial of the bulk theory even when higher-derivative interactions are included. Nevertheless,
the relation between Fgs and the prepotential may not be as simple as equating the two
quantities. See also [34] for an exploration of four-derivative terms in 4d N = 2 theories
coupled to matter. Assuming that Fgs continues to be proportional to the bulk prepo-
tential, ref. [34] conjectured a specific form for the leading correction to the STU model
prepotential that arises in the bulk dual of ABJM theory.

Another interesting generalization of our conjecture that we hope to explore in the
future is to four-dimensional N' = 2 SCFTs placed on a round S*, which are dual to
asymptotically AdSs backgrounds. In this case too, the theory on S* can be deformed
by a real mass parameter that is valued in the Cartan subalgebra of the flavor symmetry
algebra of the N' = 2 SCFT. A well-known example is the 4d N' = 4 super-Yang-Mills
theory, which at large N and large 't Hooft coupling A\ = g%MN is dual to weakly-coupled
type IIB string theory on AdSs x S°, and which can be viewed as an N/ = 2 theory of
a vector multiplet and an adjoint hypermultiplet. Introducing a mass parameter for the
adjoint hypermultiplet yields the N = 2* theory. On S*, the free energy of the N' = 2*
theory can be calculated using supersymmetric localization [35] and it is a non-trivial
function of the mass m [36-41]. If it turns out that the S* free energy of the N' = 2*
theory is also related to the prepotential of the effective 5d theory, then this relation is
bound to be much more complicated than in the examples studied in this paper because
even at leading order in the supergravity approximation, the S* free energy is a non-trivial
function of the mass m [41].2* We hope to explore this topic in the future.
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A Mass spectra of abelian vector multiplet theories

The N = 2 theories discussed in section 2 involve only abelian vector multiplets whose
interactions are governed by the prepotential F(X!) and the Fayet-Iliopoulos constants g;.
The general formulas of section 21.3 of [23] simplify greatly for these theories, since there
are no hypermultiplets, and Killing vectors k¢ vanish because all scalars are uncharged.

Some theories have holographic duals. In this case each abelian vector multi-
plet (A,,x1,x2,7) is dual to a conserved current multiplet containing the operators
(J,&1,&2,7% K) with conformal dimensions A = (1,3/2,3/2,2,2) and D,j* = 0. The
bulk field masses that correspond to these values of A are m? = 0 for the vector and
spinors and m? = —2/L? for the scalar. In this appendix we derive these mass spectra
using only the properties of the bulk theory, independent of holography.

In the first step we use only V' = 1 information to show that scalars have m? = —2/L?
if two conditions are satisfied:

1. The boundary values of the scalars 7% correspond to a SUSY critical point (c.p.) where

VoW (T)|r=r. = (0o + Ko)W(T)|r=r. =0. (A1)

2. The fermion mass matrix, given in detail in (18.17) of [23], also vanishes at the critical
point
Map = Vo VW=, = 0. (A.2)

We start with the standard N' =1 potential (2.5)
V = S(3WW + KOV, WV (A.3)
We apply two derivatives and push them to the right, noting that 9, (e* ---) = XV, (---):
0500V = V5V o (~3WW + KOV W VW) . (A.4)
Let’s consider the two terms separately. The first term is easy to take care of:
0506Vi = =3 (VaWV W + Ko gWW)|r—r, = =3 sWW . (A.5)

Notice that the Kahler metric appears. When working with the second term, we have
to push a little harder. The derivative V, acts covariantly with the metricity property
VoK) = K¥(Dg + Ko)(- -+ ), where D, is the usual Riemannian covariant derivative
specialized to Kahler manifolds. We expand out V 3Va for clarity, and write

0500V = €X(05 + K3)K (Do + Ka) Vo W)VW + Vo WK ;W] (A.6)
= KK, 5V, WYW + (VaV, W)(V5V5W)] + R, 570V, WV W
AVaWVW + K gWW oer, = €K zWW

The 3 terms in the second line come from the first term in (- - - ) in the line above, while the
second term in (- --) gives the 2 terms in the third line. The curvature tensor of the Kahler
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manifold comes from the commutator [D,, Dﬁ-]. All terms except the last one vanish when
the conditions at the SUSY c.p. are imposed. Finally, we combine the results for V; and
V5 to obtain (at the c.p.)

0500V = —2e"K gWW|r—pe = —2/C,5/L% . (A7)
By a similar calculation, we find
DoV |rer, = (K (Vo VsV, W)VW — (Vo VW)W |r—r, =0, (A.8)

showing that there are no exotic contributions to scalar masses.
The kinetic and mass Lagrangian for the scalar fields then reads, in Lorentzian signa-
ture,
v 3 2 3
L= =gKoj | =g 0ur 07" + S3ror7] (A.9)
Since K, kL evaluated at the critical point, appears as an overall factor, the scalar mass is
indeed m? = —2/L2.

We now bring in A/ = 2 information which shows that the fermion mass vanishes at a
SUSY critical point, so that (A.2) is actually a consequence of (A.1). The fermion mass
term in N = 2 supergravity is given in (21.38-.39) of [23] with Cyp, defined in (20.236):

1

T y 1 . -
Lm =—5m"ag XN, mias = 5P Capy KOV X (A.10)

Another N = 2 relation we need is (20.191) (which is proven above (5.75) of [24]):
VsVeX! = Cop K10V X1 (A.11)

We must adapt this information to the NV = 1 truncation we have been using. It is a
truncation because one of the two sets of gauginos y; is dropped. Note that the moment
maps Plij are related to the FI constants by P}j = glaij where O'ij is the standard Pauli
matrix, with eigenvalues +1. We will keep the fermion with positive eigenvalue in our
truncation. Thus (A.10) is replaced by

1 _ N _ s
Lm==5mas X*X", o = Capy KOV;(91X1) = 2Coapy KPVW. (A12)
In the last equality we used gr X! = eX/2W, see (2.7). We contract (A.11) with g7, and
rewrite the result as

K12V gV W = K120 5, KOV (A.13)

This equation shows that the N' = 1 and N/ = 2 fermion mass matrices are the same.
Then (A.12) shows that this mass matrix vanishes at a SUSY critical point. Finally we
point out that gauge fields are massless in a theory of abelian vector multiplets without
hypermultiplets. The 7 fields are gauge neutral, so no opportunity to generate a vector
mass term arises.
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B Asymptotic analysis

In this appendix, we consider an N = 2 supergravity theory coupled to ny vector multiplets
and determine which scalar fields obey which boundary conditions. Doing so requires that
we examine the fluctuations of the fields around an AdS background where the vector fields
and spinors all vanish, and the scalar fields are constant X! = X!, 7@ = 72, etc. In such
a background, the SUSY variations of the bosonic fields vanish automatically. The SUSY
variations of the fermionic fields vanish provided that

. T _
oy, = Dye' + §7u7'3ingX>£ =0,

o ' (B.1)
OXF = —gr73i595" (VBXI)* ¢ =0,

where, as in the main text, the subscript . means that the quantities are evaluated at the
constant values of the fields corresponding to the AdS solution. In addition to (B.1), we
also have the complex conjugate equations.

As mentioned in the main text, we take gr X! = gr X! = 1/L so that the first equation
in (B.1) reduces to the Killing spinor equation

. y 1 .

D€ = —ﬁ’y,ﬂ”ej , D€ = —ﬁ'y,ﬂijej . (B.2)

From the second equation in (B.1) and its complex conjugate, we have the SUSY conditions
g1 (VaXI>* =41 (@a)_([)* =0. (B.3)

Even though we are interested in solutions in Euclidean signature, the question of
whether or not scalar fields obey alternate quantization can be settled using Poincaré
coordinates. we thus take the frame to be e® = ¢’/Ldz® and e* = dr, for a = 0,1,2. We
have w® = e%/L and w® = 0. The solution of the KS equation (B.2) corresponding to the
Poincaré supercharges® is

e — er/ZLni? € = er/ZLT,H_7 (B.4)
where 7' and 7; are constant spinors obeying the radiality conditions
mh ==y, nie = =T (B.5)

Let us now study how SUSY acts on the coefficients of the boundary expansion of the
linearized fluctuations of the fields around the AdS solution. (For simplicity, L = 1.) We
have

T =70 e 4 e 4 X =xI 4+ Xle "+ Xte 2 4. |
X§ = Xfa€ Y 4 X e (B.6)
Ay = Agie™" + Aa2€_2r + e .
Vo = wél/ﬁ_r/g + ¢23/2€_3T/2 +

Z5We do not need the Killing spinors for superconformal charges, since those symmetries are broken in a

mass-deformed theory.
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where the gauge field is written with frame indices. For the fermions, we can split the
coeflicients based on their radiality as in

Xis/2+ = FI3TijX3)04 » etc. (B.7)

SUSY acts on this asymptotic data via the transformation rules

1 .
67_05 — §€ZX?7 (BS)

1 .. 1 _ . N
0A," = §€”6z'7u><?(VaX1)* + §€ij€lw><”(VaXI)* + e (XT)w + i@l (X,

as well as their complex conjugates. The €, ¢; are the Killing spinors of (B.4).

Before proceeding, we note that we are interested in the transformation of the ny
vector multiplet photons, which couple to the x,, rather than the gravi-photon, which
couples only to the gravitino. Near the boundary these properties of the couplings can be
seen by contracting the 5AMI transformation rule with g7 and using g; X! = g; X! = 1/L
together with (B.3):

o0grA = [8ij€iwuj + 5l]€Z¢fL]/L (Bg)
Likewise, one can contract 5AMI with any of the ny independent sets of coefficients h;
which satisfy hy(X'), = 0. These vector multiplet photons hIAMI couple only to their
fermionic partners. Thus we drop the gravitino in the following with the understanding
that we are considering a contraction with a set hj.

Returning to (B.8), we use the first equation there, expanded at large r as in (B.6), to

obtain ) .
o1 = 5T 0TS = ST
1 . 1 ) (B.lO)
ot = §ﬁi+Xéa/2 ) oy = 5771'4-)(?;2 , ete.
We have ﬁixf‘wr = _ﬁi-i-X;;IC:_ and ﬁix?n_ = X' . Thus, if we write 7% = A + iBY,
then ) .
0AT = 57719&3/27 ) 0Ay = 5’7@)(%/2, ;
BT = —iﬁix%/ﬂ, 0BS = —iﬁix%/ﬂ, etc.,

n

where A7 and B} are the coefficients of e™™" in the boundary expansion of A* and B“.

From the second equation in (B.8), we get

1 o 1 e . —
(SAalI = igzjni-i-PYaX??)/Q(vaXI)* + 55117717axg),72(vaX1)* ) (B 12)
1 .. 1 j 7 '
5 A’ = §€ij+’YaX?5/2(vaX1)* + §€ijni%xf”72(vo“xl)* '
Note that z—:ijﬁiyyax?g/ﬁ = iffijﬁi%xgzi’ S0
1_ 1o o a I ), el ! X/
Har” = 52 Moy (Vo X4 VXt g2 texya- (VX T = Vel
B.13

1, _ 1 .. _
04w’ = 591 7aX55 /24 (VX' + VaX ') 4 Se7ii179aXG5 2 (Va X = Va X',
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In the boundary expansion of the gauge field, we know that the leading coefficient A,
should be interpreted as the source for the dual conserved current on the boundary:

Al = Al (B.14)

a,source

From the first line of (B.13) and the fact that sources transform into sources, we have
A{z,source = Eijﬁi+7ale‘,source ) (B'15)
where we identify
! = X% /90 (VaXT 4+ Vo X + X% /9 (Vo X! — Vo XT) (B.16)
Xj,source = X]3/2+ « a * Xj3/2— «@ « * .

The quantities le',source then represent the sources for the dimension 3/2 fermionic operators
dual to the massless bulk fermions. Note that gij{source = 0, so there are only ny linearly
independent X]I',Source'

We have mentioned that in the boundary theory each conserved current multiplet
contains a dimension 2 scalar (dual to a regularly quantized bulk field) and a dimension 1

scalar operator (dual to an alternately quantized field). The source BZ for the dimension

source

2 scalar operator must be a linear combination of the leading coefficients Al and Bf and
must obey the property that SUSY transformations take it to the fermion sources in (B.16)
B!

- |
source 77+Xi,source .

(B.17)
Examining (B.11), we identify

SBL

source

= i BY(Vo X1 + Vo XD, + AQ (Vo X! = Vo X1, = S( (VX)) . (B.18)

Thus, it is the field B! = ((7% — 72)(Vo X 1)) that should have regular boundary condi-
tions, while AT = R((7% — 7) (V4 X 1)) should obey alternate quantization. The fields A!
and B! are not independent because the condition (B.3) implies g7 A’ = g;B’ = 0. There
are of course only ny linearly-independent fields of each kind.

C The STU model with general couplings

The solutions to the BPS equations become a bit more complicated in the STU model
when we choose all couplings to be different; however, we’re still able to find a solution
analytically. We change slightly parametrization for the Z!, because we want the scalar
fields to vanish at the boundary

(1+y") (1492 Q1 +y°)
ro LA+ -y (-9
G-l I S e
(1—y")(1-¢*) Q1+
with
y* = Q% 47 (C.2)
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For convenience, we use the notation

1 (€D +(£2)?
2 2

Qa =L — ;
Exea
V919293
€ = /goga £ Y21 (C.3)
Va
I —
2,/90919293

The solution to the BPS equations for the scalar fields and the metric is

Lo _ 1—r?
1+ vor2
B B 1—r2
o _ a1_|_f;01r2 (C.4)

4
Q24 g2 (14 w)(1 4 wr) ,
(1 —=7r2)2(1 4+ wr?)?

where we defined the constants

L2
o = 0 T (L4 w)
L2
0 = w+ G (T4 w)
o _ PP GGG 2

-1
L2 N gere _ LACCHEE o
e ()t 12 j%cjfj § "5 a e (St S

J#a
LS o0 (91 + ﬁi) cle2ed
w=— |[[&¢ gf - : (C.5)
; (E[ J ) Si (91— ooy ) L (14 5656 00)

where sum and products over lower case letters are intended to be from 1 to 3, while upper
case ones are from 0 to 3.

The computation of Seg follows from section 2.5, and is

7l?21—w
2Gy1+w (C.6)

Sreg =

Notice that in the case of all couplings equal, w reduces to c'c?¢?, as can be seen by (C.5).

In this case our result agrees with formula (6.19) of [18]. It can also be seen that the case
go = ng, g1 = g2 = g3 = g agrees with (2.89).

Then we need to perform the Legendre transform. We find

aa

B 5 2
OSweg _ _ LPm [ Qala®)® b IO 15 ala’a’ | (C.7)
da* 326N | (1-QuP "~ (1-0Q4)7 8 (LY

— 41 —



Putting everything together, we get that the free energy is

4 2 o A
FSS = GN1;[<L2+2£]+£J d — (E;FC])2)

' -1 (C.8)
8 4 +e— g Hz &z—*—gz_cl +
X ﬁ+ﬁ25j§jc?+227§+£w +11& > ar| -
J J J 3] J I
Then, using
a® — g* c o
= -2 - .
2i Z(1+va 1+ﬁa>’ (€9)
as well as 1

K= 6 (C.10)

°f T (1- )7

one can express (C.8) in terms of the real mass parameters. The result is again (2.78).

D Details about the universal multiplet

We give here the details needed in order to describe the geometry of the % manifold.

Its metric is given by

2 _ o | Jdal’ +ldnl® | |sida + Zdz)” D1
- 2 2 2 2\ 2 (D.1)
Ll Tl (1 )
where the overall normalization is chosen so that
R=-12. (D.2)
This metric can be obtained by the following Kéhler potential
Ky = —2log (1 —|a]? - |22\2) . (D.3)

The hypermultiplet scalars are the z; and z; fields. To describe the manifold geometry,
it’s convenient to introduce a different set of coordinates (p, 0, ¢, 1), related to the z;’s as

0 . 0 .
21 = pcos iez(d’*‘z’)m 7 29 = psin 561(1#%;5)/2 : (D.4)

Introducing the frame

e =——01, = cos ¥df + sin ¢ sin Od¢ ,
NN o1 o1 (0 (% ¢
2 14 . .
e —————09, 09 = —sindf + cosysinOdg ,
B=—_—Fr 5 o3 = dip + cos 0de, '

then we can obtain the metric (D.1) in these new coordinates as ds? = e,e® = hy,dq dq®.
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We can also define some frame vectors f*4,,. If we think of f*4 as a one-form f*4 =
fi4,dg", then
ie3 + et iel — e? P iel + e? —ie3 + et

This choice frame vectors satisfies many properties, many of which we do not report here,

fll _ f12 _ f22 —

(D.6)

but can be found for example in equation (4.142) of [24]; we mention only that

huv - fiAugijCAijBv

4 . D.7)
AN B (
(f2 u) = 17 ugjirpas
with the choices
CAB =¢€aB,  PAB=E€AB- (D.8)
These two matrices are related by Cap = p Aédo B, S0, in this case,
dtp =4, (D.9)
such that Cup = p Aédé B. These frame fields define as well a hypercomplex structure
- ” L
Juv =—f u vjATij ) (DlO)
where f“j 4 is defined as the inverse of fjAU,
i A i A i SA
fl v uiA = 635 fl u ujB = 5;637 (Dll)
with 73/ = i#;7. This hypercomplex structures are covariantly constant up to a rotation:
Vdu® + 28, x J,U =0, (D.12)
In particular, an explicit calculation gives that the one-forms & = &,,dq" are
92 _ 2
Sl Ol wre= 22 W= 2o (D.13)

21— p2’ 21— p2’ 4(1 — p?)

The manifold #ié)(l) has eight Killing vectors (see equation (12) of [44]). We are

interested in two of them,
z’(zlﬁzl — 22@2 — 21851 + 52852)
2 )

i(zlazl + Z28Z2 — 51651 — 22652)

(D.14)
It can be checked that they obey V(,(,) = V(,&,) = 0. From the Killing vectors, we

can obtain the moment maps

I sinfsiny sinfcosy (2—p?)cosf
P(C) = —5Ju" V(" = — ( — 2 — 2 2(1-p?) ’
? Viset T Vi (D.15)
= 2
Pl = =5 Ju"Vol" = = (0’ 0, 2(1;ip2)> ’
which are related to the Killing vectors by
OuPr + 28, x Pr = Jok? (D.16)
and
— 2 Pr = J,UV, kY. (D.17)
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