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ABSTRACT

The Internet has become indispensable to daily activities, such as

work, education and health care. Many of these activities require

Internet access data rates that support real-time video conferenc-

ing. However, digital inequality persists across the United States,

not only in who has access but in the quality of that access. Speedtest

by Ookla allows users to run network diagnostic tests to better un-

derstand the current performance of their network. In this work,

we leverage an Internet performance dataset from Ookla, together

with an ESRI demographic dataset, to conduct a comprehensive

analysis that characterizes performance differences between Speedtest

users across the U.S. Our analysis shows that median download

speeds for Speedtest users can differ by over 150 Mbps between

states. Further, there are important distinctions between user cat-

egories. For instance, all but one state showed statistically signifi-

cant differences in performance between Speedtest users in urban

and rural areas. The difference also exists in urban areas between

high and low income users in 27 states. Our analysis reveals that

states that demonstrate this disparity in Speedtest results are ge-

ographically bigger, more populous and have a wider dispersion

of median household income. We conclude by highlighting several

challenges to the complex problem space of digital inequality char-

acterization and provide recommendations for furthering research

on this topic.

1 INTRODUCTION

The terms “Internet inequity” or “digital inequality" refer to the

gap in Internet access, access quality, and affordability that exists

within and between geographic areas and communities or indi-

viduals of varying demographic attributes [6]. While the problem

of Internet inequity in the U.S. has long existed [41], the Covid-

19 pandemic has intensified its impact [7]. The lack of high qual-

ity, affordable Internet access severely impacts the outcomes of

remote education, work from home, and telehealth, among oth-

ers [9, 11, 12, 14–17]. Addressing this problem is critical; however,

it is important to first more deeply understand the challenges so

that the right solutions can be applied to those communities most

in need.

A full characterization of Internet inequity requires combining

Internet access and quality data, at fine-grained geographic res-

olution, with demographic datasets. Ideally, this data should be

available at the granularity of census blocks (smallest demographic

unit), or even smaller. While the Federal Communications Com-

mission (FCC) and U.S. Census Bureau release related information

at this granularity, the quality of this publicly available informa-

tion is low. Through Form 477 [26], the FCC documents Internet

coverage and theoretical maximum download speed from differ-

ent Internet service providers at the granularity of census blocks.

However, this dataset is known to inaccurately report and over-

state Internet coverage, particularly in rural areas [27, 57]. More

importantly, this dataset does not report the actual Internet perfor-

mance experienced by the end users. This information is critical to

characterize the regional quality of the Internet service.

Recently, Ookla [35] released an aggregated Internet performance

dataset of Speedtest by Ookla measurements through the Open

Data Initiative. This dataset overcomes a major limitation of Form

477 because it measures the Internet performance experienced by

the end users atmuch finer spatial granularity. Additionally, Speedtest

by Ookla is a popular Internet quality assessment solution, thereby

facilitating amore fine-grained characterization of Internet inequity

amongst its users in the U.S. While the scope of this dataset is lim-

ited to people who opt to take a Speedtest, it remains one of the

largest end-user Internet performancemeasurement datasets, with

high spatial fidelity, that is openly available to the public.

In this work, we combine this Ookla dataset with geographic

information from the U.S. Census Bureau and demographic infor-

mation provided by the Economic and Social Research Institute

(ESRI) [39] to explore multiple dimensions of Internet inequity in

the U.S. amongst Speedtest takers. Our analysis shows the median

download speed between two states in the U.S. could differ by as

much as 150 Mbps. We employ statistical techniques to quantify

the extent of digital inequality between populations of different

geographic locations (urban/rural) and income demographic vari-

ables (high/low income) within a state. Prior studies [2, 4, 21] un-

dertook similar analysis using user survey data collected at the

coarser geographic levels of census tract and county. Our analy-

sis, however is conducted at the finer geographic granularity of

census block group using actual network performance data. Con-

firming findings of [2, 4], our analysis shows that, for more than

45 states, the quality of Internet for Speedtest users in rural areas

lags behind that of urban areas. Further, we observe and quantify

this divide in access quality between populations of urban areas;
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our analysis reveals a statistically significant difference in Internet

quality between low income and high income block groups in 27

states. States that exhibit this divide between the urban Speedtest

user groups tend to be bigger, with greater population and higher

dispersion of household income compared to other states. Our find-

ings demonstrate and quantify inequality of Internet access for

Speedtest users and highlight the need for thorough analysis of

Internet performance experienced by different communities.

In summary, our contributions are as follows:

• Weaggregate and analyze an 18-month Internet performance

dataset from Ookla Speedtest users from the 50 U.S. states,

ESRI demographic data, and U.S. Census data to identify and

quantify key Internet performance inequities between user

groups in the U.S. based on geographic region and income.

• Using statistical techniques, we identify over 45 states where

rural users receive statistically worse Internet performance

than urban users over the 18-month period.

• We further make novel observation and detect performance

inequity between high income and low income urban Speedtest

users in 27 states.

• Through our analysis, we identify potential sources of bias

in crowdsourced internet performance datasets such as Speedtest

data. Based on these findings, we conclude with specific rec-

ommendations for furthering research on Internet access in-

equality.

2 DATASETS

In this section, we describe the publicly available datasets that

we use for our analysis. Our analysis is based on data available

throughout 2020 and the first half of 2021. This data is aggregated

at the time-granularity of quarters by Ookla, as described below.

2.1 Performance Data

The quality of user experience for web-based activities is dictated

by available upload and download speed and latency to the remote

server. For example, the user experience for video streaming appli-

cations depends mostly on available download speed, video con-

ferencing applications depends on both the upload and download

speeds, and web browsing depends mostly on latency. The Ookla

Speedtest allows users to assess the quality of their Internet con-

nection using either the web-based portal or native mobile appli-

cation [35]. Ookla relies on volunteer users to conduct a speed test

that measures Internet download and upload speed and latency at

the current connection point. For each request, Ookla’s controller

uses the client’s location to select a set of measurement servers

that are geographically closest to the client. It then chooses the one

with minimum round-trip time (RTT) as an endpoint for the test.

Ookla dynamically scales eachmeasurement withmultiple parallel

connections to saturate the bottleneck link. To ensure high qual-

ity and fidelity data is obtained, Ookla operates a network of tens

of thousands of measurement servers, and periodically eliminates

servers that perform poorly [37]. The results of a single test offer

an instantaneous snapshot of Internet performance at the current

location, to the current point of attachment, and subject to the cur-

rent competing traffic on the path to the selected server. Together,

the aggregation of many of these measurements can paint a pic-

ture of connectivity within a given geographic area that is broadly

diverse both in time, exact physical location, and network traffic

load.While access quality can change greatly within a small spatial

area based on subscribed plan, residential vs. business connectiv-

ity, etc., measurement aggregation can still offer broad insight into

general performance trends for a region, as we will demonstrate

through our analysis.

Through the Open Data Initiative, Ookla has released an aggre-

gated version of the data it collects to the public every quarter, be-

ginning in January 2019 [10]. In this dataset, geographic areas are

grouped into quad tiles [36]. The size of these quad tiles depends

on their geographic location. For example, quad tiles measure ap-

proximately 600 by 600 sq. meters at the equator, and roughly 500

by 500 sq. meters in Los Angeles. The dataset reports the average

of all measurement values for each quarter of the year for each

tile. Ookla divides the data into two groups, each with measure-

ments from users connected to the Internet via a (1) fixed broad-

band network (e.g., Cox, Xfinity, etc.); and (2) mobile network (e.g.,

T-Mobile, US Cellular, etc.). Ookla only includes the measurements

from mobile devices with in-built GPS. This filter ensures higher

accuracy in mapping Speedtest measurements to geographic loca-

tions (or tiles).

Given our focus on the U.S., we filter the tiles from Ookla’s

dataset to include only those that are completely within the ge-

ographic boundary of the U.S. The total number of tiles with mea-

surements of fixed networks are 1.70 million (M), 1.74 M, 1.72 M

and 1.51 M in each of the respective four quarters of 2020. In the

first and second quarter of 2021, approximately 1.53 M tiles are

present in the dataset. The number of tiles in the mobile network

group was approximately 600 k in each quarter of 2020 and 2021.

The number of measurements from each tile depends on multiple

factors, such as population density, popularity of the speed test ap-

plication, etc. Because the number of tiles for the mobile network

group is very small, we focus our analysis on the fixed broadband

network.

Critique. The potential shortcomings of crowdsourced Internet

measurements using tools such as Ookla’s Speedtest are studied

in the literature [48, 51]. Essentially, these crowdsourced measure-

ments may introduce bias in terms of locations where the tests

originate and network conditions under which they are conducted.

However, in the absence of true underlying distributions, the effect

and magnitude of this bias is difficult to quantify.

While Ookla does not have any research data on the specific

demographic attributes of their user population, they do have gen-

eral information about Speedtest usage. According to their data,

people tend to use Speedtest in a variety of circumstances, includ-

ingwhen they are having Internet issues, immediately after setting

up a new device, and when they arrive at a new location (i.e. ho-

tel, public space, or even other side of the house). With the shift

to education and work-from-home due to the Covid-19 pandemic,

an increased number of users tested home Internet connections,

to discern both the number and types of applications that could

be concurrently supported, as well as the locations in the house

that offered the best connectivity. Hence, while it is impossible to

say that Ookla data does not have bias towards certain types of

events or points of attachment, the aggregated data, grouped over

both space and time, offers a broad swath of usage scenarios. Our

goal is to study the network performance, as represented by Ookla
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Figure 1: Distribution of download speed of each state during Q2-2021.

Speedtest results, during those scenarios, and to attempt to cor-

relate performance with demographic data to the extent possible.

Because of potential bias, we cannot definitively characterize In-

ternet connectivity in a given quad tile; however, we hope that our

work is a step forward in that direction and can point to where

additional data and analysis is needed.

2.2 Demographic Data

To study the relationship between Internet performance, geographic

region, and user demographic attributes, we leverage the demog-

raphy data provided by ESRI’s Updated Demographics [39]. ESRI

curates this dataset using multiple sources that provide current-

year estimates and 5-year projections of a variety of demographic

attributes. This dataset is a critical combination of the most recent

demography data available that is also highly accurate [3].

Most demographic information is aggregated and released at

the granularity of census block groups [8]. For our analysis, we

choose the demographic attribute of median household income;

prior work [9, 16] has shown income to play an important role in

Internet access availability to different user groups. Using the ESRI

dataset [24], we obtain the median household income at the granu-

larity of the census block group in the U.S. At this granularity, the

ESRI dataset is comprehensive and covers 98.6% (214K out of 217K)

of all block groups in the U.S. In addition to median household in-

come, we also obtain the population of each census block group in

the U.S. using [24].

To the median household income data, we also include the type

of geographic area (urban/rural); again, prior studies have shown

that the region type has an impact on Internet access availability

and quality [57]. In contrast to median household income, the dis-

tinction between rural and urban area types are made at the level

of census blocks. On average, there are 39 blocks present in a cen-

sus block group [19]. We utilize data from the 2010 U.S. Census [1]

to first obtain each census block’s designation. Subsequently, we

aggregate all census blocks within a census block group to classify

the area type of the census block group based of the area type of a

simple majority of the blocks within that group. Our aggregation

allocates 22.7% of the total U.S. population of 330M to rural block

groups. This percentage of rural population is consistent with the

number reported by the Census [33, 34].

2.3 Curating an Aggregate Dataset

To understand the effect of different location types and demographic

attributes on Internet performance, we first need to assign each

tile in the Ookla dataset into the much larger areas of census block
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Figure 2: CDF of Ookla Speedtests across states in the U.S. in

Q2-2021.

groups because demographic information is only available at the

granularity of block group. Because the Ookla data provides the

geographic coordinates of each tile, we are able to allocate tiles to

the polygon boundaries of the census block groups. Post allocation,

analysis shows these tiles are present in roughly 94% of all census

block groups in the U.S. in each quarter of 2020 and the first two

quarters of 2021. To determine the Internet performance of a par-

ticular block group, we take the average of each network metric

for all the tiles that belong to that block group, and we weight by

the number of tests that originated from each tile. With this level

of aggregation, we are able to quantify the Internet performance

of census block groups within a state, placing higher weights to

tiles that have more number of tests.

2.4 Aggregated Dataset Overview

Prior work [52, 56] has demonstrated that, due to the Covid-19

pandemic, Internet traffic patterns changed significantly through

2020; traffic volume increased, and significant capacity upgrades

were made by service providers to meet the rising demand. This

change in Internet traffic dynamics is also captured in our high

level analysis of our aggregated dataset.

Table 1 presents the median download speed, upload speed and

latency (along with the inter-quartile range (IQR)) recorded across

all the tiles within the boundary of the U.S. over the six quarters.

Both the median download speed and upload speed increase dur-

ing our studied time period. The recorded median latency also im-

proves, decreaseing from 18ms from the first three quarters of 2020

and remaining at 16ms from Q4-2020 to Q2-2021.

Figure 1 shows the distribution of download speed in every state

in the U.S. in Q2-2021. New Jersey, Delaware, Maryland, Rhode Is-

land andMassachusetts recorded the bestmedian download speeds

during Q2-2021. During the same quarter, Wyoming emerged as

with the lowest download speed along with Arkansas, Montana,

Idaho and New Mexico. The median difference in download speed

is 149.40 Mbps between New Jersey andWyoming during Q2-2021.



Metric
Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021

Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

Download (Mbps) 86.49 121.65 86.46 123.98 92.18 131.72 105.84 144.80 114.12 152.80 126.34 173.73

Upload (Mbps) 11.68 18.54 11.74 19.04 12.25 21.99 13.71 24.92 14.77 27.50 15.37 29.19

Latency (ms) 18 17 18 16 18 16 16 13 16 13 16 13

Table 1: Aggregated statistics of all network metrics across in 2020 and 2021, by quarter.

Themedian download speed of New Jersey andDelaware remained

within the top five during Q1-2021 and all of 2020. Wyoming and

NewMexico, on the other hand, recorded the lowest median down-

load speed our studied time period.

New Jersey, Delaware, Rhode Island and Maryland also had the

highest median upload speeds during Q2-2021, while New Mexico

and Wyoming continued to have the lowest. The best and worst

performing states by median upload speed differed by 27.63Mbps

in Q2-2021. As observed in the case of download speed, the best

and worst performing states remained consistent during other the

quarters of 2020 and 2021. Similar trends were observed for latency.

Another critical difference in state-by-state data is the number

of tests that originate from each state as shown in Figure 2. There

were 2.8M Ookla Speedtests conducted in California in Q2-2021,

and 1.9M and 1.6M tests conducted in Texas and Florida, respec-

tively, representing the greatest number of tests by volume in the

nation. Once the number of tests are normalized by the popula-

tion of the respective states, there are 0.07 tests conducted per per-

son (pp) from each of these states. These same three states also

recorded the greatest number of tests during 2020 and Q1-2021.

North Dakota had the fewest tests (25K or 0.03 pp) followed by

South Dakota (26K or 0.03 pp) and Alaska (34K or 0.04 pp) in Q2-

2021. These states also produced the fewest tests in the other quar-

ters analysed in this work.

3 METHODOLOGY: QUANTIFYING IMPACT
ON PERFORMANCE

To understand the relationship between Internet performance, re-

gion type, and median income within a state, we need to com-

pare the Internet performance received by different user groups

in the Speedtest dataset. Ideally, controlled experiments would be

conducted to explore this relationship. However, as pointed out

in [45], Speedtest users are not randomly selected, thereby render-

ing controlled experiments infeasible in this scenario. To overcome

this limitation, similar to the methodology followed in the diverse

fields of epidemiology, sociology and economics, we utilize natural

experiments to conduct our analysis. By employing natural exper-

iments, we are able to pair two user groups who both conducted

Speedtestswhile differing in terms of the location ormedian house-

hold income. This pairing imitates randomness and allows us the

opportunity to explore the relationship between these factors and

Internet performance of Speedtest user groups [32, 45].

For every factor we consider in our natural experiments, we set

a null hypothesis, �퐻0, pose a hypothesis (�퐻 ) and compare the aver-

age Internet performance of two different types of block groups in

a state. These block groups can differ in terms of location type (ur-

ban/rural) or median household income (high/low income). This

approach allows us identify Internet inequity in the dimensions of

location and income within every U.S. state. Table 2 presents the

�퐻0 and �퐻 for the factors of location and income.

Factor �퐻0 �퐻

Location

No difference in ur-

ban and rural Inter-

net performance

Urban Internet perfor-

mance is better than ru-

ral Internet performance

Income

No difference in

urban high income

and urban low

income internet

performance

Urban high income

Internet performance

is better than urban

low income Internet

performance

Table 2: Null and alternative hypotheses in natural experi-

ments for detecting statistically significant difference in per-

formance between user groups.

To compare and detect a statistically significant difference in

Internet performance between Speedtest user groups, we employ

twomethodologies: i) one-tailed Komolgorov-Smirnov (K-S) 2 sam-

ple test [29] and ii) one-sided Mann–Whitney U (M-W U) test [30].

We employ these two separate tests to reduce the number of false

positives in detecting statistically significant differences in perfor-

mance between two user groups. These tests are non-parametric

and, therefore, can be used for non-normal distributions. The K-

S test captures the difference between two samples by evaluating

the maximum distance between the two distributions for a confi-

dence interval, �훼 . However, the K-S test is less sensitive to the dif-

ference in median between two distributions. The M-W U test, on

the other hand, detects the discrepancy between the mean ranks

of the two groups being compared and hence is more capable of

detecting a change in median values between the groups. To fur-

ther ascertain statistical significance and reduce Type-I errors [38]

while employing these two tests, we employ the Bonferroni correc-

tion technique [18] for multiple testing.

For the K-S test, we only consider two distributions to be statisti-

cally different when the �푝−�푣�푎�푙�푢�푒 is below 0.05, and the test statistic

(also known as�퐷−�푠�푡�푎�푡�푖�푠�푡�푖�푐) is greater than the corrected threshold

value for each experiment. Similarly, in the case of the M-W U test,

we consider a test statistic significant if the �푝 − �푣�푎�푙�푢�푒 is below 0.05.

For each test we conduct between two distributions, we analyze

whether there is a presence of strict/strong or weak conformance

to our expected hypothesis. We consider two distributions to be

strictly different if one distribution remains statistically different

from the other over the entire distribution. Suppose a distribution

leads another for some part while lagging otherwise, both with sta-

tistical significance. In that case, we consider such a crossover case

to be weak. The one-tailed nature of the two tests allows for the

evaluation of �푡�푒�푠�푡−�푠�푡�푎�푡�푖�푠�푡�푖�푐 (�퐷 in the case of K-S test) and �푝−�푣�푎�푙�푢�푒

(�푝 for both the K-S test and M-W U test) for both our hypothesis

and the null hypothesis. By so doing, we are able to quantify the

extent to which we failed to reject the null hypothesis and accept

our hypothesis for each test we conduct.

Suppose there is no statistical difference between the distribu-

tions of Internet performance of two different groups in a state. In

that case, we conclude that the association between region type or
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(c) Rhode Island
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(d) Delaware

Figure 3: Q1-2020 CDFs of download speeds, disaggregated by rural and urban block groups, in four example states.

demographic attribute and Internet performance metric is not sta-

tistically significant in that state. We employ these two tests across

all the states in the country.

4 PERFORMANCE WITHIN A STATE

In this section, we analyze how Internet performance varies be-

tween different population groups of Speedtest users within U.S.

states using the methodology described in Section 3. We present

our findings and highlight specific states where this performance

difference is detected across location type (Section 4.1) and median

household income (Section 4.2).

4.1 Impact of Location Type

We first employ our methodology to show the impact of location

type on Internet performance. Using the datasets described in Sec-

tion 2 and location hypotheses stated in Table 2, we quantify the

difference in performance between urban and rural block groups

within every U.S. state.

We evaluate the block group level distributions of the network

metrics for urban and rural areas across all states. For the K-S test,

we compare the distribution for each state per network metric and

either accept or reject �퐻0 based on the �퐷 and �푝 values obtained

from each comparison. Similarly, for the M-W U test, we accept or

reject �퐻0 based on the resulting �푝 value obtained by conducting

the one-sided test. We conduct this analysis on every quarter to

understand the change in performance over the course of 2020 and

the first two quarters of 2021.

We begin our analysis with Q1-2020. For both tests we observe a

statistically significant difference (strict) in distributions of urban

and rural block group download speeds in favor of our hypothe-

sis, �퐻 , in 47 states in the country. The states that did not show

a difference were Rhode Island, Delaware, and Connecticut. Fig-

ures 3(a) and (b) present two examples of states (Gerogia (GA) and

Louisiana (LA)) where the rural block groups recorded statistically

poorer performance than their urban counterparts across the stud-

ied time period (CDFs of Q1-2020 are shown as examples). In the

case of Rhode Island (RI) and Delaware (DE), as illustrated in Fig-

ures 3(c) and (d), the performance in the urban block groups was

not statistically better than that of rural block groups (for RI in Q1

and DE in both Q1 and Q4). Subsequent analysis of the remaining

quarters using both tests revealed 48, 49 and 49 states conforming

to our hypothesis in Q2, Q3 and Q4 of 2020, respectively. The num-

ber of conforming states remained 49 for the first two quarters of

2021.

We repeat the analysis to detect statistically significant differ-

ences in upload speeds between rural and urban block groups. Re-

sults show the urban block groups within 47 states outperform

their rural counterparts in Q1-2020. Similar to the case of down-

load speed, RI did not show any difference in upload speed be-

tween these two groups. However, unlike in the case of download

speed, New Hampshire and North Dakota rural block groups out-

performed urban block groups. Q3-2020 recorded 49 conforming

states. Q2 and Q4 of 2020, as well Q1- and Q2-2021, recorded 47

states that strictly conformed with our hypothesis. When analyz-

ing latency, 47 and 46 states conformed to our hypothesis in Q1-

and Q2-2020, with the number reducing to 45 in both Q3- and Q4-

2020. The number of conforming states increased to 46 and 47 for

Q1- and Q2-2021, respectively.

We next evaluate our location hypothesis on the number of Ookla

Speedtests per person that originate from the two types of block

groups. We set �퐻0 as the number of Speedtests per person orig-

inating from rural block groups is not less than the number of

Speedtests per person conducted in urban block groups. We pose

the hypothesis (�퐻 ) that the number of Ookla Speedtests that are

conducted per person in urban block groups will be greater than

that originating from rural blockgroups. About 20 states conformed

to this hypothesis in each quarter of 2020 and 2021. The remaining

30 states did not demonstrate any statistically discernible differ-

ence in the normalized Speedtest counts between these two loca-

tion types.

Takeaways. Our analysis of Internet performance for Speedtest

users shows a clear divide between rural and urban regions in

nearly every state in the country. In total, 49 different states con-

formed with our hypothesis and demonstrated a statistically sig-

nificant difference (in favor of urban areas) in performance in at

least one of the six quarters we analyzed. Rhode Island, the small-

est state in the U.S. by land mass [42], remained the sole exception,

where a statistically significant difference in performance was not

found in any quarter. Its smaller size could translate into ease in es-

tablishing network infrastructure throughout the state, as opposed

to bigger states with larger, and in part more difficult, terrains. Fur-

ther, while overall performance improved during the studied time

period, the rural block groups continued to fare worse than the

urban block groups in a vast majority of the states. However, the

average K-S test �퐷 −�푠�푡�푎�푡�푖�푠�푡�푖�푐 value between urban and rural block

groups across all the states reduced from 0.45 in Q1-2020 to 0.40

in Q2-2021, representing a small narrowing of the divide between

these location types. Finally, and surprisingly, our results indicate

that, once normalized by the total population, themajority of states



do not exhibit a bias towards the urban areas in the number of tests

per person.

4.2 Impact of Median Household Income

Wenext explore the relationship between an important demographic

variable, median household income, and Internet access quality.

Prior work [5] indicates that rural areas tend to have higher poverty

and lower median household income. Given the presence of this

relationship between location type and income, we analyse the

impact of median household income on Internet quality in urban

census block groups. To do so, we divide the urban block groups

within every state into two categories. Based on the median block

group level household income obtained from the ESRI dataset, we

calculate the average state household income for every state in

our dataset. With this average state income, we classify the block

groups whose median income lay below the state income as “Low

Income" block groups and those with income greater than or equal

to the state income as “High Income” block groups. Our null hy-

pothesis�퐻0 and alternative hypothesis�퐻 for income are presented

in Table 2.

Similar to our location related analysis, we begin our exploration

on the Ookla data from Q1-2020. Table 3 presents the number of

states where a statistically significant difference in download speed

was detected by the K-S test and M-W U test between high income

and low income census block groups. Figures 4(a) and (b) present

examples of states, Georgia and Louisiana, that strictly conform

with our hypothesis in both tests across all quarters. Arkansas, Al-

abama, and New Mexico are examples of other states that demon-

strated similar trends. The M-W U test detected an additional nine

states with statistically significant differences in download speed

compared to the K-S test. Texas, Alaska andCalifornia were amongst

the nine states that only weakly passed the K-S test; i.e., for some

download speed range, the low income neighborhoods outperform

the high income neighborhoods. Examples of states where the higher

income block groups recorded statistically worse download speed

compared to the lower income block groups in both tests are RI

and New Jersey (NJ) as observed from Figures 4(c) and (d). This ob-

servation is captured through the �퐷 value of 0.14 (0.15 in RI) with

the �푝 value of 1.04× 10−23 (1.84× 10−04 in RI) in favor of �퐻0 while

using K-S test. Other states that exhibit a similar pattern include

Delaware and Massachusetts.

In the next two of quarters of 2020, the number of states that

conformed with our hypothesis remained fairly similar to Q1-2020.

Q4-2020 (as well as first two quarters of 2021) witnessed a rise in

the number of conforming states for both tests. Across these six

quarters, 14 states conformed to our hypothesis in every quarter

for K-S test. This number increases to 27 states for the case of M-

W U test. This indicates the presence of a large number of states

where the median download speed of high income block groups re-

mained statistically better than the low income block groups over

the course of 18 months.

We now turn to upload speed, in which the number of states

where higher income blockgroups achieve better performance than

lower income block groups is 31 (K-S test) and 35 (M-W U test)

in Q1- and Q2-2020. Examples of states where our hypothesis is

strictly held include Louisiana, Arkansas and Virginia. While there

are a number of states where the low income block groups do not

exhibit statistically worse upload speed than the high income block

groups, the converse does not hold for any state. A similar trend

is observed during the rest of 2020 and first two quarters of 2021.

In the case of latency, the number of conforming states remained

fairly similar for the K-S test. The M-W U test, however, had more

conforming states than to the K-S test except for Q2-2021.

Finally, we investigate whether there exists a statistical differ-

ence in the number of Ookla Speedtests conducted in low and

high income block groups. The �퐻0 is the number of Speedtests

(pp) in low income block groups is not less than that of high in-

come block groups in a given state. We then pose�퐻 as the number

of Speedtests(pp)in a high income block group is greater than the

number of tests that originate from the low income block groups.

Results show a large number of states reject the null hypothesis

across all quarters (45, 48, 48, 46, 45, and 47 states in Q1-Q4 of

2020 and Q1-Q2 of 2021, respectively). This indicates that users

from high income block groups tend to conduct a greater num-

ber of Speedtest measurements compared to the low income block

groups.

Takeaways.Our analysis of the relationship between income and

Internet performance produces some key results. First, there exists

multiple states, such as Georgia and Louisiana, where we detect

statistically better Internet performance in favor of Speedtest users

from high income block groups. This points towards a likely gap

in Internet access quality between these two types of income ar-

eas in these states. In a parallel work, we have analyzed the pricing

structure for Internet services offered by themajor Internet service

providers around the country. Our preliminary results show that

cost of Internet access remains largely invariant of location and in-

come across the country. As a result, the higher tiers of Internet ser-

vice likely remain out of reach for lower income populations. On

the other hand, states such as New Jersey and Rhode Island do not

reveal a relationship between income and Internet quality during

our study period. This likely indicates the pervasiveness of qual-

ity Internet access across these states. Finally, our analysis on the

number of Speedtests demonstrates one source of bias that exists

in crowdsourced active measurement platformswhere the Internet

performance of lower income users may be under-represented.

5 ANALYSIS OF STATES DEMONSTRATING
DIGITAL INEQUALITY

As discovered in Section 4, a gap in Internet quality is present for

users of Speedtest across many states in the dimensions of location

and income. Both the K-S and M-W U tests revealed that a vast

majority of states demonstrate this divide across urban and rural

locations. However, in terms of income, 23 states did not reveal the

presence of digital inequality in any of the six quarters analysed.

In this section, we specifically examine the characteristics of the

states that conformed with our income hypothesis to determine

whether and how they differ from those of the non-conforming

states.

5.1 Area

Figure 5(a) shows the distribution of the geographic area of the

conforming and non-conforming states. The largest conforming



0 100 200 300 400 500
Download Speed (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

. F
ra

ct
io

n 
of

 B
lo

ck
 G

ro
up

s

Low Income
High Income

(a) Georgia

0 100 200 300 400 500
Download Speed (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

. F
ra

ct
io

n 
of

 B
lo

ck
 G

ro
up

s

Low Income
High Income

(b) Louisiana
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(c) Rhode Island
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(d) New Jersey

Figure 4: Q1-2020 CDFs of download speeds, disaggregated by low and high income block groups, in four example states.

Metric
Q1-2020 Q2-2020 Q3-2020 Q4-2020 Q1-2021 Q2-2021

K-S M-W U K-S M-W U K-S M-W U K-S M-W U K-S M-W U K-S M-W U

Download (Mbps) 21 30 19 28 20 30 27 31 25 32 24 32

Upload (Mbps) 31 35 31 35 33 36 32 37 33 36 30 36

Latency (ms) 22 27 21 25 21 29 22 26 22 26 21 21

Table 3: Number of states that strictly conformed with our income hypothesis for all network metrics.

state is Alaska, with an area of roughly 700K square miles (mi2).

Other larger conforming states include Texas and California. On

the other hand, the largest non-conforming state (states that failed

to conform in any of the six quarters) is Montana, with an area

of 150K mi2. Excluding Alaska, Texas and California, the average

size of a conforming state is 60K mi2; when including these three

large states, the average size jumps to 93Kmi2. In both cases, this is

larger than the average size of all non-conforming states (46K mi2).

Smaller state size could potentially ease the challenge and cost of

network infrastructure deployment, and subsequently make it eas-

ier to provide higher Internet quality to all populations within a

state.

5.2 Population

The population distributions of conforming and non-conforming

states are demonstrated in Figure 5(b). California, with a popula-

tion of 40M, is the most populous conforming state. In the non-

conforming category, Ohio possesses the largest populationof 12M.

On average, non-conforming states show much lower populations

(3.2M) compared to conforming states (8.2M). The greater popu-

lations of the conforming states, coupled with greater geographic

size, could cause challenges in network infrastructure deployment,

resulting in disparities in physical equipment location and subse-

quent inequality of access across different population groups.

5.3 Income Dispersion

To represent the income inequality within a given state, we com-

pute the ratio of the 90�푡ℎ percentile (P90) and 10�푡ℎ percentile (P10)

block group level median household income of each state. A higher

�푃90/�푃10 ratio indicates a higher dispersion of income within the

state. As can seen from Figure 5(c), conforming states tend to have

higher ratio compared to non-conforming states. This is further il-

lustrated by the higher average ratio of 3.4 for conforming states

compared to 3 for the non-conforming states. States with higher in-

come dispersion could potentially have a gap in purchasing power

that can impact a low income subscriber’s ability to purchase higher

cost subscription plans, which are typically associated with better

Internet quality (download and upload speeds).

6 DISCUSSION

In this section, we discuss the significant challenges associated

with research in the general space of digital inequality. Based on

the experience of aggregating the presented data, we also provide

recommendations that we hope could lead to additional research

in assessing and bridging digital inequity.

6.1 Challenges

6.1.1 Lack of Granular InternetMeasurement Data. Many publicly

available Internet measurement datasets, such as the FCC’s Mea-

suring Broadband America (MBA) project [31], lack both expan-

sive and fine-grained geographic coverage. This is in part because

of the difficulty in collecting access measurement data with strong

spatial and temporal fidelity due to challenges of privacy-preserving

data collection from user homes. This lack of fine-grained, spatially-

diverse Internet measurement data across varied demographic vari-

ables presents significant challenges to detailed analysis of Inter-

net quality and affordability [47]. The magnitude of this challenge

is highlighted by the recent FCC initiative [28]. Through this ini-

tiative, the FCC has asked researchers and stakeholders to propose

methodologies and techniques to gather high-fidelity, fine-grained

data to create more comprehensive and accurate maps of Internet

availability and quality.

6.1.2 Lack of Understanding User Context. A dataset such as the

one from Ookla provides information on network quality of ser-

vice from different vantage points. However, the metrics collected

during these tests do not shed light on critical user related informa-

tion such as the subscribed tier of service and the actual quality of

experience for different application genres. Without knowing the

ISP and tier of subscription, it is difficult to understand the funda-

mental reasons behind poor quality of service. Similarly, without

information about user quality of experience, it is difficult to de-

termine the usability of different applications. Collection of this

data in a secure and privacy preserving manner remains an open

research problem.

6.1.3 Lack of Broadband Pricing Data. Through the FCC’s Urban

Rate Survey [40], aggregated information related to the price and
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Figure 5: Characteristic distributions for states with an Internet quality gap between high and low income populations.

speed offered by ISPs is reported at the granularity of county, not

individual homes. The U.S. broadband industry suffers from a se-

vere shortage of publicly available datasets that contain informa-

tion about Internet access plan speeds and pricing. Practices em-

ployed by ISPs are difficult to study and analyse in the absence of

such information. We hope that our work draws further attention

to this research space so that issues related to broadband availabil-

ity and cost, that in turn adversely affect the penetration of high

speed Internet connectivity, can be more deeply studied.

6.2 Recommendations

6.2.1 Publicly Available Data. Given the complex nature of digital

inequality, the integration of different data types is needed to bet-

ter characterize and ameliorate its manifestations. However, the

overhead associated with some data collection efforts can be sig-

nificant. For instance, the FCC’s Measuring Broadband America

(MBA) project [31] requires measurement-capable routers to be

shipped to volunteers. Hence it may make sense of incentivize or

mandate ISPs to periodically report access quality measurements

to/from their subscribers. Placement of suchmeasurement datasets

in the public sphere would significantly aid research that character-

izes and pinpoints the specific locations of digital inequities, par-

ticularly across diverse user groups.

6.2.2 Examination of ISP Practices. While our work did not study

the Internet service pricing structure and its impact on different

population groups, prior work [59] has indicated the presence of

certain ISP monopolies across different areas of the U.S. Due to the

market monopoly, ISPs could potentially exert Internet pricing that

leaves certain customer groups paying for more than what they

would otherwise in a market with multiple competing ISPs. These

findings point towards a need to conduct an in-depth and extensive

examination of ISP competition across states. Careful analysis is

also needed to better understand Internet access pricing structures

and the role the cost of access plays in digital inequality.

6.2.3 Adjusted Cost of Internet Access. Our results indicate that

Speedtest performance in lower income areas lags behind that of

higher income areas. One potential cause could be the cost of ac-

cess to high quality Internet service. Pricing structures that do not

vary based on median income can have the effect of marginalizing

some communities and reducing their ability to access higher tiers

of Internet service. The Emergency Broadband Benefit initiative

by the FCC [23] subsidises the cost of high speed Internet for low

income households and highlights the need to support certain com-

munities and individuals in their ability to purchase high quality

Internet. While an extremely positive step, there have been indica-

tions that some ISPs may be forcing customers intomore expensive

plans in order to take advantage of these subsidies [22, 43]. As sub-

sequent assistance plans are rolled out, it is important to monitor

usage and impact on the populations they are meant to assist.

7 RELATED WORK

Every year, the Census, through the American Community Survey

(ACS) One Year estimates, compiles a list of cities with the worst

Internet connectivity in the country [20]. However, this estimate is

only done for cities with population greater than 65, 000, leaving

other regions unassessed. Critically, it is these smaller communi-

ties that are more likely to have sub-par Internet access. Similar

to our work, [13] analysed the relationship between income and

download speed at the geographic granularity of zip codes in the

U.S. The work utilized income data (grouped into five income bins)

obtained from 2017 tax returns filed with the Internal Revenue Ser-

vice. The study demonstrated a positive correlation between zip

code income and download speed. In [47], the authors conducted

an analysis similar to ours using the Ookla Open data [10] and

demonstrated the variability of important Internet quality metrics

between communities. Our work goes a step further in that we

conduct a comprehensive analysis at finer geographic granularity

to understand several dimensions (location, income and cost of ac-

cess) of Internet access variability.

The work conducted in [57] demonstrated that the FCC signif-

icantly overestimates coverage and highlighted the lack of cov-

erage in rural and marginalized communities. The work in [44]

showed moderate correlation between reliability of Internet ser-

vice (packet loss) and type of area (urban/rural). Through our anal-

ysis, we show that the quality of Internet between different states

and different communities within these states also varies. Other

studies have shown the shortcomings of FCC’s Form 477 [26]. In

a recent study conducted by Microsoft [41], it was estimated that

162.8 million Americans did not have access to high-speed broad-

band, a number far greater than the FCC’s estimate. A similar study [25]

estimated 42 million (6.5% more than FCC estimates) Americans

do not have access to broadband Internet. In [58, 60, 61, 64], demo-

graphic factors such as location, race and/or income are all shown

to impact Internet access.We advance this bodyofwork and demon-

strate that while areas may have Internet access, the quality of that

access may differ widely by location and income.

Similar to our work, the authors of [48] used crowdsourcedmea-

surements to benchmark Internet performance acrossmultiplemet-

ropolitan areas. In [49], cable and DSL performance in residen-

tial areas of North America and Europe was characterized. In [46,



54, 55, 63], additional work related to understanding Internet per-

formance of different user groups was conducted. While relevant,

these prior studies did not attempt to understand how the Internet

performance varies between users of different locations (urban/ru-

ral) or income levels. Finally, cost effective deployment solutions

were proposed to increase coverage in unserved or under-served

areas in [50, 53, 62].

8 CONCLUSION

Internet inequality continues to persist across the U.S. Ourwork in-

tegrates data on Internet performance with location and income to

exploremultiple dimensions inwhich this dividemanifests amongst

users of the popularOokla Speedtest application.Our findings point

towards the need to develop more accurate Internet coverage, af-

fordability and quality measurement tools to facilitate more fine-

grained analysis of the quality of experience of user groups. Addi-

tionally, given the lack of information that currently exists in the

broadband market, our work highlights the need for increasing vis-

ibility in this segment to better understand the root causes behind

Internet access quality differentials between users. It is our hope

that our findings can help guide the efforts of policymakers and

researchers in narrowing this persistent digital gap.
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natural experiment is an,exposures arguably resembles random assignment..

[33] 2021. One in Five Americans Live in Rural Areas. Retrieved 09/28/2021 from
https://www.census.gov/library/stories/2017/08/rural-america.html

[34] 2021. Rural areas in the United States.
https://en.wikipedia.org/wiki/Rural_areas_in_the_United_States#: :textR̄ural
areas in the United States C often referred to as,) C live in Rural America..

[35] 2021. SPEEDTEST. Retrieved 10/17/2021 from https://www.speedtest.net/
[36] 2021. Speedtest by Ookla Global Fixed and Mobile Net-

work Performance Map Tiles. Retrieved 10/18/2021 from
https://github.com/teamookla/ookla-open-data

[37] 2021. THE SPEEDTEST SERVER NETWORK. Retrieved 10/11/2021 from
https://www.speedtest.net/speedtest-servers

[38] 2021. Type I and type II errors. Retrieved 10/18/2021 from
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors

[39] 2021. Updated Demographics. Retrieved 10/10/2021 from
https://doc.arcgis.com/en/esri-demographics/data/updated-demographics.htm

[40] 2021. Urban Rate Survey Data & Resources. https://www.fcc.gov/economics-
analytics/industry-analysis-division/urban-rate-survey-data-resources.

[41] 2021. U.S. Broadband Usage Percentages. Retrieved 10/12/2021 from
https://github.com/microsoft/USBroadbandUsage\Percentages

[42] 2021. US States - Ranked by Population 2021. Retrieved 10/15/2021 from
https://worldpopulationreview.com/states

[43] 2021. Verizon forces users onto pricier plans to get $50-per-month gov’t sub-
sidy. https://arstechnica.com/tech-policy/2021/05/verizon-uses-fcc-pandemic-
subsidy-to-upsell-customers-to-pricier-plans/.

[44] Zachary S. Bischof, Fabian E. Bustamante, and Nick Feamster. 2017. Characteriz-
ing and Improving the Reliability of Broadband Internet Access. In 46th Research
Conference on Communication, Information and Internet Policy (TPRC).

[45] Zachary S. Bischof, Fabian E. Bustamante, and Rade Stanojevic. 2014. Need,
Want, Can Afford: BroadbandMarkets and the Behavior of Users. In Proceedings
of the ACM Internet Measurement Conference (IMC ’14). 73–86.

[46] Timm Böttger, Ghida Ibrahim, and Ben Vallis. 2020. How the Internet Reacted
to Covid-19: A Perspective from Facebook’s Edge Network. In Proceedings of the
ACM Internet Measurement Conference (IMC ’20). 34–41.

[47] Francesco Bronzino, Nick Feamster, Shinan Liu, James Saxon, and Paul Schmitt.
2021. Mapping the Digital Divide: Before, During, and After COVID-19. In Con-
ference on Communications, Information, and Internet Policy (TPRC). 1–11.

https://www.pewtrusts.org/en/trust/archive/summer-2019/americas-digital-divide
https://www.pewtrusts.org/en/trust/archive/summer-2019/americas-digital-divide
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://www.db.com/newsroom_news/
https://www.speedtest.net/insights/blog/announcing-ookla-open-datasets/
https://www.fastly.com/blog/digital-divide
https://en.wikipedia.org/wiki/Bonferroni_correction
https://www.esri.com/en-us/home
https://broadbandnow.com/research/fcc-underestimates-unserved-by-50-percent
https://www.fcc.gov/economics-analytics/industry-analysis-division/form-477-resources
https://www.cpuc.ca.gov/General.aspx?id=2541
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_tests
https://www.fcc.gov/general/measuring-broadband-america-open-methodology
https://www.census.gov/library/stories/2017/08/rural-america.html
https://www.speedtest.net/
https://github.com/teamookla/ookla-open-data
https://www.speedtest.net/speedtest-servers
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://doc.arcgis.com/en/esri-demographics/data/updated-demographics.htm
https://github.com/microsoft/USBroadbandUsage\Percentages
https://worldpopulationreview.com/states


[48] Igor Canadi, Paul Barford, and Joel Sommers. 2012. Revisiting Broadband Per-
formance. In Internet Measurement Conference (IMC ’12). 273–286.

[49] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan Saroiu.
2007. Characterizing Residential Broadband Networks. In Internet Measurement
Conference (IMC ’07).

[50] Ramakrishnan Durairajan and Paul Barford. 2017. A Techno-Economic Ap-
proach for Broadband Deployment in Underserved Areas. Computer Commu-
nication Review 47 (04 2017), 13–18.

[51] Nick Feamster and Jason Livingood. 2019. Internet Speed Measurement: Current
Challenges and Future Recommendations. arXiv:1905.02334 [cs.NI]

[52] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,
Christoph Dietzel, Daniel Wagner, MatthiasWichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, and Georgios Smaragdakis. 2020. The Lock-
down Effect: Implications of the COVID-19 Pandemic on Internet Traffic. In In-
ternet Measurement Conference (IMC ’20).

[53] Shaddi Hasan, Mary Claire Barela, Matthew Johnson, Eric Brewer, and Kurtis
Heimerl. 2019. Scaling Community Cellular Networks with CommunityCellu-
larManager. In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI).

[54] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alperovich,
Dmitry Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. 2019. All Things Con-
sidered: An Analysis of IoT Devices on Home Networks. In 28th USENIX Security
Symposium (USENIX Security 19). 1169–1185.

[55] Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and Alan Mis-
love. 2019. A Large-Scale Analysis of Deployed Traffic Differentiation Prac-
tices. In Proceedings of the ACM Special Interest Group on Data Communication.
130–144.

[56] Shinan Liu, Paul Schmitt, Francesco Bronzino, and Nick Feamster. 2021. Char-
acterizing Service Provider Response to the COVID-19 Pandemic in the United
States. In Passive and Active Measurement. 20–38.

[57] David Major, Ross Teixeira, and Jonathan Mayer. 2020. No WAN’s Land: Map-
ping U.S. Broadband Coverage with Millions of Address Queries to ISPs. In In-
ternet Measurement Conference (IMC ’20). 393–419.

[58] Steven P. Martin and John P. Robinson. 2014. The Income Digital Divide: Trends
and Predictions for Levels of Internet Use. Social Problems 54, 1 (2014), 1–22.

[59] Tejas N. Narechania. 2021. Convergence and a Case for Broadband Rate Regula-
tion. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3810367

[60] James E. Prieger. 2003. The Supply Side of the Digital Divide: Is
There Equal Availability in the Broadband Internet Access Market? Work-
ing Papers 50. University of California, Davis, Department of Economics.
https://ideas.repec.org/p/cda/wpaper/50.html

[61] James E. Prieger and Wei-Min Hu. 2008. The broadband digital divide and the
nexus of race, competition, and quality. Information Economics and Policy 20, 2
(2008), 150 – 167.

[62] Spencer Sevilla, Matthew Johnson, Pat Kosakanchit, Jenny Liang, and Kur-
tis Heimerl. 2019. Experiences: Design, Implementation, and Deployment of
CoLTE, a Community LTE Solution. In The 25th Annual International Conference
on Mobile Computing and Networking (MobiCom ’19).

[63] Martino Trevisan, Danilo Giordano, Idilio Drago, MaurizioMatteo Munafo, and
Marco Mellia. 2020. Five Years at the Edge: Watching Internet From the ISP
Network. IEEE/ACM Transactions on Networking 28, 2 (2020), 561–574.

[64] Brian Whitacre, Roberto Gallardo, and Sharon Strover. 2014. Does rural broad-
band impact jobs and income? Evidence from spatial and first-differenced regres-
sions. The Annals of Regional Science 53 (2014), 649–670.

https://arxiv.org/abs/1905.02334
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3810367
https://ideas.repec.org/p/cda/wpaper/50.html

	Abstract
	1 Introduction
	2 Datasets
	2.1 Performance Data
	2.2 Demographic Data
	2.3 Curating an Aggregate Dataset
	2.4 Aggregated Dataset Overview

	3 Methodology: Quantifying Impact on Performance
	4 Performance within a State
	4.1 Impact of Location Type
	4.2 Impact of Median Household Income

	5 Analysis of States demonstrating Digital Inequality
	5.1 Area
	5.2 Population
	5.3 Income Dispersion

	6 Discussion
	6.1 Challenges
	6.2 Recommendations

	7 Related Work
	8 Conclusion
	References

