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With the advent of next-generation sequencing technologies, whole-plastome data can
be obtained as a byproduct of low-coverage sequencing of the plant genomic DNA.
This provides an opportunity to study plastid evolution across groups, as well as testing
phylogenetic relationships among taxa. Within the order Malpighiales (~16,000 spp.),
the Podostemaceae (~300 spp.) stand out for their unique habit, living attached to
rocks in fast-flowing aquatic habitats, and displaying highly modified morphologies that
confound our understanding of their classification, biology, and evolution. In this studly,
we used genome skimming data to assemble the full plastid genome of 5 species within
Podostemaceae. We analyzed our data in a comparative framework within Malpighiales
to determine the structure, gene content, and rearrangements in the plastomes of the
family. The Podostemaceae have one of the smallest plastid genomes reported so far
for the Malpighiales, possibly due to variation in length of inverted repeat (IR) regions,
gene loss, and intergenic region variation. We also detected a major inversion in the large
single-copy region unique to the family. The uncommon loss or pseudogenization of ycf1
and ycf2 in angiosperms and in land plants in general is also found to be characteristic
of Podostemaceae, but the compensatory mechanisms and implications of this and of
the pseudogenization of accD, rpl22, and clpP and loss of rps16 remain to be explained
in this group. In addition, we estimated a phylogenetic tree among selected species in
Malpighiales. Our findings indicate that the Podostemaceae are a distinct lineage with long
branches that suggest faster rates of evolution in the plastome of the group, compared
with other taxa in the order. This study lays the foundations for future phylogenomic
studies in the family.

Keywords: genome rearrangements, Malpighiales, phylogenomics, plastome, Podostemaceae

Frontiers in Plant Science | www.frontiersin.org 1

August 2019 | Volume 10 | Article 1035


https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.01035
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science/
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.01035&domain=pdf&date_stamp=2019-08-20
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:ambedoya@uw.edu
https://doi.org/10.3389/fpls.2019.01035
https://www.frontiersin.org/article/10.3389/fpls.2019.01035/full
https://www.frontiersin.org/article/10.3389/fpls.2019.01035/full
https://www.frontiersin.org/article/10.3389/fpls.2019.01035/full
https://www.frontiersin.org/article/10.3389/fpls.2019.01035/full
https://loop.frontiersin.org/people/743916
https://loop.frontiersin.org/people/757009
https://loop.frontiersin.org/people/95452
https://loop.frontiersin.org/people/767143

Bedoya et al.

Plastid Genomes of Podostemaceae

INTRODUCTION

The plastids have a relatively small, maternally inherited, haploid
genome (Sugiura, 1992). It ranges between 120 and 170 kb in
length and is generally composed of a circular structure with
two IRs that are mirror images in terms of gene content (IRa and
IRb), separated from each other by a large and a small single-
copy regions (LSC and SSC, respectively) (Downie and Palmer,
1992; Sugiura, 1992). Because the plastome encodes genes that
are essential for fundamental processes such as photosynthesis
and its own replication, it has been generally understood that
its genome shows a relatively high degree of conservation in
size, structure, and gene content within land plants (Palmer,
1985; Wicke et al., 2011). However, structural rearrangements,
gene losses, and expansions and contractions in IRs are widely
documented across species (Goulding et al., 1996; Krause, 2011;
Weng et al.,, 2014; Schwarz et al., 2015; Xu et al., 2015; Rabah
et al,, 2019; Shrestha et al., 2019). Such rearrangements have
been relevant in a systematic framework when supporting the
monophyly of certain groups (Jansen and Palmer, 1987; Downie
and Palmer, 1992; Hoot and Palmer, 1994; Cosner et al., 2004).
With the advent of next-generation sequencing technologies,
information from whole-genome data is quickly available at
a low cost (Metzker, 2009). Given that plastomes exist in high
copy numbers in plant cells, even a genome skimming approach
where the nuclear genome is sequenced at low-coverage provides
a mechanism to obtain a fully assembled plastome as a byproduct
(Straub et al.,, 2012; Olmstead and Bedoya, 2019). Over the past
few years, this has provided the advantage of rapidly generating
whole-plastid sequences for a large number of taxa (Daniell
et al, 2016). This information has been used to disentangle
phylogenetic relationships and to study plastid evolution in
selected groups of plants (Ruhfel et al., 2014; Cauz-Santos et al.,
2017; Firetti et al., 2017; Gitzendanner et al., 2018; Li and Zheng,
2018; Liu et al., 2018; Li et al., 2019; Lloyd Evans et al., 2019).
Malpighiales is a large order with 36 families, more than 700
genera, and ~16,000 species (Wurdack and Davis, 2009; The
Angiosperm Phylogeny Group, 2016). Full plastid assemblies
for 111 species in the families Chrysobalanaceae, Clusiaceae,
Erythroxylaceae, Euphorbiaceae, Linaceae, Malpighiacee,
Passifloraceae, Salicaceae, and Violaceae currently reside in
the NCBI database. In addition, previous studies using whole-
plastome data of Passiflora edulis Sims (Cauz-Santos et al,
2017) and of Byrsonima crassifolia (L.) Kunth and Byrsonima
coccolobifolia Kunth (Menezes et al., 2018) have provided insights
into plastome evolution in the order Malpighiales, reporting
rearrangements that are unique to Passifloraceae (Rabah et al,,
2019; Shrestha et al., 2019), identifying regions of high sequence
divergence, and helping resolve the phylogeny of the group.
Within the morphologically and ecologically diverse group
Malpighiales, the family Podostemaceae stands out for its unusual
habit (Xi et al., 2012). Riverweeds (as members of this family are
also called) are notable for living attached to rocks in fast-flowing
water habitats such as river rapids and waterfalls, with flowers
that project above the water surface and fruits that develop and
shed seeds only in the dry season when the water level is low
(van Royen, 1951; Philbrick and Novelo, 1995; Rutishauser, 1995;

Rutishauser, 1997; Philbrick and Novelo, 1998). Much
remains to be explored in Podostemaceae despite a number of
morphological (van Royen, 1951; Novelo and Philbrick, 1997;
Rutishauser et al., 1999; Jager-Ziirn, 2011), developmental
(Rutishauser, 1995; Rutishauser, 1997; Jager-Ziirn, 2005, Jager-
Ziirn, 2007), and karyological (Oropeza et al., 1998; Oropeza
etal,, 2002) studies followed by phylogenetic and biogeographical
investigations (Kita and Kato, 2001; Ruhfel et al., 2011; Tippery
et al., 2011; Koi et al., 2012; Ruhfel et al., 2016).

The extreme conditions experienced by the Podostemaceae
have resulted in highly modified vegetative and reproductive
morphologies (Eckardt and Baum, 2010). Such forms constitute a
taxonomical challenge because the high degree of modification of
vegetative and reproductive structures results in a small number
of morphological traits that are informative, making the study
of the biology and evolution of this group difficult. Given this
scenario, genomic data surface as the tool to gain better insight
into the evolution of this notable group of plants.

In this study, we present the fully annotated plastid
genomes of 5 species of Podostemaceae: Apinagia riedelii Tul.,
Marathrum capillaceum (Pulle) P. Royen, Marathrum utile Tul.,
Monostylis capillacea Tul., and Tristicha trifaria (Bory ex Willd.)
Spreng. We analyzed our data in a comparative framework
within Malpighiales to detect rearrangements and structural
characteristics of the plastome of this distinctive family,
taking advantage of the data already available in the order. A
phylogenetic tree was inferred with whole-plastid data to test
relationships and examine sequence divergence and amount of
change within the family and order. Our investigation constitutes
the first report of a complete nucleotide sequence and structure
of the plastid genome in the Podostemaceae.

MATERIALS AND METHODS

Taxon Sampling, DNA Extraction,

and Sequencing

Samples of A. riedelii, M. capillaceum, M. utile, M. capillacea, and
T. trifaria were collected in South Americaand Africa. Information
on collection localities and voucher specimens is shown in
Table 1. Together, these samples represent 2 of 3 subfamilies
within Podostemaceae (Podostemoideae and Tristichoideae).
Subfamily Tristichoideae is sister to a clade comprising the
Podostemoideae and the monotypic Weddellinoideae (Kita and
Kato, 2001). Therefore, any patterns shared between Tristichoideae
and Podostemoideae would most likely be synapomorphies of the
Podostemaceae. All species included have a distribution restricted
to the Neotropics except for the pantropical T. trifaria.

Total genomic DNA was extracted from silica-dried leaf tissue
using a modified CTAB protocol and purified by isopropanol
precipitation, or via silica columns (Epoch Life Science, Missouri
City, TX, USA) from the aqueous supernatant after chloroform/
isoamyl alcohol purification (Neubig et al., 2014). DNA was run
on a 1% agarose gel to assess DNA quality, and concentration was
measured with a Qubit fluorometer using the dsDNA BR Assay
Kit (Thermo Fisher Scientific, Waltham, MA, USA). A volume of
90 uL of total DNA of M. utile was used to prepare a library with
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TABLE 1 | Provenance, voucher information, and/or GenBank accession numbers of the species in Malpighiales whose plastomes were included in this study.

Species Family Voucher (Herbarium) GenBank accession no. Collection locality
Hirtella racemosa Chrysobalanaceae - NC_024060

Garcinia mangostana Clusiaceae NC_036341

Byrsonima crassifolia Euphorbiaceae — NC_037192

Passiflora edulis Passifloraceae - NC_034285

Apinagia riedelii* Podostemaceae C.P. Bove 2513 (R) MN165812 Brazil, South America
Marathrum utile* Podostemaceae AMB 497 (ANDES) MN165814 Colombia, South America
Marathrum capillaceum* Podostemaceae C.P. Bove 2493 (R) MN165813 Brazil, South America
Monostylis capillacea* Podostemaceae C.P. Bove 2524 (R) MN165815 Brazil, South America
Tristicha trifaria* Podostemaceae A. Mesterhazy MLI 128(2) MN165816 Mali, Africa

Salix purpurea Salicaceae - NC_026722

Viola seoulensis Violaceae — NC_026986

Voucher number and collection locality are provided only for those species whose genome was generated in this study (*).

an average fragment size of 500 bp, using the Kapa Biosystems
Hyper prep kit at the QB3 Vincent J. Coates Genomics Sequencing
Laboratory at UC Berkeley. Whole-genome shotgun sequencing
was also performed at the QB3 Sequencing Laboratory, with
150 bp paired-end reads on 1 lane of an Illumina HiSeq4000. For
the remaining species, a volume of 50 pL of 50 ng/uL total DNA
was used to prepare libraries with average fragment size of 500 bp
by Rapid Genomics LLC (Gainesville, FL, USA). Whole-genome
sequencing of 150 bp paired-end reads was performed at the same
facility by multiplexing samples in 1 lane of an Illumina HiSeqX.

Plastome Assembly and Annotations

Read quality of paired-end Illumina reads was assessed in FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
and adapter sequences were removed using Trimmomatic (Bolger
et al., 2014). The pipeline GetOrganelle (Jin et al., 2018) was
used to select trimmed reads that corresponded to the plastid
using the plastome of Garcinia mangostana L. (Clusiaceae) as
a reference. The pipeline was also used to assemble the filtered
reads. The annotations of the plastomes of G. mangostana,
Manihot esculenta Crantz, and Salix purpurea L. (see Table 1
for GenBank accession numbers) were transferred to the final
circular plastid consensus sequences of A. riedelii, M. utile, M.
capillaceum, M. capillacea, and T. trifaria with the tool “Annotate
from source” in Geneious 9.1.8. (Biomatters Ltd., Auckland, New
Zealand). Annotations were manually inspected, and tRNAs
were further checked with tRNAscan-SE v2.0 as implemented in
GeSeq (Tillich et al., 2017). GC content and boundaries between
the IRa IRb, LSC, and SSC regions were determined in Geneious.
The diagrams for the circular genomes were obtained with the
program OGDRAW (Greiner et al., 2019).

In addition, a second approach to plastome assembly was
conducted for M. utile to confirm the output of GetOrganelle.
In this second assembly method, plastid filtered reads from
GetOrganelle were imported in Geneious 9.1.8. The BBDuk tool
was used to trim low-quality bases (Q20) and discard short reads
(<10 bp). Reads were further normalized and error corrected using
the tool BBNorm with target coverage level 30. A total of 225,896
filtered reads were assembled de novo using the Medium sensitivity/
Fast option in the Geneious Prime de novo assembler. The options
“Don’t merge variants” and “Produce scaffolds” were left unchecked.

In order to obtain a draft circular plastome, the consensus
sequence of the largest contig (112,008 bp with 41.9X mean
coverage) was generated. The Geneious Prime plugin “Find
Repeats” was used in order to find the IRs. The de novo assembly
of short reads in Geneious does not allow a full assembly of both
IRs. Instead, it generates a consensus sequence with 1 full IR and
the truncated ends of the second IR. For this reason, the latter were
trimmed, and the single instance of the full IR was extracted. This
extracted IR was reversed complement and concatenated with
the previously trimmed consensus sequence of the largest contig.
The generated draft genome was used as a reference to map the
trimmed paired reads without normalization. This map-to-
reference assembly was used for single nucleotide polimorphism
(SNP) variant calling and to generate a final full circular plastid
consensus sequence.

Plastome of Podostemaceae in a
Comparative Framework

To detect differences in the plastomes of the selected species of
Podostemaceae with respect to other Malpighiales, we compared
the assembled plastid genomes with six species representing
six plant families in the order Malpighiales. The families
included for comparison represent all the three major clades in
Malpighiales (Xi et al., 2012). Accession numbers for the species
included in this comparative analysis are listed in Table 1. Visual
inspection of rearrangements was performed using progressive
Mauve v.2.4.0 with default “seed families” and default values for
all other parameters (Darling, 2004). As Mauve cannot handle
duplicated regions, one of the IRs of each genome was manually
removed following Firetti et al. (2017). The boundaries between
the IRa IRDb, LSC, and SSC regions in all species were inspected
in Geneious using the fully assembled plastids.

We used the software mVista in Shuffle-LAGAN mode
to explore variation in gene content within Malpighiales.
Garcinia mangostana was used as reference in order to detect
possible gene losses, gene variation, or gene conservation in
Podostemaceae. Genes with <50% similarity were inspected
directly in the annotated genomes of Podostemaceae to
determine if they were intact, open reading frames. In a
separate analysis, A. riedelii was used as reference to determine
the level of similarity across the whole-plastome sequence in
Malpighiales with respect to Podostemaceae.
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In order to test relationships and examine sequence divergence
and amount of change within both Malpighiales and Podostemaceae,
a phylogenetic tree was inferred using the plastid genomes of all
studied species. Averrhoa carambola L. (Oxalidaceae) was used as an
outgroup to root the tree. To generate the alignment, in each species
the IRb regions were deleted to remove duplicated genes; Brotein-
coding reg’ons1 tRNAs, rRNAs, and noncodjng( regions _were
extracted, an genes located on the reverse strand were reverse
Mme extracted regions were aligned with MAFFT
v7.309 in Geneious and then concatenated. The final alignment
was 134,969 bp long. The software PartitionFinder2 (Lanfear
et al,, 2016) was used to select the best partitioning scheme, using a
greedy search (Lanfear et al.,, 2012) in RAXML (Stamatakis, 2014). In
the analysis, the three codon positions for each protein-coding region
and each tRNA and rRNA were considered separately. Noncoding
regions were analyzed together. Maximum likelihood phylogenetic
inference was performed using RAXML v8.2 (Stamatakis, 2014),
with the “rapid bootstrap analysis and search for best-scoring ML
tree option” and 10,000 bootstrap replicates. Per-partition branch
lengths were estimated independently.

RESULTS

Genome Content and Structure

in Podostemaceae

After sequencing, trimming, and selecting reads corresponding
only to the plastids in GetOrganelle, 1,581,656 paired reads

were recovered for A. riedelii, 1,443,458 for M. utile, 225,344
for M. capillaceum, 1,087,996 for M. capillacea, and 313,332 for
T. trifaria. The largest plastome was that of A. riedelii with a length
of 134,912 bp (1177.6X coverage), followed by M. capillaceum
with 134,374 bp (190.8X coverage), M. capillacea with 133,944 bp
(736.3X coverage), M. utile with 131,951 bp (1264.2X coverage),
and T. trifaria with 130,285 bp (217.6X coverage). Assembly of
the plastome of M. utile using Geneious 9.1.8 yielded the same
sequence as with GetOrganelle, but mean coverage was lower
(514.9X vs. 1264.2X).

All 5 full plastome assemblies in Podostemaceae showed the
typical quadripartite structure characteristic of the plastids (see
Figure 1). GC content in the IRs is higher than in other regions
of the plastid, possibly due to the presence of tRNA genes, as
suggested in Dipsacales (Fan et al., 2018). In the 5 species, the 2
IRs span 29.7% to 31.4% of the plastome (Table 2).

Gene content was the same across the Podostemaceae species
studied, with each genome including 71 protein coding genes,
30 tRNAs, and 4 rRNAs for a total of 105 genes, 13 of which
contain 1 intron and 1 (trnK-UUU), which contains 2 introns.
Of the total number of genes, 77 (~73.33) occur in the LSC, 10
(~9.52%) in the SSC, and 18 (~17.14%) in the IRs. With regard
to protein coding genes, 55 (~77.46%) are included in the LSC,
9 (~12.68%) in the SSC, and 7 (~9.86%) in the IRs. Most tRNAs
exist in the LSC region with 28 (~73.33%) tRNAs, followed by 7
(~23.33%) in the IRs, and only 1 (~3.33%) in the SSC region. All
rRNAs were found in the IRs. A full account of gene content for
the Podostemaceae species is listed in Table 3.

Apinagia riedelii

Morostylis capillacea
133,944 bp

Marathrum capillaceum

134912bp £ 134,374 bp

FIGURE 1 | Plastid genomes of the 5 species of Podostemaceae included in this study. Only functional genes are drawn, and GC content graphs are included as
dark gray bars toward the center of each diagram. Intron-containing genes are marked with ().

Marathrum utile
131,951 bp

Tristicha trifaria
130,285 bp
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TABLE 2 | Structural information of the plastid genomes of Podostemaceae, Clusiaceae, Malpighiaceae, Chrysobalanaceae, Violaceae, Passifloraceae, and Salicaceae.
The percentages of the total size of the genome that corresponds to each region are included.

Species Family Plastome genome IRs length SSC length LSC length
size (bp) (bp) (bp) (bp)

Apinagia riedelii Podostemaceae 134,912 21,049 x 2 (~30.1%) 12,437 (~8.9%) 85,377 (~61%)
Monostylis capillacea Podostemaceae 133,944 21,026 x 2 (~31.4) 12,395 (~9.3%) 79,497 (~59.4%)
Marathrum utile Podostemaceae 131,951 19,945 x 2 (~30.2%) 12,283 (~9.3%) 79,778 (~60.5%)
Marathrum capillaceum Podostemaceae 134,374 21,041 x 2 (~31.3) 12,302 (~9.2%) 79,990 (~59.5%)
Tristicha trifaria Podostemaceae 130,285 19,349 x 2 (~29.7) 12,662 (~9.7%) 78,925 (~60.6%)
Garcinia mangostana Clusiaceae 158,179 27,009 x 2 (~34.1%) 17,704 (~11.2%) 86,457 (~54.7%)
Byrsonima crassifolia Malpighiaceae 160,212 26,975 x 2 (~33.7%) 17,814 (~11.1%) 88,448 (~55.2%)
Hirtella racemosa Chrysobalanaceae 162,891 26,866 x 2 (~33%) 19,915 (~12.2%) 89,244 (~54.8%)
Viola seoulensis Violaceae 156,507 26,404 x 2 (~33.7%) 18,008 (~11.5%) 85,691 (~54.8%)
Passiflora edulis Passifloraceae 151,406 26,152 x 2 (~34.5%) 13,378 (~8.8%) 85,724 (~56.6%)
Salix purpurea Salicaceae 155,590 27,459 x 2 (~35.3%) 16,220 (~10.4%) 84,452 (~54.3%)

TABLE 3 | Gene content in all Podostemaceae species included in this study.

Gene function

Gene group

Gene name

Self-replication

Photosynthesis

Other

Ribosomal RNA genes
Transfer RNA genes

Small subunit of
ribosome

Large subunit of
ribosome

RNA polymerase
subunits

Subunits of NADH
dehydrogenase

Subunits of
photosystem |
Subunits of
photosystem I

Subunits of
cytochrome b/f
complex
Subunits of ATP
synthase

Large subunit of
Rubisco
Maturase

Envelope membrane

protein

C-type cytochrome

synthesis
ORFs

rrn 4.5, rrn5, rrn16, rrn23
trnA-UGC*, trnC-GCA,
trnD-GUC, trnE-UUC, trnF-
GAA, trnfM-CAU, trnG-GCC,
trnG-UCC*, trmH-GUG, trnl-
CAU, trnl-GAU*, trmK-UUU*,
trnL-CAA, trnl-UAA*, trnl-
UAG, trM-CAU, trnN-GUU,
trnP-UGG, trnQ-UUG, trnR-
ACG, trnR-UCU, trS-GCU,
trnS-GGA, trS-UGA, trmT-GGU,
trnT-UGU, trnV-GAC, trnV-
UAC, trmW-CCA, trY-GUA
ps2, 1ps3, rps4, rps7, rpss8,
ps11, ps12, rps14, rps15,
rps18, rps19

rpl2*, rpl14, rpl16, rpl20, rpi23,
pl33, rpl36

oA, rpoB, rpoC1*, rpoC2

ndhA*, ndhB*, ndhC, ndhD,
ndhE, ndhfF, ndhG, ndhH, ndhl,
ndhd, ndhK

psaA, psaB, psaC, psal, psaJ,
ycf3*

PSbA, psbB, psbC, psbD, psbE,
psbF, psbH, psbl, psbJ, psbK,
psbL, psbM, psbN, psbT, psbZ
petA, petB*, petD*, oetG, petL,
petN

atpA, atpB, atpE, atpF*, atpH,
atpl
rbel

matK
cemA

CCSA

ycf4

Genes in bold correspond to genes that are located in the IRs and hence are
duplicated. Genes that contain introns are marked with asterisk (¥).

Plastome of Podostemaceae

in a Comparative Framework

Within Malpighiales

Information on plastid genome size and size of the IRa, IRb, LSS,
and SSC regions in all species shows that the Podostemaceae
possess the smallest genome of the species included in this
study (Table 2). This reduction is relatively uniform across
the IRs, LSS, and SSC, as the proportions of each region in
the plastid remain fairly similar in Malpighiales. However, in
Podostemaceae, the LSC region did not shrink as much as the
SSC and IRs regions, occupying a slightly larger percentage of the
plastid in Podostemaceae (Table 2). Inspection of the plastomes
of Podostemaceae and selected members of the Malpighiales

with Mauve shows a large inversion of ~491000 bp in the LSC
region. The inversion is located between the genes rbcL an

trnK. This rearrangement is unique in Podostemaceae with
respect to the other Malpighiales species inspected (Figure 2).
Other rearrangements are seen in P. edulis as previously reported
(Cauz-Santos et al., 2017; Shrestha et al., 2019).

A comparison of border positions of the four plastid regions
in the full organelle sequences across the 11 species studied is
shown in Figure 3. The LSC/IRb border is located within the
rps19 gene, creating a 220-bp truncated copy (pseudogene) in
the IRa in all the Podostemaceae species studied, as well as in
G. mangostana and Hirtella racemosa Lam. In Viola seoulensis
Nakai, this duplicated fragment is only 68 bp, in line with
previous work (Menezes et al., 2018). Variations in the length
of the IRb in B. crassifolia, S. purpurea, and P. edulis caused the
LSC/IRD border to fall within the rpl22 gene in the former two
species, and between rpl22 and rps19 in P. edulis. This created a
pseudogene in the IRa of both B. crassifolia and S. purpurea. In
Podostemaceae and in G. mangostana, the boundaries of trnH
and the truncated copy of rps19 overlap by 7 bp in the IRa. In
all species except in P. edulis, trnH-GUG is the first gene in the
LSC region. This exception has been proposed to be caused by a
small inversion at the beginning of the LSC region containing the
psbA and trnH-GUG genes (Cauz-Santos et al., 2017). The SSC/
IRa is located within the ndhH gene in A. riedelii, M. capillaceum,
M. capillacea, and M. utile, creating a pseudogene in the IRb.
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FIGURE 2 | Alignment resulted from Mauve showing a large inversion shared by all Podostemaceae. Color bars indicate syntenic blocks, and connecting lines

This border is shifted to the rps15 gene in T. trifaria and P. edulis,
where a small fragment of this gene (< 20 bp long) spans the IRa
and is duplicated in the IRb. In the remaining species, the SSC/
IRa border falls in the ycfI gene, which is located downstream
of the ndhH and rps15. As a consequence, a ycfl pseudogene
is produced in the IRD. This gene is reduced to a pseudogene
in Podostemaceae.

Analignment of 11 species in six families with G. mangostana
used as reference is shown in Figure 4. In this alignment, the
large inversion previously identified was reinverted in order to
enhance visualization and allow gene content comparison. We
found that species in Podostemaceae share the loss of the rps16
gene with most other Malpighiales, except for B. crassifolia
(Malpighiaceae), where the gene is present. Similarly, the
Podostemaceae are like other Malpighiales in the retention of
the atpF Group Il intron, which is absent only in P. edulis. On the
contrary, the gene for the subunit of acetyl-Co-A-carboxylase

(accD), the large subunit of ribosome protein (rpl22), and the
chloroplast open reading frames ycfI and ycf2 are reduced to
pseudogenes only in Podostemaceae and in P_edulis (Cauz-
Santos et al., 2017) (Figure 3).

e analysis performed in mVista using A. riedelii as reference
is shown in Figure 5. Apinagia riedelii, M. capillaceum, M. utile,
and M. capillacea, all members of the Podostemoideae, show high
similarity across their plastome. In fact, the percentage similarity
supports that all four species belonging to this subfamily are
more similar to each other than any of them are to Tristicha, in
the subfamily Tristichoideae. As expected, similarity is higher in
coding regions than in intergenic sequences.

Phylogenetic analysis was conducted using an optimal
scheme with 53 partitions as resulted from PartitionFinder2.
Information on partitions and substitution models is included
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FIGURE 3 | Comparison of border positions of the 4 plastid regions (LSC, IRb, SSC, IRa) among plastomes of Ar, Apinagia riedelii; Mc, Marathrum capillaceum; Mu,
Marathrum utile; MoC, Monostylis capillacea; Tt, Tristicha trifaria; Gm, Garcinia mangostana; Bc, Byrsonima crassifolia; Hr, Hirtella racemosa;, Vs, Viola seoulensis;
Pe, Passiflora edulis; Sp, Salix purpurea. Functional genes and truncated fragments are shown with the same color. The sizes of fragments in genes that are located
in a boundary are shown.

in the Supplementary Material. Among the Podostemaceae,
the Podostemoideae are supported as monophyletic and sister to
T. trifaria (Figure 6). The phylogeny also shows that the branches
leading to taxa in the Podostemaceae from the common ancestor
of Malpighiales are much longer than the branches leading to
other taxa within the order. Garcinia mangostana (Clusiaceae)
is supported as sister to Podostemaceae (100% bootstrap), in
line with previous work, but this clade was found as sister to
H. racemosa (Chrysobalanaceae), contrary to previous work (Xi
et al., 2012; Menezes et al.,, 2018) where Chrysobalanaceae is
found as more closely related to Malpighiaceae. Salix purpurea,
P edulis, and V. seoulensis are supported as a clade (100%
bootstrap), and the relationships among them are in agreement
with Xi et al., 2012. However, B. crassifolia (Malpighiaceae) is
reconstructed as sister to this clade (85% bootstrap), and as
mentioned above, this contradicts previous published work (Xi
et al., 2012; Menezes et al., 2018).

DISCUSSION

The 130,218- to 134,912-bp size range of the plastome reported
in this study for Podostemaceae species falls within the average
size of angiosperm plastomes (Sugiura, 1992). However, it is

notable that the full plastid genomes generated here for the family
are among the smallest reported so far in Malpighiales (Shrestha
et al,, 2019; https://www.ncbi.nlm.nih.gov/genome).

It has been proposed that plastome size variation could be caused
by variation in length of IR regions, gene loss, and intergenic region
variation (Palmer et al., 1987; Wolfe et al., 1992; Wakasugi et al., 1994;
Chumley et al., 2006; Xiao-Ming et al., 2017). We have reported here
that the IRs in the Podostemaceae are ~6 kb smaller than in the

of Podostemaceae is smaller than the other Malpighiales examined
here by 16 to 28 kb, and this difference cannot be explained by a
smaller length of the IRs and by gene losses alone. Intergenic region
variation as well as intron loss also contribute to this difference in
plastome size, considering that the number of introns reported for
Podostemaceae is smaller than in P, edulis (Cauz-Santos et al., 2017)
and that intergenic regions are the most variable in our comparative
study (Figure 4). Indeed, when calculating the total length of
intergenic regions in Podostemaceae and of the other species in
Malpighiales analyzed here, the Podostemaceae are shorter by ~5.5
kp on average. This implies that all three processes responsible for
genome size variation mentioned above are responsible for the
reduction in size of the plastomes in Podostemaceae.
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FIGURE 4 | Comparison of percentage identity of plastomes in mVista using Garcinia mangostana (Gm) as reference. Ar, Apinagia riedelii; Mc, Marathrum
capillaceum; Mu, Marathrum utile; Moc, Monostylis capillacea; Tt, Tristicha trifaria; Bc, Byrsonima crassifolia; Hr, Hirtella racemosa; Vs, Viola seoulensis; Pe,
Passiflora edulis; Sp, Salix purpurea. The vertical axis corresponds to the percentage identity (50%—100%), while the horizontal axis shows the position of each
region within the locus. Arrows indicate the transcription of annotated genes in the reference genome. Genome regions are color coded.

The large rearrangement in the LSC region appears to be a
synapomorphy of Podostemaceae, but this observation should
be confirmed in more species in the family before this trait is
considered to be of any systematic relevance. Other structural
rearrangements have been reported in Malpighiales such as the
3 inversions in the LSC region in P. edulis (Cauz-Santos et al.,
2017), high rates of rearrangements in Passiflora (Rabah et al.,
2019; Shrestha et al,, 2019), and a single small inversion in the
LSC region of Hevea brasiliensis (Tangphatsornruang et al.,
2011). We found no evidence of other structural rearrangements
within Podostemaceae.

Evaluation of the boundaries of the 4 plastid regions across
all species suggests that the locations of borders of the IRs in
the Podostemoideae sampled are fairly conserved, but differ to
asmall degree in all 5 species studied. This is consistent with the
IR boundaries being in a dynamic state in most angiosperms
(Goulding et al., 1996). A change in length in the IRs of
T. trifaria, which are slightly smaller than in Podostemoideae
(Table 2), could be interpreted as either a contraction
of the IRs in T. trifaria or an expansion of the regions in
Podostemoideae. Either way, expansions and contractions
of the IRs have occurred more than once in Malpighiales,
creating pseudogenes (Cauz-Santos et al., 2017; Menezes et al.,
2018; Shrestha et al., 2019). Podostemaceae are no exception
to these variations in length, but as mentioned above, these do
not seem to be the sole reason why Podostemaceae have one of
the smallest plastomes in Malpighiales.

With regard to gene content, the retention of the atpF Group
II intron is considered an ancestral condition in land plants with
a single gain within the streptophytes, before the origin of land
plants, followed by losses in charophytes (Daniell et al., 2008).
This intron has also been found to be lost from the plastome
of members of Euphorbiacceae, Phyllanthaceae, Elatinaceae,
Lophopixidaceae, and Passifloraceae (Daniell et al., 2008).
Podostemaceae is a lineage within Malpighiales that retains the
ancestral state for presence of the atpF group II intron.

Targeted gene disruptions in tobacco have identified four plastid
genes with essential functions beyond photosynthesis: accD, cIP,
yefl, and ycf2 (Drescher et al,, 2000; Kuroda and Maliga, 2003;
Kode et al., 2005; Kikuchi et al., 2013; Parker et al., 2014; Dong et
al., 2015). Even though these four genes are retained in the plastid
genomes of most angiosperms, including parasitic species that are
chlorophyll-deficient (dePamphilis and Palmer, 1990; Funk et al.,
2007; Jansen et al., 2007; Parker et al., 2014), there are multiple other
parasitic, mycoheterotrophic plants, and taxa outside Malpighiales
where these genes are missing from the plastids (Kim, 2004; Magee
etal, 2010; Lei et al,, 2016; Graham et al., 2017). As reported here,
these genes have all been reduced to pseudogenes independently in
Podostemaceae and in Passiflora (Shrestha et al., 2019).

The pseudogenization or loss of the accD and rpl22 genes from
the plastids has been reported to be a consequence of them being
transferred to the nuclear genome (Jansen et al., 2011; Cauz-
Santos et al., 2017). This event of plastid gene transfer remains
to be examined in Podostemaceae. The rps16 gene is considered
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to be present in the common ancestor of land plants (Daniell et
al., 2016) and is found in the plastomes of most angiosperms
(Ueda et al., 2008). However, it has been repeatedly reported as
lost in Malpighiales (Asif et al., 2010; Daniell et al., 2008; Jansen
et al,, 2007; Steane, 2005), including our findings of it being
missing in Podostemaceae and in other angiosperms (Keller et al.,
2017). The multiple losses of rps16 from the plastids have been
explained by the fact that the nuclear encoded rpsi6 is dually
targeted to the mitochondria and the plastids (Ueda et al., 2008;
Keller et al., 2017). Examination of the presence of this gene in the
mitochondrial and nuclear DNA would be necessary to test if this
explanation also applies to Podostemaceae./The pseudogenization
of the cpP gene in the family is the first reoricotm
mﬁis gene has been suggested to be essential

for plastid development and function, in particular of plastids
with active gene expression (Shikanai et al., 2001; Cahoon et
al., 2003; Sjogren, 2004). Therefore, it remains to be determined
whether it plays an indispensable role in Podostemaceae, or if it
has been transferred to the nuclear genome.

The ycfl gene is one of the largest and most variable genes
in the plastid genome of land plants, and as mentioned above,
it has been proposed to be fundamental for plant function as a
key component of the general protein import channel (Dong
et al,, 2015; Kikuchi et al., 2013). It is rarely missing from the
plastome of autotrophic plant lineages, with the exception of
Poaceae, some species of Passiflora, Vaccinium macrocarpon,
and some species of Erodium (de Vries et al., 2015). However,
this gene is more commonly lost from the organellar genome of
parasitic, mycoheterotrophic, and carnivorous plant taxa such as
Orobanche purpurea, species in Droseraceae, and a number of
orchids (Guisinger et al., 2010; Parker et al., 2014; Graham et al,,
2017; Nevilletal., 2019). Our finding that ycfI is pseudogenized in
Podostemaceae adds this group to one of the unique autotrophic
lineages in angiosperms where this is known to have occurred.
However, the mechanisms that compensate for this loss and the
implications of it remain to be studied.

The high similarity across the plastome in the subfamily
Podostemoideae (Figure 5), which are more similar to each
other than they are to T. trifaria, is explained by the fact that the
members of this subfamily share a more recent common ancestor
(Figure 6). The short branches within Podostemoideae indicate
that fewer changes have accumulated since the species diverged,
possibly as a consequence of recent speciation events with little
subsequent sequence evolution (Soltis et al., 2019). Additionally,
the fact that the branches leading to taxa in the Podostemaceae
from their common ancestor in Malpighiales are much longer
than the branches leading to other taxa within the order is an
indicator of faster rates of evolution in the plastome of riverweeds,
giving support to previous suggestions (Ruhfel et al., 2016).

Long branches depicting accelerated rates of evolution have
been reported in parasitic plants, where multiple changes in
the chloroplast respond to a switch from an autotrophic to a
heterotrophic metabolism, causing a reduced function of the
genome (Young and dePamphilis, 2005; Stefanovic et al., 2007;
Lemaire et al., 2011; Givnish et al., 2018). However, the switch
from autotrophy to heterotrophy has not occurred in the

Podostemaceae. Instead, faster rates of evolution in Podostemaceae
could be explained by their rapid life cycle and shorter generation
times; most species of Podostemaceae are annual herbs because
they depend on the water level to complete their life cycle, dying
and shedding seeds in the dry season when the water level is low.
This inverse correlation between evolutionary rate and generation
time has been suggested for plants as well as for other organisms
such as mammals (Bromham et al., 1996; Verdu, 2002; Smith
and Donoghue, 2008). Interestingly, the same pattern of long
branches observed in Podostemaceae has been found in the
Hydrostachyaceae (Cornales) based on phylogenetic analysis
using plastid data (Olmstead et al., 2000; Albach et al., 2001;
Fan and Xiang, 2003), and the Hydrostachyaceae are the only
angiosperm family that shares the unique habit of Podostemaceae
(Jager-Ziirn, 1998; Qiu-Yun Xiang, 1999; Rutishauser et al., 2005).
However, faster rates of evolution have also been correlated to
other life history traits such as plant height, genome size, and
age at first reproduction among others (Lehtonen and Lanfear,
2014; Bromham et al,, 2015). Which factors are responsible for
faster rates of evolution in Podostemaceae and whether they
(it) has anything to do with the habit of Podostemaceae and
Hydrostachyaceae, remain to be determined.

The phylogenetic relationships found here for the
selected species of Malpighiales (Figure 6) are in line
with previous work where Salicaceae and Passifloraceae
are in a clade that shares a more recent common ancestor
with Violaceae (and Goupiaceae), whereas Clusiaceae
and Podostemaceae are together in a separate clade (Xi
et al, 2012; Cai et al, 2019). The relationships within
Podostemaceae also follow previous work that suggest that
Marathrum is paraphyletic (Tippery et al., 2011; Philbrick
et al., 2018), calling for a revision of the classification of the
genus. Our results (Figure 6) also follow a recent study (Cai
et al., 2019) in the placement of Chrysobalanaceae, using
5,113 orthology clusters to infer a phylogeny of Malpighiales.
These results contradict previous works (Xi et al., 2012;
Menezes et al., 2018) that have placed Chrysobalanaceae and
Malpighiaceae as more closely related to one another than they
are to any of the other families in the Malpighiales included
here. The incongruence across data sets is in the deep nodes
within the order, reinstating the difficulty in reconstructing
deep nodes in Malpighiales (Wurdack and Davis, 2009).

CONCLUSIONS

In this study, we assembled five full plastid genomes of species in
Podostemaceae and analyzed them in a comparative framework
within Malpighiales. We detected an important inversion
in the LSC region that could be of systematic relevance as a
synapomorphy of the group and also described slight variations
in the length of the IRs in all the species included in the study.
The plastomes of the family are among the smallest reported to
date in the order Malpighiales, and we suggest that this small size
is a result of a combination of variation in length of IR regions,
gene loss, and intergenic region variation and intron loss. Gene
content is the same within the Podostemaceae, and some of the
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ene loss and pseudogenization events reported are common
others are very rare (e.g., ycfl and ycf2). The mechanisms
that compensate for these losses and the implications of their
occurrence in Podostemaceae remain a subject of study. Our
results suggest an accelerated rate of evolution for the group and
reinstate the difficulty in the inferring relationship in deep nodes
in Malpighiales. Ultimately, this study provides insights into the
structure and evolution of plastomes in Podostemaceae and lays
the foundations for phylogenomic studies in the family.
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