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Abstract

We predict the stellar mass–halo mass (SMHM) relationship for dwarf galaxies, using simulated galaxies with peak
halo masses of Mpeak= 1011M

e
down into the ultra-faint dwarf range to Mpeak= 107M

e
. Our simulated dwarfs

have stellar masses of Mstar= 790M
e
to 8.2× 108M

e
, with corresponding V-band magnitudes from −2 to −18.5.

For Mpeak> 1010M
e
, the simulated SMHM relationship agrees with literature determinations, including exhibiting

a small scatter of 0.3 dex. However, the scatter in the SMHM relation increases for lower-mass halos. We first
present results for well-resolved halos that contain a simulated stellar population, but recognize that whether a halo
hosts a galaxy is inherently mass resolution dependent. We thus adopt a probabilistic model to populate “dark”
halos below our resolution limit to predict an “intrinsic” slope and scatter for the SMHM relation. We fit linearly
growing log-normal scatter in stellar mass, which grows to more than 1 dex at Mpeak= 108M

e
. At the faintest end

of the SMHM relation probed by our simulations, a galaxy cannot be assigned a unique halo mass based solely on
its luminosity. Instead, we provide a formula to stochastically populate low-mass halos following our results.
Finally, we show that our growing log-normal scatter steepens the faint-end slope of the predicted stellar mass
function.

Unified Astronomy Thesaurus concepts: Dwarf galaxies (416)

1. Introduction

In the Λ Cold Dark Matter (ΛCDM) paradigm of
cosmological structure formation, dwarf galaxies are predicted
to be the smallest, most abundant, yet least luminous galaxies
in the universe. Attempts to link dwarf galaxies to their parent
dark matter halos via abundance matching have led to
discrepancies between theory and observations (e.g., Ferrero
et al. 2012; Garrison-Kimmel et al. 2014a; Brook & Di
Cintio 2015; Papastergis et al. 2015). Abundance matching
matches a stellar mass or luminosity at a given abundance to
dark matter halos with the same abundance, derived from a
dark matter−only simulation. A monotonic relationship is
generally assumed (Guo et al. 2010; Behroozi et al. 2013;
Moster et al. 2013). Critically, abundance matching also
assumes that every dark matter halo is occupied by a galaxy.
Abundance matching studies generally yield fair agreement for
the stellar mass−halo mass (SMHM) relation for halos of
masses 1011Me

. Additionally, for halos of roughly Milky
Way mass and greater, abundance matching also reproduces
clustering statistics (e.g., Conroy & Wechsler 2009; Wechsler
& Tinker 2018).

However, derivations of the SMHM relation at lower masses
have yielded discrepancies (e.g., Behroozi et al. 2013; Moster
et al. 2013; Brook et al. 2014; Garrison-Kimmel et al. 2014b;
Read et al. 2017; Jethwa et al. 2018). If the SMHM relation has
the formMstar∝

aMhalo, the range of derived α varies from 1.4 to
3.1 for galaxies smaller than Mhalo< 1011.5M

e
. However,

Moster et al. (2013) and Behroozi et al. (2013) did not have
data in order to derive the SMHM relation below stellar masses
of a few ×107M

e
. While their results are unconstrained at

lower masses, the slopes at their lowest measured mass were
quite different, α= 1.4 (Behroozi et al. 2013) versus α= 2.4
(Moster et al. 2013). Read et al. (2017) find a fairly shallow

relation between 107<Mstar/Me
< 109, with α≈ 1.2, for field

dwarfs in the Sloan Digital Sky Survey (SDSS). They also
derive the halo masses of isolated, local dwarfs via rotation
curve fitting (Read et al. 2016b) and find that the SMHM
relation for the individual galaxies is well described by their
derived SMHM relation from abundance matching, including
when extrapolated to lower stellar masses. They attribute this
match to the fact that they use an isolated galaxy sample,
arguing that including galaxies processed in a group environ-
ment leads to a steeper SMHM relation. Brook et al. (2014) and
Garrison-Kimmel et al. (2014b), however, used Local Group
galaxy data to determine the SMHM relation at
106<Mstar/Me

< 108. Again, they came to quite different
conclusions about the value of α, 3.1 in Brook et al. (2014) and
1.9 in Garrison-Kimmel et al. (2014b).6

Similarly, both Jethwa et al. (2018) and Nadler et al. (2020)
examine the SMHM using Local Group data, specifically using
Milky Way satellites. However, unlike Brook et al. (2014) and
Garrison-Kimmel et al. (2014b), they do not require that every
dark matter halo contains a galaxy. Jethwa et al. (2018) explore
a range of assumptions, from the standard abundance matching,
to models that allow unoccupied halos and varying forms of the
stellar mass function (SMF). Nadler et al. (2020) use a more
constrained model, building on earlier work to determine which
subhalos are likely to contain luminous satellites, and the
known selection function of current surveys to determine which
satellites should be detected. Both Jethwa et al. (2018) and
Nadler et al. (2020) found that most halos must be occupied
down to Mpeak∼ 108M

e
. It is common in abundance matching

to assume that all halos continue to host galaxies.
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6
Though the slope is dependent on the normalization at higher masses, and

the values come into better agreement when a consistent normalization is
adopted; see Garrison-Kimmel et al. (2017).
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The idea that all halos down to Mpeak∼ 108M
e
are occupied

is contrary to traditional wisdom, which holds that reionization
may stifle star formation entirely in such low-mass halos (e.g.,
Gnedin 2000; Governato et al. 2007; Okamoto et al. 2008;
Brooks et al. 2013). Simulators generally find that reionization
causes low-mass halos to be entirely devoid of stars, or to
contain so few as to be beyond detection (e.g., O’Shea et al.
2015; Ocvirk et al. 2016; Wheeler et al. 2019; Katz et al. 2020;
Ocvirk et al. 2020). However, the mass scale at which this
occurs remains an open question. Sawala et al. (2016) used
simulations representative of the Local Group to show that the
fraction of halos that are not populated (not luminous) increases
drastically for z= 0 halo masses less than 109M

e
, suggesting a

plummeting galaxy formation efficiency at these mass scales.
Fitts et al. (2018) find a similar drop in galaxy formation below
Mhalo= 109M

e
. Ocvirk et al. (2020) also find a drop below this

halo mass, though at z= 6. However, other simulators have
found that galaxies populate lower-mass halos, closer to
Mhalo∼ 108M

e
(Revaz & Jablonka 2018; Wheeler et al.

2019; Katz et al. 2020). Simulations of the low-mass halos at
high z have shown that stars can form in even lower-mass halos
at z> 6 (e.g., Wise et al. 2012; Côté et al. 2018; Latif &
Khochfar 2019; Nakatani et al. 2020; Skinner & Wise 2020).

In addition to the slope of the SMHM relation and the
occupation fraction of low-mass halos, there is also uncertainty
in the (intrinsic) scatter in the SMHM relation. The scatter at
the high-mass end of the SMHM relation is consistently
measured to be relatively small, ∼0.2 dex (Behroozi et al.
2013; Reddick et al. 2013; Matthee et al. 2017; Kravtsov et al.
2018), though see Taylor et al. (2020). However, the scatter at
the low-mass end may be much larger. Observations indicate
that dwarf galaxies over a range of stellar masses may all
occupy dark matter halos with a narrow range of masses (e.g.,
see Figure 1 of Klypin et al. 2015, Ferrero et al. 2012, Strigari
et al. 2008). Fitts et al. (2017) simulated 15 galaxies all with
roughly the same halo mass at z= 0 (≈1010M

e
), yet the stellar

content varied by two orders of magnitude (105–7M
e
). The star

formation history at dwarf galaxy scales is likely to depend on
the mass accretion history of the halo (Brooks & Zolotov 2014;
Weisz et al. 2015; Sawala et al. 2016). Rey et al. (2019)
showed that the stellar content of a single dark matter halo
(with the same final halo mass at z= 0) could vary based on its
growth rate. If the halo grew rapidly and was more massive at
early times, it contained a higher stellar mass at z= 0, by as
much as an order of magnitude. The results for the single halo
in Rey et al. (2019) represent a lower limit on how much scatter
in stellar mass might be expected at a fixed halo mass.

Garrison-Kimmel et al. (2017) explored the implications of
scatter within Mstar at a given Mhalo using Local Group data
down to Mstar∼ 105M

e
. They demonstrated that there is a

degeneracy between the slope and the scatter of the SMHM
relation when using the SMHM relation to derive the SMF.
Small halos are more likely to scatter to large stellar masses due
to the rapidly rising mass function in a ΛCDM cosmology.
Hence, large scatter requires a steeper SMHM slope in order to
reproduce the observed SMF. A steeper SMF may, e.g.,
alleviate the mismatch between the number of predicted
classical dwarfs in CDM with what is observed (Garrison-
Kimmel et al. 2017). That said, Nadler et al. (2020) find that the
scatter must be small in order to not overpopulate the observed
satellite luminosity function (LF) of the Milky Way. The
inherent steepness of the LF at dwarf scales also has

implications for how reionization proceeded. In order for
galaxies to reionize the universe, the UVLF likely has to
maintain a steep slope down to UV magnitudes as faint as
about −10 (e.g., Kuhlen & Faucher-Giguère 2012; Robertson
et al. 2013; Weisz & Boylan-Kolchin 2017). Measurements of
lensed dwarfs at 1< z< 3 show no break in the UVLF down to
a UV magnitude of roughly −14 (Alavi et al. 2016). Results
from lower-resolution simulations using the code adopted in
this work show that a LF with no break down to −15 can
reionize the universe at a rate consistent with observations
(Anderson et al. 2017). In this work we quantify the slope and
scatter of the SMHM relation inherent in our simulations down
to the ultra-faint dwarf (UFD) range, and explore the impact on
the slope of the SMF.
A number of simulators have used baryonic simulations to

show that they match the derived SMHM relation at halo
masses above 1010M

e
(e.g., Brook et al. 2012; Aumer et al.

2013; Munshi et al. 2013; Hopkins et al. 2014), but only a few
have examined the SMHM of simulated dwarf galaxies below
this mass (Munshi et al. 2013; Shen et al. 2014; Oñorbe et al.
2015; Sawala et al. 2015). Most works do not examine a large
enough sample of dwarfs to be able to define an SMHM
relation, but can instead only compare to extrapolated
abundance matching results. Sawala et al. (2015) studied a
larger population of dwarfs, tracing halos down to ∼108M

e
.

They showed that an abundance matching that used only
populated halos leads to placing higher stellar mass galaxies
into halos than traditional abundance matching (see also Jethwa
et al. 2018). Considering only occupied halos and the fact that
baryons alter the halo mass function (Munshi et al. 2013;
Sawala et al. 2013; Benson 2020) leads to an SMHM relation
that indicates the typical halo mass at a given stellar mass,
unlike traditional abundance matching that indicates the typical
stellar mass at a given halo mass. Thus, taking into account
baryonic effects leads to an SMHM relation that is much
shallower at the low-mass end than that found by traditional
abundance matching.
In this paper we address the question, how do galaxies

populate low-mass dark matter halos? We do this using a suite
of zoomed-in simulations that contain over 200 dwarfs, the
Marvel-ous Dwarfs and Justice League simulations. These
simulations were purposely designed to yield a large sample of
dwarf galaxies, from LMC-mass at the most massive end,
down into the UFD galaxy range for the first time at the low-
mass end. We examine both field dwarfs and their satellites,
and satellites around Milky Way−mass galaxies. However, we
make a radical departure from earlier works that assumed that
their simulated “dark” halos were those impacted by reioniza-
tion. Many simulators treat these dark halos as a prediction of
the simulation. Instead, we assume that our dark halos are
impacted by our resolution limit, and explore the intrinsic slope
and scatter of the SMHM relation including these unresolved
galaxies.
We present our new suites of high-resolution simulations in

Section 2. In Section 3 we show that the scatter in the SMHM
relation grows as halo mass decreases. We quantify the slope
and scatter of the SMHM relation, first for only the galaxies
that are well resolved in our simulation, and then extrapolated
to include unresolved galaxies. We demonstrate the impact of
our predicted scatter on the resulting SMF that can be tested by,
e.g., the Vera Rubin Observatory’s Legacy Survey of Space
and Time (LSST). In Section 4 we discuss other factors that we

2
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have not necessarily explored in this paper but may also impact
the resulting SMHM relation. We summarize our results in
Section 5.

2. Simulations

For the first time, we present the full sample of 211 dwarf
galaxies including both the “Marvel-ous Dwarfs” zoom
simulations, along with the “DC Justice League” Milky Way
−mass zoom simulations. The “Marvel-ous Dwarfs” (hereafter
Marvel) are slightly different than traditional zoom simulations,
which generally select one halo of interest and place the highest
resolution particles on that halo out to a few virial radii. For the
Marvel runs, we instead selected regions of the universe that
contain dozens of dwarf galaxies and ran the entire region as a
zoom-in simulation, with the goal of generating one of the
largest samples of simulated dwarf galaxies at incredibly high
resolution. We ran four such simulations (named CptMarvel,
Elektra, Rogue, and Storm) within a WMAP3 cosmology
(Spergel et al. 2007), each containing a dozen to a few dozen
dwarfs. The most massive galaxies in the Marvel runs are
∼LMC-mass (∼1011M

e
in halo mass), but the high resolution

of the simulations (60 pc force resolution, gas, initial star, and
dark matter masses of 1410M

e
, 420M

e
, and 6650M

e
,

respectively) allows galaxies as low as Mstar∼ 3000M
e
UFDs

to be resolved. A total of 68 Marvel dwarfs are used in this
work, 11 of which are satellites (within the virial radius) of
dwarf galaxies.

The regions selected for the Marvel runs are roughly 1.5 to
7Mpc away from a Milky Way−mass galaxy and can be
considered representative of the Local Volume. To complement
these regions, we also use four zoom simulations of Milky Way
−mass galaxies and their surrounding environments (out to ∼1
Mpc), the DC Justice League simulations (named after the first
four women who have served on the US Supreme Court;
Sandra, Ruth, Sonia, and Elena). Two of the DC Justice League
simulations (Ruth and Sonia) are run at “Near Mint” (NM)

resolution, which is slightly lower resolution than the Marvel
dwarfs (170 pc force resolution, initial gas, initial star, and dark
matter masses of 2.7×104M

e
, 8000M

e
, and 4.2× 104M

e
,

respectively) within a Planck cosmology (Planck Collaboration
et al. 2016). However, we include dwarfs from the “Mint”
resolution DC Justice League (Sandra and Elena) presented in
Applebaum et al. (2021), which have a resolution within a
factor of two of Marvel (87 pc force resolution and gas, dark,
and initial star particle masses of 3310, 17,900, and 994M

e
,

respectively). This combined “Mint” and “Near Mint” set of
four simulations yields 143 dwarfs: 64 field dwarfs (47 of
which are backsplash dwarfs of the Milky Way−mass hosts as
defined in Applebaum et al. 2021) and 79 satellites.7

Both suites of simulations were run with the N-Body +

SPH code CHANGA (Menon et al. 2015). CHANGA adopts the
hydrodynamic modules of GASOLINE2 (Wadsley et al.
2004, 2017) but uses a faster gravity solver, as well as the
CHARM++ (Kalé & Krishnan 1993) runtime system for
dynamic load balancing and communication. This allows
CHANGA to scale up to thousands of cores. It is the excellent
scalability of CHANGA that allowed the Marvel simulation suite
and the “Mint” DC Justice League simulations to be run.

Both sets of simulations utilize the gas cooling and star
formation scheme introduced in Christensen et al. (2012).
Metal line cooling and the diffusion of metals is included (Shen
et al. 2010), and the nonequilibrium formation and destruction
of molecular hydrogen, H2, is followed. We apply a uniform,
time-dependent UV field from Haardt & Madau (2012) in order
to model photoionization and heating, and the Lyman–Werner
radiation from young stars is tracked. Star formation is
restricted to occur only in the presence of H2.
Star formation occurs stochastically when gas particles

become cold (T< 1000 K) and dense (n> 0.1 mH cm−3
).

Although the density threshold is low, in practice the
requirement that H2 be present restricts stars to forming only
in gas that reaches a density threshold n> 100 mH cm−3. The
probability, p, of spawning a star particle in a time Δt is a
function of the local dynamical time tform:

( ) ( )= - - D*p
m

m
e1 1c X t tgas

star

H0 2 form

where mgas is the mass of the gas particle and mstar is the initial

mass of the potential star particle. A star formation efficiency

parameter, =*c 0.10 , multiplied by the fraction of nonionized

hydrogen in H2, XH2
, gives the correct normalization of the

Kennicutt−Schmidt relation (Christensen et al. 2014).
We adopt the “blastwave” supernova feedback approach

(Stinson et al. 2006), in which mass, thermal energy, and
metals are deposited into nearby gas when massive stars evolve
into supernovae. The thermal energy deposited among those
nearby gas neighbors is 1.5× 1051 erg per supernova event.
Subsequently, gas cooling is turned off until the end of the
momentum-conserving phase of the supernova blastwave. The
coupling of the supernova thermal energy into the interstellar
medium, combined with the turning off of cooling in the
affected gas particles, is designed to mimic the effect of energy
deposited in the local interstellar medium (ISM) by all
processes related to young stars, including UV radiation from
massive stars (see Wise et al. 2012; Agertz et al. 2013).
It is the recent success of simulations in matching dwarf

galaxy properties (e.g., Governato et al. 2010; Brooks &
Zolotov 2014; Shen et al. 2014) that allow us to undertake this
work. At the dwarf galaxy scale, the different slopes between
the observed galaxy SMF and the ΛCDM predicted halo mass
function require that galaxies at halo masses below 1011M

e

have gas cooling and star formation efficiencies much lower
than those of Milky Way−sized galaxies. While this trend was
historically difficult to produce in cosmological simulations,
recent high-resolution cosmological simulations that resolve
scales on the order of giant molecular clouds can include more
realistic models for star formation and feedback, resulting in
simulations that can successfully reproduce the observed trends
in star formation efficiency (Brook et al. 2012; Aumer et al.
2013; Munshi et al. 2013; Simpson et al. 2013; Stinson et al.
2013; Hopkins et al. 2014; Governato et al. 2015; Wheeler
et al. 2015; Christensen et al. 2016; Fitts et al. 2017). The
success of models in reproducing reliable and accurate dwarf
galaxies lies in the ability to be able to resolve the impact of
baryonic processes on the interstellar medium and star
formation (Christensen et al. 2014; Munshi et al. 2014). When
this happens, the simulations also simultaneously reproduce
additional observed trends in dwarf galaxies, such as cored
dark matter density profiles (Governato et al. 2012; Di Cintio
et al. 2014; Pontzen & Governato 2014; Maxwell et al. 2015;

7
Due to different criteria for inclusion and different halo definitions, our

sample, while overlapping with Applebaum et al. (2021), includes fewer
galaxies from Sandra and Elena.
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Oñorbe et al. 2015; Read et al. 2016a; Dutton et al. 2019) and
bulgeless disks (Brook et al. 2011; Brooks &
Christensen 2016).

In the following Sections we show that the stochasticity of
star formation and mass loss of satellites after infall add to the
scatter in the relationship between stellar mass and halo mass.
We do so with simulations that, a priori, require no further
tuning to successfully match observed properties, including
published mass–metallicity relationships (Brooks et al. 2007;
Christensen et al. 2018), cold gas fractions (Munshi et al. 2013;
Brooks et al. 2017), dark matter profile shapes (Governato et al.
2012), and a host of observed scaling relations for Local

Group dwarfs (Applebaum et al. 2021). A future work (Munshi
et al., in prep.) will present the Marvel dwarf properties in full
detail.

Individual halos are identified using AMIGA’S HALO FIN-

DER
8

(AHF, Gill et al. 2004; Knollmann & Knebe 2009).
Throughout this work, the virial radius of a halo is defined to be
the radius for which the average halo density is 200 times the
critical density of the universe at a given redshift, 200 ρcrit(z).
For subhalos, AHF identifies the virial radius as the point
where the lowest density is reached before the density profile
increases again due to the contribution from the parent halo.
For all halos in this work, we trace back the main progenitor to
find the peak halo mass that the halo attained, defined as Mpeak.
At each snapshot, the main progenitor is defined to be the halo
in the previous step that contains the majority of the particles in
the current halo.

3. Results

In Figure 1, we show the stellar mass of the simulated
galaxies as a function of z= 0 halo mass (left panel) and as a
function of peak halo mass (right panel). Data points for the
simulated galaxies are colored based on the galaxy V-band
magnitude9 at z= 0. The stellar masses for dwarfs brighter than
a V-band magnitude of −8 are calculated using each simulated
galaxy’s photometric color, as described in Munshi et al.
(2013). This photometric correction reduces the total simulated
stellar masses by ∼40%, primarily because of an aperture
correction when assuming SDSS photometry, which many of
the abundance matching techniques have used to derive the
SMHM relation at higher masses.10 For the fainter galaxies, we
adopt the simulation stellar mass because the stellar mass of
observed UFDs is generally based on resolved star counts
rather than photometric color. Circles represent central
(isolated) galaxies, squares represent backsplash galaxies, and
stars indicate galaxies that are satellites at z= 0. Smaller data
points are galaxies from the two Near Mint DC Justice League
simulations, while the larger data points are from the high-
resolution Marvel simulations and two Mint DC Justice League
simulations. It can be seen that the brightest galaxies in this
sample are roughly LMC-mass (Mhalo∼ 1011 M

e
; Kallivayalil

et al. 2013; Besla 2015; Peñarrubia et al. 2016; Dooley et al.

2017), while the faintest galaxies are UFDs (e.g.,
Mstar< 105M

e
, V−8; Simon 2019).

The scatter is greatest if using z= 0 halo masses (left panel),
due to the inclusion of satellite galaxies (shown by stars) that
can be stripped of their dark matter after infall to their parent
halo. In some cases subhalos lose more than an order of
magnitude in halo mass after infall. Stellar masses are more
robust, and only those halos with significant halo stripping
have lost about a factor of two in stellar mass. This is consistent
with earlier findings that ∼90% of the dark matter mass can be
stripped before stars are stripped (Muñoz et al. 2008;
Peñarrubia et al. 2008; Libeskind et al. 2011; Chang et al.
2013; Brooks & Zolotov 2014). Considering the peak halo
mass (right panel) for the galaxies reduces the scatter, though
the lowest-mass halos still host almost 2 orders of magnitude in
stellar mass. The peak halo mass is typically used in all
previous derivations of SMHM relations, including those
shown in Figure 1.
The galaxies in Figure 1 were all chosen to have resolved

star formation histories, which we define to be star formation
timescales that span more than 100Myr. This choice ensures
that, despite multiple supernovae having occurred, the star
formation in these galaxies is robust to the feedback. This
choice will exclude galaxies from our simulated sample that
undergo a single burst of fast star formation and then quench,
but it is not clear if such an event is reliable since it is sensitive
to the resolution of the star particles and the feedback
prescription. In practice, our choice of resolved star formation
histories leads to a lower limit of 14 star particles in the Marvel
and Mint DC Justice League galaxies, and 3 star particles in the
Near Mint DC Justice League simulations. Despite the
potentially low number of particles in some Near Mint Justice
League galaxies, the SMHM relation of the faintest DC Justice
League galaxies blends smoothly into the relation of the higher-
resolution dwarfs (3 stars is ∼1.5×104M

e
), indicating that

there are no obvious resolution effects impacting the SMHM
results shown here. We examine the effect of resolution more
carefully in Appendix A.
At the faintest end of the SMHM relation presented in

Figure 1, a galaxy cannot be assigned a unique halo mass based
solely on its luminosity. As stellar masses decline, the range of
halo masses that host a given galaxy increases. Likewise, as
halo masses decline, the scatter in the stellar masses of the
simulated galaxies increases.

3.1. Quantifying the Scatter

In this Section we quantify the scatter in our SMHM relation.
We use the Mpeak results for halo masses, as is commonly
adopted for abundance matching or halo occupation studies.
We use the results from these fits to make predictions presented
later in the paper.

3.1.1. Well-resolved Halos

Figure 1 shows that the scatter in the SMHM relation
increases with decreasing halo mass. To quantify the scatter,
we assume that stellar masses can be described by log-normal
scatter about a mean SMHM relation.
At a given halo mass, the scatter in stellar mass is of order

0.3 dex for halos more massive than ∼1010M
e
. The scatter in

stellar mass increases to 1.2 dex at the smallest halo masses for
these well-resolved halos. With this scatter, there is no longer a

8
AHF is available for download at http://popia.ft.uam.es/ AHF/Down-

load.html.
9

The V-band magnitude is calculated in pynbody (Pontzen et al. 2013), which
utilizes the Padova simple stellar population models (Marigo et al. 2008;
Girardi et al. 2010) found at http://stev.oapd.inaf.it/cgi-bin/cmd.
10

Munshi et al. (2013) found that aperture size was the primary factor in
determining photometric stellar masses, and that mass-to-light ratios played a
subdominant role.
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single stellar to halo mass relationship for the faintest dwarf
galaxies.

Garrison-Kimmel et al. (2017) demonstrated the impact of
scatter in the SMHM relation on the resulting SMF. They
explored both a model in which the scatter is constant as a
function of halo mass, and a model in which the scatter
increases as halo mass declines. Clearly, our results favor a
model in which the scatter increases toward low halo masses.
Garrison-Kimmel et al. (2017) quantify the increasing scatter as
follows:

( ) ( )s s g= + -log M log M 20 10 halo 10 1

where σ is the scatter, γ is the rate as which the scatter grows,

and M1 is a characteristic mass above which the scatter remains

constant, at a value σ0. We fit our relationship with a broken

power law that breaks atM1= 1010M
e
. Our high-mass slope is

1.9 above the knee, and the low-mass slope is 2.0 below the

knee. Above M1, we assume a constant scatter of σ0= 0.3 dex,

consistent with scatter studies at higher masses (Behroozi et al.

2013), though at the highest masses, the scatter may actually be

much smaller (Bradshaw et al. 2020). Using Equation (2) with

the well-resolved simulated galaxies (and photometry based

stellar masses for MV brighter than −8) yields γ=−0.43.
We have verified that the fit remains unchanged if we instead

use stellar masses directly from the simulations. Because the
primary effect of the photometric correction to the stellar
masses is to shift the masses of the brighter galaxies down
uniformly by ∼40%, the overall slope and scatter in the SMHM
remains largely unchanged.

The knee in our SMHM at M1 corresponds visibly to a knee
in our resolved halos (see also Figures 2 and 5). Our knee
corresponds to a halo mass above which all halos in our
simulations host a galaxy, but not below. We discuss the origin
of the knee further in Section 4.2. Using only the halos that are
well resolved from a simulation is inherently resolution
dependent. We address this in the Section below. However,
the results of using only the well-resolved halos confirm that
the scatter is in fact growing, and can be described by log-
normal growing scatter.

3.1.2. All Halos

Next we extend the discussion to include dark halos: because
of limited resolution, some or all of our dark halos may in fact
host a galaxy with a stellar mass below our mass resolution. As
such, we seek to estimate the underlying SMHM relation in a
way that is fully independent of our resolution. To address this,
we take the limiting assumption that our unresolved halos
would be populated if we were not limited by our mass
resolution and model (subgrid) assumptions. This limiting
assumption is supported by earlier work (Jethwa et al. 2018;
Nadler et al. 2020) that shows that all surviving halos down to
Mpeak= 3× 108M

e
must be occupied in order to match the

completeness-corrected abundance of Milky Way satellites.
Assuming fully populated halos steepens the best-fit SMHM
relation at low masses (below the knee, where halos start to
become unoccupied) due to the inclusion of less massive
galaxies at a given halo mass.
As in the previous section, we model the SMHM as a broken

power law. In Appendix B we show that a broken power law

Figure 1. Stellar Mass versus Halo Mass. Simulated galaxies are color-coded by their V-band magnitude at z = 0. Left: Stellar masses at z = 0 of the galaxies in the
Marvel and Justice League simulations versus their z = 0 halo mass. Right: Stellar masses at z = 0 versus their peak halo mass. In both panels we display results
derived in previous works (Read et al. 2017; Jethwa et al. 2018; Nadler et al. 2020). The red contours correspond to P(Mstar|Mvir) from Jethwa et al. (2018) which
overlap the blue contours from Nadler et al. (2020). Darker colors for each author represent the 68% confidence interval, while the lighter colors represent the 95%
confidence interval. The stellar masses of classical dwarfs (with MV brighter than -8) are calculated based on photometric colors (see Munshi et al. 2013), while fainter
dwarfs use stellar masses directly from the simulations to mimic resolved star counts in UFDs. Galaxies represented by circles are isolated galaxies at z = 0, while
galaxies represented by stars are satellites, and squares are backsplash galaxies of the Milky Way-mass halos. Small points are galaxies from the Near Mint DC Justice
League simulations, and larger points are from the Marvel suite and Mint DC Justice League runs. While the scatter is decreased by considering Mpeak, the scatter in
the relation increases with decreasing halo mass.
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and growing scatter are both statistically preferred over a single
power law or constant scatter. For log(Mpeak)� 10, for which
all halos in our simulations host galaxies (see Figure 4), we fit
one slope. For log(Mpeak)< 10, we fit another slope, with
growing scatter according to Equation (2). We enforce
continuity at the break in both the mean stellar mass, and the
scatter, so that we apply Equation (2) with =Mlog 101 ,
σ0= 0.3.

We fit the SMHM relation in a manner that does not assign
individual (unresolved) stellar masses to dark halos. Rather, we
assume that stellar masses are log-normally distributed along
the entire relation, including for halos that form no stars in our
simulations. “Dark” halos are treated as populated galaxies that
are merely below our stellar mass resolution. In doing so, we
are able to avoid making assumptions about the halo
occupation fraction as a function of mass, which in simulations
is a function of underlying physics as well as resolution. We
discuss this further below.

For the SMHM relation below log(Mpeak)= 10, we find our
parameters θ (i.e., the slope α and scatter growth rate γ) with
the following procedure. We divide the SMHM space into
Nk= Ni× Nj bins, with bins i ä {1, K, Ni} in ( )Mlog peak and
bins jä {1, K, Nj} in ( )Mlog star . We count the number of
galaxies in each bin k= (i, j). The likelihood of finding the set
of simulated galaxies, n, given our SMHM model parameters,
θ, is

( ∣ ) ( ∣ ) ( )q l=
=

nP P n , 3
k

N

k k

1

k

where nk is the number of simulated galaxies in bin k, and λk is

the mean number of galaxies in bin k predicted by the model at

a given θ. The likelihood assumes that nk is complete in the

stellar mass range of the bin, with no systematic undercounts

due to resolution issues. The counts in each bin can be modeled

by a Poisson distribution, so that
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!
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Let ξ(m|Θ) give the mean log stellar mass at a given log halo
mass, m. Since the range of possible stellar masses is normally
distributed about ξ(m), the probability that a halo with mass m,
in bin i, will host a galaxy in stellar mass bin j (with bin upper
and lower limits of u and ℓ, respectively), will be

( ∣ ) ( ( ) ) ( ) ( ) ( )òq x s= = -p j m m F ℓ F u, , , 5
u

ℓ

where F(x) is the cumulative density function of the normal
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The expected number of galaxies in bin k= (i, j) according
to our model is therefore11

( ) ( )l = n p j , 7k i

where ni is the total number of halos in log(Mpeak) bin i,

including dark and occupied halos.
To summarize, our likelihood is given by Equations (3) and

(4), with the model galaxy counts given by Equation (7). We
note that the likelihood compares for each bin the expected
number of galaxies, λk, to the number of simulated galaxies in
the bin, nk. Therefore, for bins in which we calculate the
likelihood, we must ensure that we are not systematically
undercounting the number of simulated galaxies due to
resolution limitations. In other words, we have to restrict our
bins to a range of stellar mass in which we can be reasonably
sure we are complete. We expect the fit to be less dependent on
resolution limitations affecting our identification of dark matter
halos because both λk and nk are proportional to the number of
halos in a given bin. We thus fit to galaxy counts in the range
7.5� log(Mpeak)� 11 and 5� log(Mstar)� 9. We found that
binning above log(Mstar)= 5 led to converged results, while
including fainter galaxies in the fit led to a steeper slope. We
also found varying the lower bounds on log(Mpeak) had little
effect. We interpret this to mean that we have resolved all
galaxies above log(Mstar)= 5, and below this there is an
extended (i.e., non-step function) transition until we no longer
resolve any galaxies.
We find the best-fitting parameters using the affine-invariant

Markov Chain Monte Carlo sampler EMCEE (Foreman-Mackey
et al. 2013), assuming flat priors in the region 0< α< 5 and
−2< γ< 0. We run 104 steps using 32 walkers, and discard a
burn-in period of 500 steps, or ∼15 times the autocorrelation
length.
Using the above procedure, the best-fit SMHM below

log(Mpeak)= 10 has a slope a = -
+2.81 0.11
0.12, with a growing

scatter given by Equation (2), with g = - -
+0.39 0.06
0.05,

=Mlog 101 , and σ0= 0.3 dex (recall, the latter two values
were fixed as boundary conditions). The best-fit relation is
shown in Figure 2. As expected, this relation is steeper than

Figure 2. Stellar mass vs. halo mass with fitted relation. We show the z = 0
stellar masses and peak halo masses of all simulated galaxies (including
galaxies that did not meet the “well resolved” criteria for Figure 1). The solid
line shows the best-fit mean relation following the fitting procedure that
accounts for the presence of “dark” halos; see Section 3.1.2 for details. The
solid band shows the best-fit log-normal scatter in stellar mass (NB: the band
does not represent uncertainty in the best-fit SMHM relation). The best-fit
relation is a broken power law separated at log(Mpeak) = 10. The high-mass end
is described by a slope α = 1.9 and constant scatter σ = 0.3 dex, and the low-
mass end by α = 2.81 and σ given by Equation (2) with γ = −0.39, σ0 = 0.3,
and =Mlog 101 . Accounting for dark halos steepens the underlying SMHM
relation. We include the dashed line to indicate the stellar mass above which we
are complete, and above which we fit our model.

11
Formally, we would have to calculate p( j) separately for every m in bin i. In

practice, it is sufficient to calculate it once for each bin, using the mean m of the
bin. Our results are insensitive to bin size, indicating this approximation is
robust.
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that found by just fitting to occupied halos, which bias the
underlying relation to higher, resolved masses. Readers may
further explore how resolution and scatter can bias the inferred
slope of the SMHM in an interactive applet12, which allows
users to adjust parameters of a basic SMHM toy model.

3.1.3. Comparison to Previous Work

Our fit to all halos has growing log-normal scatter toward
lower halo masses, and reaches σ> 1.0 dex at log(Mpeak)= 8.
We are not aware of any other simulations that have allowed
scatter to be quantified in the SMHM relation at these low
masses, but we can compare our results to simulations of
isolated dwarfs at varying masses. The large scatter in our
simulations encompasses the range seen by Rey et al. (2019),
who found that a single UFD galaxy could vary by an order of
magnitude in stellar mass at Mpeak= 1.5× 109M

e
. Likewise,

the simulated dwarf galaxies of Revaz & Jablonka (2018) and
the NIHAO galaxies in Buck et al. (2019) show a comparable
amount of scatter in Mstar at a z= 0 halo mass of 109M

e
as in

our Figure 1. Our galaxies extend to slightly lower stellar
masses than those in Revaz & Jablonka (2018), as might be
expected due to our higher stellar mass resolution. The spread
in Buck et al. (2019) is comparable to our Figure 1, despite
their lower resolution, because they plot galaxies with as few as
one star particle, while our Figure 1 shows only well-resolved
galaxies.

However, Fitts et al. (2017) simulated 15 field dwarfs with
halo masses ∼1010M

e
and a range of halo concentrations, and

found a range of Mstar= 105–7M
e
, as well as one dark halo.

This appears inconsistent with our fixed scatter of 0.3 dex at a
similar halo mass. The FIRE scheme used by Fitts et al. (2017)
is stronger and burstier in dwarf galaxies than in the Marvel
and Justice League simulations (Iyer et al. 2020), resulting in a
steeper SMHM relation in FIRE than is presented here, as was
also noted by Revaz & Jablonka (2018). The distribution of
stellar masses in Fitts et al. (2017) is also not well described by
a log-normal distribution, but rather with a distribution that
peaks at higher Mstar and has a tail to low Mstar. This again may
be due to the stronger feedback in FIRE, but may also be
influenced by their chosen range of halo concentration.

By matching Local Group galaxies to the ELVIS catalog
(Garrison-Kimmel et al. 2014a), Garrison-Kimmel et al.
(2014b) found that a large log-normal scatter of 2 dex, constant
across Mpeak, alleviated abundance matching discrepancies. If
there is no scatter in the SMHM relation, then the number of
predicted Local Group and Local Field galaxies in the range

( )< <M M5 log 6star is larger than currently observed.
Increasing the scatter to 2 dex while steepening the SMHM
relation reduces the predicted number, because the halo mass
function is steep in CDM, causing more low-mass halos to
scatter up than high-mass halos to scatter down. Therefore, a
given stellar mass is hosted by lower-mass halos than might
otherwise be expected. Likewise, Jethwa et al. (2018) find that
scatter in the SMHM relation leads to the inference of a shallow
SMHM relation if we measure halo mass at a given stellar
mass, P(Mvir|Mstar). They find that scatter can help to explain
the fact that faint field dwarfs (Ural et al. 2015; Read et al.
2016b) are sitting in lower-mass halos than might otherwise be
expected.

At face value, our results appear to be in tension with Nadler
et al. (2020), who found that the scatter in stellar mass (or
luminosity, which is the quantity they used instead) must be
small, σ< 0.2 dex, at all halo masses. There are a couple of
differences in our analysis that can bring our results closer
together, though not necessarily reconcile the difference. First,
they anchor their growing scatter model at a larger M1 value of
1011M

e
, while we anchor at a lower mass of 1010M

e
. If we

consider that γ is the rate of change of scatter, including the
higher-mass halos where scatter is essentially constant should
decrease γ as the scatter does not grow between 1011M

e
to

1010M
e
. Fitting all of our resolved halos with a single slope

and growing scatter model anchored at 1011M
e

(instead of
growing scatter only below the knee, anchored at 1010M

e
), our

value for γ decreases from −0.39 to −0.21.
Also, Nadler et al. (2020) examine scatter in luminosity as a

function of vpeak, while we are tracing based onMpeak. Previous
works have shown that Mstar correlates more strongly with
vpeak, due to the effects of halo assembly bias (e.g., Reddick
et al. 2013; Chaves-Montero et al. 2016). This correlation
should lead to smaller scatter in the Mstar–vpeak relation than in
the SMHM relation. We have verified that our scatter is
reduced when using vpeak, e.g., decreasing our scatter above the
knee from 0.3 dex to 0.17 dex. However, our scatter still
increases below the knee, blowing up to over 1 dex at the
lowest vpeak values we trace, as with Mpeak. Thus, while the
change in variables can explain some difference in the results, it
does not explain it all.
Finally, Nadler et al. (2020) found that the scatter must be

small to reproduce the observed LFs of Pan-STARRS1 and the
Dark Energy Survey (DES, Bechtol et al. 2015; Drlica-Wagner
et al. 2015); with large scatter, low-mass halos host satellite
galaxies that scatter to observable luminosities too often, and
they were unable to reproduce the satellite LF of the Milky
Way. The Milky Way may (Carlsten et al. 2021; Mao et al.
2021) or may not (Wang et al. 2021) have a typical satellite LF
for a galaxy of its luminosity, but the four Justice League
simulations used here have been shown to match the range of
satellite LFs of observed Milky Way−mass galaxies (Akins
et al. 2021; Applebaum et al. 2021). Nadler et al. (2020)
derived their constraints using only two Milky Way realiza-
tions, which could impact their scatter results. A full
accounting of this discrepancy requires further exploration.

3.2. Scatter and the Stellar Mass Function

In this subsection, we use our predicted slopes and scatter in
the SMHM relation in order to calculate a predicted SMF. To
do this, we draw 1000 random halos with
107.8�Mpeak� 1011.5 from the ELVIS catalogs (Garrison-
Kimmel et al. 2014b), and populate them with stellar masses
according to our predicted SMHM slopes and scatter. The
resulting SMFs are shown in Figure 3 for three cases: (i) no
scatter in the SMHM relation (“No Scatter”), (ii) constant log-
normal scatter of 0.6 dex in Mstar at a given Mpeak (“Constant
Scatter”, see Appendix B), and (iii) adopting our results for
growing scatter from Section 3.1.2 (“Growing Scatter”). For
the Growing Scatter case, recall that we adopt a slope of the
SMHM α= 1.9 for halos from 10< log(Mpeak)< 11.5. We
adopt a steeper slope of α= 2.8 at lower halo masses, utilizing
the slope derived from probabilistically populating halos below
our resolution limit. The scatter is constant at 0.3 dex above
M1= 1010M

e
, and linearly grows below this halo mass, i.e.,12

Available at https://github.com/emapple/smhm-toy-model.
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γ=−0.38. We generate each SMF 1000 times, and show in
the solid lines the median relation with the inner 68% range
indicated by the dashed lines. We have scaled each SMF so that
they have 12 galaxies above 107M

e
, consistent with the

number within 1Mpc of the Milky Way.
Garrison-Kimmel et al. (2017) demonstrated that large

scatter in the SMHM relation impacts the observed SMF.
Due to the rapidly rising halo mass function, there are more
small halos available to scatter to larger stellar masses than
large halos to scatter to lower stellar masses, an effect that is
increasingly noticeable as scatter increases. The change from
the No Scatter case to the Constant Scatter case amounts to a
uniform shift upwards in the number of galaxies of a given
stellar mass in log space in the SMF. This shift upwards
disappears after we rescale the SMF to N= 12 for
Mstar> 107M

e
, which is why the No Scatter and Constant

Scatter mean SMF lie on top of each other in Figure 3 (note that
this will occur no matter the magnitude of the scatter chosen for
the Constant Scatter case). If scatter is not constant, however,
and grows with decreasing halo mass, then the shift in the SMF
is not uniform. Hence, the Growing Scatter SMF steepens in
Figure 3.

Our scatter grows in such a way that it only reaches
relatively large scatter (>1 dex) at very low halo masses that
host primarily UFD galaxies. This is where the scatter begins to
have a noticeable impact on the SMF, compared to the
Constant Scatter and No Scatter cases (though we caution that
this is also the range below which our simulations are
considered complete, as discussed in Section 3.1.2). The mass
range where there is greatest difference between SMFs
corresponds to luminosities where current observations are
incomplete, but are being or will be probed by surveys like
DES, HSC-SSP, or with the Vera Rubin Observatory (Tollerud
et al. 2008; Walsh et al. 2009). In Figure 3, we shade the mass
region of the new dwarf satellites that have been found in the
first two years of the DES (Bechtol et al. 2015; Drlica-Wagner

et al. 2015). Tollerud et al. (2008) estimates that such faint
dwarf galaxies should be observed out to ∼1 Mpc by the Vera
Rubin Observatory’s LSST after the full co-added data are
collected. Thus, the slope of the SMF, when complete, can
possibly constrain the magnitude of scatter in the SMHM, and
possibly the smallest halo that hosts a galaxy.

4. Discussion

In this Section we discuss various factors that might
influence our predicted SMHM relation.

4.1. Occupation Fraction

The occupation fraction in the real universe—the fraction of
halos at a given mass that host a galaxy—is dependent on many
physical processes (discussed further below), including the
physics of star formation, gas cooling, self-shielding, and the
strength and timing of reionization. Quantifying this “intrinsic”
occupation fraction in a cosmological simulation would require
the ability to resolve large numbers of both the smallest halos
that can host galaxies as well as the smallest stellar mass that
can constitute a galaxy, which is still observationally
unconstrained. Given that galaxies have been observed with
masses as low as ∼102M

e
(e.g., Drlica-Wagner et al. 2015;

Homma et al. 2018; Longeard et al. 2018), cosmological
simulations to date do not have the ability to reliably resolve
the intrinsic occupation fraction. Rather, whether a halo is
“occupied” or “dark” in the simulations is subject to resolution.
We show this simplistically in Figure 4 by choosing various

threshold stellar masses below which all dark matter halos are
devoid of stars (i.e., do not host a galaxy). This, in effect, is
varying the mass resolution for galaxies in our simulations. We
also indicate (black dashed line) the occupation fraction we
would infer from our simulations if we did not recognize that it

Figure 3. The effect of SMHM scatter on the predicted stellar mass function. Constant Scatter is very similar to No Scatter, both in slope and normalization. Growing
Scatter, however, steepens the SMF. We generate each SMF 1000 times, and show in the solid lines the median relation and in the dashed lines the inner 68% range.
We have additionally scaled each SMF so that they have 12 galaxies above 107 M

e
, consistent with the number within 1 Mpc of the Milky Way. The shaded region

represents the approximate discovery space of UFD galaxies.
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is resolution dependent, assuming all halos with at least one
star particle host a galaxy.13 As we increase the threshold
stellar mass, not only does the halo mass where galaxies go
“dark” increase, the sharpness of the simulated occupation
fraction becomes closer to a step function. The sharper decline
comes from the smaller scatter in the SMHM relation at higher
stellar masses.

Both Jethwa et al. (2018) and Nadler et al. (2020), using
observations combined with a model for the galaxy−halo
connection, find that essentially all halos with peak mass above
∼3× 108M

e
need to host a galaxy in order to be consistent

with the completeness-corrected observations of dwarf
galaxies. Jethwa et al. followed galaxies down to MV=−1.5,
while Nadler et al. modeled galaxies as faint as MV= 0
(Mstar∼ 100M

e
). Our simulations are unable to resolve

galaxies this faint. The inferred occupation fraction derived
by Nadler et al. (2020) is shown by the blue dotted line in
Figure 4. While our higher-resolution simulations have z= 0
star particle masses as low as 174M

e
, the occupation fraction

inferred from the simulations drops to zero at substantially
higher Mpeak than in Nadler et al. This is because we start to be
unable to resolve galaxies that have low stellar mass that would
reside in halos with Mpeak< 109M

e
. This motivates the

approach we have taken in this work, in which we do not
impose an occupation fraction a priori, nor do we impose the
occupation fraction explicitly defined by our simulations, as we
know this to be resolution dependent. Instead, we assume that

stellar masses are log-normally distributed along the entire
SMHM relationship, as our resolved halos show a log-normal
growing scatter. In doing so, we treat dark halos as populated,
but populated below our resolution limit. This approach then
allows us to make predictions for the SMF to highlight the
effect of scatter in the SMHM relation, removing the effect of a
resolution-dependent occupation fraction.
We note that this approach of treating the occupation fraction

as resolution dependent is very different to what has been
assumed in the past. It has long been thought that reionization
should remove baryons from low-mass halos, leaving a
population of low-mass halos that are completely “dark” and
without a galaxy. Early works suggested that the halo mass
cutoff for galaxy formation was fairly massive (e.g., Benson
et al. 2002; Somerville et al. 2004). The idea that reionization
should imprint itself at a halo mass that is somewhere on the
order of 108 to 1010M

e
has persisted, leaving simulators (e.g.,

Sawala et al. 2015) to treat their halo occupation fractions as
predictions rather than recognizing the resolution dependence
inherent in the results. It is only the recent reconciliation of
observed UFD galaxy counts with halo counts that have forced
a re-examination of this assumption (see also Kim et al. 2018;
Newton et al. 2018; Read & Erkal 2019).
However, if some halos with a peak mass greater than

108M
e
are truly dark, then this will have a strong impact on

the resulting SMF. For example, Munshi et al. (2019) showed
that the star formation prescription we use in this work, in
which H2 must be present for stars to form, inhibits the
formation of UFD galaxies in halos with log Mhalo> 8.5. They
also showed that a different star formation prescription, which
required high densities and low temperatures but not
necessarily the presence of H2, allowed galaxies to form in
halos at least an order of magnitude lower in mass. It is not
clear that either of these models is truly reflective of star
formation in UFDs, but the result demonstrates that there may
be an influence beyond reonization that impacts the halo
occupation distribution. A comparison of our Figure 3 with
Figure 6 of Munshi et al. (2019) shows that occupation fraction
can have a much stronger impact on the resulting SMF than the
large scatter in the low-mass SMHM relation we have found in
this work.

4.2. Reionization

Our SMHM relation has a bend at ∼1010M
e
below which

the slope of the SMHM steepens. This is true independent of
cosmology or resolution, as can be seen in Appendix A, where
the knee is readily apparent. This knee is also reflected in the
full sample in Figure 1, though the large number of dwarf
galaxies and large scatter at low masses make it less obvious
visually. This knee in the relationship, dividing the SMHM into
two slopes, is an expected result of reionization. There will be
some halo mass (the knee) below which star formation is
suppressed, either due to gas loss, gas suppression, and/or gas
ionization. Gnedin (2012) finds that the contribution of ionized
gas becomes significant in galaxies with –~v 40 50max km s−1.
Our knee at 1010M

e
corresponds to vmax∼ 40 km s−1. The

onset of reionization more strongly impacts the earlier forming
(i.e., lower-mass) halos (Bose et al. 2018; Benitez-Llambay &
Frenk 2020; Bose et al. 2020). The impact of reionization at a
given halo mass may depend on local density and timing of the
onset of reionization (discussed below), but it follows that there
should be two different slopes in the SMHM relation, with a

Figure 4. The dependence of occupation fraction on simulation resolution. As
simulations have finite mass resolution, the minimum mass of an occupied halo
is inherently tied to resolution. We demonstrate that the simulated occupation
fraction changes significantly when the minimum resolvable stellar mass (and
in effect, the mass resolution) is varied. Both the peak halo mass where galaxies
go “dark” and how sharply the curve declines to zero are affected. The
sharpness of the decline increases as resolution decreases as a result of the
decreasing scatter in the SMHM relation at higher masses. In the dotted line we
show the occupation fraction that we would infer from the simulations if we
assumed that halos that host at least one star particle contain galaxies. For
comparison, we show the occupation fraction inferred by Nadler et al. (2020),
which is constrained by Milky Way observations.

13
We use all halos with one star particle despite the two different resolutions

used in this work. The lower-resolution simulations will reach zero occupation
at a slightly higherMpeak than the higher-resolution simulations, but the number
of halos in that mass range is so large that it has little impact on focc.
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knee below which reionization is suppressing star formation in
halos (see also Garrison-Kimmel et al. 2019).

As discussed in Munshi et al. (2019), many of the low-mass
halos in our H2 star formation model are not able to form stars
before reionization prevents them from doing so. This implies
that our results are sensitive to our selected reionization model.
We have adopted the same model in all simulation volumes,
following Haardt & Madau (2012). However, Haardt & Madau
(2012) has been shown to heat the intergalactic medium earlier
(z∼ 15) than it should (Oñorbe et al. 2015), potentially making
the impact of reionization particularly strong on our results.

Arguably the more important limitation of our reionization
model is the fact that it is uniform throughout the simulation
volume. This is common for cosmological galaxy simulations,
as the radiative transfer required to explicitly follow patchy
reionization is computationally expensive. Simulations that
self-consistently model reionization find that the baryon
fraction of low-mass halos is highly dependent on the timing
of reionization due to local densities, with suppression due to
reionization occurring earlier in higher density environments
(Wu et al. 2019; Katz et al. 2020; Ocvirk et al. 2020). The
Marvel-ous Dwarfs are ∼1.5–7Mpc away from a Milky Way
−mass galaxy, meaning that, in a more realistic reionization
scenario, they are in a lower density region that may not ionize
as early as the higher density regions surrounding the Justice
League Milky Ways. The fact that our full sample blurs out the
knee in the SMHM relation more than near individual massive
galaxies (compare Figure 1 to Appendix A) likely points to an
environmental dependence on reionization at a fixed halo mass
even with our spatially uniform UV background. However, a
more realistic reionization model may allow some of our dark
halos in our lower density regions to form stars. Benitez-
Llambay & Frenk (2020) explicitly look at the effect of
reionization on the z= 0 occupation fraction, and find that it
varies with how early or late reionization begins. Under-
standing the impact of reionization will require further
simulations and study, but will be essential to explore the
uncertainties that will impact the interpretation of LSST
observations.

4.3. Star Formation and Feedback Model

As discussed in Section 4.1, Munshi et al. (2019) finds that
there is a significant reduction in overall efficiency of star
formation in simulated UFD galaxies when adopting a
nonequilibrium H2-based star formation prescription relative
to a prescription that adopts a temperature-density threshold.
The reduction in star formation in the H2 model is due the long
formation times of H2 at low metallicities in low-mass halos.
This yields a significant difference in the number of predicted
galaxies at low masses and results in a different predicted SMF
between the two star formation recipes. In this paper, we adopt
the same H2-based star formation model as in Munshi et al.
(2019) across all eight volumes, and use our large sample of
dwarf galaxies to test the effect of the slope and scatter of the
SMHM on the predicted SMF. Figure 3 shows that there is no
appreciable change in the faint-end slope of the SMF or
number of predicted UFDs when considering No Scatter versus
the Constant Scatter case. However, in the Growing Scatter
case, the SMF is steepened toward lower masses. A
comparison with Figure 6 of Munshi et al. (2019) shows that
the occupation fraction imposed by the star formation
prescription can have a much larger effect on the number of

predicted UFDs: the large scatter in the SMHM relation derived
in this paper impacts the number of UFDs by ∼25%. The star
formation prescription contributes a comparable change if the
slope of the SMHM relation is unchanged. If the star formation
prescription also changes the slope of the SMHM relation, then
the number of UFDs can be a factor of 2–3 different.
Alternatively, Byrne et al. (2019) demonstrate that tying star

formation to shielded gas rather than the presence of H2 allows
stars to form in lower density gas. This may change the
resulting SMHM in the regime where dwarf galaxies do not
self-regulate. Latif & Khochfar (2019) find H2 self-shielding is
critical: in addition to the delay in star formation, the collapse
and evolution of halos is tied to the strength of the UV
background. Furthermore, our H2 model does not let stars form
(at our current resolution) in halos below 108M

e
at z= 6.

Skinner & Wise (2020) and Latif & Khochfar (2019) show
halos below this mass should be forming Population III stars,
which are not included in our model. Both emphasize the
balance between UV flux and self-shielding that sets the halo
mass that can form stars, and thus the z= 0 occupation fraction.
These results emphasize that the number of newly discovered
UFDs by LSST will place constraints on both the process of
star formation and the UV background at high redshift.
In addition to the star formation recipe, feedback strength

and implementation varies between simulations. Galaxy stellar
masses are sensitive to specific feedback implementations. For
example, Agertz et al. (2020) find that varying feedback
models changes the stellar mass of their test halo by over 1 dex,
but still within the scatter of our SMHM relation. In
simulations run with CHANGA and GASOLINE, superbubble
feedback (Keller et al. 2014) leads to a factor of ∼2 reduction
in stellar mass in Milky Way−like halos (Keller et al. 2015).
Mina et al. (2021) simulate dwarf galaxies using superbubble
feedback, and they find that it has a varying effect on the
SMHM relation. A larger sample is needed to assess any
potential systematic effect of superbubble feedback on dwarf
stellar masses. Specific results may also be sensitive to
feedback details like the inclusion of radiative feedback. For
example, Smith et al. (2021) show that ionizing radiation
reduces supernova clustering, leading to suppressed supernova-
driven outflows, while Smith et al. (2019) stress that the
strength of supernova feedback in dwarfs may also be highly
dependent on ISM turbulence, runaway massive stars, and early
stellar feedback. To constrain these varying physical processes,
it may be that a more detailed accounting of the observed stellar
mass fraction as a function of halo mass (e.g., Read &
Erkal 2019; Romeo et al. 2020) is required.
Finally, coupled with nonsupernova feedback, the effects of

IMF sampling on star formation are more difficult to predict
(Smith 2021). Applebaum et al. (2020) shows that implement-
ing a stochastically populated initial mass function (IMF) in
CHANGA can systematically lower stellar masses in UFDs.
In summary, how galaxies populate dark matter halos in

simulations is not only resolution dependent, but also tied to
both the star formation model and reionization. Since our
choice of star formation model and our reionization model can
affect the slope and scatter of halos we predict, we are unable to
say that the number of UFDs predicted in this paper is exactly
what LSST should expect to find. However we can constrain
the effect of scatter in the SMHM relation on predictions
compared to a no scatter case as long as our underlying models
and assumptions remain constant.
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5. Summary

In this paper, we use a large sample of extremely high
resolution simulated dwarf galaxies (LMC-mass to UFDs) in a
range of environments in order to predict the SMHM relation at
low halo masses. This is the first prediction of the SMHM
relation for dwarf galaxies this low in mass at z= 0, and the
first time that the scatter at the low-mass end has been robustly
quantified. In doing so, we demonstrate that (1) derived SMHM
relations cannot be simply extrapolated from higher masses to
lower masses, and thus (2) the halo mass of a faint dwarf
galaxy cannot be inferred a priori.

Our SMHM relation is best fit by including a break in the
slope of the SMHM relation. This break corresponds to a
visible knee in the relation, above which all halos are occupied
by simulated galaxies, and below which we start encountering
dark halos. This knee is the natural consequence of reioniza-
tion. The details of the reionization model will matter for the
exact location of the knee. In this work, in which we adopt a
uniform UV background based on Haardt & Madau (2012), we
find a break at a halo mass of 1010M

e
. The slope above the

knee is α= 2.0, and below the knee it steepens to α= 2.8.
The scatter in stellar mass at a given (peak) halo mass is

constant above the knee at 0.3 dex. Below the knee, some halos
may truly be dark due to reionization, but it is also likely that
these low-mass halos can host galaxies that are below our mass
resolution limit. Assuming that all halos are occupied, and that
the log-normal scatter that grows linearly about our best-fit
slope of α= 2.8 below the knee, the rate of increase in scatter
is quantified by γ, where γ=−0.38 (see Equation (2)).

When using z= 0 halo masses, the scatter in the relation is
much larger, due to the inclusion of satellite and backsplash
galaxies in the SMHM relation. The satellites of both our dwarf
and Milky Way galaxies as well as backsplash galaxies can
lose substantial mass after infall, including satellites that lose
an order of magnitude or more in halo mass. The results
presented above instead use peak halo mass, similar to earlier
abundance matching studies, which significantly tightens the
SMHM relation.

Our best-fit SMHM relation slopes and scatters can be used
to stochastically populate theoretical models at low masses
instead of relying on abundance matching. We demonstrate this
by populating a halo mass function and showing the predicted
SMF (see Figure 3), and exploring the effect of scatter on the
SMF. The resulting SMF is essentially unchanged when
considering the Constant Scatter and No Scatter cases, due to
the fact that the SMF is normalized to have 12 galaxies above
Mstar= 107M

e
within 1Mpc, comparable to the Local Group.

However, the faint-end slope of the SMF is steepened in the
case of Growing Scatter. More UFD galaxies are predicted if
there is Growing Scatter in the SMHM relation. The
luminosity/mass range where this can be tested is currently
being probed by surveys like DES, which discovered 16 new
UFDs in its first two years (Bechtol et al. 2015; Drlica-Wagner
et al. 2015), and the HSC-SSP, which has discovered three
dwarfs (Homma et al. 2016, 2018, 2019). Additional dwarfs
should be discovered by the Rubin Observatory’s LSST when
it comes online, allowing the SMF in this range to be probed
observationally.

This work is part of a series that has explored uncertainties in
modeling UFD galaxies. Applebaum et al. (2020) showed that
adopting a stochastic IMF can alter the stellar masses of UFD
galaxies. Munshi et al. (2019) showed that two commonly

adopted simulation star formation prescriptions can yield
different low-mass SMHM relations and occupation fractions.
In this work we have discussed the role of the occupation
fraction, the reionization model, and the star formation model
on our resulting SMHM relation. Because of these uncertain-
ties, we are unable to say that our predicted SMF is what LSST
is going to find. However, by systematically exploring these
effects we can quantify the uncertainties in the predicted SMF
given known unknowns, and begin to search for ways to break
degeneracies.
Despite the caveats, the large intrinsic scatter in our

simulated SMHM demonstrates that the commonly adopted
assumption of a monotonic relationship between stellar mass
and halo mass that is adopted in abundance matching breaks
down at low masses. Reionization should impose a break in the
relation at low masses. At the faintest end of the SMHM probed
by our simulations, a galaxy cannot be assigned a unique halo
mass based solely on its stellar mass or luminosity. The lack of
a monotonic relation between stellar mass and halo mass has
implications for interpreting observations of dwarf galaxies.
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Appendix A
The Effect of Cosmology and Resolution on Scatter

As mentioned in Section 2, the Marvel dwarfs are run within
a WMAP Year 3 cosmology (Spergel et al. 2007), while the
Justice League simulations are run with a Planck cosmology
(Planck Collaboration et al. 2016). In the top panel of Figure 5
we examine the effect of different cosmologies on the resulting
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SMHM relation. The top panel of Figure 5 compares the
z= 1.4 results for Sandra’s (one of the Justice League Milky
Ways) SMHM in both WMAP3 cosmology (red points) and in
Planck cosmology (blue points), at the same NM resolution.
We find that the SMHM relation is consistent across
cosmologies. To quantify, we fit a single slope and scatter
across the entire range of masses. That is, rather than fit a
“well-resolved” sample as in Section 3.1.1, or all halos
(including dark) as in Section 3.1.2, we fit all halos that
contain at least one star particle, i.e., any “occupied” halos. For

reference, if we fit a single slope and scatter for our occupied
sample at z= 0 instead of the two-component fit, the slope is
α= 2.0 with a scatter of γ=−0.21. The slope and scatter of
the z= 1.4 SMHM relations with WMAP3 and Planck
cosmologies are consistent with each other and with the
occupied sample to within one sigma (α= 1.97/γ=−0.2 and
α= 2.0/γ=−0.2, respectively).
In the bottom panel of Figure 5 we compare the z= 0 NM

and Mint Sandra simulations in a Planck cosmology to test the
effect of resolution. The stellar masses converge between the

Figure 5. SMHM relationship for various versions of Sandra. Top panel: we compare z = 1.4 results from both the WMAP3 cosmology and the Planck cosmology at
NM resolution to show convergence between different cosmologies. Bottom panel: we show z = 0 results using a Planck cosmology between both the NM run and
Mint run. Both resolutions converge to a similar SMHM. Both panels use simulation stellar masses, rather than photometric.
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two simulations (see also Applebaum et al. 2021), although
with the increased Mint resolution we resolve more UFDs.
Here, too, we find similar slopes and scatters between the two
resolutions, within one sigma of each other (α= 2.02/
γ=−0.2 and α= 2.05/γ=−0.2 for NM and Mint, respec-
tively). Since the cosmological comparison is at a higher
redshift and both comparisons (resolution and cosmology) only
include one simulation, we compare slope and scatter in the
above substantially simplified form.

Appendix B
Model Details

In Section 4.2 we have discussed that a broken power law is
physically motivated. Here, we demonstrate that a broken
power law joined at =Mlog 10peak is also statistically
preferred over a single power-law relation. To show this, we
compare the Akaike Information Criterion (AIC; Akaike 1974)
of the two models, using the likelihood described in
Section 3.1.2 . In both cases we use Equation (2) for the
scatter, with σ0= 0.3 dex above M1= 1010M

e
and growing

scatter below, such that the two-part power law only has one
additional fitted parameter (the second slope). We find the two-
part power law is preferred, with AIC1−AIC2= 19.8. Even if
we were to include the (fixed) location of the knee and the
value of σ0 as additional degrees of freedom, the two-part
power law would still be preferred. We find that the best-fit
slope with a single power law is α= 2.38, with growing scatter
given by γ=−0.26 (note that this fit is to all halos, including
dark halos). In other words, the high-mass slope is steeper and
the low-mass slope is shallower compared to the two-part
power law. While neither regime is dramatically changed, both
are poorer fits to the data, resulting in the preference of the two-
part power law.

To test whether the growing scatter is statistically preferred
over a constant scatter, we once again compare AIC values. As
above, we compare the model from Section 3.1.2 to two
otherwise identical models: instead of using Equation (2) for σ,
we either (1) leave a constant value of σ0 as a free parameter, or
(2) use σ= 0.3 dex for logMpeak� 10 and a constant σ0 as a
free parameter for lower masses only. We find the former case
yields a best-fit scatter of 0.55 dex and ΔAIC= 24.3 (which is
also inconsistent with the observed scatter at the high-mass
end), while the latter yields a scatter (below M1) of 0.62 dex
and ΔAIC= 9.5. Both of the constant scatter models are
disfavored, then, compared to the growing scatter model.
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