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Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova
remnants are computationally challenging because of rapid stellar braking. We describe a practical,
efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi
algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited
to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave
Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and
stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of
the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms.
One implementation tracks the signal frequency alone. A second implementation tracks the signal
frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first
implementation, but the cost increases by 2 to 3 orders of magnitude.
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I. INTRODUCTION

Rotating neutron stars in young supernova remnants
(SNRs) are plausible sources of quasi-monochromatic
gravitational radiation detectable by ground-based inter-
ferometers such as the Laser Interferometer Gravitational
Wave Observatory (LIGO) and the Virgo detector [1-3].
The emission is predicted to occur at a frequency propor-
tional to the star’s spin frequency f,. A thermoelastic [4,5]
or magnetic [6—8] mass quadrupole emits at f, and/or 2f,,
an r-mode current quadrupole emits at roughly 4f,/3,
perturbed by an equation-of-state correction [9-12],
and a current quadrupole produced by nonaxisymmetric
circulation in a superfluid pinned to the crust emits at f,
[13-16]. There are several reasons to devote attention to
this source class. First, a young object has spent less time
settling down since its birth; slow, diffusive processes like
ohmic [17] or thermal [18] relaxation are still in the early
stages of erasing nonaxisymmetries inherited at birth
[1,3,19]. Second, the rapid spin-down of a differentially
rotating young neutron star excites high-Reynolds-number
turbulence, which produces a time-varying current quadru-
pole moment [13,20,21]. Third, young radio pulsars are
known to undergo glitches [22-25], which are ascribed to
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differential rotation [26—28] or starquakes [29] and can also
lead to quadrupole moment variations.

Initial LIGO achieved its design sensitivity over a
wide frequency band during Science Run 5 (S5) [30]
and exceeded it during Science Run 6 (S6) [2]. Several
continuous-wave searches targeting young SNRs have been
carried out using Initial LIGO data. A directed, radiometer
search for SNR 1987A was conducted in S5, yielding a
90% confidence strain upper limit #3°% =7 x 1072 for a
circularly polarized signal in the most sensitive band, near
160 Hz [31].1 A semicoherent cross-correlation search for
the same target in S5 data improved the upper limit to
h)% = 3.8 x 1072 [33]. A coherent search for Cassiopeia
A (Cas A) was conducted on a 12-day stretch of S5 data
in the band 100-300 Hz, yielding hp>”* in the range
0.7-1.2 x 107>* [34]. The upper limit for Cas A was
improved by approximately a factor of 2 by a semicoherent
Einstein@Home search in S6. The search was conducted in
a broad frequency band 50-1000 Hz, yielding the best
h)% ~ 2.9 x 1072 at 170 Hz [35]. In S6, directed searches
were conducted for nine nonpulsating x-ray sources (cen-
tral compact objects) in SNRs with the maximum like-
lihood matched filter called the F statistic. The searches

'The radiometer search assumes a circularly polarized signal.
The upper limit quoted here converts to /)’ = 1.6 x 107* for
the general case of arbitrary polarization after multiplying by a
sky-position-dependent factor ~2.2 [32].
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combine multidetector data coherently over 5.3 to
25.3 days, yielding strain upper limits in the range
3.7%x 1075 < hP% < 6.4 x 1073 [36]. The foregoing
upper limits are slated to improve in the future. The strain
noise in the first observation run (O1) of Advanced LIGO is
3—4 times lower than in S6 across the most sensitive band,
between 100 Hz and 300 Hz, and ~10? times lower around
50 Hz [37]. The sensitivity is expected to improve roughly
twofold relative to O1 after further upgrades [37].

The rapid spin-down of young neutron stars is a serious
challenge for searches of the above kind. A large number of
matched filters (i.e., templates) is required to track a signal
with a rapid evolving phase, when a radio ephemeris is
unavailable. For example, the F-statistic search in Ref. [36]
is restricted to <25.3 d in order to keep the number of
matched filters manageable. Semicoherent methods have
been developed [38—40], based on the stack-slide algorithm
[41], to sum the signal power in multiple coherent segments
after sliding the segments in the frequency domain to
account for the phase evolution of the source. However,
stack-slide searches are still computationally challenging,
when high-order derivatives of the signal frequency enter
the phase model. Intrinsic, stochastic f, wandering (“timing
noise”) also degrades the sensitivity of these searches.

In this paper, we introduce an approach based on a
hidden Markov model (HMM) [42] to tackle the above
challenge. A HMM tracks signals with time-varying,
unobservable parameters by modeling them as hidden
states in a Markov chain. The HMM relates the observed
data to the hidden states through a likelihood statistic and
infers the most probable sequence of hidden states. It
incoherently combines the coherent matched filter outputs
from data blocks of duration Ty5 (analogous to Ty, in
Ref. [36]), during which the signal parameters are assumed
to remain constant. The sensitivity scales approximately
proportional t0 (T gpsTarire) "4, Where Ty is the whole
observation time. The Viterbi algorithm [43] provides a
computationally efficient HMM solution. A HMM was
applied to search for continuous gravitational radiation
from the most luminous low-mass x-ray binary, Scorpius
X-1, in Ol data, taking into account the effects of spin
wandering caused by the fluctuating accretion torque [44].

The structure of the paper is as follows. In Sec. II, we
describe the signal model, introduce the F statistic, and
discuss the search parameter ranges. In Sec. III, we
formulate the HMM tracking problem with one hidden
state variable, describe how to choose T 45, and discuss the
impact of timing noise. In Sec. IV, we conduct Monte Carlo
simulations in Gaussian noise, present search examples,
and estimate the sensitivity. In Sec. V, we introduce an
alternative HMM formulation with two hidden state var-
iables, and present abridged simulation examples. In
Sec. VI, we discuss the trade-off between computing cost
and sensitivity. We also discuss the special case of young
objects, whose current spin frequencies are close to the

value at birth. A summary of the conclusions is provided
in Sec. VIL

II. COHERENT MATCHED FILTER

In this section we start by describing the signal model in
Sec. IT A. We then review the maximum likelihood matched
filter corresponding to the signal model, called the F
statistic, in Sec. II B, and discuss the signal phase parameter
ranges in Sec. 11 C.

A. Signal model

We consider a continuous gravitational wave signal
from a rotating neutron star modeled as a biaxial rotor.
The Doppler modulation of the observed signal frequency
due to the motion of the Earth with respect to the solar
system barycenter (SSB) is taken into consideration. The
signal phase observed at the detector is then given by [45]
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q>(t)_2nk;(k+l)!+7n r(t)k; o (1)

where f (()k) is the kth time derivative of the signal frequency
at t = 0, 71 is the unit vector pointing from the SSB to the
neutron star, and 7(¢) is the position vector of the detector
relative to the SSB.

The signal can be written in the form

h(t) = AR, (1), (2)

where A# denotes the amplitudes associated with the four
linearly independent components2

(1) = a(1) cos (). 3)
ha(t) = b(1) cos @), @)
ha(r) = a(1) sin (). (5)
ha(t) = b(1) sin (). (6)

a(t) and b(r) are the antenna-pattern functions defined
by Egs. (12) and (13) in Ref. [45], and ®(7) is the signal
phase given by (1). In (2), A* depends on the star’s
inclination, wave polarization, initial phase at r = 0, and
strain amplitude .

"Here we assume a perpendicular rotor emitting at 2f, only for
simplicity. A nonperpendicular rotor also emits at f,, and hence
eight components are involved. A full description of the signal
model can be found in Ref. [45]. The emission spectrum of a
triaxial rotor contains additional lines [8,46].
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B. F statistic

The time-domain data collected by a detector takes the
form

x(t) = A'hy (1) + (D), (7)

where n(t) stands for stationary, additive noise. The F
statistic maximizes the likelihood of detecting a signal in
data x(r) with respect to A* [45]. We define a scalar product
(+|-) as a sum over single-detector inner products,

(xly) = > () (8)
_ o XX(3(f)
= zszm A df G (9)

where X indexes the detector, SY(f) is the single-sided
power spectral density (PSD) of detector X, the tilde denotes
a Fourier transform, and ) returns the real part of a complex
number [47]. The F statistic is expressed in the form

1
F = Ex},/\/l’“’xw (10)

where we write x, = (x|h,), and M*" denotes the matrix
inverse of M, = (h,|h,).

Assuming the noise n(r) is Gaussian, the random
variable 2 follows a noncentral chi-squared distribution
with 4 degrees of freedom, whose probability density
function (PDF) is

p(2F) = y*(2F;4.p}), (11)
with noncentrality parameter [45]
P =AM, A (12)

Without a signal, the PDF of 2F centralizes to p(2F) =
2*(2F;4,0). Given a signal in Gaussian noise and assum-
ing the same single-sided PSD, S, (f), in all detectors, the
optimal signal-to-noise ratio equals pg, given by [45,48]

,02 _ Kh(2)Tdrift
O S

where the constant K depends on the sky location,
orientation of the source and the number of detectors,
and h denotes the characteristic gravitational-wave strain.

We leverage the existing, fully tested J-statistic software
infrastructure in the LSC Algorithm Library Applications
(LALApps)3 to compute F as a function of frequency and
its time derivatives over an interval of length 7'y, [49]. The

(13)

3http://software.ligo.org/docs/lalsuite/]alapps/index.html.

software operates on the raw data collected by LIGO in
the form of short Fourier transforms (SFTs), usually with
length Tgpr = 30 min for each SFT. It provides options to
search up to the third time derivative of frequency, f. The
implementations described in Secs. III and V use the
options to search over f, and (f,, f,), respectively.

C. Search parameter ranges

The ranges of £, and £, to be considered in defining the
parameters of the search can be reexpressed in terms of the
range of braking index n = f,fy/f,> and the spin-down
age of the source 7, given by [34,36]

So ; So
_(nmin_ I)TSfO < _(nmax_ 1>T’ (14)
and
) i 2
il ¢ < Tl (15)

Radio timing observations yield 1.4 < n < 3 for all pulsars,
where f, can be measured reliably by absolute pulse
numbering [9,50] (cf. [51]). Gravitational radiation in
the mass and current quadrupole channels corresponds to
n =735 and n =7, respectively. In this quick study, we
assume 2 < n < 7. Strictly speaking, the ranges obtained
from (14) and (15) are wider than needed. In a real search,
one should ideally calculate the f,, and f|, ranges for each
fixed 2 < n <7 and choose the widest f,, and f, ranges.
Equations (14) and (15) are valid, provided that f(¢)
during the observation is much smaller than f at birth,
Sfovirn- The regime  fo(¢) ~ fopiun 1S considered in
Sec. VIB.

III. HMM TRACKING OF f,

We begin this section by reviewing briefly the use of
HMM tracking in gravitational wave searches (Sec. III A).
We formulate the tracker as a one-dimensional HMM with
a single hidden variable f, (Sec. III B), discuss the
coherent drift time scale Ty (Sec. IIIC), and illustrate
that the method can track secular spin-down and stochas-
tic timing noise simultaneously (Sec. IIID). A full
description of HMMs can be found in Ref. [48]. The
Viterbi algorithm used for solving the HMM is described
in Appendix A.

A. HMM formulation
A Markov chain is a stochastic process transitioning
between discrete states at discrete times {fo,....7y, }. A
HMM is an automaton, in which the state variable ¢(t) €
{41,---.qn,} is hidden (unobservable), and the measure-
ment variable o(t) € {0y,...,0y,} is observable. The
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hidden state at time ¢, | only depends on the state at time 7,
with transition probability

quqi = P[Q(thrl) = qj|Q(tn) = Qi}' (16)

The hidden state g; is observed in state o; with emission
probability

Lojq,- = P[O(tn) = 0j|q(tn> = Qi]' (17)
Given the prior defined by

I, = Plg(to) = qi. (18)

the probability that the hidden state path Q = {q(t). ...,
q(ty,)} gives rise to the observed sequence O =
{o(ty),....o(ty,)} via a Markov chain equals

P(Q|0) = Loy, )qtix, ) Aqtin, alty,—1) = Lot)an)
X Aq(n)q(10) Ng(ao)- (19)

The most probable path maximizing P(Q|0), viz.
0"(0) = argmax P(Q|0), (20)

gives the best estimate of ¢(z) over the total observation,
where argmax(---) returns the argument that maximizes
the function (- -).

B. Transition and emission probabilities

We consider the one-dimensional hidden state variable
q(t) = fo(t). The discrete hidden states are mapped one-to-
one to the frequency bins in the output of a frequency-
domain estimator F(f,) computed over an interval of
length T4, With bin size Af, selected using the metric
described in Appendix B. For simplicity here, we take
Afo = 1/(2T gi5), with mismatch m < 0.2. The mismatch
m is defined as the fractional reduction of JF-statistic power
caused by discrete parameter sampling (see Appendix B).
We choose T as described in Sec. III C to satisfy

14T grife .
‘ / dr'fo(t')
t

for 0 <t < T gps-

In this section, we first consider the situation where the
time scale of timing noise, which causes f, to walk
randomly, is much longer than the spin-down time scale.
Hence the impact of timing noise is negligible compared to
secular spin-down. Modifications needed to tackle stronger
timing noise are discussed in Sec. III D. If we substitute the
maximum |f,| from (14), denoted by | £,y into (21) and

<Afy (21)

assume that f, is uniformly distributed in the range from
2e10 10 |fo| >t Eq. (16) simplifies to

1

Agig = Agg, = bR (22)

with all other entries being zero. By the definition of the
frequency domain estimator, the emission probability is
given by [45,48,49]

Lo(g, = Plo()|foi < fot) < foi +Afo]  (23)

o exp[F (foi)], (24)
during the interval [¢, t + Ty5r], where f; is the value of f

in the ith f, bin. Since we have no independent knowledge
of f, we choose a uniform prior, viz.

M, =Ng'. (25)

C. Drift time scale

Given f,, we choose T4 according to

1
2T ity

|f0|Tdrift = AfO = (26)

to satisfy (21). Hence Ty = (2|fo|)~"> depends solely
on the spin-down rate of the source. To illustrate how
T4ie is determined by 7, we calculate f,, and hence T
by assuming purely electromagnetic spin-down [f ()
B3fo(t)", n=3] as an example, where B is the birth
magnetic field strength; see Appendix C for a detailed
derivation. Figure 1 displays contours of 7y as a function
of the gravitational-wave signal frequency today, foday
and the ratio fooday/fobirns Where fopiy 18 the signal
frequency at the birth of the star. The contours in the
upper left panel (e.g., SNR 1987A; 7 = 0.03 kyr) show
T 4ise <5 h for most of the plot. By contrast, the contours
in the upper right panel (e.g., Cas A; 7= 0.34 kyr)
satisfy Ty > 10 h over ~1/3 area of the plot. The T g
values estimated for older objects with 7= 0.6 kyr
and 1 kyr are plotted in the lower panels. All panels show
that Ty decreases significantly for foioqay/fobirn < 0.8
and fooday = 100 Hz.

*According to Eq. (14), we have |fo|a = 6|/0lmin. Where
|f0lmin is the minimum |f,| from (14). In practice, however, we
normally search |f| values more than an order of magnitude
smaller than |f|,,.. Hence the search range of f; is dominated
by |folmn- and we approximate the search range to be

0< |f0| < |f0‘max’
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Figure 1 is plotted for n = 3. In practice, the range of f,
is given by Eq. (14) for 2 < n < 7. We substitute |f,
into (26) to satisfy (21) for all fo and obtain

| max

Tdrift = (2|f0|max)_1/2' (27)

Hence for any given source with spin-down age 7, we can
always choose a coherent duration 7y, and divide the data
into Ny = T /T 4rire cOherent segments, without searching
the (o, fo. ...) parameter space.

D. Timing noise

Stochastic spin wandering (often termed timing noise) is
a widespread phenomenon in isolated neutron stars pulsat-
ing at radio and x-ray wavelengths [52-54]. The autocor-
relation time scale ranges from days to years [55,56]. The
phenomenon can result from magnetospheric changes [57],
superfluid dynamics in the stellar interior [56,58—60], spin
microjumps [61,62], and fluctuations in the spin-down
torque [63-65].

In the absence of a measured ephemeris, a HMM can
track the evolution of f(() caused by both secular spin-
down and stochastic timing noise [48]. We approximate the
timing noise by an unbiased random walk, in which f ()
moves by at most one bin up or down during the timing-
noise time scale 77 ;,. The transition probability matrix for
timing noise only is

1
/ Al Al _
Aqi—lqi - Al]i‘li - Aqi+1qi - 3"

(28)
For T:iﬁft > Tdrift? we can neglect timing noise, as discussed
in previous sections. For 77, < Tq;r, We can neglect
secular spin-down, set Aqﬂi = Ail,-q,-’ and divide the data
into Ny = Tob.s/T:jrift coherent segments. qu Thiee = T asifes
we choose min(77,q. Tag;) as the drift time scale and
adjust the transition probabilities to take into consideration
both timing noise and spin-down.

IV. SIMULATIONS AND SENSITIVITY

In this section, we first introduce the Viterbi score
and the associated, score-based detection threshold in
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Sec. IVA. We demonstrate the performance of f tracking
for three different scenarios using synthetic data: (1) an
older object with weak timing noise (Sec. IV B); (2) an
older object with strong timing noise (Sec. IV C); and (3) a
very young object (Sec. IV D). Simulations are conducted
in an artificially restricted, 1-Hz subband to save time. The
signals are injected at a fixed sky position, and S, (f) is set
to Advanced LIGO’s design sensitivity [66]. We show
the results in detail with a set of injections into Gaussian
noise for each of the three scenarios, where the polarization
and inclination angles and initial phase are arbitrarily
chosen and fixed. Monte Carlo simulations are conducted
to generate the receiver operator characteristic (ROC)
curves (Sec. IVE).

A. Viterbi score and threshold

The Viterbi score S is defined such that the log likelihood
of the optimal Viterbi path equals the mean log likelihood
of all paths plus S standard deviations at 7y, , viz.

29
Ons(tn,) ®)
with
Ng
ﬂln&(tNT) = Nél Z In éqi(tNT) (30)
i=1
and

No

Ulms(tNT)2 = Nél Zﬂn 54, (tn,) _Iulné(tNT)}z’ (31)
i—1

where &, (ty,) denotes the maximum probability of the
path ending in state g; (1 <i < Ny) at step Ny (see
Appendix A), and 6, (ty, ) is the likelihood of the optimal
Viterbi path, i.e., P[Q*(0)|0]. In a real search, we
normally divide the full frequency band into multiple
1-Hz subbands to allow parallelized computing. In each
1-Hz subband, we consider the candidate for follow-up and
further scrutiny, if S exceeds a threshold Sy, set by the
desired false alarm and false dismissal probabilities. The
value of Sy, varies with N, Ny, and the entries in Aq,qi'

Systematic Monte Carlo simulations are always required in
practice to calculate Sy, for each HMM implementation.
For the three scenarios in Secs. IVB-IV D, Sy is
determined as follows. Searches are conducted on data
sets containing pure Gaussian noise in 1-Hz subbands. For
a given false alarm probability P, in a 1-Hz subband, the
value of § yielding a fraction P, of positive detections is
S~ The false alarm probability in a search over band B is
given by P o =1—-(1-P,)B We set P, =1% and
generate 10° noise realizations for each scenario. Searches

for the first two scenarios are based on the same N, and
Ny, and hence they both yield Sy = 6.7. The mean and
standard deviation of S in the 10° realizations are yg = 5.5
and og = 0.4. In the last scenario, we have S = 0.8, with
#s = 0.63 and o5 = 0.06. Because 6),5(ty,) increases as
Ny gets larger, yielding lower S normalized by o, 5(ty,)
in (29), it is as expected that the Sy is much lower in
the last scenario (N; = 2000) than the first two scenarios
(N7 = 40).

B. 72 5 Kyr, T3¢ > Tarite

In the first group of tests, we consider a relatively
older target with low timing noise, e.g., 7 2 5 kyr and
Tlin > Tar. Four sets of synthetic data, containing
injected signals with hy/1072¢ =10, 5, 3, and 2, are
generated for 7, = 83.3 d at two detectors (the LIGO
Hanford and  Livingston  observatories)  using
MAKEFAKEDATA version 4 from LALApps. Detailed injec-
tion parameters are shown in Table I. The searches are
conducted using the search parameters in Table II and Aq]_ a
in (22). The detection is deemed successful for
S > Sy = 6.7. The results in Table III show that signals
with 71y > 3 x 10720 are detected. We calculate the root-
mean-square error (RMSE) ¢4, in f, between the optimal
Viterbi path and the injected signal (in Hz and in units of
Afp). All successful detections yield e < Af . The errors
are introduced mostly because the HMM takes discrete
values of f (i.e., Af, is the smallest step size), while the
injected signal f(#) can take any value within a bin.

TABLE L. Injection parameters used to create the synthetic data
analyzed in Secs. IV B and IV C.

Parameter Symbol Value

Right ascension a 23 h 23 m 26.0 s
Declination 1) 58°48'0.0”
Polarization angle 7 4.94278 rad
Inclination angle cost 0.718742

Initial phase bo 2.43037 rad

PSD Sp(f)? 4 x 10724 Hz™'”
Frequency S oinj 151.23456789 Hz
First derivative of fo;y; foing —1.0 x 10~!! Hzs™!
Second derivative of foii  foin 2.0 x 1072 Hzs™?
TABLE II. Search parameters for the synthetic signals with
injection parameters quoted in Table I.

Parameter Value Unit
fo 151-152 Hz
T grite 50 h
Afy 2.78 x 1076 Hz
T ops 83.3 d
Ny 40
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TABLE III.  Results of f tracking for synthetic signals with the
injection parameters in Table I, 7, = 83.3 d, Ty = 50 h, and
characteristic wave strain iy. The RMSE ¢ between the optimal
Viterbi path and the injected f(¢) is quoted in Hz and in units of
Afy =278 x 1076 Hz. The third column quotes the Viterbi
score S.

hy (10729) Detect? S es, [Hz] er,/Afo
10.0 v 90.9 1.07 x 107 0.39

5.0 v 32.0 1.29 x 107 0.46

3.0 v 10.6 1.64 x 107 0.59

2.0 X 55 0.46 1.6 x 10°

Figure 2 presents the tracking results corresponding to
Table III. Figures 2(a)-2(c) show that the optimal Viterbi
paths match the injected f((¢) closely, with e, = 0.39Af,
0.46Af,, and 0.59Af, respectively. Figure 2(d) shows that

hy =1x10"%
151.2345
151.2345 \
151.2345 \\
151.23454 N
~ N
L 1512345 A
151.23452 u\
151.23451 >\

151.23450r | === Signal path

—— Optimal Viterbi path

151.2344

5 10 15 20 25 30 35 40
Step (T, = 50 hr)
(@)
hy =3 x107%

151.23457,

151.2345 \

151.2345 \\

151.23454 SN
— \
N

T 15103 AN

< AN

151.23452 \\
151.23451 \
151.23450r | = Signal path \
—— Optimal Viterbi path
1912344 5 10 15 20 25 30 35 20
Step (T, = 50 hr)

(©)

FIG. 2.

the signal is not tracked successfully. The detectability
drops rapidly from hy =3 x 10726 to hy =2 x 10726, as
expected near the detection limit (see detailed explanation
in Sec. III B of Ref. [48]).

C. 7% 5 kyr, T:h-ift ~ Tarife

In the second group of tests, we show that the HMM can
track secular spin-down and timing noise simultaneously
for synthetic signals injected in Gaussian noise. As an
example, we assume the time scale of the unbiased random
walk is the same as the spin-down time scale, i.e.,
Tl = Tange = 50 h. The modified transition probability
matrix is the product of (22) and (28), given by

1

2A qi+19i = g’

qi-29i = A%‘-l‘{i = A‘qui =2A (32)

with all other terms being zero.

151.23457, hy =5 X107
151.234“\
\\
151.23455 \
SN
151.23454 N
— \
i 151.23453 AN
o
N
&151.23457 \\
N
151.23451
\
151.234500 | ====Signal path \\

—— Optimal Viterbi path

151.2344

5 10 15 20 25 30 35 40
Step (T, = 50 hr)
(b)
hy =2 x107%
151.7,
151.6]
151.5
N
T
=3
H\ISI."
151.3]
= Signal path
= —— Optimal Viterbi path
131 5 10 15 20 25 30 35 20
Step (T = 50 hr)
(d)

Injected () (blue curve) and optimal Viterbi path (red curve) for the injected signals in Table III. Panels (a)—(d) display paths

for hy/1072° = 10, 5, 3, 2, respectively. Good matches are obtained in (a)—(c), with €5, = 0.39Af, 0.46Af, and 0.59Af, respectively.
In (d), the signal is not detected; the spin-down of f(z) is too slow to be seen in the plot (7, > fTops = 7 X 1073 Hz). The horizontal
axes are in units of HMM steps with Ty = 50 h for each step (Ny = 40).
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Injected £ () (blue curve) and optimal Viterbi path (red curve) for the injected signals in Table IV. Panels (a)—(d) display paths

for hy/1072° = 10, 5, 3, 2, respectively. Good matches are obtained in (a)-(c), with e, = 0.38Af0., 0.59Af, and 0.77Af, respectively.
In (d), the signal is not detected; the spin-down of f(z) is too slow to be seen in the plot (e, 3> fTops ~ 7 X 10~ Hz). The horizontal
axes are in units of HMM steps with Ty = 50 h for each step (Ny = 40).

Four data sets with signal strains /,/1072° = 10, 5, 3, and
2 are generated for 7y, = 83.3 d at two detectors. We use
the same injection parameters in Table I at = 0. In addition
to the spin-down, f((#) wanders randomly by at most +Af,
over time scale Tg4;;. The data sets are searched using the
parameters in Table II and quq[ in (32). The results are
shown in Table IV. The detection is deemed successful for
§ > Sy = 6.7. All successful detections yield €5, < Afj.

Figure 3 presents the tracking results for signals with
hy/10726 =10, 5, 3, 2 in Table IV. The optimal Viterbi
paths in Figs. 3(a)-3(c) match the injected paths closely,
indicating successful detections. The RMSE ¢, increases
from 0.38Af, to 0.77Af,, when h, decreases from
1 x 1072 to 3 x 1072, Figure 3(d) shows that the optimal
Viterbi path does not match the injected f((z) for
hy =2 x 107%%; i.e., the injected signal is not detected.

Given the signal-to-noise ratio, T4 and Ny, the
sensitivity of the search remains the same for T/, >
Tdrift (SeC. v B) and Téln'ft = le‘ift (SCC. 1A% C)

TABLE IV. Results of f tracking for synthetic spin-wandering
signals with the injection parameters in Table I, T, = 83.3 d,
T4ire = 50 h, and characteristic wave strain hy. The RMSE &/,
between the optimal Viterbi path and the injected f((#) is quoted
in Hz and in units of Af, = 2.78 x 107® Hz. The third column
quotes the Viterbi score S.

hy (10729) Detect? S er, [Hz] e, /Afo
10.0 v 92.5 1.06 x 10°° 0.38

5.0 v 28.4 1.63 x 107° 0.59

3.0 v 72 2.14x107° 0.77

2.0 x 5.1 0.29 1.1 x10°
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TABLE V. Spin-down-related injection parameters used to
create the synthetic data analyzed in Sec. IV D.

Parameter Symbol Value

First derivative of f;,; foinj -3.0x 107% Hzs™!

Second derivative of fg Foinj 3.0 x 10717 Hzs™2
Third derivative of fo; foing —3.0x 10726 Hzs™3

D. 7 50.03 kyr, T} ;¢ > Tarite

In the third group of tests, we consider a very young
object with 7 < 0.03 kyr, e.g., SNR 1987A. In stack-slide-
based searches for such young sources, typically four or
more frequency derivatives must be searched in order to
accurately track the rapid phase evolution.

We inject four signals with hy/10726 = 15, 13, 11, 10
and high spin-down rates as quoted in Table V. Other
injection parameters remain the same as those in Table I.
We choose T4 = 1 h to satisfy Eq. (21). In this case, we
always have T 3> Ty and hence use A, ;. in (22). The

search parameters and results are presented in Tables VI
and VII, respectively. In this group, the detection is deemed
successful for § > Sy, = 0.8 given P, = 1%. The success-
ful detections yield e <2Af;=28x10"* Hz. We
tolerate &, slightly larger than Af, because Ty is
relatively short.

Figure 4 shows the tracking results corresponding to
Table VII. Figures 4(a)-4(c) show that the optimal Viterbi
paths match the injected f(¢) closely. The discrepancy
between the optimal Viterbi path and the injected f((7) can

TABLE VI. Search parameters for the synthetic signals with
injection parameters quoted in Tables I and V.

Parameter Value Unit
fo 151-152 Hz
T iy 1 h
Afy 1.39 x 107* Hz
Tobs 83.3 d
Ny 2000

TABLE VII. Results of f{ tracking for synthetic signals with

the injection parameters in Tables I and V, T, = 83.3 d,
T4in = 1 h, and characteristic wave strain hy. The RMSE &,
between the optimal Viterbi path and the injected f((¢) is quoted
in Hz and in units of Afy = 1.39 x 10 Hz. The third column
quotes the Viterbi score S.

hy (10729) Detect? S e, [Hz] e /Afo
15.0 v 3.0 1.77 x 1074 1.3
13.0 v 2.1 250 x 1074 1.8
11.0 v 0.9 247 x 1074 1.8
10.0 X 0.5 0.02 151.8

hardly be seen, because &7, ~ 10~* Hz is much smaller than
the total change in f, over T, (0.2 Hz). Figure 4(d)
shows that the signal is not detected for sy = 10 x 10726,
with &, = 151.8Af) > Af).

E. ROC curve and sensitivity

The detection threshold Sy, is set by P,. The probability
that an injected signal yields S < Sy, is the false dismissal
probability, denoted by P4. We quantify the performance of
the HMM in terms of its ROC curve, plotting the detection
probability 1 — P4 against the false alarm probability P, for
various signal strengths. The signal-to-noise ratio for a
biaxial rotor scales approximately in proportion to A,
given by [45,67]

B = ho2712{[(1 + cos?1)/2]* + cos?i}12,  (33)

so we quote AT instead of & as the signal strength. The
simulations are conducted in an artificially restricted, 1-Hz
subband, at a fixed sky location, with both polarization
angle y and initial phase ®, randomly chosen with a
uniform distribution within the range [0, 27| rad.

The ROC curves are essentially indistinguishable for the
two scenarios in Secs. IVB and IV C, because HMM
tracking is insensitive to the exact choice of Aq;q/ [42,43].
Figure 5 shows the ROC curves for these two scenarios
with four values of AST, ranging from 1.8 x 1072¢ to
2.5 x 107%%, For P, = 1%, we have 85% and 99% con-
fidence to detect a signal with AgT =2.2 x 1072¢ and
2.5 x 10726, respectively, read off the top two curves in
Fig. 5. The 95% confidence sensitivity on effective strain is
RETI% 22.4 % 10720 (T s = 83.3 d).

Figure 6 shows the ROC curves for the searches in
Sec. IV D with four A" values, ranging from 7.5 x 10726 to
9.0 x 1072°, The properties of the curves are similar to
Fig. 5. However, the overall sensitivity degrades by a factor
of ~3.5, with AS"%% % 8.5 x 10720 (T s = 83.3 d).

V. HMM TRACKING OF f,, AND f,

In Secs. III and IV, we show that one-dimensional HMM
tracking can be applied to search for any young objects,
but the sensitivity degrades when the spin-down rate is
too high, e.g., |fo| = 1078 Hzs™! and T4 < a few hours.
In this section, we describe a more costly alternative to f
tracking, which allows relatively longer 7g;; when the
spin-down rate is high. We formulate the tracker as a two-
dimensional HMM with hidden state (f,, f,) in Sec. VA
and present simulation examples in Sec. V B.

A. Transition and emission probabilities

In this implementation, we define a two-dimensional
hidden state variable ¢(¢) = [f,(). fo(#)] and track f,, and
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Injected f(#) (blue curve) and optimal Viterbi path (red curve) for the injected signals in Table VII. Panels (a)—~(d) display

paths for ,/1072° = 15, 13, 11, 10, respectively. Good matches are obtained in (a)—(c), with eg, < 2Af,. In panel (d), the signal is not
detected. The horizontal axes are in units of HMM steps with T4;; = 1 h for each step (N; = 2000).

fo jointly. The state variable can take No =Ny Ny,
possible discrete values g;; € {q;. ..., quoN/’o}’ where i
and j index f,, and f, bins, respectively, and Ny, and Ny,
are the total number of f, and f, bins, respectively.

The discrete hidden states are mapped one-to-one to the
two-dimensional array of bins in the output of the estimator
F(fo. fo) computed over Ty The fo and f; bin sizes
Af, and Af, are selected using a phase metric described in
Appendix B. Assuming that the spin-down evolution of a
neutron star is smooth (i.e., no glitches) and that fy(t)
is bounded, we can always choose an intermediate time

>The F statistic is computed as a function of f(¢) and £, (z) at
a given reference time. We normally choose the start time #,, of the
interval as the reference time.

scale

Taire for a particular astrophysical source,
Tspr < Tyiri < Topss to satisfy
14T iy . .
[ aed)| < oy (34)
t

for 0 < 7 < T, We calculate f((7,, ) from the estimated
folt,) and fo(t,) according to°

Foltur1) = Fo(ta) + fo(ta) Tarine (35)

®Alternatively, if we track f,(r) and fo(z) independently,
another constraint on Ty, is imposed by Afy, given by (21).
In other words, we cannot use longer T4 than that in the f,
tracking. Hence we do not track f, and f, independently and
choose Tyf to satisfy (34) only.
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Pa
FIG.5. ROC curves for the searches described in Secs. IV B

and IV C (curves indistinguishable to the eye). The four
curves (from top to bottom) correspond to the four repre-
sentative wave strains h§T/10726 = 2.5, 2.2, 2.0, and 1.8. The
horizontal and vertical axes indicate the false alarm proba-
bility P, and detection probability 1 — P, respectively. Each
curve is based on 500 realizations. Parameters: Ty, = 50 h,
Ny =40, §,(f)"* =4 x1072* Hz" ',

If we update f(t,,) according to (35), the transition
probability matrix becomes

di-pij149ij —

qi-nij4qij

with all other terms being zero. In (36), Ai takes integer
values Aipi,(f) < Ai < Aip,, (j) with

Aiyin () = floor (| fo 1| awi/ Afo). (37)

Aimax (]) = Ceil(|f0j|Tdrift/AfO)’ (38)

where floor(x) denotes the largest integer smaller than or

equal to x, ceil(x) denotes the smallest integer larger than

or equal to x, and f, ; is the value of fo in the jth £, bin.

The detailed derivation of (36) is given in Appendix D.
The emission probability is given by

Lo(t)q[j - P[O(t)|f0i < fO(t) < fOi + Ava
foj < folt) < fo; + Afo] (39)

B eXP[]'—(fol',ij)]- (40)
We choose a uniform prior in both £, and f,, viz.

M, =Ng. (41)

0.4t
— KT =75x107%
— R =8.0x10
— KT =8.5x107%
0.2y — KT =9.0x107%
0.0 0.2 0.4 0.6 0.8 1.0

Pa

FIG. 6. ROC curves for the searches described in Sec. IV D.
The four curves (from top to bottom) correspond to the four
representative wave strains A51/10726 = 9.0, 8.5, 8.0, and 7.5.
The horizontal and vertical axes indicate the false alarm prob-
ability P, and detection probability 1 — P4, respectively. Each
curve is based on 200 realizations. Parameters: Ty = 1 h,
Ny = 2000, S,(f)'? =4 x 1072* Hz"'2.

B. Abridged mock search

In this section we demonstrate the (f,, fo) HMM tracker
using synthetic data. To make a fair comparison with the
fo tracker, we conduct an abridged version of a mock
search for the rapidly spinning down signal simulated in
Sec. IV D, with the same injection parameters as in Tables I
and V. We choose Ty = 50 h (Ny = 40) to satisfy (34)
and use the search parameters in Table VIII. The F statistic
is computed over a 1-Hz frequency band as a function of
fo and f, for each segment. For demonstration purposes,
only five values of f are searched in a range containing
the injected f, to save time; i.e., the phase metric is not
computed.

The results are presented in Table IX. Compared to the
performance displayed in Table VII using f, tracking, the

TABLE VIII.  Search parameters for the synthetic signals with
injection parameters quoted in Tables I and V.

Parameter Value Unit
fo 151-152 Hz
—fo 2.98 x 1078-3.02 x 1078 Hz s~!
T ity 50 h

Afo 2.78 x 107° Hz
Afy 1 x 10710 Hz s~!
T s 83.3 d

Ny 40
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TABLE IX. Results of (f,, f,) tracking for injected signals with the parameters in Tables I and V, T, = 83.3 d,
T4ine = 50 h, and wave strain hy. The RMSE €/, between the frequency of the optimal Viterbi path and the injected
fo(t) is quoted in Hz and in units of Af, = 2.78 x 10~ Hz. The RMSE e, between the frequency derivative of the
optimal Viterbi path and the injected f(¢) is quoted in Hzs™! and in units of Afy = 1 x 107! Hzs™!. The third

column quotes the Viterbi score S.

hq (10729) Detect? S ey, [Hz] er,/Afo e/ [Hzs™'] e IAfo
8.0 v 9.0 2.89 x 107° 1.0 2.97 x 107! 0.30
5.0 v 2.9 6.45 x 107° 23 3.56 x 10711 0.36
4.0 v 2.0 1.80 x 1073 6.5 2.85x 107! 0.29
3.0 X 1.2 0.45 1.6 x 10° 1.659 x 10710 1.59

(fo» fo) tracking can detect a signal about 3 times weaker.
We calculate the RMSE ¢ in f, between the optimal
Viterbi path and the injected signal (in Hz and in units of
Af). We do the same for the RMSE &/, in f, (in Hzs™'
and in units of Af,). In a real search, we consider
candidates for follow-up and further scrutiny, if S exceeds
a threshold Sy, set by the desired false alarm and false
dismissal probabilities, as shown in Sec. IV. The value of
Sy depends strongly on N, and hence the two-dimensional
(fo» fo) parameter space. Systematic Monte Carlo simu-
lations are required in practice to calculate Sy, for each
HMM implementation, an exercise lying outside the
scope of this paper. Instead, in this section, we adopt the
following rule of thumb: the injected signal is deemed to be
detected if we obtain £/ < 0.5Af, and eq, < 10Af,. The
errors are introduced mostly because HMM takes discrete
values of f, and f,, while the injected signal f(¢) and
fo(t) can be any value within a bin. Since we calculate
fo(tys1) from the estimated f,(z,) and fy(z,), €5, accu-
mulates to a few Af after Ny steps, introduced by & .

Figure 7 displays the optimal Viterbi paths (red curves)
and the true paths f,(¢) and f,() (blue curves) for the
two weakest injections (a) hy=4x107%% and (b) hy=
3x1072°, The left and right panels show f, and f,
respectively. In Fig. 7(a), the optimal Viterbi paths agree
with f,(¢) and f,(t) closely. In the right panel, it is shown
that the estimated f,, fluctuates within one bin around the
injected f,(¢). The fluctuations around f, cannot be seen
clearly in the left panel, because &;, = 1.80 x 10~ Hz is
much smaller than the total change of f; over T,
(~ 0.2 Hz). In contrast, Fig. 7(b) shows that the optimal
Viterbi paths do not match the injected f(¢) and fy(1); i.e.,
the injected signal is not detected.

VI. DISCUSSION

A. Cost-sensitivity trade-off
In this section, we start by comparing the HMM tracking
method to existing stack-slide-based semicoherent methods
and then discuss the cost-sensitivity trade-off between (f,
fo) tracking and f, tracking. Analytic approximations for

the computing cost and sensitivity are described briefly in
Appendixes B and E.

HMM tracking incoherently combines the F-statistic
outputs from Ny = T,/ T 4:ire blocks of data. The comput-
ing cost is composed of two parts: (1) calculating the
coherent F statistic (i.e., Lyq) for all Ny segments;
and (2) recursively maximizing P(Q|0), i.e., solving the
HMM. Assuming we use data from two interferometers and
search up to the maximum frequency foax, the computing
costs of calculating F(f,) and F(f,. fo) over one block of
coherent segment 7 4, are given by

meax Tdrif[ 2 1
T, =04 42
70 = 0:46 d<0.6 kHz/\10d) N/ (42)

and

fomax )2 (0-3 kyr\ (Taie\*( 10°
T, =036d
Jofo = 0:36 (0.6 kiz) \" ¢ J\10d) \Nee)”

(43)

respectively, where N is the number of cores running in
parallel (see details in Appendix B). The Viterbi algorithm
computes Q*(0) via (Ny +1)NyInN, operations [48].
For example, in a 1-Hz subband with Ny =2 x 10° and
Ny = 36, it takes <30 s to compute Q*(O) but =1 h to
compute Ny blocks of the F statistic. Hence the total
computing cost is dominated by the cost of computing Ny
blocks of the F statistic, scaling as 7 ; « Ny meaxTﬁriﬂ
for fo tracking, and 7 ;, + o N7fohat " Thsg for (fo. fo)
tracking.

Compared to a fully coherent F-statistic search, the cost
saving conferred by the HMM tracker is similar to other
JF-statistic-based semicoherent methods, when only f(, or
(fo» fo) needs to be searched. Theoretically, the sensitivity
of the HMM tracker is also comparable to other F-statistic-
based semicoherent searches. Hence the HMM tracker
performs on par with other semicoherent methods, as long
as the spin-down rate is moderate, except that it is more
robust against timing noise, as demonstrated in Sec. IV C.
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Injected £, () and f(¢) (blue curves) and optimal Viterbi paths (red curves) for the last two injected signals in Table IX with

(@) hy = 4 x 1072 and (b) hy = 3 x 1072°, The top left and top right panels show good matches for both f,, and f,, respectively. The red
curve in the left panel fluctuates around the blue curve with e = 1.80 x 10~ > Hz, which is too small to be seen in the plot
(e, < FoTobs & 0.2 Hz). In the lower two panels, the injected signal is not detected. The horizontal axes are in units of HMM steps with

T4ise = 50 h for each step (N = 40).

When higher-order derivatives of the frequency are
required to be searched for very young objects (e.g.,
7 <0.03 kyr), e.g., in a stack-slide search, the cost of
computing the F statistic grows geometrically as 7T gz
increases. Figure 8 shows the cost of calculating the F-
statistic over one block of duration T4, for a target with
7 =0.03 kyrup to fymax = 600 Hz. The three curves, from
bottom to top, represent calculating F(f,), F(fo. fo), and

F(fo.fofo), respectively. For example, it requires ~10°
core-day to compute F(fy, fo fo) for a single block of

duration 7T g = 4 d. When fo needs to be considered, the

cost of calculating F(fo. fo. fo. fo) becomes prohibitive
even for Ty < 1 d. Under these circumstances, the HMM
tracker comes into its own; it allows an efficient search for

rapidly evolving signals without searching high-order
frequency derivatives.

Given fixed T, one can tune T4y to trade off
sensitivity against computing cost for a particular target.
Table X shows the theoretical scalings of sensitivity and
cost as a function of T g5 for the two HMM implementa-
tions described in Secs. III and V. In reality, the scalings
vary with many factors, including N7, P,, P4, and the noise
statistics, as discussed in detail in Refs. [68,69]. In this
paper, we include the theoretical scalings to allow quick
order-of-magnitude comparisons, but we emphasize that
they are not a substitute for Monte Carlo simulations. The
sensitivities of f,, tracking and (f,, f,) tracking scale the
same way with Ty An (fo. fo) search allows longer T ¢
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FIG. 8. Computing cost (in core-days) of a coherent F-statistic
search as a function of Ty, (in days). The three curves (from
bottom to top) represent searching f, only, (fo, fo), and (fo, fo.
£o), respectively. Parameters: fo.x = 600 Hz, 7 = 0.03 kyr.

and hence in practice is always more sensitive than an f
search. However, an f(, search is always faster.

Figure 9 plots the ratio 7, /7 as a function of 7.
The curves, from bottom to top, represent achieving
10%—-50% better sensitivity by switching from f, tracking
to (fo, fo) tracking. We can always achieve better sensi-
tivity using (fo, fo) tracking compared to f, tracking.
However, T ;, /7T s, is approximately proportional to 7 and
increases exponentially with the percentage of sensitivity
improvement.

B. Spin-down of young objects
with age < fobirtn/fobirtn
The true age of a young neutron star may be significantly
less than its characteristic spin-down time scale at birth,
Fovirn/[(m = 1) fovirn)» depending on its ellipticity and
magnetization. To investigate this scenario, we approxi-
mate the braking law with a power law in the usual way,
viz. fo(t) = —nfo(1)", with n < B} and 2 <n < 3 if the
torque is electromagnetically dominated, and 7 « > and

TABLE X. Theoretical scalings of sensitivity and computing
cost with drift time scale Ty for fo tracking (Sec. III) and
(fo. fo) tracking (Sec. V).

Tracking Sensitivity Cost

fo Tyt T drine
: —1/4 3

Jo and fo T it T i

10°

— 10%
— 20%
— 30%
40%
50%

10° -

10°

T5.4/ T,

100 -

10° 10° 10*
7 (yr)

FIG.9. Ratio of the (fy, f,) tracking cost Tf0~ /, divided by the
fo tracking cost 7 ;, as a function of the target age 7, required to
improve the sensitivity by 10%-50% (from bottom curve to top
curve) by switching from f, tracking to (fo, f) tracking. The £,
tracking is always faster but less sensitive than (f, f,) tracking.
For a given percentage of sensitivity improvement, the cost
required for choosing (fo, fo) tracking rather than f tracking
increases with 7.

n = 5 if the torque is dominated by gravitational radiation
reaction, where ¢ is the ellipticity. Integrating the braking
law with respect to ¢, we find that the characteristic spin-
down time scale of the signal is given by [33,50]

—folfo =&z (44)

()] W

The term (fopirm/fo)' ™ is normally neglected under the
assumption fo < fopin, yielding fo = —fo(n—1)"177!
[34,70]. However, this assumption does not necessarily
apply to young objects (e.g., 7 =0.03 kyr for SNR
1987A), for which we obtain |£] <0.05 for fopm S
600 Hz and By, <6 x 102 G with n=3. A detailed
discussion can be found in Sec. IIB of Ref. [33].

The indirect upper limit on A derived from energy
conservation is given by [3,50,70]

WATENG

with

2037

where G is Newton’s gravitational constant, ¢ is the
speed of light, and D is the distance to the source. The
indirect limit on A is lowered because of the second term in
(45). On the other hand, the slower spin-down rate f, =
—folé]z~! benefits HMM tracking by allowing longer T gig.
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If we consider a young object with 7 = 0.03 kyr as an
example, the impact of having || = 0.05 translates into
raising Ty by a factor of ~3.

VII. CONCLUSION

In this paper, we describe two practical implementations
of an efficient HMM tracker, combined with the maximum
likelihood matched filter F statistic, to economically search
for continuous gravitational waves from young neutron
stars in SNRs. The HMM incoherently combines the
coherent F-statistic outputs from multiple (N;) data blocks
of duration 7 ;. It tracks rapid, secular spin-down without
searching high-order derivatives of the signal frequency.
The first implementation, tracking f, alone, can simulta-
neously surmount two challenges in young SNR searches:
rapid spin-down and stochastic timing noise. Three scenar-
ios for different spin-down and timing-noise time scales
are discussed. Given T, = 83.3 d, we obtain hgff'gs%
2.4 x 1072° for both weak and strong timing noise in the
first two scenarios (z > 5 kyr) and A8 ~ 8.5 x 10720 in
the last scenario (z < 0.03 kyr), with P, = 1%. We expect
that h>* is more conservative than the quoted hgff’%% for
unknown cos based on scaling given by (33). The second
implementation, tracking f, and f,, allows longer Ty;s
and hence improves the sensitivity by a factor of a few. The
first implementation is always faster and more robust
against timing noise. One can achieve better sensitivity
by switching from the first implementation to the second.
However, it increases the computing cost by 2 to 3 orders of
magnitude, depending on 7.

An  optimized  F-statistic-based semicoherent
Einstein@Home search for Cas A (fomax = 1.5 kHz) in
the Advanced LIGO Ol run costs approximately
2.7 x 10° core-day, yielding 90% confidence strain upper
limit 1.4 x 1072 [71]. Assuming the same parameters, the
method discussed in this paper is expected to provide
comparable sensitivity but cost ~10* core-day. The advan-
tage of HMM tracking grows in searches for younger
targets, e.g., SNR 1987A.

The methods described in this paper can be applied to
extending the searches for the SNRs listed in Ref. [36],
which are restricted to coherent segments of duration
Taire £25.3d, using the new data from a whole
Advanced LIGO observing run. In addition, the recent
work by Anderson et al. [72] has identified 76 new Galactic
SNR candidates, some of which may be promising candi-
dates for gravitational-wave sources, if the SNR associates
are confirmed. The f| tracker can be applied to search for
targets that are poorly modeled, e.g., a long transient
postmerger signal from the binary neutron star merger
GW170817 [73] with spin-down time scale ~10>~10% s.
Some modifications are needed, e.g., Loqu_ should be

~
~

calculated from the power in SFT bins rather than the F
statistic, because the Earth’s rotation can be neglected.

To carry out a search using the methods presented in this
paper, the following steps need to be completed in
preparation. First, the search parameter ranges need to
be determined systematically. The f; range is normally
chosen to equal the band where the estimated strain
sensitivity is below the indirect, z-based limit [see (46)].
General equations (14) and (15) for calculating f,, and £,
are given in Sec. II C. Second, search parameter resolutions
need to be calculated using the metric described in
Appendix B given a desired mismatch. Third, a systematic
Monte Carlo simulation is required for each implementa-
tion to determine the detection threshold S, given false
alarm and false dismissal probabilities.
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APPENDIX A: VITERBI ALGORITHM

The principle of optimality [74] demonstrates that in
our special case, all subpaths Q*(¥) made up of the first k
steps in Q*(0) are optimal for 1 < k < Ny. In that sense,
the classic Viterbi algorithm [43] provides a recursive,
computationally efficient solution to computing Q*(0) in

a HMM, reducing the number of operations from NZTH

to (Ny + 1)Ng In N, by binary maximization [42]. A full
description of the algorithm can be found in Sec. IT D
of Ref. [48]. At every forward step k (1 <k < N7) in
the recursion, the algorithm eliminates all but N
possible state sequences, and stores the N, maximum
probabilities

qi 12}2@ [Aqiq_,-éq_, (tk—l )] ’

5qi([k) = Lo(lk) (Al)

and previous-step states leading to the retained most
likely sequence

®, () = arg max [Aq[q./_éqj(tk_l)]. (A2)

1<j<Ng

When backtracking, for 0 < k < Ny — 1, we reconstruct
the optimal Viterbi path according to

q*(tx) = Py (1) (Tiy1)- (A3)
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APPENDIX B: PHASE METRIC AND
COMPUTING COST

The costs of computing the F statistic (i.e., Lojq[) and

recursively maximizing P(Q|O) depend on the template
spacing. We start by discussing the template spacing and
cost for a general F-statistic search. To optimize the
template spacing, a phase metric is defined. It expresses
the signal-to-noise ratio as a function of template spacing
along each parameter axis (e.g., fo. fo» fo» ---). The
mismatch m is defined as the fractional reduction of
JF-statistic power caused by discrete parameter sampling,
with [75-77]

m= g;AVAV,

i.j

(B1)

27/ . i+j+2
g[)' _ f"” (l +1)(.] + .I)Td-rift . (B2)
T +2NGHE)NE+S+3)

The indices 7 and j take integer values from O to k, where k
indicates the highest-order frequency derivative considered
(e.g., k = 2 for searching up to f;), and Al denotes the
offset between the true value and the closest template of the
ith parameter. For example, the maximum value of AZ° is
half the frequency bin width Af,, because the signal
frequency falls halfway between two templates in the
worst case. We choose to adopt m < 0.2 in line with the
Cas A search in S5 data [34] and the SNR searches in S6
data [36]. The highest frequency derivative needed is the

largest integer k satisfying gkk[fogfgx - fog{i)n]z > m (no
summation over k implied), where fofxﬁx and fol(ﬁi)n are
the maximum and minimum kth frequency derivatives. In
practice, we can choose the bin size of the ith frequency
derivative Af,(?) using the diagonal terms of (B2) to satisfy

k
Z giil&foW]* < 4m. (B3)
i=0

Monte Carlo simulations are needed to accurately
calculate the required bin sizes for a given m. Taking into
consideration the off-diagonal terms of (B2) yields bin
sizes close to the empirical Monte Carlo results. A tiling
algorithm is described in detail in Ref. [78]. Combining
(14), (15), and (B2), the number of templates N needed for
k =2 is [50,78]

N =0.35m2(det 9) " foaxt >, (B4)
with f omin << f Omax typlcally

The computing time of a coherent F -statistic search over
one block of duration Ty is given by

T = kN PN, TdriftTgéT’ (B5)

where « is the time to compute the F statistic per template
per SFT,” N ifo 1S the number of interferometers, and S is
the percentage of time that the interferometers collect data
(i.e., duty cycle). For most of the young targets discussed
in Ref. [36], f, is normally small. Only a few f, values
need to be searched. For example, we obtain fo <1 x
10~'® Hzs™? from (14) and (15) for 7 > 1 kyr and f, <
600 Hz and Af, ~ 1078 Hzs™2 from (B2) and (B3) with
T4ire = 10 d. In this example, only one value of f is
searched and the cost scaling in Eq. (B5) reduces to
Foraxt ' T4..° If we assume that, only one value of f{
is searched. Fork =4 x 1078 s, m = 0.2, =1, Ny, = 2,
Tgpr = 1800 s, and N, = 10 cores running in parallel,
we obtain

Fomax \2 (0.3 kyr\ (Tan\* [ 10°
T, =036d :
fofo (06 kHZ T 10 d Nc()re

(B6)

However, for very young objects (e.g., 7 < 0.03 kyr) with
larger fo, the cost scales as 7 f, 1 i & fomac® > Tlg-

Figure 10 shows the cost of computing the F statistic
over a coherent segment 7y, (in units of core-day). For
concreteness, we fix fom.x = 600 Hz. In a real search,
Sfomax 18 @ function of 7, because we determine f . to be
the maximum frequency where the estimated strain
sensitivity of the search beats the indirect spin-down limit
[see Eq. (46)]. If we compute F(f,,fo) (or search a
single f, value), the costs for objects with 7 = 0.3 kyr
and 1 kyr are indicated by the two solid curves. A coherent
F-statistic search or a stack-slide-based semicoherent
JF-statistic search requires searching higher-order deriva-
tives for objects with 7 < 0.3 kyr. The two dashed curves
(top and bottom) represent the cost of computing
F(fo. fo.fo) for objects with 7= 0.03 kyr and 0.1 kyr,
respectively.

The serial clock time for computing can be reduced by
parallelization. For 10° nodes running in parallel, a coher-
ent J-statistic search over T4 = 10 d takes about 9 h for
an object with 7 = 0.3 kyr (e.g., Cas A), and about 10 d for
an object with 7 = 0.1 kyr (e.g., G1.9 + 0.3). In reality,
the cost indicated by the top dashed curve for an object with
7 =0.03 kyr (e.g., SNR 1987A) is still underestimated,

because f, and higher-order derivatives must be searched
using a stack-slide-based semicoherent method.

"The value of k depends on T'sgr and the CPU architecture. An
example in Sec. 5 of Ref. [50] quotes x =6x 107" s
(T'spr = 1800 s) on Australian Partnership for Advanced Com-
puting (APAC) resources. We adopt a more recent estimate,
k=4 x 107% s, in this paper.

*It is shown in Ref. [36] that in the S6 search the computing

cost scales approximately as fo22, 77174 ..
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FIG. 10. Computing cost (in core-days) of a coherent F-
statistic search with T, = T 4,5 as a function of Tg5 (in days).
The two solid curves (top and bottom) represent computing
F(fo.fo) (or include a single f, value) for objects with 7 =
0.3 kyr and 1 kyr, respectively. The two dashed curves (top and
bottom) represent computing F(f,. fo. fo) for objects with 7 =
0.03 kyr and 0.1 kyr, respectively. Parameters: f(,.. = 600 Hz.

We do not search second- or higher-order derivatives of
the frequency in the HMM tracking. We start by discussing
the (fy, fo) tracking. In the two-dimensional tracking, we
can always substitute the maximum £, in the range (15)
into (34) to choose Ty, and ignore £, (or search a single
value). However, for very young objects (e.g.,
7 <0.03 kyr) with larger f;, there can be sensitivity loss
due to the short T4, derived from (34). The relation
between theoretical sensitivity and T4 1S discussed in
Appendix E. The estimate of 7 in (B6) stands for the time
required to calculate the F statistic over one block of
coherent segment 7 ;. For HMM tracking, we need to add
up the time required to calculate all the required values of
F(fo.fo). In addition, there is a second component to
the computing cost, namely solving the HMM. HMM
tracking incoherently combines the JF-statistic outputs
from Ny = T oo/ T 4sise blocks of data. The Viterbi algorithm
computes Q*(0) via (Nr + 1)NyInN, operations [48].
The total computing cost is dominated by the cost of
computing Ny blocks of the F statistic, scaling as
T & Npforax? T If we take Tygq = 5 d as an exam-
ple, Fig. 11 shows the computing cost of a semicoherent
HMM search (in units of core-day) as a function of
Tops = NpTgus for targets with 7 = 0.03 kyr, 0.1 kyr,
0.3 kyr, and 1 kyr, respectively. In practice, Ty > 5 d
is allowed for older targets and Ty, < 5 d is required for
younger ones.

10° :
— 7=30yr
— 7=100 yr
104 L. — 7=300yr
7=1000 yr

Computing cost (core-day)

10°

107 107
Tobs (da‘y)

FIG. 11. Computing cost (in core-days) of a semicoherent
HMM search as a function of T, (in days) with Ty fixed. The
four curves (from top to bottom) represent objects with
7= 0.03 kyr, 0.1 kyr, 0.3 kyr, and 1 kyr, respectively. Param-
eters: meax = 600 HZ, Tdrifl =5 d, NT = TObS/Tdrift'

When tracking f, alone, the search is always cheaper.
We choose Afy = 1/(2T4;x), satisfying m < 0.2. The
metric given by (B2) is no longer needed for k = 0.
Hence the number of templates and cost needed for
computing the F-statistic over each block of Ty in
(B4) and (B5) reduces to

N = 2T gite f omaxs (B7)

and

Tf 0o 2kPNig TﬁriftTgFl‘Tf Omax -+ (B8)
The total cost scales o N7 foma T3 When tracking fo

alone, saving a factor ~ fymax Tﬁn-ﬁ compared to the (fy, fo)
tracking.

APPENDIX C: T, GIVEN 7

We assume purely electromagnetic spin-down (fj o
B3f#, n = 3) for simplicity, which gives

folt) = =nfo(1)*, (C1)
where the coefficient 7 o B} is a positive constant. At time
t = 0 when the star was born, we have f(#) = fopirn- The
differential equation (C1) has the solution
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fo \? 2Tf0
1- = ——. C2
<f Obinh) fo ( )

Substituting f = —(275.,)~" from (26) into (C2), we

obtain
Tain = 715" {1 - (fo )2} _1/2-

Obirth

(C3)

APPENDIX D: TRANSITION PROBABILITY
MATRIX FOR f,, f;, TRACKING

We first derive the transition probabilities corresponding
to the substate f,). Using Egs. (14) and (15), the range of £,
is given by

02fomin _ # _ 2f0max
T—zmn5fo§f—ma,

(D1)

where fomin and fomax are the minimum and maximum f,
being searched. The maximum f,, is more than 2 orders of
magnitude larger than the minimum f,. We assume that £,
is uniformly distributed in the range 0 < fy < foma. At
each step, given Eq. (34), f, jumps at most one bin up or
stays in the same bin with equal probability 1/2.

We then estimate the number of bins f; moves during
each step. Equation (35) is more precisely given by

Fo(ta) + fo(ta) Tasit < foltsr)

< folta) + [fo(ta) + Afo]Tasite- (D2)

Let us write q(t,) = [fo(tn), fo(ta)] = qij» where i and j
index f, and f, bins, respectively. Then the number of bins
that f, moves from step , to step t,,, 1, denoted by Ai, takes
the minimum and maximum values

Aiyin () = floor (| fo 1| T awi/ Afo).

A (j) = ceil(|fo; | Tasied Afo)

(D3)
(D4)

where floor(x) denotes the largest integer smaller than or
equal to x, ceil(x) denotes the smallest integer larger than or
equal to x, and foj is the value of f in the jth f, bin. In
other words, f(,,1) can be located in any bin within the
range [i — Aipay. i — Aipin] With uniform probability.” The
two-dimensional transition probability matrix is given by

(D5)

= Aq[—Ai.jqij

:{2[Almax(]) - Almm(]) + 1]}_15

qi-aij+14ij

(Do)

*Since f, is negative, we always have fo(fys1) < fo(t,)-

where A takes integer values Aiy;,(j) < Ai < Aipa(j),
and all other terms are zero.

APPENDIX E: ANALYTIC SENSITIVITY
SCALINGS

In this section, we present an approximate analytic
formula for the search sensitivity, based on a few
general assumptions. Deviations are discussed in detail
in Refs. [68,69]. Accurate sensitivity scalings require
Monte Carlo simulations for each implementation of the
search, as shown in Sec. IV.

The sensitivity of a search can be defined in terms of
the characteristic gravitational-wave strain corresponding
to 95% detection efficiency. For a coherent JF-statistic
search over one block of T4y, searching up to the highest
frequency derivative required for a given mismatch, it takes
the form [36,50]

he " (f) = ©Su(f) " (BT arirt) ™", (E1)
where © is a statistical threshold, depending on the shape
of the parameter space manifold. One finds 30 < © <40
for a directed search of the type discussed in this paper [50].
The term ST 4.5 gives the length of the interferometer data
in the time span 7T g;g.

As every block of F-statistic output over Ty;s 1S chi-
squared distributed with 4 degrees of freedom,'” and the chi-
squared distribution is additive, we can calculate the PDF of
z = In P(Q|0) along the true signal path from (11) and (13)
by multiplying both the degrees of freedom and the non-
centrality parameter by Ny = T g/ T s If O*(O) coincides
exactly with the true path, we obtain

. 4T0bs Kh(% Tobs:| (E2)

_ 2
Pl =x [L Tare Su(f)

If 0*(0) does not intersect the true path anywhere, we have

p() =2 (z;@ o). (E3)

b
T gy

Combining (E2) and (E3), the signal-to-noise ratio after N
steps of the HMM equals py, given by

pg _ Hsignal — Hnoise (E4)

Ohoise

"®Here we assume that the F statistic is independently and
identically distributed. The estimate requires modification when
applied to real interferometer data, where the noise is nonsta-
tionary and/or non-Gaussian. A more robust Bayesian framework
is introduced in Ref. [79] to analyze the F statistic in the presence
of instrumental artifacts.
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FIG. 12. Analytical sensitivity hgs % of two coherent F-statistic searches (blue curves) and a semicoherent HMM search (red curve) for
an isolated young neutron star at the design sensitivity of Advanced LIGO. The blue solid curve indicates a coherent J -statistic search of
duration T g, the maximum practical duration set by spin-down in Ref. [36]. The blue dashed curve indicates a coherent F-statistic
search with T, = 360 d. The red curve indicates a HMM search with T, = 360 d and Ny = T, /T gsisi- (@) th% as a function of
signal frequency f. (b) Minimum th% [ie., th% achieved at 245 Hz in (a)] as a function of Tg4;;. The HMM sensitivity scales as
~T7 % for fixed Tp,. When Ty is fixed, the HMM (red curve) improves upon the F-statistic search (blue solid curve) by a factor of

drift

~N}*. The spikes in the first panel are instrumental lines predicted to occur in Advanced LIGO at its design sensitivity. (Statistical

threshold: ® = 35.)

h2
o — 2 (T T arire) 2.

Su(f)

where pgona = NTp(Z) and 4. = 0 are the noncentralities
of the distributions in (E2) and (E3), respectively, and
Onoise = (8N7)'? is the standard deviation of the distribution
in (E3). Hence we obtain

(ES)

he* () = 08, ()" (Tops Tarie) ™" (E6)
assuming f = 1. When T, = T4, Eq. (E6) reduces
to (E1).

By way of illustration, we compute hy>” for HMM
tracking with 7T, = NpT g = 360 d and compare the
result with a coherent F-statistic search limited to T, =
T 4iie as in Ref. [36]. We take ® = 35 and let S),(f) be the
Advanced LIGO design noise PSD in (El). Figure 12
shows the results. The blue solid curve, red solid curve, and
blue dashed curve indicate an F -statistic search of duration
T4 @ HMM search of duration NyTg44,, and a fully
coherent F-statistic search with 7', = 360 d, respectively.

Figure 12(a) plots >” as a function of signal frequency.
When T 45 1s fixed [e.g., Ty = 10 d in Fig. 12(a)], the
HMM tracking of duration N;Tg4;; improves upon the
sensitivity of the F-statistic search of duration T4, by a
factor of ~NY*. Figure 12(b) plots the minimum /hg>% in
Fig. 12(a) achieved in the band where the detectors are most
sensitive (at 245 Hz) as a function of T y;;. The sensitivity
achievable by the HMM scales as ~T Mt for fixed
Tops = 1 yr. Figures 12(a) and 12(b) demonstrate together
the scaling indicated by (E6). A fully coherent search using
all the data (duration N;T 4;f) indicated by the blue dashed
curve 1s more sensitive than the HMM of course. However,
it is computationally expensive.11 The theoretical scalings
here also apply approximately to other F-statistic-based
semicoherent searches.

"One fully coherent search directed at the isolated compact
object Calvera has been carried out, using Initial LIGO S5 data
(Typs = 2 yr). It is based on a resampling technique and saves
computing cost by a factor Tgps(log Ty )™, yielding a minimum
upper limit £3>% = 1.14 x 107 at 152 Hz [80].

[1] B. Abbott et al., Phys. Rev. D 76, 082001 (2007).
[2] LIGO Scientific Collaboration and Virgo Collaboration,
arXiv:1203.2674.

[3] K. Riles, Prog. Part. Nucl. Phys. 68, 1 (2013).
[4] G. Ushomirsky, C. Cutler, and L. Bildsten, Mon. Not. R.
Astron. Soc. 319, 902 (2000).

043013-19


https://doi.org/10.1103/PhysRevD.76.082001
http://arXiv.org/abs/1203.2674
https://doi.org/10.1016/j.ppnp.2012.08.001
https://doi.org/10.1046/j.1365-8711.2000.03938.x
https://doi.org/10.1046/j.1365-8711.2000.03938.x

SUN, MELATOS, SUVOROVA, MORAN, and EVANS

PHYS. REV. D 97, 043013 (2018)

[5] N. K. Johnson-McDaniel and B.J. Owen, Phys. Rev. D 88,
044004 (2013).

[6] C. Cutler, Phys. Rev. D 66, 084025 (2002).

[7]1 A. Mastrano, A. Melatos, A. Reisenegger, and T. Akgiin,
Mon. Not. R. Astron. Soc. 417, 2288 (2011).

[8] P.D. Lasky and A. Melatos, Phys. Rev. D 88, 103005
(2013).

[9] B.J. Owen, L. Lindblom, C. Cutler, B. F. Schutz, A. Vecchio,
and N. Andersson, Phys. Rev. D 58, 084020 (1998).

[10] J. S. Heyl, Astrophys. J. 574, 1L57 (2002).

[11] P. Arras, E.E. Flanagan, S. M. Morsink, A.K. Schenk,
S. A. Teukolsky, and I. Wasserman, Astrophys. J. 591, 1129
(2003).

[12] R. Bondarescu, S. A. Teukolsky, and I. Wasserman, Phys.
Rev. D 79, 104003 (2009).

[13] C. Peralta, A. Melatos, M. Giacobello, and A. Ooi,
Astrophys. J. 644, L53 (2006).

[14] C. A. van Eysden and A. Melatos, Classical Quantum
Gravity 25, 225020 (2008).

[15] M. F. Bennett, C. A. Van Eysden, and A. Melatos, Mon.
Not. R. Astron. Soc. 409, 1705 (2010).

[16] A. Melatos, J. A. Douglass, and T. P. Simula, Astrophys. J.
807, 132 (2015).

[17] P. Haensel, V.A. Urpin, and D.G. lakovlev, Astron.
Astrophys. 229, 133 (1990).

[18] O.Y. Gnedin, D. G. Yakovlev, and A.Y. Potekhin, Mon.
Not. R. Astron. Soc. 324, 725 (2001).

[19] B. Knispel and B. Allen, Phys. Rev. D 78, 044031 (2008).

[20] A. Melatos and C. Peralta, Astrophys. J. 709, 77 (2010).

[21] A. Melatos, Astrophys. J. 761, 32 (2012).

[22] J. McKenna and A.G. Lyne, Nature (London) 343, 349
(1990).

[23] S.L. Shemar and A.G. Lyne, Mon. Not. R. Astron. Soc.
282, 677 (1996).

[24] J. O. Urama and P.N. Okeke, Mon. Not. R. Astron. Soc.
310, 313 (1999).

[25] A. Melatos, C. Peralta, and J. S. B. Wyithe, Astrophys. J.
672, 1103 (2008).

[26] A. Mastrano and A. Melatos, Mon. Not. R. Astron. Soc.
361, 927 (2005).

[27] A. Melatos and C. Peralta, Astrophys. J. 662, L.99 (2007).

[28] K. Glampedakis and N. Andersson, Phys. Rev. Lett. 102,
141101 (2009).

[29] J. Middleditch, F. E. Marshall, Q. D. Wang, E. V. Gotthelf,
and W. Zhang, Astrophys. J. 652, 1531 (2006).

[30] B. Abbott et al. (LIGO Scientific Collaboration), Rep. Prog.
Phys. 72, 076901 (2009).

[31] J. Abadie et al., Phys. Rev. Lett. 107, 271102 (2011).

[32] C. Messenger, LIGO Document No. T1000195, 2011.

[33] L. Sun, A. Melatos, P.D. Lasky, C. T.Y. Chung, and N. S.
Darman, Phys. Rev. D 94, 082004 (2016).

[34] J. Abadie et al., Astrophys. J. 722, 1504 (2010).

[35] S.J. Zhu, M. A. Papa, H.-B. Eggenstein, R. Prix, K. Wette,
B. Allen, O. Bock, D. Keitel, B. Krishnan, B. Machenschalk,
M. Shaltev, and X. Siemens, Phys. Rev. D 94, 082008 (2016).

[36] J. Aasi et al., Astrophys. J. 813, 39 (2015).

[37] B. Abbott et al., Phys. Rev. Lett. 116, 131103 (2016).

[38] G. Mendell and M. Landry, LIGO Technical Document
No. LIGO-T050003, 2005.

[39] V. Dergachev, LIGO Technical Document LIGO-T050186,
2005.

[40] S. Dhurandhar, B. Krishnan, H. Mukhopadhyay, and J. T.
Whelan, Phys. Rev. D 77, 082001 (2008).

[41] P.R. Brady and T. Creighton, Phys. Rev. D 61, 082001
(2000).

[42] B. G. Quinn and E. J. Hannan, The Estimation and Tracking
of Frequency (Cambridge University Press, Cambridge,
2001), p. 266.

[43] A. Viterbi, IEEE Trans. Inf. Theory 13, 260 (1967).

[44] B.P. Abbott er al., Phys. Rev. D 95, 122003 (2017).

[45] P.Jaranowski, A. Krélak, and B. F. Schutz, Phys. Rev. D 58,
063001 (1998).

[46] C. Van Den Broeck, Classical Quantum Gravity 22, 1825
(2005).

[47] R. Prix, Phys. Rev. D 75, 023004 (2007).

[48] S. Suvorova, L. Sun, A. Melatos, W. Moran, and R.J.
Evans, Phys. Rev. D 93, 123009 (2016).

[49] R. Prix, LIGO Report No. T0900149, 2011.

[50] K. Wette et al., Classical Quantum Gravity 25,235011 (2008).

[51] N. Andersson, D. Antonopoulou, C.M. Espinoza, B.
Haskell, and W. C. G. Ho, arXiv:1711.05550.

[52] G. Hobbs, A.G. Lyne, and M. Kramer, Mon. Not. R.
Astron. Soc. 402, 1027 (2010).

[53] R. M. Shannon and J. M. Cordes, Astrophys. J. 725, 1607
(2010).

[54] G. Ashton, D. I. Jones, and R. Prix, Phys. Rev. D 91, 062009
(2015).

[55] .M. Cordes and D.J. Helfand, Astrophys. J. 239, 640
(1980).

[56] S. Price, B. Link, S. N. Shore, and D. J. Nice, Mon. Not. R.
Astron. Soc. 426, 2507 (2012).

[57] A. Lyne, G. Hobbs, M. Kramer, I. Stairs, and B. Stappers,
Science 329, 408 (2010).

[58] M. A. Alpar, R. Nandkumar, and D. Pines, Astrophys. J.
311, 197 (1986).

[59] P. Jones, Mon. Not. R. Astron. Soc. 246, 364 (1990).

[60] A. Melatos and B. Link, Mon. Not. R. Astron. Soc. 437, 21
(2014).

[61] J. M. Cordes and G. S. Downs, Astrophys. J. Suppl. Ser. 59,
343 (1985).

[62] G. H. Janssen and B. W. Stappers, Astron. Astrophys. 457,
611 (20006).

[63] K.S. Cheng, Astrophys. J. 321, 799 (1987).

[64] K.S. Cheng, Astrophys. J. 321, 805 (1987).

[65] J.O. Urama, B. Link, and J. M. Weisberg, Mon. Not. R.
Astron. Soc. Lett. 370, L76 (20006).

[66] D.H. Shoemaker et al., LIGO Report No. T0900288,
20009.

[67] C. Messenger, H.J. Bulten, S. G. Crowder, V. Dergachev,
D. K. Galloway, E. Goetz, R. J. G. Jonker, P. D. Lasky, G. D.
Meadors, A. Melatos, S. Premachandra, K. Riles, L.
Sammut, E. H. Thrane, J. T. Whelan, and Y. Zhang, Phys.
Rev. D 92, 023006 (2015).

[68] K. Wette, Phys. Rev. D 85, 042003 (2012).

[69] R. Prix and M. Shaltev, Phys. Rev. D 85, 084010
(2012).

[70] C.T.Y. Chung, A. Melatos, B. Krishnan, and J. T. Whelan,
Mon. Not. R. Astron. Soc. 414, 2650 (2011).

043013-20


https://doi.org/10.1103/PhysRevD.88.044004
https://doi.org/10.1103/PhysRevD.88.044004
https://doi.org/10.1103/PhysRevD.66.084025
https://doi.org/10.1111/j.1365-2966.2011.19410.x
https://doi.org/10.1103/PhysRevD.88.103005
https://doi.org/10.1103/PhysRevD.88.103005
https://doi.org/10.1103/PhysRevD.58.084020
https://doi.org/10.1086/342263
https://doi.org/10.1086/374657
https://doi.org/10.1086/374657
https://doi.org/10.1103/PhysRevD.79.104003
https://doi.org/10.1103/PhysRevD.79.104003
https://doi.org/10.1086/505422
https://doi.org/10.1088/0264-9381/25/22/225020
https://doi.org/10.1088/0264-9381/25/22/225020
https://doi.org/10.1111/j.1365-2966.2010.17416.x
https://doi.org/10.1111/j.1365-2966.2010.17416.x
https://doi.org/10.1088/0004-637X/807/2/132
https://doi.org/10.1088/0004-637X/807/2/132
https://doi.org/10.1046/j.1365-8711.2001.04359.x
https://doi.org/10.1046/j.1365-8711.2001.04359.x
https://doi.org/10.1103/PhysRevD.78.044031
https://doi.org/10.1088/0004-637X/709/1/77
https://doi.org/10.1088/0004-637X/761/1/32
https://doi.org/10.1038/343349a0
https://doi.org/10.1038/343349a0
https://doi.org/10.1093/mnras/282.2.677
https://doi.org/10.1093/mnras/282.2.677
https://doi.org/10.1046/j.1365-8711.1999.02902.x
https://doi.org/10.1046/j.1365-8711.1999.02902.x
https://doi.org/10.1086/523349
https://doi.org/10.1086/523349
https://doi.org/10.1111/j.1365-2966.2005.09219.x
https://doi.org/10.1111/j.1365-2966.2005.09219.x
https://doi.org/10.1086/518598
https://doi.org/10.1103/PhysRevLett.102.141101
https://doi.org/10.1103/PhysRevLett.102.141101
https://doi.org/10.1086/508736
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1103/PhysRevLett.107.271102
https://doi.org/10.1103/PhysRevD.94.082004
https://doi.org/10.1088/0004-637X/722/2/1504
https://doi.org/10.1103/PhysRevD.94.082008
https://doi.org/10.1088/0004-637X/813/1/39
https://doi.org/10.1103/PhysRevLett.116.131103
https://doi.org/10.1103/PhysRevD.77.082001
https://doi.org/10.1103/PhysRevD.61.082001
https://doi.org/10.1103/PhysRevD.61.082001
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1103/PhysRevD.95.122003
https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1088/0264-9381/22/9/022
https://doi.org/10.1088/0264-9381/22/9/022
https://doi.org/10.1103/PhysRevD.75.023004
https://doi.org/10.1103/PhysRevD.93.123009
https://doi.org/10.1088/0264-9381/25/23/235011
http://arXiv.org/abs/1711.05550
https://doi.org/10.1111/j.1365-2966.2009.15938.x
https://doi.org/10.1111/j.1365-2966.2009.15938.x
https://doi.org/10.1088/0004-637X/725/2/1607
https://doi.org/10.1088/0004-637X/725/2/1607
https://doi.org/10.1103/PhysRevD.91.062009
https://doi.org/10.1103/PhysRevD.91.062009
https://doi.org/10.1086/158150
https://doi.org/10.1086/158150
https://doi.org/10.1111/j.1365-2966.2012.21863.x
https://doi.org/10.1111/j.1365-2966.2012.21863.x
https://doi.org/10.1126/science.1186683
https://doi.org/10.1086/164765
https://doi.org/10.1086/164765
https://doi.org/10.1093/mnras/stt1828
https://doi.org/10.1093/mnras/stt1828
https://doi.org/10.1086/191076
https://doi.org/10.1086/191076
https://doi.org/10.1051/0004-6361:20065267
https://doi.org/10.1051/0004-6361:20065267
https://doi.org/10.1086/165672
https://doi.org/10.1086/165673
https://doi.org/10.1111/j.1745-3933.2006.00192.x
https://doi.org/10.1111/j.1745-3933.2006.00192.x
https://doi.org/10.1103/PhysRevD.92.023006
https://doi.org/10.1103/PhysRevD.92.023006
https://doi.org/10.1103/PhysRevD.85.042003
https://doi.org/10.1103/PhysRevD.85.084010
https://doi.org/10.1103/PhysRevD.85.084010
https://doi.org/10.1111/j.1365-2966.2011.18585.x

HIDDEN MARKOV MODEL TRACKING OF CONTINUOUS ...

PHYS. REV. D 97, 043013 (2018)

[71] J. Ming, M. A. Papa, B. Krishnan, R. Prix, C. Beer, S.J.
Zhu, H.-B. Eggenstein, O. Bock, and B. Machenschalk,
Phys. Rev. D 97, 024051 (2018).

[72] L. D. Anderson, Y. Wang, S. Bihr, H. Beuther, F. Bigiel, E.
Churchwell, S. C. O. Glover, A. A. Goodman, T. Henning,
M. Heyer, R. S. Klessen, H. Linz, S.N. Longmore, K. M.
Menten, J. Ott, N. Roy, M. Rugel, J. D. Soler, J. M. Stil, and
J. S. Urquhart, Astron. Astrophys. 605, A58 (2017).

[73] B.P. Abbott et al., Astrophys. J. 851, L16 (2017).

[74] R. Bellman, (Princeton University Press, Princeton, 1957),
Vol. 70, p. 342.

[75] P.R. Brady, T. Creighton, C. Cutler, and B. F. Schutz, Phys.
Rev. D 57, 2101 (1998).

[76] B.J. Owen, Phys. Rev. D 53, 6749 (1996).

[77] D.M. Whitbeck, Ph.D. thesis, The Pennsylvania State
University, 2006.

[78] R. Prix, Classical Quantum Gravity 24, S481 (2007).

[79] D. Keitel, R. Prix, M. A. Papa, P. Leaci, and M. Siddiqi,
Phys. Rev. D 89, 064023 (2014).

[80] P. K. Patel, Ph.D. thesis, California Institute of Technology,
2011.

Correction: The third time derivative of frequency fo was
rendered improperly during the conversion process five times
and has been fixed.

043013-21


https://doi.org/10.1103/PhysRevD.97.024051
https://doi.org/10.1051/0004-6361/201731019
https://doi.org/10.3847/2041-8213/aa9a35
https://doi.org/10.1103/PhysRevD.57.2101
https://doi.org/10.1103/PhysRevD.57.2101
https://doi.org/10.1103/PhysRevD.53.6749
https://doi.org/10.1088/0264-9381/24/19/S11
https://doi.org/10.1103/PhysRevD.89.064023

