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Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova
remnants are computationally challenging because of rapid stellar braking. We describe a practical,
efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi
algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited
to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave
Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and
stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of
the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms.
One implementation tracks the signal frequency alone. A second implementation tracks the signal
frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first
implementation, but the cost increases by 2 to 3 orders of magnitude.
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I. INTRODUCTION

Rotating neutron stars in young supernova remnants
(SNRs) are plausible sources of quasi-monochromatic
gravitational radiation detectable by ground-based inter-
ferometers such as the Laser Interferometer Gravitational
Wave Observatory (LIGO) and the Virgo detector [1–3].
The emission is predicted to occur at a frequency propor-
tional to the star’s spin frequency f⋆. A thermoelastic [4,5]
or magnetic [6–8] mass quadrupole emits at f⋆ and/or 2f⋆,
an r-mode current quadrupole emits at roughly 4f⋆/3,
perturbed by an equation-of-state correction [9–12],
and a current quadrupole produced by nonaxisymmetric
circulation in a superfluid pinned to the crust emits at f⋆
[13–16]. There are several reasons to devote attention to
this source class. First, a young object has spent less time
settling down since its birth; slow, diffusive processes like
ohmic [17] or thermal [18] relaxation are still in the early
stages of erasing nonaxisymmetries inherited at birth
[1,3,19]. Second, the rapid spin-down of a differentially
rotating young neutron star excites high-Reynolds-number
turbulence, which produces a time-varying current quadru-
pole moment [13,20,21]. Third, young radio pulsars are
known to undergo glitches [22–25], which are ascribed to

differential rotation [26–28] or starquakes [29] and can also
lead to quadrupole moment variations.
Initial LIGO achieved its design sensitivity over a

wide frequency band during Science Run 5 (S5) [30]
and exceeded it during Science Run 6 (S6) [2]. Several
continuous-wave searches targeting young SNRs have been
carried out using Initial LIGO data. A directed, radiometer
search for SNR 1987A was conducted in S5, yielding a
90% confidence strain upper limit h90%0 ¼ 7 × 10−25 for a
circularly polarized signal in the most sensitive band, near
160 Hz [31].1 A semicoherent cross-correlation search for
the same target in S5 data improved the upper limit to
h90%0 ¼ 3.8 × 10−25 [33]. A coherent search for Cassiopeia
A (Cas A) was conducted on a 12-day stretch of S5 data
in the band 100–300 Hz, yielding h95%0 in the range
0.7–1.2 × 10−24 [34]. The upper limit for Cas A was
improved by approximately a factor of 2 by a semicoherent
Einstein@Home search in S6. The search was conducted in
a broad frequency band 50–1000 Hz, yielding the best
h90%0 ≈ 2.9 × 10−25 at 170 Hz [35]. In S6, directed searches
were conducted for nine nonpulsating x-ray sources (cen-
tral compact objects) in SNRs with the maximum like-
lihood matched filter called the F statistic. The searches
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1The radiometer search assumes a circularly polarized signal.
The upper limit quoted here converts to h90%0 ¼ 1.6 × 10−24 for
the general case of arbitrary polarization after multiplying by a
sky-position-dependent factor ≈2.2 [32].
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combine multidetector data coherently over 5.3 to
25.3 days, yielding strain upper limits in the range
3.7 × 10−25 ≤ h95%0 ≤ 6.4 × 10−25 [36]. The foregoing
upper limits are slated to improve in the future. The strain
noise in the first observation run (O1) of Advanced LIGO is
3–4 times lower than in S6 across the most sensitive band,
between 100 Hz and 300 Hz, and ∼102 times lower around
50 Hz [37]. The sensitivity is expected to improve roughly
twofold relative to O1 after further upgrades [37].
The rapid spin-down of young neutron stars is a serious

challenge for searches of the above kind. A large number of
matched filters (i.e., templates) is required to track a signal
with a rapid evolving phase, when a radio ephemeris is
unavailable. For example, theF -statistic search in Ref. [36]
is restricted to ≤ 25.3 d in order to keep the number of
matched filters manageable. Semicoherent methods have
been developed [38–40], based on the stack-slide algorithm
[41], to sum the signal power in multiple coherent segments
after sliding the segments in the frequency domain to
account for the phase evolution of the source. However,
stack-slide searches are still computationally challenging,
when high-order derivatives of the signal frequency enter
the phase model. Intrinsic, stochastic f⋆ wandering (“timing
noise”) also degrades the sensitivity of these searches.
In this paper, we introduce an approach based on a

hidden Markov model (HMM) [42] to tackle the above
challenge. A HMM tracks signals with time-varying,
unobservable parameters by modeling them as hidden
states in a Markov chain. The HMM relates the observed
data to the hidden states through a likelihood statistic and
infers the most probable sequence of hidden states. It
incoherently combines the coherent matched filter outputs
from data blocks of duration Tdrift (analogous to Tspan in
Ref. [36]), during which the signal parameters are assumed
to remain constant. The sensitivity scales approximately
proportional to ðTobsTdriftÞ−1/4, where Tobs is the whole
observation time. The Viterbi algorithm [43] provides a
computationally efficient HMM solution. A HMM was
applied to search for continuous gravitational radiation
from the most luminous low-mass x-ray binary, Scorpius
X-1, in O1 data, taking into account the effects of spin
wandering caused by the fluctuating accretion torque [44].
The structure of the paper is as follows. In Sec. II, we

describe the signal model, introduce the F statistic, and
discuss the search parameter ranges. In Sec. III, we
formulate the HMM tracking problem with one hidden
state variable, describe how to choose Tdrift, and discuss the
impact of timing noise. In Sec. IV, we conduct Monte Carlo
simulations in Gaussian noise, present search examples,
and estimate the sensitivity. In Sec. V, we introduce an
alternative HMM formulation with two hidden state var-
iables, and present abridged simulation examples. In
Sec. VI, we discuss the trade-off between computing cost
and sensitivity. We also discuss the special case of young
objects, whose current spin frequencies are close to the

value at birth. A summary of the conclusions is provided
in Sec. VII.

II. COHERENT MATCHED FILTER

In this section we start by describing the signal model in
Sec. II A. We then review the maximum likelihood matched
filter corresponding to the signal model, called the F
statistic, in Sec. II B, and discuss the signal phase parameter
ranges in Sec. II C.

A. Signal model

We consider a continuous gravitational wave signal
from a rotating neutron star modeled as a biaxial rotor.
The Doppler modulation of the observed signal frequency
due to the motion of the Earth with respect to the solar
system barycenter (SSB) is taken into consideration. The
signal phase observed at the detector is then given by [45]

ΦðtÞ ¼ 2π
Xs

k¼0

fðkÞ0 tkþ1

ðkþ 1Þ!þ
2π

c
n̂ ·  rðtÞ

Xs

k¼0

fðkÞ0 tk

k!
; ð1Þ

where fðkÞ0 is the kth time derivative of the signal frequency
at t ¼ 0, n̂ is the unit vector pointing from the SSB to the
neutron star, and  rðtÞ is the position vector of the detector
relative to the SSB.
The signal can be written in the form

hðtÞ ¼ AμhμðtÞ; ð2Þ

where Aμ denotes the amplitudes associated with the four
linearly independent components2

h1ðtÞ ¼ aðtÞ cosΦðtÞ; ð3Þ

h2ðtÞ ¼ bðtÞ cosΦðtÞ; ð4Þ

h3ðtÞ ¼ aðtÞ sinΦðtÞ; ð5Þ

h4ðtÞ ¼ bðtÞ sinΦðtÞ; ð6Þ

aðtÞ and bðtÞ are the antenna-pattern functions defined
by Eqs. (12) and (13) in Ref. [45], and ΦðtÞ is the signal
phase given by (1). In (2), Aμ depends on the star’s
inclination, wave polarization, initial phase at t ¼ 0, and
strain amplitude h0.

2Here we assume a perpendicular rotor emitting at 2f⋆ only for
simplicity. A nonperpendicular rotor also emits at f⋆, and hence
eight components are involved. A full description of the signal
model can be found in Ref. [45]. The emission spectrum of a
triaxial rotor contains additional lines [8,46].
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B. F statistic

The time-domain data collected by a detector takes the
form

xðtÞ ¼ AμhμðtÞ þ nðtÞ; ð7Þ

where nðtÞ stands for stationary, additive noise. The F
statistic maximizes the likelihood of detecting a signal in
data xðtÞwith respect toAμ [45]. We define a scalar product
ð·j·Þ as a sum over single-detector inner products,

ðxjyÞ ¼
X
X

ðxXjyXÞ ð8Þ

¼
X
X

4ℜ
Z

∞

0

df
x̃XðfÞỹX�ðfÞ

SXh ðfÞ
; ð9Þ

where X indexes the detector, SXh ðfÞ is the single-sided
power spectral density (PSD) of detector X, the tilde denotes
a Fourier transform, andℜ returns the real part of a complex
number [47]. The F statistic is expressed in the form

F ¼ 1

2
xμMμνxν; ð10Þ

where we write xμ ¼ ðxjhμÞ, and Mμν denotes the matrix
inverse of Mμν ¼ ðhμjhνÞ.
Assuming the noise nðtÞ is Gaussian, the random

variable 2F follows a noncentral chi-squared distribution
with 4 degrees of freedom, whose probability density
function (PDF) is

pð2F Þ ¼ χ2ð2F ; 4; ρ20Þ; ð11Þ

with noncentrality parameter [45]

ρ20 ¼ AμMμνAν: ð12Þ

Without a signal, the PDF of 2F centralizes to pð2F Þ ¼
χ2ð2F ; 4; 0Þ. Given a signal in Gaussian noise and assum-
ing the same single-sided PSD, ShðfÞ, in all detectors, the
optimal signal-to-noise ratio equals ρ0, given by [45,48]

ρ20 ¼
Kh20Tdrift

ShðfÞ
; ð13Þ

where the constant K depends on the sky location,
orientation of the source and the number of detectors,
and h0 denotes the characteristic gravitational-wave strain.

We leverage the existing, fully testedF -statistic software
infrastructure in the LSC Algorithm Library Applications
(LALApps)3 to compute F as a function of frequency and
its time derivatives over an interval of length Tdrift [49]. The

software operates on the raw data collected by LIGO in
the form of short Fourier transforms (SFTs), usually with
length TSFT ¼ 30 min for each SFT. It provides options to

search up to the third time derivative of frequency, f
…

0. The
implementations described in Secs. III and V use the
options to search over f0 and (f0, ḟ0), respectively.

C. Search parameter ranges

The ranges of ḟ0 and  f0 to be considered in defining the
parameters of the search can be reexpressed in terms of the
range of braking index n ¼ f0  f0/ḟ02 and the spin-down
age of the source τ, given by [34,36]

−
f0

ðnmin − 1Þτ ≤ ḟ0 ≤ −
f0

ðnmax − 1Þτ ; ð14Þ

and

nminḟ0
2

f0
≤  f0 ≤

nmaxḟ0
2

f0
: ð15Þ

Radio timing observations yield 1.4 ≤ n ≤ 3 for all pulsars,
where  f0 can be measured reliably by absolute pulse
numbering [9,50] (cf. [51]). Gravitational radiation in
the mass and current quadrupole channels corresponds to
n ¼ 5 and n ¼ 7, respectively. In this quick study, we
assume 2 ≤ n ≤ 7. Strictly speaking, the ranges obtained
from (14) and (15) are wider than needed. In a real search,
one should ideally calculate the ḟ0 and  f0 ranges for each
fixed 2 ≤ n ≤ 7 and choose the widest ḟ0 and  f0 ranges.
Equations (14) and (15) are valid, provided that f0ðtÞ
during the observation is much smaller than f0 at birth,
f0birth. The regime f0ðtÞ ∼ f0birth is considered in
Sec. VI B.

III. HMM TRACKING OF f 0

We begin this section by reviewing briefly the use of
HMM tracking in gravitational wave searches (Sec. III A).
We formulate the tracker as a one-dimensional HMMwith
a single hidden variable f0 (Sec. III B), discuss the
coherent drift time scale Tdrift (Sec. III C), and illustrate
that the method can track secular spin-down and stochas-
tic timing noise simultaneously (Sec. III D). A full
description of HMMs can be found in Ref. [48]. The
Viterbi algorithm used for solving the HMM is described
in Appendix A.

A. HMM formulation

A Markov chain is a stochastic process transitioning
between discrete states at discrete times ft0;…; tNT

g. A
HMM is an automaton, in which the state variable qðtÞ ∈
fq1;…; qNQ

g is hidden (unobservable), and the measure-
ment variable oðtÞ ∈ fo1;…; oNO

g is observable. The3http://software.ligo.org/docs/lalsuite/lalapps/index.html.
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hidden state at time tnþ1 only depends on the state at time tn
with transition probability

Aqjqi ¼ P½qðtnþ1Þ ¼ qjjqðtnÞ ¼ qi�: ð16Þ

The hidden state qi is observed in state oj with emission
probability

Lojqi ¼ P½oðtnÞ ¼ ojjqðtnÞ ¼ qi�: ð17Þ

Given the prior defined by

Πqi ¼ P½qðt0Þ ¼ qi�; ð18Þ

the probability that the hidden state path Q ¼ fqðt0Þ;…;
qðtNT

Þg gives rise to the observed sequence O ¼
foðt0Þ;…; oðtNT

Þg via a Markov chain equals

PðQjOÞ ¼ LoðtNT
ÞqðtNT

ÞAqðtNT
ÞqðtNT−1Þ � � �Loðt1Þqðt1Þ

× Aqðt1Þqðt0ÞΠqðt0Þ: ð19Þ

The most probable path maximizing PðQjOÞ, viz.

Q�ðOÞ ¼ argmaxPðQjOÞ; ð20Þ

gives the best estimate of qðtÞ over the total observation,
where argmaxð� � �Þ returns the argument that maximizes
the function ð� � �Þ.

B. Transition and emission probabilities

We consider the one-dimensional hidden state variable
qðtÞ ¼ f0ðtÞ. The discrete hidden states are mapped one-to-
one to the frequency bins in the output of a frequency-
domain estimator F ðf0Þ computed over an interval of
length Tdrift, with bin size Δf0 selected using the metric
described in Appendix B. For simplicity here, we take
Δf0 ¼ 1/ð2TdriftÞ, with mismatch m ≤ 0.2. The mismatch
m is defined as the fractional reduction of F -statistic power
caused by discrete parameter sampling (see Appendix B).
We choose Tdrift as described in Sec. III C to satisfy

����
Z

tþTdrift

t
dt0ḟ0ðt0Þ

���� < Δf0 ð21Þ

for 0 < t < Tobs.
In this section, we first consider the situation where the

time scale of timing noise, which causes f0 to walk
randomly, is much longer than the spin-down time scale.
Hence the impact of timing noise is negligible compared to
secular spin-down. Modifications needed to tackle stronger
timing noise are discussed in Sec. III D. If we substitute the
maximum jḟ0j from (14), denoted by jḟ0jmax, into (21) and

assume that ḟ0 is uniformly distributed in the range from
zero to jḟ0jmax,

4 Eq. (16) simplifies to

Aqi−1qi ¼ Aqiqi ¼
1

2
; ð22Þ

with all other entries being zero. By the definition of the
frequency domain estimator, the emission probability is
given by [45,48,49]

LoðtÞqi ¼ P½oðtÞjf0i ≤ f0ðtÞ ≤ f0i þ Δf0� ð23Þ

∝ exp½F ðf0iÞ�; ð24Þ

during the interval [t, tþ Tdrift], where f0i is the value of f0
in the ith f0 bin. Since we have no independent knowledge
of f0, we choose a uniform prior, viz.

Πqi ¼ N−1
Q : ð25Þ

C. Drift time scale

Given ḟ0, we choose Tdrift according to

jḟ0jTdrift ¼ Δf0 ¼
1

2Tdrift
; ð26Þ

to satisfy (21). Hence Tdrift ¼ ð2jḟ0jÞ−1/2 depends solely
on the spin-down rate of the source. To illustrate how
Tdrift is determined by τ, we calculate ḟ0 and hence Tdrift

by assuming purely electromagnetic spin-down [ḟ0ðtÞ ∝
B2
0f0ðtÞn, n ¼ 3] as an example, where B0 is the birth

magnetic field strength; see Appendix C for a detailed
derivation. Figure 1 displays contours of Tdrift as a function
of the gravitational-wave signal frequency today, f0today,
and the ratio f0today/f0birth, where f0birth is the signal
frequency at the birth of the star. The contours in the
upper left panel (e.g., SNR 1987A; τ ¼ 0.03 kyr) show
Tdrift ≲ 5 h for most of the plot. By contrast, the contours
in the upper right panel (e.g., Cas A; τ ¼ 0.34 kyr)
satisfy Tdrift > 10 h over ≈1/3 area of the plot. The Tdrift
values estimated for older objects with τ ¼ 0.6 kyr
and 1 kyr are plotted in the lower panels. All panels show
that Tdrift decreases significantly for f0today/f0birth ≲ 0.8
and f0today ≳ 100 Hz.

4According to Eq. (14), we have jḟ0jmax ¼ 6jḟ0jmin, where
jḟ0jmin is the minimum jḟ0j from (14). In practice, however, we
normally search jḟ0j values more than an order of magnitude
smaller than jḟ0jmax. Hence the search range of ḟ0 is dominated
by jḟ0jmax, and we approximate the search range to be
0 ≤ jḟ0j ≤ jḟ0jmax.
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Figure 1 is plotted for n ¼ 3. In practice, the range of ḟ0
is given by Eq. (14) for 2 ≤ n ≤ 7. We substitute jḟ0jmax

into (26) to satisfy (21) for all ḟ0 and obtain

Tdrift ¼ ð2jḟ0jmaxÞ−1/2: ð27Þ

Hence for any given source with spin-down age τ, we can
always choose a coherent duration Tdrift and divide the data
into NT ¼ Tobs/Tdrift coherent segments, without searching
the ðḟ0;  f0;…Þ parameter space.

D. Timing noise

Stochastic spin wandering (often termed timing noise) is
a widespread phenomenon in isolated neutron stars pulsat-
ing at radio and x-ray wavelengths [52–54]. The autocor-
relation time scale ranges from days to years [55,56]. The
phenomenon can result from magnetospheric changes [57],
superfluid dynamics in the stellar interior [56,58–60], spin
microjumps [61,62], and fluctuations in the spin-down
torque [63–65].

In the absence of a measured ephemeris, a HMM can
track the evolution of f0ðtÞ caused by both secular spin-
down and stochastic timing noise [48]. We approximate the
timing noise by an unbiased random walk, in which f0ðtÞ
moves by at most one bin up or down during the timing-
noise time scale T 0

drift. The transition probability matrix for
timing noise only is

A0
qi−1qi ¼ A0

qiqi ¼ A0
qiþ1qi ¼

1

3
: ð28Þ

For T 0
drift ≫ Tdrift, we can neglect timing noise, as discussed

in previous sections. For T 0
drift ≪ Tdrift, we can neglect

secular spin-down, set Aqjqi ¼ A0
qjqi , and divide the data

into NT ¼ Tobs/T 0
drift coherent segments. For T 0

drift ≈ Tdrift,
we choose minðT 0

drift; TdriftÞ as the drift time scale and
adjust the transition probabilities to take into consideration
both timing noise and spin-down.

IV. SIMULATIONS AND SENSITIVITY

In this section, we first introduce the Viterbi score
and the associated, score-based detection threshold in

FIG. 1. Contours of Tdrift (in hours) for targets with τ ¼ 0.03 kyr (top left), 0.34 kyr (top right), 0.6 kyr (bottom left), and 1 kyr (bottom
right) as a function of the gravitational-wave signal frequency today f0today and the ratio f0today/f0birth, where f0birth is the signal
frequency at the birth of the star, assuming pure electromagnetic spin-down (ḟ0 ∝ B2

0f
n
0 , n ¼ 3).
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Sec. IVA. We demonstrate the performance of f0 tracking
for three different scenarios using synthetic data: (1) an
older object with weak timing noise (Sec. IV B); (2) an
older object with strong timing noise (Sec. IV C); and (3) a
very young object (Sec. IV D). Simulations are conducted
in an artificially restricted, 1-Hz subband to save time. The
signals are injected at a fixed sky position, and ShðfÞ is set
to Advanced LIGO’s design sensitivity [66]. We show
the results in detail with a set of injections into Gaussian
noise for each of the three scenarios, where the polarization
and inclination angles and initial phase are arbitrarily
chosen and fixed. Monte Carlo simulations are conducted
to generate the receiver operator characteristic (ROC)
curves (Sec. IV E).

A. Viterbi score and threshold

The Viterbi score S is defined such that the log likelihood
of the optimal Viterbi path equals the mean log likelihood
of all paths plus S standard deviations at tNT

, viz.

S ¼ ln δq� ðtNT
Þ − μln δðtNT

Þ
σln δðtNT

Þ ð29Þ

with

μln δðtNT
Þ ¼ N−1

Q

XNQ

i¼1

ln δqiðtNT
Þ ð30Þ

and

σln δðtNT
Þ2 ¼ N−1

Q

XNQ

i¼1

½ln δqiðtNT
Þ − μln δðtNT

Þ�2; ð31Þ

where δqiðtNT
Þ denotes the maximum probability of the

path ending in state qi (1 ≤ i ≤ NQ) at step NT (see
Appendix A), and δq� ðtNT

Þ is the likelihood of the optimal
Viterbi path, i.e., P½Q�ðOÞjO�. In a real search, we
normally divide the full frequency band into multiple
1-Hz subbands to allow parallelized computing. In each
1-Hz subband, we consider the candidate for follow-up and
further scrutiny, if S exceeds a threshold Sth set by the
desired false alarm and false dismissal probabilities. The
value of Sth varies with NT , NQ, and the entries in Aqjqi .
Systematic Monte Carlo simulations are always required in
practice to calculate Sth for each HMM implementation.
For the three scenarios in Secs. IV B–IV D, Sth is

determined as follows. Searches are conducted on data
sets containing pure Gaussian noise in 1-Hz subbands. For
a given false alarm probability Pa in a 1-Hz subband, the
value of S yielding a fraction Pa of positive detections is
Sth. The false alarm probability in a search over band B is
given by Pa;total ¼ 1 − ð1 − PaÞB. We set Pa ¼ 1% and
generate 103 noise realizations for each scenario. Searches

for the first two scenarios are based on the same NT and
NQ, and hence they both yield Sth ¼ 6.7. The mean and
standard deviation of S in the 103 realizations are μS ¼ 5.5
and σS ¼ 0.4. In the last scenario, we have Sth ¼ 0.8, with
μS ¼ 0.63 and σS ¼ 0.06. Because σln δðtNT

Þ increases as
NT gets larger, yielding lower S normalized by σln δðtNT

Þ
in (29), it is as expected that the Sth is much lower in
the last scenario (NT ¼ 2000) than the first two scenarios
(NT ¼ 40).

B. τ ≳ 5 kyr, T0
drift ≫ Tdrift

In the first group of tests, we consider a relatively
older target with low timing noise, e.g., τ ≳ 5 kyr and
T 0
drift ≫ Tdrift. Four sets of synthetic data, containing

injected signals with h0/10−26 ¼ 10, 5, 3, and 2, are
generated for Tobs ¼ 83.3 d at two detectors (the LIGO
Hanford and Livingston observatories) using
MAKEFAKEDATA version 4 from LALApps. Detailed injec-
tion parameters are shown in Table I. The searches are
conducted using the search parameters in Table II and Aqjqi

in (22). The detection is deemed successful for
S > Sth ¼ 6.7. The results in Table III show that signals
with h0 ≥ 3 × 10−26 are detected. We calculate the root-
mean-square error (RMSE) εf0 in f0 between the optimal
Viterbi path and the injected signal (in Hz and in units of
Δf0). All successful detections yield εf0 < Δf0. The errors
are introduced mostly because the HMM takes discrete
values of f0 (i.e., Δf0 is the smallest step size), while the
injected signal f0ðtÞ can take any value within a bin.

TABLE I. Injection parameters used to create the synthetic data
analyzed in Secs. IV B and IV C.

Parameter Symbol Value

Right ascension α 23 h 23 m 26.0 s
Declination δ 58°4800.000
Polarization angle ψ 4.94278 rad
Inclination angle cos ι 0.718742
Initial phase ϕ0 2.43037 rad
PSD ShðfÞ1/2 4 × 10−24 Hz−1/2

Frequency f0inj 151.23456789 Hz

First derivative of f0inj ḟ0inj −1.0 × 10−11 Hz s−1

Second derivative of f0inj  f0inj 2.0 × 10−24 Hz s−2

TABLE II. Search parameters for the synthetic signals with
injection parameters quoted in Table I.

Parameter Value Unit

f0 151–152 Hz
Tdrift 50 h
Δf0 2.78 × 10−6 Hz
Tobs 83.3 d
NT 40
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Figure 2 presents the tracking results corresponding to
Table III. Figures 2(a)–2(c) show that the optimal Viterbi
paths match the injected f0ðtÞ closely, with εf0 ¼ 0.39Δf0,
0.46Δf0, and 0.59Δf0, respectively. Figure 2(d) shows that

the signal is not tracked successfully. The detectability
drops rapidly from h0 ¼ 3 × 10−26 to h0 ¼ 2 × 10−26, as
expected near the detection limit (see detailed explanation
in Sec. III B of Ref. [48]).

C. τ ≳ 5 kyr, T0
drift ≈ Tdrift

In the second group of tests, we show that the HMM can
track secular spin-down and timing noise simultaneously
for synthetic signals injected in Gaussian noise. As an
example, we assume the time scale of the unbiased random
walk is the same as the spin-down time scale, i.e.,
T 0
drift ¼ Tdrift ¼ 50 h. The modified transition probability

matrix is the product of (22) and (28), given by

2Aqi−2qi ¼ Aqi−1qi ¼ Aqiqi ¼ 2Aqiþ1qi ¼
1

3
; ð32Þ

with all other terms being zero.

(a) (b)

(c) (d)

FIG. 2. Injected f0ðtÞ (blue curve) and optimal Viterbi path (red curve) for the injected signals in Table III. Panels (a)–(d) display paths
for h0/10−26 ¼ 10, 5, 3, 2, respectively. Good matches are obtained in (a)–(c), with εf0 ¼ 0.39Δf0, 0.46Δf0, and 0.59Δf0, respectively.
In (d), the signal is not detected; the spin-down of f0ðtÞ is too slow to be seen in the plot (εf0 ≫ ḟ0Tobs ¼ 7 × 10−5 Hz). The horizontal
axes are in units of HMM steps with Tdrift ¼ 50 h for each step (NT ¼ 40).

TABLE III. Results of f0 tracking for synthetic signals with the
injection parameters in Table I, Tobs ¼ 83.3 d, Tdrift ¼ 50 h, and
characteristic wave strain h0. The RMSE εf0 between the optimal
Viterbi path and the injected f0ðtÞ is quoted in Hz and in units of
Δf0 ¼ 2.78 × 10−6 Hz. The third column quotes the Viterbi
score S.

h0 ð10−26Þ Detect? S εf0 [Hz] εf0 /Δf0
10.0 ✓ 90.9 1.07 × 10−6 0.39
5.0 ✓ 32.0 1.29 × 10−6 0.46
3.0 ✓ 10.6 1.64 × 10−6 0.59
2.0 × 5.5 0.46 1.6 × 105
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Four data sets with signal strains h0/10−26 ¼ 10, 5, 3, and
2 are generated for Tobs ¼ 83.3 d at two detectors. We use
the same injection parameters in Table I at t ¼ 0. In addition
to the spin-down, f0ðtÞ wanders randomly by at most �Δf0
over time scale Tdrift. The data sets are searched using the
parameters in Table II and Aqjqi in (32). The results are
shown in Table IV. The detection is deemed successful for
S > Sth ¼ 6.7. All successful detections yield εf0 < Δf0.
Figure 3 presents the tracking results for signals with

h0/10−26 ¼ 10, 5, 3, 2 in Table IV. The optimal Viterbi
paths in Figs. 3(a)–3(c) match the injected paths closely,
indicating successful detections. The RMSE εf0 increases
from 0.38Δf0 to 0.77Δf0, when h0 decreases from
1 × 10−25 to 3 × 10−26. Figure 3(d) shows that the optimal
Viterbi path does not match the injected f0ðtÞ for
h0 ¼ 2 × 10−26; i.e., the injected signal is not detected.

Given the signal-to-noise ratio, Tdrift and NT , the
sensitivity of the search remains the same for T 0

drift ≫
Tdrift (Sec. IV B) and T 0

drift ¼ Tdrift (Sec. IV C).

TABLE IV. Results of f0 tracking for synthetic spin-wandering
signals with the injection parameters in Table I, Tobs ¼ 83.3 d,
Tdrift ¼ 50 h, and characteristic wave strain h0. The RMSE εf0
between the optimal Viterbi path and the injected f0ðtÞ is quoted
in Hz and in units of Δf0 ¼ 2.78 × 10−6 Hz. The third column
quotes the Viterbi score S.

h0 ð10−26Þ Detect? S εf0 [Hz] εf0 /Δf0
10.0 ✓ 92.5 1.06 × 10−6 0.38
5.0 ✓ 28.4 1.63 × 10−6 0.59
3.0 ✓ 7.2 2.14 × 10−6 0.77
2.0 × 5.1 0.29 1.1 × 105

(a) (b)

(c) (d)

FIG. 3. Injected f0ðtÞ (blue curve) and optimal Viterbi path (red curve) for the injected signals in Table IV. Panels (a)–(d) display paths
for h0/10−26 ¼ 10, 5, 3, 2, respectively. Good matches are obtained in (a)–(c), with εf0 ¼ 0.38Δf0, 0.59Δf0, and 0.77Δf0, respectively.
In (d), the signal is not detected; the spin-down of f0ðtÞ is too slow to be seen in the plot (εf0 ≫ ḟ0Tobs ∼ 7 × 10−5 Hz). The horizontal
axes are in units of HMM steps with Tdrift ¼ 50 h for each step (NT ¼ 40).
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D. τ ≲ 0.03 kyr, T0
drift ≫ Tdrift

In the third group of tests, we consider a very young
object with τ ≲ 0.03 kyr, e.g., SNR 1987A. In stack-slide-
based searches for such young sources, typically four or
more frequency derivatives must be searched in order to
accurately track the rapid phase evolution.
We inject four signals with h0/10−26 ¼ 15, 13, 11, 10

and high spin-down rates as quoted in Table V. Other
injection parameters remain the same as those in Table I.
We choose Tdrift ¼ 1 h to satisfy Eq. (21). In this case, we
always have T 0

drift ≫ Tdrift and hence use Aqjqi in (22). The
search parameters and results are presented in Tables VI
and VII, respectively. In this group, the detection is deemed
successful for S > Sth ¼ 0.8 given Pa ¼ 1%. The success-
ful detections yield εf0 < 2Δf0 ¼ 2.8 × 10−4 Hz. We
tolerate εf0 slightly larger than Δf0 because Tdrift is
relatively short.
Figure 4 shows the tracking results corresponding to

Table VII. Figures 4(a)–4(c) show that the optimal Viterbi
paths match the injected f0ðtÞ closely. The discrepancy
between the optimal Viterbi path and the injected f0ðtÞ can

hardly be seen, because εf0 ∼ 10−4 Hz is much smaller than
the total change in f0 over Tobs (≈0.2 Hz). Figure 4(d)
shows that the signal is not detected for h0 ¼ 10 × 10−26,
with εf0 ¼ 151.8Δf0 ≫ Δf0.

E. ROC curve and sensitivity

The detection threshold Sth is set by Pa. The probability
that an injected signal yields S < Sth is the false dismissal
probability, denoted by Pd. We quantify the performance of
the HMM in terms of its ROC curve, plotting the detection
probability 1 − Pd against the false alarm probability Pa for
various signal strengths. The signal-to-noise ratio for a
biaxial rotor scales approximately in proportion to heff0 ,
given by [45,67]

heff0 ¼ h02−1/2f½ð1þ cos2ιÞ/2�2 þ cos2ιg1/2; ð33Þ

so we quote heff0 instead of h0 as the signal strength. The
simulations are conducted in an artificially restricted, 1-Hz
subband, at a fixed sky location, with both polarization
angle ψ and initial phase Φ0 randomly chosen with a
uniform distribution within the range ½0; 2π� rad.
The ROC curves are essentially indistinguishable for the

two scenarios in Secs. IV B and IV C, because HMM
tracking is insensitive to the exact choice of Aqjqi [42,43].
Figure 5 shows the ROC curves for these two scenarios
with four values of heff0 , ranging from 1.8 × 10−26 to
2.5 × 10−26. For Pa ¼ 1%, we have 85% and 99% con-
fidence to detect a signal with heff0 ¼ 2.2 × 10−26 and
2.5 × 10−26, respectively, read off the top two curves in
Fig. 5. The 95% confidence sensitivity on effective strain is
heff;95%0 ≈ 2.4 × 10−26 (Tobs ¼ 83.3 d).
Figure 6 shows the ROC curves for the searches in

Sec. IV D with four heff0 values, ranging from 7.5 × 10−26 to
9.0 × 10−26. The properties of the curves are similar to
Fig. 5. However, the overall sensitivity degrades by a factor
of ≈3.5, with heff;95%0 ≈ 8.5 × 10−26 (Tobs ¼ 83.3 d).

V. HMM TRACKING OF f 0 AND ḟ 0

In Secs. III and IV, we show that one-dimensional HMM
tracking can be applied to search for any young objects,
but the sensitivity degrades when the spin-down rate is
too high, e.g., jḟ0j≳ 10−8 Hz s−1 and Tdrift≲ a few hours.
In this section, we describe a more costly alternative to f0
tracking, which allows relatively longer Tdrift when the
spin-down rate is high. We formulate the tracker as a two-
dimensional HMM with hidden state (f0, ḟ0) in Sec. VA
and present simulation examples in Sec. V B.

A. Transition and emission probabilities

In this implementation, we define a two-dimensional
hidden state variable qðtÞ ¼ ½f0ðtÞ; ḟ0ðtÞ� and track f0 and

TABLE V. Spin-down-related injection parameters used to
create the synthetic data analyzed in Sec. IV D.

Parameter Symbol Value

First derivative of f0inj ḟ0inj −3.0 × 10−8 Hz s−1

Second derivative of f0inj  f0inj 3.0 × 10−17 Hz s−2

Third derivative of f0inj f
…

0inj −3.0 × 10−26 Hz s−3

TABLE VI. Search parameters for the synthetic signals with
injection parameters quoted in Tables I and V.

Parameter Value Unit

f0 151–152 Hz
Tdrift 1 h
Δf0 1.39 × 10−4 Hz
Tobs 83.3 d
NT 2000

TABLE VII. Results of f0 tracking for synthetic signals with
the injection parameters in Tables I and V, Tobs ¼ 83.3 d,
Tdrift ¼ 1 h, and characteristic wave strain h0. The RMSE εf0
between the optimal Viterbi path and the injected f0ðtÞ is quoted
in Hz and in units of Δf0 ¼ 1.39 × 10−4 Hz. The third column
quotes the Viterbi score S.

h0 ð10−26Þ Detect? S εf0 [Hz] εf0 /Δf0
15.0 ✓ 3.0 1.77 × 10−4 1.3
13.0 ✓ 2.1 2.50 × 10−4 1.8
11.0 ✓ 0.9 2.47 × 10−4 1.8
10.0 × 0.5 0.02 151.8
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ḟ0 jointly. The state variable can take NQ ¼ Nf0Nḟ0
possible discrete values qij ∈ fq11;…; qNf0

Nḟ0
g, where i

and j index f0 and ḟ0 bins, respectively, and Nf0 and Nḟ0

are the total number of f0 and ḟ0 bins, respectively.
The discrete hidden states are mapped one-to-one to the

two-dimensional array of bins in the output of the estimator
F ðf0; ḟ0Þ computed over Tdrift.

5 The f0 and ḟ0 bin sizes
Δf0 and Δḟ0 are selected using a phase metric described in
Appendix B. Assuming that the spin-down evolution of a
neutron star is smooth (i.e., no glitches) and that  f0ðtÞ
is bounded, we can always choose an intermediate time

scale Tdrift for a particular astrophysical source,
TSFT < Tdrift < Tobs, to satisfy

����
Z

tþTdrift

t
dt0  f0ðt0Þ

���� < Δḟ0 ð34Þ

for 0 < t < Tobs. We calculate f0ðtnþ1Þ from the estimated
f0ðtnÞ and ḟ0ðtnÞ according to6

f0ðtnþ1Þ ¼ f0ðtnÞ þ ḟ0ðtnÞTdrift: ð35Þ

(a) (b)

(c) (d)

FIG. 4. Injected f0ðtÞ (blue curve) and optimal Viterbi path (red curve) for the injected signals in Table VII. Panels (a)–(d) display
paths for h0/10−26 ¼ 15, 13, 11, 10, respectively. Good matches are obtained in (a)–(c), with εf0 < 2Δf0. In panel (d), the signal is not
detected. The horizontal axes are in units of HMM steps with Tdrift ¼ 1 h for each step (NT ¼ 2000).

5The F statistic is computed as a function of f0ðtÞ and ḟ0ðtÞ at
a given reference time. We normally choose the start time tn of the
interval as the reference time.

6Alternatively, if we track f0ðtÞ and ḟ0ðtÞ independently,
another constraint on Tdrift is imposed by Δf0, given by (21).
In other words, we cannot use longer Tdrift than that in the f0
tracking. Hence we do not track f0 and ḟ0 independently and
choose Tdrift to satisfy (34) only.
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If we update f0ðtnþ1Þ according to (35), the transition
probability matrix becomes

Aqi−Δi;jþ1qij ¼ Aqi−Δi;jqij

¼ f2½ΔimaxðjÞ − ΔiminðjÞ þ 1�g−1; ð36Þ

with all other terms being zero. In (36), Δi takes integer
values ΔiminðjÞ ≤ Δi ≤ ΔimaxðjÞ with

ΔiminðjÞ ¼ floorðjḟ0jþ1jTdrift/Δf0Þ; ð37Þ

ΔimaxðjÞ ¼ ceilðjḟ0jjTdrift/Δf0Þ; ð38Þ

where floorðxÞ denotes the largest integer smaller than or
equal to x, ceilðxÞ denotes the smallest integer larger than
or equal to x, and ḟ0j is the value of ḟ0 in the jth ḟ0 bin.
The detailed derivation of (36) is given in Appendix D.
The emission probability is given by

LoðtÞqij ¼ P½oðtÞjf0i ≤ f0ðtÞ ≤ f0i þ Δf0;

ḟ0j ≤ ḟ0ðtÞ ≤ ḟ0j þ Δḟ0� ð39Þ

∝ exp½F ðf0i; ḟ0jÞ�: ð40Þ

We choose a uniform prior in both f0 and ḟ0, viz.

Πqij ¼ N−1
Q : ð41Þ

B. Abridged mock search

In this section we demonstrate the (f0, ḟ0) HMM tracker
using synthetic data. To make a fair comparison with the
f0 tracker, we conduct an abridged version of a mock
search for the rapidly spinning down signal simulated in
Sec. IV D, with the same injection parameters as in Tables I
and V. We choose Tdrift ¼ 50 h (NT ¼ 40) to satisfy (34)
and use the search parameters in Table VIII. The F statistic
is computed over a 1-Hz frequency band as a function of
f0 and ḟ0 for each segment. For demonstration purposes,
only five values of ḟ0 are searched in a range containing
the injected ḟ0 to save time; i.e., the phase metric is not
computed.
The results are presented in Table IX. Compared to the

performance displayed in Table VII using f0 tracking, the

FIG. 6. ROC curves for the searches described in Sec. IV D.
The four curves (from top to bottom) correspond to the four
representative wave strains heff0 /10−26 ¼ 9.0, 8.5, 8.0, and 7.5.
The horizontal and vertical axes indicate the false alarm prob-
ability Pa and detection probability 1 − Pd, respectively. Each
curve is based on 200 realizations. Parameters: Tdrift ¼ 1 h,
NT ¼ 2000, ShðfÞ1/2 ¼ 4 × 10−24 Hz−1/2.

FIG. 5. ROC curves for the searches described in Secs. IV B
and IV C (curves indistinguishable to the eye). The four
curves (from top to bottom) correspond to the four repre-
sentative wave strains heff0 /10−26 ¼ 2.5, 2.2, 2.0, and 1.8. The
horizontal and vertical axes indicate the false alarm proba-
bility Pa and detection probability 1 − Pd, respectively. Each
curve is based on 500 realizations. Parameters: Tdrift ¼ 50 h,
NT ¼ 40, ShðfÞ1/2 ¼ 4 × 10−24 Hz−1/2.

TABLE VIII. Search parameters for the synthetic signals with
injection parameters quoted in Tables I and V.

Parameter Value Unit

f0 151–152 Hz

−ḟ0 2.98 × 10−8–3.02 × 10−8 Hz s−1

Tdrift 50 h
Δf0 2.78 × 10−6 Hz

Δḟ0 1 × 10−10 Hz s−1

Tobs 83.3 d
NT 40

HIDDEN MARKOV MODEL TRACKING OF CONTINUOUS … PHYS. REV. D 97, 043013 (2018)

043013-11



(f0, ḟ0) tracking can detect a signal about 3 times weaker.
We calculate the RMSE εf0 in f0 between the optimal
Viterbi path and the injected signal (in Hz and in units of
Δf0). We do the same for the RMSE εḟ0 in ḟ0 (in Hz s−1

and in units of Δḟ0). In a real search, we consider
candidates for follow-up and further scrutiny, if S exceeds
a threshold Sth set by the desired false alarm and false
dismissal probabilities, as shown in Sec. IV. The value of
Sth depends strongly on NQ and hence the two-dimensional
(f0, ḟ0) parameter space. Systematic Monte Carlo simu-
lations are required in practice to calculate Sth for each
HMM implementation, an exercise lying outside the
scope of this paper. Instead, in this section, we adopt the
following rule of thumb: the injected signal is deemed to be
detected if we obtain εḟ0 < 0.5Δḟ0 and εf0 < 10Δf0. The
errors are introduced mostly because HMM takes discrete
values of f0 and ḟ0, while the injected signal f0ðtÞ and
ḟ0ðtÞ can be any value within a bin. Since we calculate
f0ðtnþ1Þ from the estimated f0ðtnÞ and ḟ0ðtnÞ, εf0 accu-
mulates to a few Δf0 after NT steps, introduced by εḟ0.
Figure 7 displays the optimal Viterbi paths (red curves)

and the true paths f0ðtÞ and ḟ0ðtÞ (blue curves) for the
two weakest injections (a) h0¼4×10−26 and (b) h0¼
3×10−26. The left and right panels show f0 and ḟ0,
respectively. In Fig. 7(a), the optimal Viterbi paths agree
with f0ðtÞ and ḟ0ðtÞ closely. In the right panel, it is shown
that the estimated ḟ0 fluctuates within one bin around the
injected ḟ0ðtÞ. The fluctuations around f0 cannot be seen
clearly in the left panel, because εf0 ¼ 1.80 × 10−5 Hz is
much smaller than the total change of f0 over Tobs
(≈ 0.2 Hz). In contrast, Fig. 7(b) shows that the optimal
Viterbi paths do not match the injected f0ðtÞ and ḟ0ðtÞ; i.e.,
the injected signal is not detected.

VI. DISCUSSION

A. Cost-sensitivity trade-off

In this section, we start by comparing the HMM tracking
method to existing stack-slide-based semicoherent methods
and then discuss the cost-sensitivity trade-off between (f0,
ḟ0) tracking and f0 tracking. Analytic approximations for

the computing cost and sensitivity are described briefly in
Appendixes B and E.
HMM tracking incoherently combines the F -statistic

outputs from NT ¼ Tobs/Tdrift blocks of data. The comput-
ing cost is composed of two parts: (1) calculating the
coherent F statistic (i.e., Lojqi) for all NT segments;
and (2) recursively maximizing PðQjOÞ, i.e., solving the
HMM. Assuming we use data from two interferometers and
search up to the maximum frequency f0max, the computing
costs of calculating F ðf0Þ and F ðf0; ḟ0Þ over one block of
coherent segment Tdrift are given by

T f0 ¼ 0.46 d

�
f0max

0.6 kHz

��
Tdrift

10 d

�
2
�

1

Ncore

�
; ð42Þ

and

T f0;ḟ0
¼ 0.36 d

�
f0max

0.6 kHz

�
2
�
0.3 kyr

τ

��
Tdrift

10 d

�
4
�

103

Ncore

�
;

ð43Þ

respectively, where Ncore is the number of cores running in
parallel (see details in Appendix B). The Viterbi algorithm
computes Q�ðOÞ via ðNT þ 1ÞNQ lnNQ operations [48].
For example, in a 1-Hz subband with NQ ¼ 2 × 106 and
NT ¼ 36, it takes ≲30 s to compute Q�ðOÞ but ≳1 h to
compute NT blocks of the F statistic. Hence the total
computing cost is dominated by the cost of computing NT

blocks of the F statistic, scaling as T f0 ∝ NTf0maxT2
drift

for f0 tracking, and T f0;ḟ0
∝ NTf02maxτ

−1T4
drift for (f0, ḟ0)

tracking.
Compared to a fully coherent F -statistic search, the cost

saving conferred by the HMM tracker is similar to other
F -statistic-based semicoherent methods, when only f0 or
(f0, ḟ0) needs to be searched. Theoretically, the sensitivity
of the HMM tracker is also comparable to other F -statistic-
based semicoherent searches. Hence the HMM tracker
performs on par with other semicoherent methods, as long
as the spin-down rate is moderate, except that it is more
robust against timing noise, as demonstrated in Sec. IV C.

TABLE IX. Results of (f0, ḟ0) tracking for injected signals with the parameters in Tables I and V, Tobs ¼ 83.3 d,
Tdrift ¼ 50 h, and wave strain h0. The RMSE εf0 between the frequency of the optimal Viterbi path and the injected
f0ðtÞ is quoted in Hz and in units of Δf0 ¼ 2.78 × 10−6 Hz. The RMSE εḟ0 between the frequency derivative of the
optimal Viterbi path and the injected ḟ0ðtÞ is quoted in Hz s−1 and in units of Δḟ0 ¼ 1 × 10−10 Hz s−1. The third
column quotes the Viterbi score S.

h0 ð10−26Þ Detect? S εf0 [Hz] εf0 /Δf0 εḟ0 [Hz s−1] εḟ0 /Δḟ0
8.0 ✓ 9.0 2.89 × 10−6 1.0 2.97 × 10−11 0.30
5.0 ✓ 2.9 6.45 × 10−6 2.3 3.56 × 10−11 0.36
4.0 ✓ 2.0 1.80 × 10−5 6.5 2.85 × 10−11 0.29
3.0 × 1.2 0.45 1.6 × 105 1.659 × 10−10 1.59
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When higher-order derivatives of the frequency are
required to be searched for very young objects (e.g.,
τ ≲ 0.03 kyr), e.g., in a stack-slide search, the cost of
computing the F statistic grows geometrically as Tdrift
increases. Figure 8 shows the cost of calculating the F -
statistic over one block of duration Tdrift for a target with
τ ¼ 0.03 kyr up to f0max ¼ 600 Hz. The three curves, from
bottom to top, represent calculating F ðf0Þ, F ðf0; ḟ0Þ, and
F ðf0; ḟ0;  f0Þ, respectively. For example, it requires ∼103
core-day to compute F ðf0; ḟ0;  f0Þ for a single block of

duration Tdrift ¼ 4 d. When f
…

0 needs to be considered, the

cost of calculating F ðf0; ḟ0;  f0; f
…

0Þ becomes prohibitive
even for Tdrift < 1 d. Under these circumstances, the HMM
tracker comes into its own; it allows an efficient search for

rapidly evolving signals without searching high-order
frequency derivatives.
Given fixed Tobs, one can tune Tdrift to trade off

sensitivity against computing cost for a particular target.
Table X shows the theoretical scalings of sensitivity and
cost as a function of Tdrift for the two HMM implementa-
tions described in Secs. III and V. In reality, the scalings
vary with many factors, includingNT , Pa, Pd, and the noise
statistics, as discussed in detail in Refs. [68,69]. In this
paper, we include the theoretical scalings to allow quick
order-of-magnitude comparisons, but we emphasize that
they are not a substitute for Monte Carlo simulations. The
sensitivities of f0 tracking and (f0, ḟ0) tracking scale the
same way with Tdrift. An ðf0; ḟ0Þ search allows longer Tdrift

FIG. 7. Injected f0ðtÞ and ḟ0ðtÞ (blue curves) and optimal Viterbi paths (red curves) for the last two injected signals in Table IX with
(a) h0 ¼ 4 × 10−26 and (b) h0 ¼ 3 × 10−26. The top left and top right panels show good matches for both f0 and ḟ0, respectively. The red
curve in the left panel fluctuates around the blue curve with εf0 ¼ 1.80 × 10−5 Hz, which is too small to be seen in the plot
(εf0 ≪ ḟ0Tobs ≈ 0.2 Hz). In the lower two panels, the injected signal is not detected. The horizontal axes are in units of HMM steps with
Tdrift ¼ 50 h for each step (NT ¼ 40).
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and hence in practice is always more sensitive than an f0
search. However, an f0 search is always faster.
Figure 9 plots the ratio T f0;ḟ0

/T f0 as a function of τ.
The curves, from bottom to top, represent achieving
10%–50% better sensitivity by switching from f0 tracking
to (f0, ḟ0) tracking. We can always achieve better sensi-
tivity using (f0, ḟ0) tracking compared to f0 tracking.
However, T f0;ḟ0

/T f0 is approximately proportional to τ and
increases exponentially with the percentage of sensitivity
improvement.

B. Spin-down of young objects
with age ≲ f 0birth/ḟ 0birth

The true age of a young neutron star may be significantly
less than its characteristic spin-down time scale at birth,
f0birth/½ðn − 1Þḟ0birth�, depending on its ellipticity and
magnetization. To investigate this scenario, we approxi-
mate the braking law with a power law in the usual way,
viz. ḟ0ðtÞ ¼ −ηf0ðtÞn, with η ∝ B2

0 and 2≲ n < 3 if the
torque is electromagnetically dominated, and η ∝ ϵ2 and

n ¼ 5 if the torque is dominated by gravitational radiation
reaction, where ϵ is the ellipticity. Integrating the braking
law with respect to t, we find that the characteristic spin-
down time scale of the signal is given by [33,50]

−f0/ḟ0 ¼ jξj−1τ ð44Þ

with

ξ ¼ 1

n − 1

�
1 −

�
f0birth
f0

�
1−n

�
: ð45Þ

The term ðf0birth/f0Þ1−n is normally neglected under the
assumption f0 ≪ f0birth, yielding ḟ0 ≈ −f0ðn − 1Þ−1τ−1
[34,70]. However, this assumption does not necessarily
apply to young objects (e.g., τ ¼ 0.03 kyr for SNR
1987A), for which we obtain jξj≲ 0.05 for f0birth ≲
600 Hz and B0 ≲ 6 × 1012 G with n ¼ 3. A detailed
discussion can be found in Sec. IIB of Ref. [33].
The indirect upper limit on h0 derived from energy

conservation is given by [3,50,70]

h0 ≤
1

D

�
5GIjξj
2c3τ

�
1/2
; ð46Þ

where G is Newton’s gravitational constant, c is the
speed of light, and D is the distance to the source. The
indirect limit on h0 is lowered because of the second term in
(45). On the other hand, the slower spin-down rate ḟ0 ¼
−f0jξjτ−1 benefits HMM tracking by allowing longer Tdrift.

FIG. 8. Computing cost (in core-days) of a coherent F -statistic
search as a function of Tdrift (in days). The three curves (from
bottom to top) represent searching f0 only, (f0, ḟ0), and (f0, ḟ0,
 f0), respectively. Parameters: f0max ¼ 600 Hz, τ ¼ 0.03 kyr.

TABLE X. Theoretical scalings of sensitivity and computing
cost with drift time scale Tdrift for f0 tracking (Sec. III) and
ðf0; ḟ0Þ tracking (Sec. V).

Tracking Sensitivity Cost

f0 T−1/4
drift Tdrift

f0 and ḟ0 T−1/4
drift T3

drift

FIG. 9. Ratio of the (f0, ḟ0) tracking cost T f0;ḟ0
divided by the

f0 tracking cost T f0 as a function of the target age τ, required to
improve the sensitivity by 10%–50% (from bottom curve to top
curve) by switching from f0 tracking to (f0, ḟ0) tracking. The f0
tracking is always faster but less sensitive than (f0, ḟ0) tracking.
For a given percentage of sensitivity improvement, the cost
required for choosing (f0, ḟ0) tracking rather than f0 tracking
increases with τ.
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If we consider a young object with τ ¼ 0.03 kyr as an
example, the impact of having jξj ¼ 0.05 translates into
raising Tdrift by a factor of ≈3.

VII. CONCLUSION

In this paper, we describe two practical implementations
of an efficient HMM tracker, combined with the maximum
likelihood matched filterF statistic, to economically search
for continuous gravitational waves from young neutron
stars in SNRs. The HMM incoherently combines the
coherent F -statistic outputs from multiple (NT) data blocks
of duration Tdrift. It tracks rapid, secular spin-down without
searching high-order derivatives of the signal frequency.
The first implementation, tracking f0 alone, can simulta-
neously surmount two challenges in young SNR searches:
rapid spin-down and stochastic timing noise. Three scenar-
ios for different spin-down and timing-noise time scales
are discussed. Given Tobs ¼ 83.3 d, we obtain heff;95%0 ≈
2.4 × 10−26 for both weak and strong timing noise in the
first two scenarios (τ ≳ 5 kyr) and heff;95%0 ≈ 8.5 × 10−26 in
the last scenario (τ ≲ 0.03 kyr), with Pa ¼ 1%. We expect
that h95%0 is more conservative than the quoted heff;95%0 for
unknown cos ι based on scaling given by (33). The second
implementation, tracking f0 and ḟ0, allows longer Tdrift
and hence improves the sensitivity by a factor of a few. The
first implementation is always faster and more robust
against timing noise. One can achieve better sensitivity
by switching from the first implementation to the second.
However, it increases the computing cost by 2 to 3 orders of
magnitude, depending on τ.
An optimized F -statistic-based semicoherent

Einstein@Home search for Cas A (f0max ¼ 1.5 kHz) in
the Advanced LIGO O1 run costs approximately
2.7 × 105 core-day, yielding 90% confidence strain upper
limit 1.4 × 10−25 [71]. Assuming the same parameters, the
method discussed in this paper is expected to provide
comparable sensitivity but cost ∼104 core-day. The advan-
tage of HMM tracking grows in searches for younger
targets, e.g., SNR 1987A.
The methods described in this paper can be applied to

extending the searches for the SNRs listed in Ref. [36],
which are restricted to coherent segments of duration
Tdrift ≤ 25.3 d, using the new data from a whole
Advanced LIGO observing run. In addition, the recent
work by Anderson et al. [72] has identified 76 new Galactic
SNR candidates, some of which may be promising candi-
dates for gravitational-wave sources, if the SNR associates
are confirmed. The f0 tracker can be applied to search for
targets that are poorly modeled, e.g., a long transient
postmerger signal from the binary neutron star merger
GW170817 [73] with spin-down time scale ∼102–104 s.
Some modifications are needed, e.g., Lojqi should be
calculated from the power in SFT bins rather than the F
statistic, because the Earth’s rotation can be neglected.

To carry out a search using the methods presented in this
paper, the following steps need to be completed in
preparation. First, the search parameter ranges need to
be determined systematically. The f0 range is normally
chosen to equal the band where the estimated strain
sensitivity is below the indirect, τ-based limit [see (46)].
General equations (14) and (15) for calculating ḟ0 and  f0
are given in Sec. II C. Second, search parameter resolutions
need to be calculated using the metric described in
Appendix B given a desired mismatch. Third, a systematic
Monte Carlo simulation is required for each implementa-
tion to determine the detection threshold Sth given false
alarm and false dismissal probabilities.
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APPENDIX A: VITERBI ALGORITHM

The principle of optimality [74] demonstrates that in
our special case, all subpaths Q�ðkÞ made up of the first k
steps in Q�ðOÞ are optimal for 1 ≤ k ≤ NT. In that sense,
the classic Viterbi algorithm [43] provides a recursive,
computationally efficient solution to computing Q�ðOÞ in
a HMM, reducing the number of operations from NNTþ1

Q

to ðNT þ 1ÞNQ lnNQ by binary maximization [42]. A full
description of the algorithm can be found in Sec. II D
of Ref. [48]. At every forward step k (1 ≤ k ≤ NT) in
the recursion, the algorithm eliminates all but NQ

possible state sequences, and stores the NQ maximum
probabilities

δqiðtkÞ ¼ LoðtkÞqi max
1≤j≤NQ

½Aqiqjδqjðtk−1Þ�; ðA1Þ

and previous-step states leading to the retained most
likely sequence

ΦqiðtkÞ ¼ arg max
1≤j≤NQ

½Aqiqjδqjðtk−1Þ�: ðA2Þ

When backtracking, for 0 ≤ k ≤ NT − 1, we reconstruct
the optimal Viterbi path according to

q�ðtkÞ ¼ Φq�ðtkþ1Þðtkþ1Þ: ðA3Þ
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APPENDIX B: PHASE METRIC AND
COMPUTING COST

The costs of computing the F statistic (i.e., Lojqi) and
recursively maximizing PðQjOÞ depend on the template
spacing. We start by discussing the template spacing and
cost for a general F -statistic search. To optimize the
template spacing, a phase metric is defined. It expresses
the signal-to-noise ratio as a function of template spacing
along each parameter axis (e.g., f0, ḟ0,  f0, …). The
mismatch m is defined as the fractional reduction of
F -statistic power caused by discrete parameter sampling,
with [75–77]

m ¼
X
i;j

gijΔλiΔλj; ðB1Þ

gij ¼
4π2ðiþ 1Þðjþ 1ÞTiþjþ2

drift

ðiþ 2Þ!ðjþ 2Þ!ðiþ jþ 3Þ : ðB2Þ

The indices i and j take integer values from 0 to k, where k
indicates the highest-order frequency derivative considered
(e.g., k ¼ 2 for searching up to  f0), and Δλi denotes the
offset between the true value and the closest template of the
ith parameter. For example, the maximum value of Δλ0 is
half the frequency bin width Δf0, because the signal
frequency falls halfway between two templates in the
worst case. We choose to adopt m ≤ 0.2 in line with the
Cas A search in S5 data [34] and the SNR searches in S6
data [36]. The highest frequency derivative needed is the

largest integer k satisfying gkk½f0ðkÞmax − f0
ðkÞ
min�2 > m (no

summation over k implied), where f0
ðkÞ
max and f0

ðkÞ
min are

the maximum and minimum kth frequency derivatives. In
practice, we can choose the bin size of the ith frequency
derivative Δf0ðiÞ using the diagonal terms of (B2) to satisfy

Xk
i¼0

gii½Δf0ðiÞ�2 < 4m: ðB3Þ

Monte Carlo simulations are needed to accurately
calculate the required bin sizes for a given m. Taking into
consideration the off-diagonal terms of (B2) yields bin
sizes close to the empirical Monte Carlo results. A tiling
algorithm is described in detail in Ref. [78]. Combining
(14), (15), and (B2), the number of templatesN needed for
k ¼ 2 is [50,78]

N ¼ 0.35m−3/2ðdet gÞ1/2f03maxτ
−3; ðB4Þ

with f0min ≪ f0max typically.
The computing time of a coherent F -statistic search over

one block of duration Tdrift is given by

T ¼ κN βNifoTdriftT−1
SFT; ðB5Þ

where κ is the time to compute the F statistic per template
per SFT,7 Nifo is the number of interferometers, and β is
the percentage of time that the interferometers collect data
(i.e., duty cycle). For most of the young targets discussed
in Ref. [36],  f0 is normally small. Only a few  f0 values
need to be searched. For example, we obtain  f0 ≲ 1 ×
10−18 Hz s−2 from (14) and (15) for τ ≳ 1 kyr and f0 ≲
600 Hz and Δ  f0 ∼ 10−18 Hz s−2 from (B2) and (B3) with
Tdrift ¼ 10 d. In this example, only one value of  f0 is
searched and the cost scaling in Eq. (B5) reduces to
f02maxτ

−1T4
drift.

8 If we assume that, only one value of  f0
is searched. For κ ¼ 4 × 10−8 s, m ¼ 0.2, β ¼ 1, Nifo ¼ 2,
TSFT ¼ 1800 s, and Ncore ¼ 103 cores running in parallel,
we obtain

T f0;ḟ0
¼ 0.36 d

�
f0max

0.6 kHz

�
2
�
0.3 kyr

τ

��
Tdrift

10 d

�
4
�

103

Ncore

�
:

ðB6Þ

However, for very young objects (e.g., τ ≲ 0.03 kyr) with
larger  f0, the cost scales as T f0;ḟ0;  f0 ∝ f03maxτ

−3T7
drift.

Figure 10 shows the cost of computing the F statistic
over a coherent segment Tdrift (in units of core-day). For
concreteness, we fix f0max ¼ 600 Hz. In a real search,
f0max is a function of τ, because we determine f0max to be
the maximum frequency where the estimated strain
sensitivity of the search beats the indirect spin-down limit
[see Eq. (46)]. If we compute F ðf0; ḟ0Þ (or search a
single  f0 value), the costs for objects with τ ¼ 0.3 kyr
and 1 kyr are indicated by the two solid curves. A coherent
F -statistic search or a stack-slide-based semicoherent
F -statistic search requires searching higher-order deriva-
tives for objects with τ ≲ 0.3 kyr. The two dashed curves
(top and bottom) represent the cost of computing
F ðf0; ḟ0;  f0Þ for objects with τ ¼ 0.03 kyr and 0.1 kyr,
respectively.
The serial clock time for computing can be reduced by

parallelization. For 103 nodes running in parallel, a coher-
ent F -statistic search over Tdrift ¼ 10 d takes about 9 h for
an object with τ ¼ 0.3 kyr (e.g., Cas A), and about 10 d for
an object with τ ¼ 0.1 kyr (e.g., G1.9þ 0.3). In reality,
the cost indicated by the top dashed curve for an object with
τ ¼ 0.03 kyr (e.g., SNR 1987A) is still underestimated,

because f
…

0 and higher-order derivatives must be searched
using a stack-slide-based semicoherent method.

7The value of κ depends on TSFT and the CPU architecture. An
example in Sec. 5 of Ref. [50] quotes κ ¼ 6 × 10−7 s
(TSFT ¼ 1800 s) on Australian Partnership for Advanced Com-
puting (APAC) resources. We adopt a more recent estimate,
κ ¼ 4 × 10−8 s, in this paper.

8It is shown in Ref. [36] that in the S6 search the computing
cost scales approximately as f02.2maxτ

−1.1T4
drift.
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We do not search second- or higher-order derivatives of
the frequency in the HMM tracking. We start by discussing
the (f0, ḟ0) tracking. In the two-dimensional tracking, we
can always substitute the maximum  f0 in the range (15)
into (34) to choose Tdrift and ignore  f0 (or search a single
value). However, for very young objects (e.g.,
τ ≲ 0.03 kyr) with larger  f0, there can be sensitivity loss
due to the short Tdrift derived from (34). The relation
between theoretical sensitivity and Tdrift is discussed in
Appendix E. The estimate of T in (B6) stands for the time
required to calculate the F statistic over one block of
coherent segment Tdrift. For HMM tracking, we need to add
up the time required to calculate all the required values of
F ðf0; ḟ0Þ. In addition, there is a second component to
the computing cost, namely solving the HMM. HMM
tracking incoherently combines the F -statistic outputs
from NT ¼ Tobs/Tdrift blocks of data. The Viterbi algorithm
computes Q�ðOÞ via ðNT þ 1ÞNQ lnNQ operations [48].
The total computing cost is dominated by the cost of
computing NT blocks of the F statistic, scaling as
T ∝ NTf02maxτ

−1T4
drift. If we take Tdrift ¼ 5 d as an exam-

ple, Fig. 11 shows the computing cost of a semicoherent
HMM search (in units of core-day) as a function of
Tobs ¼ NTTdrift for targets with τ ¼ 0.03 kyr, 0.1 kyr,
0.3 kyr, and 1 kyr, respectively. In practice, Tdrift > 5 d
is allowed for older targets and Tdrift < 5 d is required for
younger ones.

When tracking f0 alone, the search is always cheaper.
We choose Δf0 ¼ 1/ð2TdriftÞ, satisfying m ≤ 0.2. The
metric given by (B2) is no longer needed for k ¼ 0.
Hence the number of templates and cost needed for
computing the F -statistic over each block of Tdrift in
(B4) and (B5) reduces to

N ¼ 2Tdriftf0max; ðB7Þ

and

T f0 ¼ 2κβNifoT2
driftT

−1
SFTf0max: ðB8Þ

The total cost scales ∝ NTf0maxT2
drift when tracking f0

alone, saving a factor ∼f0maxT2
drift compared to the (f0, ḟ0)

tracking.

APPENDIX C: Tdrift GIVEN τ

We assume purely electromagnetic spin-down (ḟ0 ∝
B2
0f

n
0, n ¼ 3) for simplicity, which gives

ḟ0ðtÞ ¼ −ηf0ðtÞ3; ðC1Þ

where the coefficient η ∝ B2
0 is a positive constant. At time

t ¼ 0 when the star was born, we have f0ðtÞ ¼ f0birth. The
differential equation (C1) has the solution

FIG. 10. Computing cost (in core-days) of a coherent F -
statistic search with Tobs ¼ Tdrift as a function of Tdrift (in days).
The two solid curves (top and bottom) represent computing
F ðf0; ḟ0Þ (or include a single  f0 value) for objects with τ ¼
0.3 kyr and 1 kyr, respectively. The two dashed curves (top and
bottom) represent computing F ðf0; ḟ0;  f0Þ for objects with τ ¼
0.03 kyr and 0.1 kyr, respectively. Parameters: f0max ¼ 600 Hz.

FIG. 11. Computing cost (in core-days) of a semicoherent
HMM search as a function of Tobs (in days) with Tdrift fixed. The
four curves (from top to bottom) represent objects with
τ ¼ 0.03 kyr, 0.1 kyr, 0.3 kyr, and 1 kyr, respectively. Param-
eters: f0max ¼ 600 Hz, Tdrift ¼ 5 d, NT ¼ Tobs/Tdrift.
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1 −
�

f0
f0birth

�
2

¼ −
2τḟ0
f0

: ðC2Þ

Substituting ḟ0 ¼ −ð2T2
driftÞ−1 from (26) into (C2), we

obtain

Tdrift ¼ τ1/2f−1/20

�
1 −

�
f0

f0birth

�
2
�
−1/2

: ðC3Þ

APPENDIX D: TRANSITION PROBABILITY
MATRIX FOR f 0, ḟ 0 TRACKING

We first derive the transition probabilities corresponding
to the substate ḟ0. Using Eqs. (14) and (15), the range of  f0
is given by

0.2f0min

τ2
≲  f0 ≲ 2f0max

τ2
; ðD1Þ

where f0min and f0max are the minimum and maximum f0
being searched. The maximum  f0 is more than 2 orders of
magnitude larger than the minimum  f0. We assume that  f0
is uniformly distributed in the range 0 ≤  f0 ≤  f0max. At
each step, given Eq. (34), ḟ0 jumps at most one bin up or
stays in the same bin with equal probability 1/2.

We then estimate the number of bins f0 moves during
each step. Equation (35) is more precisely given by

f0ðtnÞ þ ḟ0ðtnÞTdrift ≤ f0ðtnþ1Þ
≤ f0ðtnÞ þ ½ḟ0ðtnÞ þ Δḟ0�Tdrift: ðD2Þ

Let us write qðtnÞ ¼ ½f0ðtnÞ; ḟ0ðtnÞ� ¼ qij, where i and j
index f0 and ḟ0 bins, respectively. Then the number of bins
that f0 moves from step tn to step tnþ1, denoted byΔi, takes
the minimum and maximum values

ΔiminðjÞ ¼ floorðjḟ0jþ1jTdrift/Δf0Þ; ðD3Þ

ΔimaxðjÞ ¼ ceilðjḟ0jjTdrift/Δf0Þ; ðD4Þ

where floorðxÞ denotes the largest integer smaller than or
equal to x, ceilðxÞ denotes the smallest integer larger than or
equal to x, and ḟ0j is the value of ḟ0 in the jth ḟ0 bin. In
other words, f0ðtnþ1Þ can be located in any bin within the
range ½i − Δimax; i − Δimin� with uniform probability.9 The
two-dimensional transition probability matrix is given by

Aqi−Δi;jþ1qij ¼ Aqi−Δi;jqij ðD5Þ

¼f2½ΔimaxðjÞ − ΔiminðjÞ þ 1�g−1; ðD6Þ

where Δi takes integer values ΔiminðjÞ ≤ Δi ≤ ΔimaxðjÞ,
and all other terms are zero.

APPENDIX E: ANALYTIC SENSITIVITY
SCALINGS

In this section, we present an approximate analytic
formula for the search sensitivity, based on a few
general assumptions. Deviations are discussed in detail
in Refs. [68,69]. Accurate sensitivity scalings require
Monte Carlo simulations for each implementation of the
search, as shown in Sec. IV.
The sensitivity of a search can be defined in terms of

the characteristic gravitational-wave strain corresponding
to 95% detection efficiency. For a coherent F -statistic
search over one block of Tdrift, searching up to the highest
frequency derivative required for a given mismatch, it takes
the form [36,50]

h95%0 ðfÞ ¼ ΘShðfÞ1/2ðβTdriftÞ−1/2; ðE1Þ

where Θ is a statistical threshold, depending on the shape
of the parameter space manifold. One finds 30≲ Θ≲ 40
for a directed search of the type discussed in this paper [50].
The term βTdrift gives the length of the interferometer data
in the time span Tdrift.
As every block of F -statistic output over Tdrift is chi-

squared distributed with 4 degrees of freedom,10 and the chi-
squared distribution is additive, we can calculate the PDF of
z ¼ lnPðQjOÞ along the true signal path from (11) and (13)
by multiplying both the degrees of freedom and the non-
centrality parameter by NT ¼ Tobs/Tdrift. IfQ�ðOÞ coincides
exactly with the true path, we obtain

pðzÞ ¼ χ2
�
z;
4Tobs

Tdrift
;
Kh20Tobs

ShðfÞ
�
: ðE2Þ

IfQ�ðOÞ does not intersect the true path anywhere, we have

pðzÞ ¼ χ2
�
z;
4Tobs

Tdrift
; 0

�
: ðE3Þ

Combining (E2) and (E3), the signal-to-noise ratio after NT
steps of the HMM equals ρ00, given by

ρ020 ¼ μsignal − μnoise
σnoise

ðE4Þ

9Since ḟ0 is negative, we always have f0ðtnþ1Þ ≤ f0ðtnÞ.

10Here we assume that the F statistic is independently and
identically distributed. The estimate requires modification when
applied to real interferometer data, where the noise is nonsta-
tionary and/or non-Gaussian. A more robust Bayesian framework
is introduced in Ref. [79] to analyze theF statistic in the presence
of instrumental artifacts.
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∝
h20

ShðfÞ
ðTobsTdriftÞ1/2; ðE5Þ

where μsignal ¼ NTρ
2
0 and μnoise ¼ 0 are the noncentralities

of the distributions in (E2) and (E3), respectively, and
σnoise ¼ ð8NTÞ1/2 is the standard deviation of the distribution
in (E3). Hence we obtain

h95%0 ðfÞ ¼ ΘShðfÞ1/2ðTobsTdriftÞ−1/4; ðE6Þ

assuming β ¼ 1. When Tobs ¼ Tdrift, Eq. (E6) reduces
to (E1).
By way of illustration, we compute h95%0 for HMM

tracking with Tobs ¼ NTTdrift ¼ 360 d and compare the
result with a coherent F -statistic search limited to Tobs ¼
Tdrift as in Ref. [36]. We take Θ ¼ 35 and let ShðfÞ be the
Advanced LIGO design noise PSD in (E1). Figure 12
shows the results. The blue solid curve, red solid curve, and
blue dashed curve indicate an F -statistic search of duration
Tdrift, a HMM search of duration NTTdrift, and a fully
coherentF -statistic search with Tobs ¼ 360 d, respectively.

Figure 12(a) plots h95%0 as a function of signal frequency.
When Tdrift is fixed [e.g., Tdrift ¼ 10 d in Fig. 12(a)], the
HMM tracking of duration NTTdrift improves upon the
sensitivity of the F -statistic search of duration Tdrift by a
factor of ∼N1/4

T . Figure 12(b) plots the minimum h95%0 in
Fig. 12(a) achieved in the band where the detectors are most
sensitive (at 245 Hz) as a function of Tdrift. The sensitivity
achievable by the HMM scales as ∼T−1/4

drift for fixed
Tobs ¼ 1 yr. Figures 12(a) and 12(b) demonstrate together
the scaling indicated by (E6). A fully coherent search using
all the data (duration NTTdrift) indicated by the blue dashed
curve is more sensitive than the HMM of course. However,
it is computationally expensive.11 The theoretical scalings
here also apply approximately to other F -statistic-based
semicoherent searches.
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