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Inference with finite time series: Observing the gravitational Universe through windows
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Time series analysis is ubiquitous in many fields of science including gravitational-wave astronomy, where
strain time series are analyzed to infer the nature of gravitational-wave sources, e.g., black holes and neutron
stars. It is common in gravitational-wave transient studies to apply a tapered window function to reduce the
effects of spectral artifacts from the sharp edges of data segments. We show that the conventional analysis
of tapered data fails to take into account covariance between frequency bins, which arises for all finite time
series—nomatter the choice of window function. We discuss the origin of this covariance and derive a framework
that models the correlation induced by the window function. We demonstrate this solution using both simulated
Gaussian noise and real Advanced LIGO/Advanced Virgo data. We show that the effect of these correlations is
similar in scale to widely studied systematic errors, e.g., uncertainty in detector calibration and power spectral
density estimation.
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I. INTRODUCTION

Time-series analysis underpins recent advances in
gravitational-wave astronomy. The vast majority of
gravitational-wave data analysis relies on windowing, a
procedure that multiplies the time-domain data segment by
a window function that tapers off at the beginning and end
of the segment. Analysts apply tapered windows to mitigate
two effects: (1) spectral artifacts arising from the Fourier
transform of the data segment edges (Gibbs phenomena)
and (2) correlations between neighboring frequency bins.
While correlations between neighboring frequency bins can
be reduced, they are never eliminated.

Choosing a suitable window requires balancing various
considerations including the spectral leakage from instrumen-
tal lines and the low-frequency “seismic wall,” effectiveness
mitigating the Gibbs phenomenon, and the loss of signal. For
a systematic study of the properties of different windows, we
refer the reader to, e.g., [1,2] for theoretical introductions, and
[3] for a specific discussion in the context of gravitational-
wave data analysis. Once the data are windowed, they are
typically analyzed in the frequency domain where the noise is
described by a power spectral density (PSD), and it is assumed
that each frequency bin is statistically independent. However,
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this assumption is not true for a finite stretch of a longer noise
process.

The assumptions underpinning the Whittle approximation
have been thoroughly studied and many refinements have
been proposed (e.g., [4–10]). In this paper, we derive from
first principles a formalism which accounts for the corre-
lations between neighboring frequencies introduced by the
window function applied to obtain finite time series. We
show how correlations between frequency bins arise from the
fact that quasistationary Gaussian noise processes are funda-
mentally described in the frequency domain by continuous
functions, which imply infinite-duration time series. We de-
rive a simple expression for the “finite-duration” covariance
matrix, which encodes the correlations naturally present in
all finite time series, and identify our result as a specific
basis for a Karhunen-Loève transformation (KLT) (see, e.g.,
[11]). We show that there are practical applications where
the current conventional approach of windowing data incurs
systematic errors, which though small produce invalid in-
ferences when data are combined in large sets or when we
analyze gravitational-wave events with high signal-to-noise
ratio (SNR).

The remainder of this paper is organized as follows. In
Sec. II, we present the formalism underlying our frame-
work. We derive the finite-duration covariance matrix for the
analysis of finite time series. In Sec. III, we perform a demon-
stration, applying our method to the binary black hole merger
events GW150914 [12], GW170814 [13], and GW190521
[14], and contrast with results neglecting covariances. We
show how the current conventional windowing procedure can
lead to faulty inferences when many gravitational-wave mea-
surements are combined. While our demonstration uses data

2643-1564/2021/3(4)/043049(15) 043049-1 Published by the American Physical Society

https://orcid.org/0000-0003-2053-5582
https://orcid.org/0000-0002-4418-3895
https://orcid.org/0000-0001-7616-7366
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.043049&domain=pdf&date_stamp=2021-10-18
https://doi.org/10.1103/PhysRevResearch.3.043049
https://creativecommons.org/licenses/by/4.0/


TALBOT, THRANE, BISCOVEANU, AND SMITH PHYSICAL REVIEW RESEARCH 3, 043049 (2021)

from gravitational-wave astronomy, the framework we put
forward is broadly applicable to all time-domain analysis. We
show that the problem is fixed by using the finite-duration
covariance matrix. We provide closing thoughts in Sec. IV.

II. FORMALISM

In this section, we derive a likelihood that enables us to
analyze time-series data characterized by stationary, Gaussian
noise in a way that correctly takes into account covariance
between neighboring frequency bins that arises for all finite
time series.

A. Basic notation

We consider time-series data d (t ) consisting of signal s(t )
and noise n(t ):

d (t ) = s(t ) + n(t ). (1)

In gravitational-wave observatories like LIGO [15] and Virgo
[16], n(t ) is a time series of dimensionless strain (change in
length per unit length). Transient gravitational-wave signals
from merging binaries are characterized by comparing the
data to gravitational waveform templates h(t ).

B. Continuous, infinite-duration noise

To start, we focus on noise in the absence of signals. The
noise can be expressed in the frequency domain as

ñ( f ) =
∫ ∞

−∞
dt e−2π i f t n(t ). (2)

The noise is best described as continuous because it is defined
for an arbitrary choice of frequency: with a sufficiently long
measurement, it is possible in principle to achieve sufficient
resolution to measure ñ( f ) for any value of f .

If we assume the noise is Gaussian, the likelihood of
observing a specific noise realization is characterized by a
covariance matrix

Cμν = 1
2 〈ñ( fμ)ñ

∗( fν )〉 (3)

the diagonal of which is equal to the noise PSD S:
Sμ = diag(Cμν ). (4)

We refer to Cμν as the “infinite-duration” covariance ma-
trix. It is defined continuously for arbitrary values of fμ
and fν and, in the time domain, it is defined for all times:
(−∞,+∞). Throughout, repeated indices are summed over
unless otherwise specified. In the next subsection, we contrast
Cμν (calligraphic script and greek indices) with the finite-
duration covariance matrix, denotedCi j (no calligraphic script
and roman indices), which is defined only for discrete fre-
quency bins fi and f j (or equivalently, for a finite duration). If
we further assume that the noise is stationary (the PSD does
not vary in time), Cμν is diagonal.

We note that, even if the true covariance matrix is diagonal,
a naive empirical estimate of this quantity necessarily has
some statistical uncertainty and will not generically be diag-
onal, even for a stationary Gaussian process. We emphasize
that in this section we seek to derive expressions for the true
noise covariance matrix assuming Cμν is known, and neglect

the impact of empirical estimates. In Appendix B, we describe
how we estimate Cμν in practice.

C. Noncontinuous, finite-duration noise

In practice, we only consider finite stretches of data. In this
subsection, we derive the properties of finite stretches of con-
tinuous noise. Let us consider data measured with sampling
rate fs over data segment duration T . There are

N = fsT (5)

independent measurements. We assume that the noise has no
content above half the sampling rate and so we can probe
every frequency without aliasing. In practice, applying an ag-
gressive low-pass filter removes this high-frequency content.

These data can be represented either in the time domain
as a real N-component time series with spacing 1/ fs or in
the frequency domain as a complex frequency series d̃i with
− fs/2 � f � fs/2 with spacing 1/T where the end points
and zero-frequency component are required to be real. These
two domains are related via the discrete Fourier transform [17]

d̃ ′
k = 1

fs

N−1∑
j=0

d ′
je

−2π i jk/N . (6)

The frequency-domain covariance matrix for finite-duration,
noncontinuous noise is

Ci j = 1
2

〈
d̃ ′

i d̃
∗′
j

〉
. (7)

Here, the angled brackets denote ensemble averages over
noise realizations. The widely used Whittle approximation
assumes that data at each of the analyzed frequencies are
independent, i.e., Ci j is a diagonal matrix. This is generally
a good approximation. However, as we show in this paper,
the assumption of independence is not strictly valid when
analyzing a finite stretch of data, especially when using a
tapered window.

We begin by defining our window function w, which de-
scribes how we measure some segment of noise from what is,
in theory, an infinite-duration noise process:

d̃ ′
k = 1

fs

∞∑
ψ=−∞

dψwψe−2π iψk/N (8)

= 1

fs

N∑
j=0

d jw je
−2π i jk/N (9)

= (d̃ ∗ w̃)k . (10)

Here, w j is a time-domain window function and the
frequency-domain noise is now the convolution of the original
frequency-domain noise with the Fourier transformed window
function. The prime denotes quantities associated with the
windowed data.

We stress that this window function is always present in
gravitational-wave data analysis problems and is defined for
all times, not just the analysis segment. It is often ignored
when it is a top hat function, i.e.,

wψ =
{
1 0 � ψ < N

0 else
. (11)
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The most commonly used window function in parameter esti-
mation for compact binary coalescences is the Tukey window:

wψ (α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

[
1 − cos

( 2πψ

αN

)]
0 < ψ < αN

2

1 αN
2 � ψ � N − αN

2
1
2

[
1 − cos

( 2π (N−ψ )
αN

)]
N − αN

2 < ψ < N

0 else

.

(12)
Common limiting cases of the Tukey window are the rect-
angular window (α = 0) and the Hann window (α = 1).
Throughout this paper, we use Tukey windows with α = 0.1
unless otherwise specified, although the formalism described
here holds for arbitrary window functions.

Since convolution is a linear operation, we can express
the windowed frequency-domain data using standard linear
algebra notation:

d̃ ′
k = W̃kμd̃μ, (13)

where repeated indices denote summation. Here, W̃kμ is a
nonsquare subset of the circulant matrix

W̃μν = w̃μ−ν (14)

that projects infinite-duration noise with frequency resolution
δ f → 0 to finite duration data with frequency resolution 1/T .
Here, w̃ is the discrete Fourier transform of the time-domain
window function.

We can now write the covariance matrix for a finite-
duration data stream with an arbitrary window function in
terms of the frequency-domain covariance matrix of the
infinite-duration process and the window function using
Eqs. (7) and (13):

Ci j = 1
2

〈
W̃iμW̃ ∗

jν d̃μd̃∗
ν

〉
(15)

= 1
2W̃iμW̃ ∗

jν

〈
d̃μd̃∗

ν

〉
= W̃iμW̃ ∗

jνCμν. (16)

If the underlying data are Gaussian and stationary, Cμν is di-
agonal and the finite-duration covariance matrix only depends
on the window function and the infinite-duration PSD. While
we initially defined the roman indices as covering frequen-
cies from [− fs/2, fs/2], in practice we analyze a narrower
(positive) frequency range from [ fmin, fmax]. In this paper we
will set fmin = 20 Hz, fmax = 800 Hz; this omits data that are
affected by the bandpass filter we apply. From here, roman
indices will refer to this frequency range only.

Formally, one must carry out matrix products over the infi-
nite axes denoted by greek indices to obtain the finite-duration
covariance matrix in Eq. (16). In practice, however, via
numerical experiment (see Appendix B) we find that infinite-
duration matrices can be adequately approximated using a
frequency resolution 16 times that of the analysis segment.
In other words, when analyzing a 4-s data segment (frequency
resolution = 0.25Hz), we may model infinite-duration noise
with a 1/64Hz (or higher-resolution) noise model. In practice,
we use a 1/128-Hz resolution. The resolution of the noise
model can be tuned to achieve the necessary precision for a
given problem.

FIG. 1. The estimated (top) and analytic (bottom) covariance
matrix for simulated noise using a noise power spectral density
estimated from LIGO Livingston data around the time of the binary
black hole merger GW170814. The color bar indicates log10 power
spectral density in units of Hz−1. The estimate is obtained using
approximately three months of simulated data. The off-diagonal be-
havior agrees well with the analytic expression. The window used is
a Tukey window with α = 0.1.

In Fig. 1 we show the empirical finite-duration covari-
ance matrix in the neighborhood of the diagonal—obtained
by averaging approximately three months of simulated Gaus-
sian noise broken into 106 4-s segments and using a Tukey
window with α = 0.1 [Eq. (7)] (top panel)—compared with
the exact finite-duration covariance matrix obtained with our
analytic expressions [Eq. (16)] (bottom panel). The under-
lying PSD (Sμ) is estimated using data from the LIGO
Livingston interferometer at the time of the binary black hole
merger GW170814 with a resolution of 1/128Hz using the
method described in Appendix B. The two panels agree well,
demonstrating the correctness of this formalism. However, the
averaging estimate converges unacceptably slowly for practi-
cal use, and so our analytic expression is essential for practical
applications.
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We are interested in the inverse of the covariance matrix
C−1

i j . We discuss the issue of inverting this matrix in Sec. II E.
We also emphasize that the finite-duration PSD (the leading
diagonal of Ci j) Si �= Si, i.e., the finite-duration PSD is not
the infinite duration evaluated at the desired frequencies. Ad-
ditional technical details about this formalism are provided in
the Appendices. In Appendix A, we discuss how our formal-
ism is related to “coarse-graining” procedures used for PSD
estimation (e.g., [18]). In Appendix C and Algorithm 1, we
describe in detail how we approximate Cμν and Ci j from real
data.

D. Quantifying spectral leakage

From Fig. 1, we see that windowing produces off-diagonal
elements in the finite-duration covariance matrix in general.
In this subsection, we illustrate how this covariance is com-
pounded by sharp spectral features. The relationship between
the choice of window and spectral leakage from sharp spectral
features is well known in signal processing; see, e.g., [1].
In gravitational-wave detectors, there are a number of such
features commonly referred to as “lines” [19] or the low-
frequency seismic wall. The leading-order correction from the
off-diagonal components of the covariance matrix is clearly
seen using the following metric:

�i ≡max
i �= j

∣∣∣∣Ci j

S j

∣∣∣∣. (17)

We consider two regimes that determine the limiting behav-
iors of �i: (i) where the power spectral density is slowly
varying (locally white noise) and (ii) near a large spectral
feature.

We first consider the case of white noise, i.e., Cμν = Sδμν .
We write the finite-duration covariance matrix

Ci j = S W̃iμW̃ ∗
jμ. (18)

and

�i = max
i �= j

∣∣W̃iμW̃ ∗
jμ

∣∣∣∣W̃iμW̃ ∗
iμ

∣∣ = max
i �= j

∣∣∑
μ w̃i−μw̃∗

j−μ

∣∣∣∣∑
μ w̃i−μw̃∗

i−μ

∣∣ . (19)

We note that the quantity W̃iμW̃ ∗
jμ is real and its amplitude

monotonically decreases as |i − j| increases. The contami-
nation is therefore maximized when i and j are neighboring
finite-duration frequency bins (we denote this as j = i± and
emphasize that i± �= i ± 1 due to the omitted interstitial fre-
quencies in the finite-duration analysis). We find

�i =
∣∣∑

μ w̃i−μw̃∗
i±−μ

∣∣∣∣∑
μ w̃i−μw̃∗

i−μ

∣∣ . (20)

The variable �i is a monotonically increasing function of the
Tukey parameter α, with �α=0

i = 0 for a rectangular window
and �α=1

i = 2/3 for a Hann window (see Appendix D for a
derivation). While the power spectrum of gravitational-wave
detectors is not white, it is slowly varying away from the large
spectral features and so we expect this approximation to hold
throughout much of the observing band.

The other limiting case we can analytically describe is
the behavior near a spectral line with relative amplitude L at
frequency fμl with an otherwise white spectrum. In this case

we can approximate

Cμν =
⎧⎨
⎩
S μ = ν �= μl

L S μ = ν = μl

0 μ �= ν

. (21)

We can now write the row corresponding to the line in the
finite-duration covariance matrix:

Ciμl = W̃iμW̃ ∗
μlν

Cμν (22)

= S
{
w̃i−μw̃∗

μl−μ μ �= μl

Lw̃i−μl w̃
∗
0 μ = μl

(23)

= S
(∑

μ �=μl

w̃i−μw̃∗
μl −μ + Lw̃i−μl w̃

∗
0

)
(24)

≈ L Sw̃i−μl w̃
∗
0 . (25)

In the last line we assume Lw̃i−μl � 1 and so the contamina-
tion will fall off with the same spectral shape as the window
function:

�i ≈ L |w̃i−μl w̃
∗
0 | ∝ |w̃i−μl |. (26)

We emphasize at this stage that μl is not necessarily (and in
fact almost guaranteed to not be) contained in the set of roman
indices; i.e., the line is not exactly a delta function at one of the
1/T -Hz spaced frequency bins. If the line were located at one
of these frequencies, a rectangular window would have zero
spectral leakage and be the optimal choice. However, when
this is not the case, the rectangular window maximizes the
contamination from lines. In practice, sharp spectral features
in interferometer power spectra have finite width and therefore
a rectangular window will never generically avoid leakage
from lines.

In Fig. 2, we show this quantity for the PSDs used in
our analysis of the gravitational-wave signal, GW170814 [13]
(Sec. III A), which was observed in 2017 by the Advanced
LIGO [15] and Virgo [16] observatories. For the two LIGO
observatories [15], the magnitude of the off-diagonal terms is
approximately constant throughout the observing band with
exceptions for the known lines. The “violin modes” for the
Livingston interferometer (≈500Hz) are significantly larger
than for the Hanford interferometer and the contamination
near the lines is larger and more broadband. Given this be-
havior, one might think that we can neglect the impact of the
off-diagonal terms if we remove from the analysis the fre-
quency bins in the neighborhood of the lines. However, for the
Virgo observatory [16], we see that the average correction is
much larger across most of the band and is frequently >20%.
This can be attributed to the Virgo PSD being less smoothly
varying. A cut based on frequencies with unacceptably large
contamination would remove most of the observing band.
However, data analysis with the finite-duration covariance
matrix can be used to take into account covariance in Virgo
noise.

E. Regularized inversion

Having characterized the covariance between frequency
bins due to windows, we turn to the inversion of the covari-
ance matrix required to evaluate the likelihood function. Since
tapered window functions go to zero at the edges by con-
struction, the covariance matrix is not invertible [20]. To deal
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FIG. 2. Maximum contamination per frequency bin [Eq. (17)] for PSDs estimated near the time of binary black hole merger GW170814
[13]. We see two competing effects. First, there is broadband contamination at ≈10% when the PSD is slowly varying. The magnitude of
this contamination rises with increasing Tukey α (see Appendix D). There is also large contamination near instrumental lines due to spectral
leakage that is suppressed with increasing Tukey α.

with this issue, we perform a regularized inversion using a
singular value decomposition (SVD) and discard the smallest
eigenvalues. The SVD of a Hermitian matrix can be written as

Ci j = Uik�klU
−1
l j . (27)

Here, �kl = δklλk (no summation) is a diagonal matrix with
the eigenvalues λk on the leading diagonal. Regularization
simply involves removing eigenmodes corresponding to small
eigenvalues. In practice, this is done by setting the eigenvalue
to ∞:

λ̄i =
{
λi i � εN
∞ i > εN

(28)

where a fraction ε of the N eigenmodes are retained. The
regularized matrix and its inverse are

C̄i j =Uik�̄klU
−1
l j , (29)

C̄−1
i j =Uik�̄

−1
kl U −1

l j . (30)

In Fig. 3, we show the eigenvalues in decreasing order for
the covariance matrix estimated at the time of GW170814 and

the corresponding eigenmode spectrum is shown in Fig. 4. We
identify three regimes in the eigenvalue spectrum.

(1) Large eigenvalues with a steep slope at low eigenmode
number. These predominantly correspond to frequencies
where Ci j is large, e.g., near spectral lines and at low frequen-
cies.

(2) A slowly varying region encompassing the majority
of the eigenvalues. This corresponds to the remainder of the
frequencies where the PSD is smoothly varying.

(3) A rapid drop to the smallest eigenvalues. This is a
characteristic feature of ill-conditioned matrices and is the
region we should remove when regularizing.

We consider two methods to determine how many eigen-
values to discard. In the first method we consider the power
loss from the window function. The amount of information
lost by the window is related to the time-averaged square of
the window function. The effective number of independent
time samples is

Neff = Nw2 = N
∫

dt w2(t ) ≈
N−1∑
i=0

w2
i . (31)
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FIG. 3. Eigenvalues of an estimated noise power covariance ma-
trix for data close to GW170814 for a Tukey window with α = 0.1.
The large eigenvalues correspond to spectral lines and the low-
frequency seismic wall; the slowly varying region corresponds to the
smoothly varying observing band. The dashed vertical line denotes
the points after which we discard the eigenmodes as determined by
the window information loss. The dotted lines indicate the point at
which the eigenvalue drops below the minimum of the finite-duration
PSD. Both of these well approximate the turnover after which the
eigenvalues rapidly decline due to information loss from windowing.
The difference is most pronounced for the Virgo data, which is
consistent with the increased contamination between frequency bins
(see Fig. 14).

We choose the fraction of eigenvalues to retain based on the
window function:

ε = Neff

N
= w2. (32)

FIG. 4. Eigenmodes for the covariance matrix estimated from
data from the LIGO Livingston interferometer close to GW170814.
This matrix encodes the correlations between physical frequencies.
The horizontal axis corresponds to the physical frequencies, while
the vertical axis is the order of decreasing eigenvalue. The bottom-
most eigenmodes are the ones that are discarded. These eigenmodes
are associated with very broadband frequency content.

FIG. 5. Intrinsic parameters for the binary black hole merger
GW150914 [12] using our new finite-duration likelihood (blue) and
the diagonal likelihood (orange). The primary and secondary mass
(m1, m2) refer, respectively, to the more-massive and less-massive
component masses. Including covariance between neighboring bins
has no observable impact on the inferred posterior.

The vertical dashed line is at Neff and shows the number
of modes we omit to account for the information loss due
to the tapered window; we note that this matches well the
transition to the badly behaved modes. For the second method

FIG. 6. Intrinsic parameters for the binary black hole merger
GW170814 [13] using our new finite-duration likelihood (blue) and
the diagonal likelihood (orange). The primary and secondary mass
(m1, m2) refer, respectively, to the more-massive and less-massive
component masses. Including covariance between neighboring fre-
quency bins slightly shifts the inferred posterior distribution for the
mass ratio.

043049-6
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FIG. 7. Intrinsic parameters for the binary black hole merger
GW190521 [14] using our new finite-duration likelihood (blue) and
the diagonal likelihood (orange). The primary and secondary mass
(m1, m2) refer, respectively, to the more-massive and less-massive
component masses. Including covariance between neighboring bins
has no observable impact on the inferred posterior.

we set a threshold value corresponding to the minimum of
the power spectral density over the analyzed frequency band
λT = minμ(Sμ). We show this threshold in the dotted line in
Fig. 3. The two threshold values agree well for small Tukey
α although the former method systematically removes more
eigenmodes. We find that the choice of regularization scheme
has a negligible impact on the results of our analysis.

F. Finite-duration likelihood

We can now write our final result, the regularized likeli-
hood with a finite-duration covariance matrix:

L̄(d̃|θ, C̄) = 2

T det C̄
exp

[
− 2

T

〈
d̃ − h̃, d̃ − h̃

〉
C̄

]
, (33)

where det C̄ is the determinant of the finite-duration noise
covariance matrix, h̃ is a template for the signal, and the inner
product is defined as

〈x̃, x̃〉C̄ = x̃iC̄
−1
i j x̃∗

j . (34)

As the exponent in the likelihood can still be written as
weighted inner products between data and template, we can
analytically marginalize over extrinsic parameters in the same
way as for the diagonal likelihood [21].

G. Relation to the Karhunen-Loève transform

The Karhunen-Loève theorem states that for any stochastic
process there exists a basis in which the noise covariance
matrix is diagonal, and the transformation into this basis is
referred to as the KLT. For a colored stationary Gaussian
process that is periodic with period T , this basis is the discrete
Fourier transform with spacing 1/T Hz. The Whittle likeli-

FIG. 8. The signals considered for our population test. The four
signals we consider are a Gaussian burst centered at 50 Hz and
standard deviation 10Hz (blue), a Gaussian burst centered at 500Hz
and standard deviation 10 Hz (orange), a 60M binary black hole
merger (green), and a 300M binary black hole merger (red). In
purple, we show the finite-duration amplitude spectral density for
the LIGO Livingston interferometer at the time of binary black
hole merger GW170814. The Gaussian bursts isolate the impact of
specific spectral features, e.g., the large lines around 500Hz. The
binary black hole mergers are broadband and accumulate most of
their signal-to-noise ratio at low frequencies, near the sharp rise due
to seismic noise.

hood approximation specifically assumes that this basis also
diagonalizes the covariance matrix for a subset of a longer
Gaussian process that is not periodic with period T . As we
have demonstrated, the covariance matrix in the Fourier basis
is not diagonal in this case.

We note that the KLT is closely related to the SVD and
therefore identify that the basis for the KLT of a finite subset
of a longer Gaussian process is the basis found in Sec. II E.
This provides a second, equivalent, interpretation of the inner
product in Eq. (34):

〈x̃, x̃〉C̄ = x̃iUik�̄
−1
kl U −1

l j =
∑

i

|x̄i|2
λ̄i

, (35)

where we have defined x̄i ≡ x̃iUik . The likelihood is now

lnL = −
∑

i

[ |d̄i − h̄i|2
λi

+ ln (λi)

]
+ const. (36)
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FIG. 9. The posterior distribution for the fraction of segments
containing a signal in our toy example (Sec. III B). We analyze
≈7.5 days of simulated Gaussian noise divided into 4s segments
(1.6 × 105 segments), and 15 000 of these segments contain four dif-
ferent signals: (i) a Gaussian pulse with standard deviation 10Hz and
central frequency 50Hz, (ii) a Gaussian pulse with central frequency
500Hz, (iii) an equal-mass binary black hole merger signal with
total mass 60M, and (iv) an equal-mass binary black hole merger
signal 300M. The amplitude of the signals and the PSD are shown
in Fig. 8. In blue we show the posterior distribution obtained using
the standard likelihood that ignores correlations between neighboring
frequency bins induced by the window function. In orange, we show
the posterior distribution using a likelihood that accounts for these
correlations. We see that the diagonal method gives a biased result
when the signal is centered at 500Hz and when analyzing simulated
binary black hole systems.

We identify that this has the usual form of the likelihood
except that all of the quantities are described in the eigenbasis
of the KLT, rather than the Fourier basis.

III. DEMONSTRATION

To demonstrate our formalism we perform two tests.
First, we analyze three binary black hole mergers to demon-
strate that the effect of the off-diagonal corrections is small

but noticeable for confidently detected signals. Second, we
demonstrate that, although this effect produces a minor cor-
rection to modest-SNR events, neglecting the impact of
off-diagonal terms in the noise covariance matrix biases pre-
cision estimates, such as evidence calculations required for
searches for a population of weak, subthreshold signals as in
[22].

A. Single events

We compare the posterior distributions obtained using
both the conventional and finite-duration covariance matri-
ces for three of the observed binary black hole mergers
GW150914 [12], GW170814 [13], and GW190521 [14]. We
choose these as they are relatively high-mass systems (with
detector frame primary and secondary masses of m1 ≈ m2 ≈
30–40M for GW150914 and GW170814 and m1 ≈ m2 ≈
150M for GW190521) for which we expect the tapered
window to have a comparatively large impact on the data as
they use a relatively short stretch of analysis data. They also
span a large range in time, with one event from each of the
first three observing runs of the advanced detector network,
leading to significantly different PSDs.

For each event, we analyze 4 s of data centered at the
trigger time for the event and estimate the PSD using a 512-
s stretch of data ending 2 s before the trigger. We apply a
bandpass filter between 16 and 1024Hz and resample the data
to a new Nyquist frequency of 2048Hz using GWpy [23] to
mitigate spectral leakage from low and high frequencies. We
use a Tukey window with α = 0.1 for the analysis segment.
The details of the covariance matrix calculation are described
in Algorithm 1. We employ the IMRPhenomXPHM waveform
approximant [24–26] in the frequency range 20–800Hz; for
GW190521 we set the upper frequency limit as 300Hz. We
neglect the impact of calibration uncertainty or uncertainty
in our estimate of the PSD. For GW150914, we analyze data
from the two LIGO interferometers; for the other two events,
we analyze data from the two LIGO interferometers and Ad-
vanced Virgo.

We show the posterior distribution for two of the intrinsic
binary parameters when assuming Ci j is diagonal (blue) and
using the full covariance matrix (orange) for GW150194,
GW170814, and GW190521 in Figs. 5, 6, and 7, respectively.
We assume the same prior for both analyses. The primary and
secondary mass refer, respectively, to the more-massive and
less-massive black hole masses. The largest difference we see
is in the component masses for GW170814, primarily driven
by a change in the inferred mass ratio. There is no visible
difference between the posteriors for the other events. The
change in the posterior distributions is at a similar level to the
changes due to marginalizing over uncertainty in the detector
calibration [27,28] or PSD estimate [9,29,30], but less than the
difference due to using different PSD estimation methods [9].
Errors of this magnitude become important when we combine
many events together for population studies and/or precision
tests of general relativity (see, e.g., [31,32]).

B. Combining data segments

By combining large numbers of time-series data segments
it is sometimes possible to extract weak signals not visible
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in individual segments, for example, to measure the popula-
tion of gravitational waves from unresolved compact binaries
[22,33–35] and to detect gravitational-wave memory [36].
Combining data segments can also have the effect of magni-
fying systematic errors that are small enough to ignore when
considering just a single segment in isolation. For example,
failing to take into account uncertainty in estimates of the
noise PSD leads to low-level excess power, which can be
mistaken for a population of subthreshold gravitational-wave
signals [9,29].

Here, we show that the correlations between neighboring
frequency bins induced by all windows must be taken into
account to avoid systematic error in studies that rely on preci-
sion measurements combining many segments. We illustrate
this point using simulated data to carry out a mock search for
a population of subthreshold simulated signals in simulated
Gaussian noise with a known PSD. We employ the formal-
ism from [22] to estimate the fraction of M = 160 000 data
segments of which 15 000 contain a simulated signal.

Our likelihood is a mixture model, which allows for each
segment to consist of either signal S or noise N :

L({d}|ξ ) =
M∏
i

[ξL(di|S ) + (1 − ξ )L(di|N )]. (37)

Here, L(di|S ) is the likelihood of data segment i given the sig-
nal hypothesis while L(di|N ) is the likelihood given the noise
hypothesis and the parameter ξ is the fraction of segments that
contain a signal. We simulate data in 128-s chunks and break
up the data into 4-s segments. We compute the finite-duration
PSD matrix using the known PSD used to simulate the data.
The known PSD is as estimated for the LIGO Livingston
detector in our analysis of GW170814. We do not reestimate
the PSD from the simulated data in order to avoid uncertainty
intrinsic to the PSD estimation method.

For the simple example considered here we assume that the
signal in each segment containing a signal is the same [37].
We consider four choices of signal: (i) a Gaussian burst cen-
tered at 50Hz and standard deviation 10Hz, (ii) a Gaussian
burst centered at 500Hz and standard deviation 10Hz, (iii) a
60M total mass binary black hole merger waveform, and (iv)
a 300M total mass binary black hole merger waveform. The
first two are two well-localized signals in frequency with ran-
dom per-frequency phases. The lower-frequency burst does
not significantly overlap with large spectral features, while the
higher-frequency burst overlaps with the largest spectral lines.
The second two are representative of the gravitational-wave
signals observed so far and considered in the search proposed
in [22]. These signals are relatively broadband in frequency
with well-defined frequency evolution. The 60M waveform
is chosen to be representative of the most commonly observed
systems and the 300M waveform is chosen based on the
largest observed system [38]. As in the previous section, for
the binary black hole waveforms we use the IMRPhenomXPHM

waveforms. In Fig. 8, we show the amplitude spectral density
of each of the signals along with the diagonal of the finite-
duration covariance matrix (Si).

For each iteration, we calculate the posterior for ξ two
ways, once using the standard diagonal likelihood and once
using the finite-duration likelihood. The results are shown

in Fig. 9 for a Tukey window with α = 0.1. For all consid-
ered signals, the diagonal method produces a visibly biased
result. When the Gaussian signal is close to large spectral
lines [Fig. 9(b)] the bias is most significant. The bias for
the binary black hole signals [Figs. 9(c) and 9(d)] is larger
than for the low-frequency Gaussian [Fig. 9(a)]. We attribute
this to two effects. The binary black hole signals accumu-
late significant SNR at low frequencies where the noise is
dominated by leakage from seismic noise. This is somewhat
mitigated by the application of a high-pass filter to suppress
content below 16Hz. They also have a characteristic phase
evolution, which contributes significant resolving power to
the likelihood function. This means that the phase coherence
between the neighboring frequencies is important to the eval-
uated likelihoods.

IV. DISCUSSION

As gravitational-wave astronomymatures, the growing cat-
alog of events enables exciting new science. However, as we
probe increasingly higher SNRs, and as we combine larger
ensembles of data segments, our analyses are increasingly
susceptible to systematic error from approximations in our
models and data analysis. Many sources of systematic error in
our modeling have been considered in recent years including
calibration uncertainty [27,28], waveform systematics [31,39–
41], and noise estimation [9,29,30]. In this paper, we exam-
ine how correlations between frequency bins are inevitably
introduced by windowing in time-domain analysis and find
corrections at the same level as those due to calibration and
PSD uncertainty. We show how these correlations can be
modeled using a frequency-domain noise covariance matrix,
thereby avoiding bias. By performing a singular value de-
composition, we identify that the basis that diagonalizes the
covariance matrix is not the Fourier basis as usually assumed,
but depends on both the PSD and the choice of window
function.

We demonstrate that, while the impact of the off-diagonal
components in the noise covariance matrix is small for in-
dividually resolved events, they are important for precision
estimates of the Bayesian evidence. These precision estimates
of the Bayesian evidence are crucial when attempting to
use Bayesian evidence estimates as a detection statistic, e.g.,
[22,42].

A natural extension of the framework provided here is to
incorporate marginalization over sources of systematic uncer-
tainty. Marginalization over waveform or detector calibration
uncertainty can be trivially combined with this method.
Marginalizing over uncertainty in the PSD estimate would
require either modifying the BAYESLINE algorithm [43] to
include modeling the full noise covariance matrix or an an-
alytic method such as in [6,9,44]. Even after considering all
these forms of systematic uncertainty, we still need to develop
methods to deal with the non-Gaussianity and nonstationarity
of real data. This is an active area of development [45–52];
however, establishing a unified treatment is left to future stud-
ies.

While the analysis here has focused on analysis of short-
duration transients, windows are also used in searches for
longer duration gravitational-wave signals [53,54]. Typically,

043049-9



TALBOT, THRANE, BISCOVEANU, AND SMITH PHYSICAL REVIEW RESEARCH 3, 043049 (2021)

long-duration searches use much longer segment durations
than those described here with Hann windows to mitigate
leakage from lines. As we showed in this paper, this may lead
to correlations between neighboring frequency bins for these
analyses. In searches for the stochastic gravitational-wave
background, a coarse-grained PSD estimate is typically used
(see Appendix A) which may reduce the impact of these cor-
relations. Additionally, window functions are used to excise
short duration non-Gaussian “glitches” from analysis [46,55–
57] (typically this is referred to as “gating”). These gates
have very short rise times (small Tukey α) and so introduce
significant contamination around spectral lines.
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CYTHON and CUDA implementations and PYTHON wrappers
of the PSD matrix calculation are available in [58]. We also
provide example scripts demonstrating how to produce the
results in this paper and some supplementary results in the
same location.

APPENDIX A: CONNECTION TO COARSE-GRAINED
PSD ESTIMATION

While time averaging of short segments to estimate
power spectral densities (e.g., Welch averaging) is common
in gravitational-wave data analysis, an alternative “coarse-
graining” method is used in some areas, especially searches
for the stochastic gravitational-wave background; see, e.g.,
[18]. In this Appendix, we demonstrate that coarse graining
is a special case of the projection method we use in this paper.

The coarse-grained PSD is defined for a frequency resolu-
tion δ f as

Si = 1

δ f

∫ fi+δ f /2

fi−δ f /2
dfS ( f ) (A1)

= 1

δ f

∫ ∞

−∞
df ( fi − δ f /2, fi + δ f /2)S ( f ) (A2)

FIG. 10. The ratio of the inferred finite duration PSD (Si) with a
1/4Hz resolution when using different longer segment durations (D)
to estimate the infinite-duration PSD (Sμ).

= 1

α
Sμ|w̃μ−αi|2 α ∈ Z (A3)

w̃μ =
⎧⎨
⎩
1 − α

2 < μ < α
2

0.5 |μ| = α
2 if α

2 ∈ Z
0 else

. (A4)

In the second line,  is the unit boxcar function. As for the
window operator in this paper, we can express this as a circu-
lant matrix with nonzero entries only in a small region. The
corresponding time-domain window is the sinc function. We
note that the coarsened frequency-domain covariance matrix
is diagonal by construction in this case.

APPENDIX B: ESTIMATING THE
INFINITE-DURATION PSD

Computing Ci j using Eq. (16) requires an expression for
the infinite-duration covariance matrix Cμν . In this Appendix,
we describe our method for estimating Cμν from the data. This
represents stages 1–4 of Algorithm 1.

We assume the data are stationary and Gaussian and there-
fore the only nonzero elements of Cμν are the leading diagonal
Sμ. We approximate this infinite-duration PSD using seg-
ments longer than our final analysis segment. In order to
avoid long-term drift of Sμ in real interferometer data, we
restrict ourselves to 512 s of data. We then subdivide this into
nonoverlapping segments with duration D and compute a me-
dian average PSD using a Hann window as our representation
of Sμ.

To assess the convergence of this method, we compute Si

using a range of values of D. In Fig. 10, we show the ratio of
the finite-duration PSDs to the finite-duration PSD obtained
when using D = 128 s (the longest duration we consider). The
estimate quickly converges with increasing D away from the
spectral lines. Close to the forest of large lines around 500Hz,
the difference between the D = 64 and 128 s estimates is
≈20%. We therefore infer that D = 64 s is sufficiently con-
verged. The key quantity for ensuring adequate convergence
is the ratio between D and the original segment duration. In
this case, Sμ has a resolution 16× as fine as Si. We use this
procedure when analyzing real data throughout this paper.

043049-10



INFERENCE WITH FINITE TIME SERIES: OBSERVING … PHYSICAL REVIEW RESEARCH 3, 043049 (2021)

Algorithm 1 Computing the regularized inverse PSD matrix from real data

Result: regularized inverse PSD matrix [Eq. (30)]
(1) load 512 s of data ending 2 s before the analysis segment begins
(2) divide into 4 × 128 s chunks
(3) apply a Hann window (Tukey α = 1) to each chunk and FFT
(4) take a median average of power in each chunk to generate the “infinite”-duration PSD (Sμ)
(5) define the infinite-duration window (wψ ) as a 128 s time series according to Eq. (12)
(6) compute the finite-duration covariance matrix (Ci j) using Eq. (16)
(7) compute the SVD [Eq. (27)] and regularized inverse (C̄i j) as outlined in Sec. II E

APPENDIX C: COMPUTING THE FINITE-DURATION
COVARIANCE MATRIX

For a typical 4-s data segment, with sampling frequency
2048Hz, analyzed with a 1/128-Hz noise model, we must
perform the matrix operations in Eq. (16) with O(218 × 218)
elements. A naive implementation at double precision would
require a prohibitive amount of computational resources.
Fortunately, the computation can be performed much more
computationally efficiently. The first thing we note is that

Cμν is diagonal and W̃μν is a circulant matrix, i.e., it is fully
specified by a single row/column (w̃μ). Since each matrix
can be represented using a single vector, we do not need to
form any matrices with the 1/128-Hz resolution, dramatically
reducing memory requirements. We also identify that Ci j is a
Hermitian matrix, reducing the computational cost by a factor
of 2.

We provide functions to compute the coarsened PSD ma-
trix from a frequency-domain window and PSD implemented

FIG. 11. PSD matrix (top left), regularized PSD matrix (top right), SVD eigenmatrix (bottom left), and regularized inverse PSD matrix
(bottom right) for the LIGO Hanford observatory at the time of GW170814.

043049-11



TALBOT, THRANE, BISCOVEANU, AND SMITH PHYSICAL REVIEW RESEARCH 3, 043049 (2021)

FIG. 12. PSD matrix (top left), regularized PSD matrix (top right), SVD eigenmatrix (bottom left), and regularized inverse PSD matrix
(bottom right) for the LIGO Livingston observatory at the time of GW170814.

in CYTHON and CUPY compatible CUDA. The former runs in
O(N3) time and the latter inO(N ) wall time. The latter is used
to produce the results in this paper and is less computationally
expensive than the SVD performed on the coarsened data.

In Algorithm 1, we describe the process used to compute
the regularized inverse covariance matrices used for our bi-
nary black hole analyses. We note that the method presented
here requires an estimate for the true underlying power spec-
tral density. In practice, we estimate this from the data by
taking a median average of the PSD in several longer seg-
ments.

APPENDIX D: ADDITIONAL FIGURES

In this Appendix we show the PSD matrix (top left), reg-
ularized PSD matrix (top right), SVD eigenmatrix (bottom
left), and regularized inverse PSD matrix (bottom right) for
our analysis of GW170814 for LIGOHanford (Fig. 11), LIGO
Livingston (Fig. 12), and Virgo (Fig. 13). We note that the data
for all three interferometers show the same qualitative features

and quantitative differences determined by the specific sensi-
tivity of each interferometer.

We see that the PSD matrix is dominated by the leading
diagonal and nearby frequencies and correlations at frequen-
cies corresponding to spectral lines. The correlations from
the spectral lines are less pronounced in the regularized PSD
matrix; however, there is more broadband correlation between
frequencies above/below the most sensitive frequency. The
divide between frequencies above and below the most sensi-
tive frequency can also be seen in the SVD and regularized
inverse PSD matrices.

APPENDIX E: WINDOW OVERLAPS

In order to quantify spectral leakage for white noise we find
Eq. (20):

�i = maxi �= j

∣∣∑
μ w̃i−μw̃∗

j−μ

∣∣∣∣∑
μ w̃i−μw̃∗

i−μ

∣∣ . (E1)
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FIG. 13. PSD matrix (top left), regularized PSD matrix (top right), SVD eigenmatrix (bottom left), and regularized inverse PSD matrix
(bottom right) for the Virgo observatory at the time of GW170814.

The denominator in this expression is simply the total win-
dow power w2. In the continuum limit, the numerator can be

FIG. 14. Fractional contamination for white noise [Eq. (20)] as a
function of Tukey α parameter. We note that the bias is a monotonic
function of α ranging from �i = 0 for α = 0 to �i ≈ 2/3 for α = 1.

written

�(n) =
∫ ∞

−∞
df w̃( f )w̃∗( f + n/T ) (n ∈ Z). (E2)

Here n = i − j and the denominator of Eq. (20) is �(n = 0).
For the rectangular and Hann windows, the frequency-domain
representations of the windows are

w̃( f ;α = 0) = sin(π f T )

π f
, (E3)

w̃( f ;α = 1) = sin(π f T )

2π f (1 − T 2 f 2)
, (E4)

and we find

�(n;α = 0) = T sin (πn)

4πn
(E5)

=
{

T
4 n = 0
0 else

, (E6)
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�(n;α = 1) = 3T sin (πn)

2πn(n2 − 1)(n2 − 4)
(E7)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3T
8 n = 0

T
4 |n| = 1
T
16 |n| = 2

0 else

. (E8)

This trivially shows us that for a rectangular window �i(α =
0) = 0 and �i(α = 1) = 2/3 in the continuum limit. For

finite-duration window functions, the rectangular window still
gives �i(α = 0) = 0 and the Hann window still has a maxi-
mum for |n| = 1. We note that an equivalent result is shown
in [2,62] in the discussion of asymptotic independence. The
generic Tukey window does not have an analytic Fourier
transform; however, numerical experiments confirm that for
all other values of the α parameter neighboring frequency
bins are not independent and �i is a monotonically increas-
ing function of α. In Fig. 14, we show �i as a function
of α.
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