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ABSTRACT

We introduce BILBY-MCMC, a Markov chain Monte Carlo sampling algorithm tuned for the analysis of gravitational waves
from merging compact objects. BILBY-MCMC provides a parallel-tempered ensemble Metropolis-Hastings sampler with access
to a block-updating proposal library including problem-specific and machine learning proposals. We demonstrate that learning
proposals can produce over a 10-fold improvement in efficiency by reducing the autocorrelation time. Using a variety of standard
and problem-specific tests, we validate the ability of the BILBY-MCMC sampler to produce independent posterior samples and
estimate the Bayesian evidence. Compared to the widely used DYNESTY nested sampling algorithm, BILBY-MCMC is less
efficient in producing independent posterior samples and less accurate in its estimation of the evidence. However, we find that
posterior samples drawn from the BILBY-MCMC sampler are more robust: never failing to pass our validation tests. Meanwhile,
the DYNESTY sampler fails the difficult-to-sample Rosenbrock likelihood test, over constraining the posterior. For CBC problems,
this highlights the importance of cross-sampler comparisons to ensure results are robust to sampling error. Finally, BILBY-MCMC
can be embarrassingly and asynchronously parallelized making it highly suitable for reducing the analysis wall-time using a High
Throughput Computing environment. BILBY-MCMC may be a useful tool for the rapid and robust analysis of gravitational-wave

signals during the advanced detector era and we expect it to have utility throughout astrophysics.
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1 INTRODUCTION

Gravitational-wave astronomy has enabled the first measurements of
masses of merging binary black holes (BBHs; Abbott et al. 2016),
new constraints on the equation of state of nuclear matter (Abbott
et al. 2018), and offers a new opportunity to measure the expansion
rate of the Universe (Abbott et al. 2017) and break the existing
measurement tension (Feeney et al. 2019). In the coming years, the
Advanced-LIGO (Aasi et al. 2015), Virgo (Acernese et al. 2015),
and KAGRA (Aso et al. 2013) detectors are expected to start a fourth
observing run that will see the rate of observed signals from binary
mergers increase by up to an order of magnitude. This brings with it
challenges in data analysis: we need software that is rapid, reliable,
and can take advantage of available large-scale computing.

Many of the science goals of gravitational-wave astronomy rely on
the ability to robustly draw samples from the posterior distribution
p(0|d), where 6 are the model parameters and d is the data, and
estimate the Bayesian evidence Z. [For an introduction to Bayesian
inference for gravitational-wave astronomy, see, e.g. Thrane &
Talbot (2019).]. For compact binary coalescence (CBC) signals,
the posterior distribution is highly non-Gaussian with complicated
correlations. Because of the complicated structure of the posterior,
stochastic sampling is one of the only viable processes that can
robustly generate these quantities for the full complexity of the
model (though see Green, Simpson & Gair 2020 and Gabbard et al.
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2019 for machine learning based approaches and Pankow et al. 2015
and Lange, O’Shaughnessy & Rizzo 2018 for iterative-fitting based
approaches).

Stochastic sampling algorithms to analyse CBC signals have
predominately applied either a Markov chain Monte Carlo (MCMC)
approach (Metropolis et al. 1953; Hastings 1970), as introduced by
Christensen & Meyer (1998) or Nested Sampling (Skilling 2006),
as introduced by Veitch & Vecchio (2008). The dominant software
used since the first observing run (O1) has been LALINFERENCE
(Veitch et al. 2015), which provides three independent stochastic
samplers: two Nested Sampling algorithms, LALINFERENCE-NEST
and BAMBI (Graff et al. 2012)) and a Metropolis—Hastings MCMC
(LALINFERENCE-MCMC) algorithm. Veitch et al. (2015) provided a
variety of standard analytical test cases to demonstrate the validity
of each of the samplers. But, in the absence of analytical posterior
distributions for CBC signals, cross-sampler comparisons, especially
between different sampling algorithms, are an important check that
results are robust. That LALINFERENCE offered multiple samplers
was critical to its success.

The LALINFERENCE software had been widely used, well tested,
and become a benchmark for other packages developed since. Since
its development, a number of high-quality general-use stochastic
sampling software packages are now available. Modern gravitational-
wave data-analysis software has been developed that provides an
interface to use these off-the-shelf samplers for gravitational-wave
astronomy. For example, both BILBY (Ashton et al. 2019) and
PYCBC-INFERENCE (Biwer et al. 2019) utilize the DYNESTY (Speagle
2020) Nested Sampling algorithm, and the PTEMCEE (Vousden, Farr
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& Mandel 2016) MCMC algorithm (amongst others). In Romero-
Shaw et al. (2020), a detailed cross-sampler comparison was per-
formed between the BILBY-implementation of the DYNESTY sampler
and LALINFERENCE and the two where found to agreement to within
statistical uncertainties. However, such samplers rarely work out
of the box and often need some customization and validation to
handle CBC signals. For example, a study by Kulkarni & Capano
(2020) compared the PTEMCEE and DYNESTY samplers and found
the PTEMCEE sampler unable to produce unbiased results for BBH
systems.

The BILBY package provides a modular interface to several
stochastic samplers and the ability to implement arbitrary likelihoods
and priors. This flexibility has made BILBY a popular choice across
astrophysics. However, our testing with BILBY has revealed that the
implemented MCMC algorithms do not produce results that match
those of either the DYNESTY or LALINFERENCE packages for CBC-
like use cases. This has a significant future impact: the ability to
cross-check between samplers remains a critical test for robustness.
In addition, MCMC-based methods are nearly embarrassingly-
parallelizable, making them ideal for use in a High Throughput
Computing (HTC) environment.! With these two motivations, we
verify an MCMC-based algorithm implemented within BILBY as of
version 1.1.3.

We began by looking at off-the-shelf options. These are prefer-
able as they are well tested and often actively maintained and
improved by the open-source community. An obvious choice that
has demonstrated performance for CBC inference (Biwer et al.
2019) is the PTEMCEE MCMC sampler, an adaptive parallel-tempered
version of the EMCEE (Foreman-Mackey et al. 2013) algorithm.
[The multimodal posterior distributions inherent to CBC problems
necessitate the use of the PTEMCEE parallel-tempering approach
(Gilks, Roberts & Sahu 1998; Earl & Deem 2005)]. Both of these
algorithms use ensemble-sampling in which n.,; MCMC chains
evolve in tandem, new points are proposed based on the position of
other chains in the ensemble (cf. Section 2.7). However, in testing we
found PTEMCEE to be inefficient compared to the DYNESTY sampler
(by up to a factor of 100). In comparison, the LALINFERENCE-
MCMC sampler has a demonstrated efficiency similar to that of
the Nest algorithm (Veitch et al. 2015). Unlike the off-the-shelf
samplers, LALINFERENCE-MCMC utilizes a proposal distribution
(cf. Section 2) that takes advantage of knowledge about the problem
in hand (in our case, CBC signals). This suggests the need for a
parallel-tempered MCMC sampler with access to problem-specific
proposals.

In this work, we develop BILBY-MCMC, a from-scratch MCMC
algorithm with adaptive parallel tempering and ensemble sampling.
We develop BILBY-MCMC to take advantage of a wide variety
of proposal distributions including standard, problem-specific and
machine learning based proposals. We validate the BILBY-MCMC
sampler against the DYNESTY nested sampler (as described in
Romero-Shaw et al. (2020)) for its use in both standard validation
problems and CBC inference. In this paper, we discuss the tuning and
validation of BILBY-MCMC for efficient inference of CBC signals.

'"HTC environments differ from High Performance Computing in that the
interconnect speeds between nodes is slow. This makes HTC environments
sub-optimal for algorithms that require regular inter-node communication
(e.g, the massively parallel methods explored in Smith et al. (2020)). As
discussed later in Section 2.9, multiple independent MCMC algorithms can
be run that continuously produce independent samples, making them ideal
for an HTC environment.
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However, as part of the BILBY package, BILBY-MCMC can be used
as a sampler for any inference problem, and includes access to an
interface to define custom problem-specific proposal distributions.

We introduce the BILBY-MCMC sampler in Section 2, then discuss
the validation for a set of standardized tests in Section 3. In Section 4,
we apply a set of CBC-specific validation tests and describe the
performance before concluding in Section 5.

2 BILBY-MCMC

MCMC algorithms generate correlated samples from the target
distribution, in our case the posterior distribution, by a sequential
stepping process. We now describe the details of the algorithm
relevant to the BILBY-MCMC implementation, for a more thorough
introduction to MCMC algorithms in astrophysics we refer the reader
to recent reviews (Sharma 2017; Hogg & Foreman-Mackey 2018).
We apply the Metropolis—Hastings algorithm (Metropolis et al.
1953; Hastings 1970) to draw samples from the target density,

p©ld) o< L(d|6)7(6), )]

where £(d|0) is the likelihood of the model parameters 6 and 7 (6)
is the prior probability of the model parameters. Throughout, we
assume a fixed model M, though formally we note that both the
likelihood and priors are model-dependent [i.e. £(d|6) is more
completely written as £(d|6, M) and similarly for the prior].

Given a current sample 0, a proposed sample 6 is generated from
a proposal distribution Q(0'10). (We discuss proposal distributions
in Section 2.1.) We accept the proposed sample 8" with a probability

o ( 0(616") L(d]6") 71(9’))
o = min N B
Q(0'10) L(d|6) 7(6)

and append 6’ to a chain of samples. If the proposal is rejected,
the current sample, 6, is appended to the chain. We implement the
Metropolis—Hastings step in practice by drawing a random number u
from a uniform distribution on the unit interval; if o > u, the proposal
is accepted, otherwise it is rejected.

We initialize the chain with a random draw from the prior
distribution 7(6) and iterate the Metropolis—Hasting algorithm to
generate a chain of m samples {6;} where i € [0, m). Samples
in the chain are generally correlated. Independent samples can be
obtained from {6,} by selecting a subset of m/t samples where 7 is
the autocorrelation time (ACT) of the chain. We select the subset by
taking a sample every t steps. We iterate the algorithm until reaching
the stopping criteria,

(@)

Nsamples > wv (3)
VT

where 1y, 1s the number of samples discarded to remove the chain

initialization, known as the burn-in period, and y < 1 is a thinning

factor (in the PYTHON interface, y is thin by _nact).

To estimate t, we use the autocorrelation module provided by
the EMCEE v3.0 package (Foreman-Mackey et al. 2013). This
method improves on the traditional approach by adding an automated
function to choose the window (cf. Hogg & Foreman-Mackey 2018
along with the software documentation; https://emcee.readthedocs.
io/en/stable/tutorials/autocort/).

We provide a number of automated approaches to estimate the
burn-in period npy,. The primary method is a simple scaling: we
discard rpym ACTS, i.e. foum = FoumT. By default, we use rpym =
10, but this scaling factor can be varied by the user through the
burn_in_nact option. In addition, proposal methods that violate
the assumptions of the MCMC algorithm (e.g. using dynamic tuning
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to improve convergence) set minimum values for ny,,, and the user
can also specify ny,, directly if these automated approaches fail.

To produce independent samples (matching the behaviour of the
LALINFERENCE-MCMC sampler), we can set the thinning factor
y = 1. However, thinning is inefficient in the sense that unthinned
samples (y < 1) are unbiased and provide greater precision for
summary statistics (Link & Eaton 2012). In cases where y < 1, we
differentiate between the number of samples equation (3), and the
effective number of samples 7%, .. = ¥7samples- For the standard
validation tests in this work, we use ¥ = 1. For the CBC validation
tests, we use y = 1/5 and ngmples > 25 000. This ensures a minimum
number of 5000 independent samples while smoothing posterior
plots and providing more accurate summary statistics.

Having introduced the simple Metropolis-Hastings algorithm, we
now turn to the specifics of the BILBY-MCMC implementation that
enable it to efficiently perform CBC parameter estimation. In Sec-
tion 2.1, we define the standard library of proposal distributions then
introduce the learning proposals in Section 2.2 and the gravitational-
wave specific proposals in Section 2.3. We note that BILBY-MCMC
provides a flexible interface to define and use new proposals. As
such, this list is not an exhaustive set of all available proposals.
In Section 2.4, we describe how the proposals are used together in
a block-updating sampling approach. In Section 2.5, we describe
the extension to a parallel-tempered sampler required to analyse
multimodal distributions then describe how ensemble-sampling is
implemented in Section 2.7. In Section 2.8, we provide a model for
the efficiency of the sampler, then introduce a timing model, and
discuss computational parallelization in Section 2.9.

2.1 Standard proposal distributions

Broadly speaking, the performance of an MCMC sampler is deter-
mined by the ACT of the chains it produces. Chains with smaller
ACTs taker fewer steps to traverse the target distribution and hence
produce more independent samples for a fixed number of MCMC
steps (or equivalently, computational cost). The ACT itself depends
on how efficient the proposal distribution Q(6'|6) is in proposing
points that enable the chains to traverse the posterior.

For the Metropolis—Hastings algorithm, there are two ways to
optimize a stochastic sampler to reduce the ACT. First, we can choose
a parametrization that reduces the complexity of the parameter space.
If under a transformation 7, the posterior distribution has a simpler
form (e.g, if 7 maps a Banana-like distribution to a multivariate
Gaussian, or softens hard edges), then sampling in 7(0) rather than
0 is the most straight forward approach to improving the algorithm
performance (Hogg & Foreman-Mackey 2018). In Section 4.1, we
discuss the best known parametrization for CBC signals. Secondly,
once the best known parametrization is chosen, we optimize the
choice of proposal distributions.

In this section, we introduce the standard library of proposals
implemented in BILBY-MCMC and discuss their performance and
utility. For each proposal, we also provide the Hastings factor,

_ 019"

CI)
which ensures detailed balance is met (Hastings 1970) and enables
unbiased sampling using asymmetric proposals.

)

2.1.1 FG: fixed Gaussian

The Fixed Gaussian proposal implemented in BILBY-MCMC is
a generalization of the zero-mean multivariate Gaussian proposal
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(Gelman et al. 1996) in which a proposal for the ith parameter is
generated from

91-/ =9i + o;w;e, (5)

where o is a user-defined scale parameter, w; is the prior support (if
the prior has infinite support, we set w; = 1) for 6;, and € is a draw
from a standard normal distribution. The introduction of the scaling
by the prior support enables some automatic tuning to the anticipated
scale of the problem, while the o; enables the user to define varying
length-scales for each parameter. Of note, our implementation does
not allow the user to change the spatial orientation of the proposal (i.e.
through correlations between parameters). For the Fixed Gaussian
proposal, which is symmetric, H = 1.

In practice, the Fixed Gaussian proposals have limited use and re-
quire manual tuning (through the choice of ;) to achieve meaningful
performance on realistic problems. As such, we do not enable this
proposal by default.

2.1.2 AG: adaptive Gaussian

To circumvent the tuning requirements of a Fixed Gaussian proposal,
Haario, Saksman & Inen (2001) introduced the notion of an adaptive
proposal that uses past performance of the sampler to drive the
sampler to a target acceptance rate.

Such adaptive proposal are non-Markovian and may lead to
the generated samples not being representative of the posterior.
However, as discussed in Haario et al. (2001) and Veitch et al.
(2015) (in the context of CBC signals), if the adaptation rate decays
throughout the run or the adaptation is halted sufficiently early in
the run, the equilibrium distribution may be sufficiently close to the
posterior. We verify that, within the statistical uncertainties relevant
for typical CBC problems, this is true for our Adaptive Gaussian
proposal.

To dynamically adapt the proposal, we use the acceptance
ratio,

Naccepted

(6)

. Maccepted + Nrejected ’
to quantify the current performance (Gelman et al. 1996). If a ~ 1,
proposals are accepted too often: this suggests slow exploration of the
posterior. If a < 1, proposals are infrequently accepted: the proposed
points tend to jump away from areas of high posterior support.
In both cases, this leads to large ACTs. For well-tuned proposals
(which reduce the ACT relative to poorly tuned proposals) and under
idealized settings, Roberts, Gelman & Gilks (1997) demonstrated
that a ~ 0.23. We set this as a target acceptance rate and dynamically
adapt the proposal to achieve it.

Our implementation of the Adaptive Gaussian proposal extends
equation (5),

0! = 0; + so;wje, (7)

adding a factor of s, the adapting scale parameter. Initially, s = 1,
then on each iteration where the proposal is applied, we update s
following Veitch et al. (2015):

N (1—a) @®)
s —>s+s,—,
" 100
if the previous proposed point was accepted or
a/
-5 —5,—, 9
s —>5—=5, 100 9)
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if the previous proposed point was not accepted. Here ' = 0.234 is
the target acceptance rate and the quantity,

N1/
sy=<;> =1 (10)

is the adaptation decay rate with n the number of points proposed
and N a user-specified number of steps after which to stop adapting,
the default value is N = 10°. We set a minimum scale s > N~'. For
the Adaptive Gaussian proposal, which is symmetric, H = 1.

2.1.3 DE: differential evolution

We implement the Differential Evolution proposal (Ter Braak 2006;
ter Braak & Vrugt 2008) as described in Veitch et al. (2015). Two
samples A and #° are drawn at random from the chain. Then

0" =04y —06"), (11)

where y is chosen randomly from y = {1, N(, 2.38/«/2ndim}.
When y = 1, this acts as a mode-hopping proposal improving
the performance of the sampler in multimodal problems. When y
is drawn from the normal distribution [as proposed by Ter Braak
2006; Roberts & Rosenthal 2001), the proposed points lie along the
line passing through @ and 6. As such, the proposal is well suited
to posterior distribution with linear correlations in which the line
passing through 6 and 6 lies along the principle axes. As with the
Adaptive Gaussian proposal, formally this proposal makes the chain
non-Markovian. Later, in Section 3, we verify that the equilibrium
distribution is statistically identical to the posterior, i.e the posterior
is unbiased. Like the Gaussian proposals, the Differential Evolution
proposal is symmetric, such that H = 1.

2.1.4 PR: prior proposal

The prior proposal draws @ from the prior 77(8). For well-measured
parameters, in which the posterior is much narrower than the prior,
this proposal is highly inefficient. However, we find it to be effective
when used as part of a block-updating set of proposals applied to
poorly measured parameters (e.g. the spin and tidal parameters of
the secondary lower mass object in a CBC inference problem). It
also aids mode-mixing in high-temperature chains (see Section 2.5).
For the Prior proposal, the Hastings factor is H = 7(0)/m(6).

2.1.5 UN: uniform proposal

A simplification of the Prior Proposal, this proposal proposes points
uniformly within the prior bounds. We utilize this proposal as a robust
and simpler variant of the Prior Proposal with similar performance.
For the Uniform proposal, which is symmetric, the Hastings factor
isH=1.

2.2 Machine learning proposal distributions

In BILBY-MCMC, we introduce a class of learning proposals that,
as we show in Section 3, dramatically decrease the ACT while
producing statistically identical posterior distributions. learning pro-
posals use a random sampling from the past MCMC chain to learn
the distribution and then generate new samples. For all learning
proposals, during an initialization stage (during which the MCMC
chain has not yet been explored), they fall back to an Adaptive
Gaussian proposal. Once the initialization stage is complete, they
sample the MCMC chain, use the samples to fit the proposal
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distribution, and then this distribution is used to propose new points.
Periodically, the proposal distribution is refitted using new samples
from the MCMC chain to circumvent premature learning. As with the
Adaptive Gaussian proposal, the use of the past chain again breaks
the Markovian property of the chain, but we verify in Section 3 that
the resulting posterior remains unbiased using validation tests.

2.2.1 KD: Gaussian kernel density estimate

We fit a Gaussian Kernel Density Estimate (KDE; Rosenblatt 1956;
Parzen 1962) to a random draw of samples from the MCMC chain.
We find this non-parametric multivariate density estimate to be both
rapid in learning (typical learning times are fractions of a second)
and flexible enough to fit complicated features. KDE methods have
previously been used in the context of CBC inference by the KOMBINE
(Farr & Farr, in preparation) ensemble sampler.

When used to estimate a probability density from a set of samples,
KDE methods suffer a subtle dependence on a tuneable ‘bandwidth’
parameter and typically over-smooth hard edges and multimodal
distributions. However, when used as a learning proposal density,
these issues only result in loss of efficiency, and do not bias results.
To understand why, consider a parameter with a hard edge (e.g. the
lower bound on the spin of a black hole that cannot be negative).
A KDE proposal fitted to a chain will over-smooth the hard edge
and propose non-physical points with negative spin. However, the
MCMC algorithm will never accept these points. This results in a
small loss of efficiency, but no bias.

We utilize the standard implementation of Gaussian KDE in the
Scipy (Virtanen et al. 2020) package with bandwidth estimated using
‘Scotts rule’ (Scott 2015). Once the KDE k() is fitted, proposal
samples can be drawn directly and the Hastings factor calculated
by H = k(0)/k(0"). We find that fitting the KDE takes fractions of
a second while the proposal time is negligible compared to typical
CBC likelihood evaluation times.

2.2.2 GM: Gaussian mixture model

While KDEs smooth a set of samples as a Gaussian centred on
each sample, in a Gaussian mixture model (GMM) the density
is estimated using a finite number of Gaussian distributions. As
with KDE methods, this model is not good at fitting distributions
with hard edges. The means and covariance matrices of these
Gaussian distributions are chosen using an expectation-maximization
algorithm. We use the SKLEARN (Pedregosa et al. 2012) package to
fit the GMM. In this work, we use 10 components in the mixture.
Fitting the GMM takes slightly more time than fitting the KDE;
however, it is typically <1 s and sampling from/evaluating the GMM
is faster than sampling from the KDE as there are fewer components.
As with the KDE proposal, the Hastings factor is calculated from
H = g(0)/g(6"), where g(0) is the fitted GMM.

2.2.3 NF: Normalizing flows

The normalizing flows class of machine learning algorithms (Papa-
makarios et al. 2019) learn a bijective map from the target density
(the set of training samples drawn from the MCMC sampler) to
a latent space, in our case a multivariate Gaussian. Normalizing
flows have previously been used in gravitational-wave astronomy
to directly sample the CBC posterior distribution (Green et al.
2020; Green & Gair 2021) and as way to propose new points in
a nested sampler (Williams, Veitch & Messenger 2021). Following
the work of Hoffman et al. (2019), Moss (2020), we use the NFLOWS
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package (Durkan et al. 2020), which implements the normalizing
flows algorithm in PYTORCH (Paszke et al. 2019), to learn the
proposal distribution. We periodically optimize the normalizing flow
using the Jensen—Shannon divergence (JSD) test (cf. Appendix A)
between samples drawn from the learnt map and a set of independent
validation samples. Unlike the KDE and GMM proposals, the
normalizing flows proposals can take several tens of seconds to
minutes to train. In practice (cf. Section 3), we find the normalizing
flows method has a similar performance to the GMM method, but
at an increased computational cost. Therefore, we do not utilize it
for CBC inference problems. The Hastings factor is again given by
the ratio of the normalizing flow density at the initial and proposed
points.

2.3 Gravitational-wave proposal distributions

We implement the gravitational-wave-specific polarization and
phase correlation, phase reversal, and phase and polarization
reversal proposals as described in Veitch et al. (2015). We find these
proposals dramatically improve the sampling for analyses that do not
utilize analytic marginalization of the binary phase (cf. Section 4.2).
We do not implement the sky reflection, extrinsic-parameter, and
Gibbs sampling of distance proposals described in Veitch et al.
(2015), Raymond & Farr (2014). While we expect these to be general
improvements to the algorithm, the use of distance marginalization
(cf. Section 4.2), and our choice of parametrization (cf. Section 4.1)
diminish the expected utility of these proposals.

2.4 Block sampling

Each of the proposal distributions described in the last three sections
can update either all parameters in the set of model parameters 6,
or only a subset of those parameters. The BILBY-MCMC sampler
is initialized with a list of individual proposals, the subset of 6 that
they are to update, and their unnormalized weighting. We then use
the weighting to create a cyclic proposal cycle. At each step of
the sampler, the next proposal in the cycle is chosen, a point is
proposed and accepted/rejected based on the condition described in
equation (2). The proposal cycle enables weighted block-updating
of proposals and ensures the detailed balance condition is met as
described in Veitch et al. (2015).

For non-CBC inference problems (i.e. the standard tests con-
sidered in Section 3), we default to an equal-weighted set of the
Adaptive Gaussian, Differential Evolution, Uniform, KDE, GMM,
and Normalizing Flow proposals. Though, this can be customized
by users. For CBC inference problems, we define a proposal cycle
described in Table 1. We arrived at this choice by hand tuning:
running analyses on simulated signals and identifying opportunities
for improvement. As such, we do not anticipate that the proposals
selected in Table 1 are optimal and we expect improvements to be
made in the future. Users can modify and extend proposal cycle using
the flexible interface.

2.5 Parallel-tempering

The standard Metropolis Hastings algorithm does not produce
estimates of the evidence, and fails when attempting to sample from
multimodal distributions. Parallel-tempering (Gilks et al. 1998; Earl
& Deem 2005) addresses both of these issues.

As the name suggests, 7mps parallel MCMC chains are run. (In
practice, these can be updated sequentially, i.e. stepping each chain
in turn, or using the parallelization techniques described later in
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Table 1. The gravitational-wave proposals set used in this work.

Proposal 6-subset Weight
Adaptive Gaussian All 10
Differential evolution All 10
Adaptive Gaussianl Intrinsic 10
Differential evolution Intrinsic 10
KDE Intrinsic 10
GMM Intrinsic 10
Differential evolution Extrinsic 10
KDE Extrinsic 10
GMM Extrinsic 10
Adaptive Gaussian Extrinsic 5
Differential evolution Mass 5
GMM Mass 5
Differential evolution Spin 5
GMM Spin 5
Adaptive Gaussian Measured-spin 5
Differential evolution Mass ratio and primary spin 5
Differential evolution Tidal deformability 5
Prior proposal Tidal deformability 5
Phase reversal Phase 0.1
Phase and polarization reversal ~ Phase and polarization 0.1
Correlated phase/polarization Phase and polarization 0.1
Prior ¥, 12,02, A1, Aoy ) 0.1

Notes. For a description of the proposals themselves, see Section 2.1. In
cases where the f-subset is ‘all’, the whole set of 6 is updated. Where a
subset is listed, see Section 4.1, only that subset is updated by the proposal.
The weights are unnormalized and determine the relative frequency of each
proposal. In the final row of ‘Prior’ proposals, each is updated individually,
not as a set.

Section 2.9. However, the chains must remain pseudo-synchronized
to enable swaps between chains). For the jth chain, the likelihood in
equation (2), is modified:

L£(d|0, M) — L0, M)V, (12)

where 7; > 1 is the chain ‘temperature’. Note that the ladder of
temperatures {7} is ordered 7; > 7;. The Ty = 1 ‘cold’ chain
samples from the target posterior distribution. But, for ‘hot’ chains
with T; > 1, the likelihood is flattened out and easier to sample.

Periodically, swaps are proposed between adjacent chains and
accepted with a probability,

) L£(d)6,,) A/T)=(1/Tn)

These swaps provide a mechanism for the cold temperature chain
(which generates posterior samples) to explore multimodal like-
lihoods. We utilize the dynamic temperature adaption methods
described in Vousden et al. (2016) to optimize the choice of the
temperature ladder {7;}. Samples taken during this optimization
period are automatically labelled as part of the burn-in epoch.

2.6 Evidence calculation

In addition to resolving the problem of sampling multimodal dis-
tributions, parallel-tempering also enables an estimate to be made
of In Z, the natural logarithm of the Bayesian evidence. To esti-
mate the evidence in BILBY-MCMC, we implement thermodynamic
integration (Goggans & Chi 2004; Lartillot & Philippe 2006) as
described in Littenberg & Cornish (2009) and Veitch et al. (2015),
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and the stepping-stone algorithm (Xie et al. 2010; Maturana-Russel
et al. 2019). In testing, we verify the findings of Maturana-Russel
et al. (2019): The stepping stone method is superior, producing more
accurate results for the same computational cost. As such, while
BILBY-MCMC calculates both methods, we report only the stepping
stone evidence throughout this work.

2.7 Ensemble sampling

In recent years, ensemble-sampling algorithms have been highly
successful in astrophysics (see, e.g. Foreman-Mackey et al. 2013;
Vousden et al. 2016; Farr & Farr, in preparation). These algorithms
use an ensemble of interacting MCMC samplers. New points are
proposed based on the current distribution of the ensemble of points
enabling automatic tuning of the proposals to the target density. That
these algorithms self-tune has been paramount to their versatility and
use throughout astrophysics.

In BILBY-MCMC, an ensemble of n., chains can be utilized
with inter-chain swaps proposed by an ensemble stretch proposal
(Goodman & Weare 2010). In comparison to the EMCEE and PTEMCEE
samplers, BILBY-MCMC is poorly vectorized and does not scale to
many hundreds of chains.

If used in conjunction with parallel-tempering, one can either use
Niemps €nsembles (for a total of nemps X Neps Samplers) or with one
parallel-tempered chain (for a total of nemps + Mens — 1 samplers).
The former configuration mirrors how the PTEMCEE sampler operates
while the latter configuration may be useful, for example, to provide
an estimate of the evidence with a reduced computational cost. For
thermodynamic integration, each set of parallel-tempered chains
is used to calculate an estimate of the evidence, then the results
are averaged between chains. In the validation tests described in
Sections 3 and 4, we do not utilize the ensemble sampler as it was
found to provide no practical improvement in efficiency.

2.8 Efficiency

Throughout this work, we will quantify and compare the posterior
sampling efficiency of samplers by the ratio of the number of
independent samples to the number of likelihood evaluations:

neff

€ — samples ) (14)
ny
For a simple MCMC sampler, the number of steps is equal to the
number of likelihood evaluations. However, in BILBY-MCMC we do
not evaluate the likelihood if the proposed sample is outside the prior
bounds. Nevertheless, the number of likelihood evaluations is the
relevant weighting as it is the dominant computational operation.
We calculate the efficiency directly for the validation tests in
Section 3, but here we first derive an efficiency model. For a
parallel-tempered ensemble sampler with 72emps X 7ens chains where
Npurn = TounT are discarded for burn-in (in practice, there are
several alternative methods that can determine ny,, as described
in Section 2), the efficiency is

1

= —F 15)
f”temps(] - “;:)
where
TournMens
§= n:ff = (16)
samples

is the burn-in inefficiency, the fraction of ‘wasted’ samples due to
the burn in process.
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‘When configuring the sampler, care should be taken to ensure & <
1 to avoid significant wasted computation. For example, drawing
1000 independent samples using ne,s = 1 and the default rpyy, =
10, the burn-in inefficiency is a reasonable 1 per cent. However, if
we attempt to use 10 co-evolving ensembles ne,s = 10, the burn-in
inefficiency also increases to 10 per cent. (The same logic equally
applies to configurations that combine independent runs as discussed
in Section 2.9, replacing 7n.,s With the number of independent runs
and nggnples with the number of samples per run.).

Provided § < 1, the efficiency is determined by the ACT 7t and
the number of parallel-tempered chains 7emps. The ACT is a property
of the sampling algorithm, which can be reduced using the methods
discussed in Section 2.1. Naively, reducing nemps appears to improve
the posterior sampling efficiency. However, nemps >1 is required to
sample from multimodal distributions, calculate the evidence, and
can reduce t. In Section 3 we will demonstrate with a specific
example, but as a rough rule of thumb about 71emps = 8 is sufficient for
the multimodal posteriors of CBC inference problems and provides a
reasonable estimation of the evidence. However, if a refined estimate
of the evidence is required, more temperatures are needed, decreasing
the posterior sampling efficiency.

We develop a resampling approach to reclaim some of this lost
efficiency. For the jth chain with temperature 7}, we define {6, }; as
the set of posterior samples it produces from the tempered posterior
distribution:

p0|d) < L(d|0)" T r(6). (17

For each sample 6 from the tempered posterior distribution, we
calculate a weight,

w = L(d|6) =T, (18)

from the ratio of the hot likelihood to the T = 0 likelihood.
Then, we rejection sample? (MacKay 2003) the tempered posterior
samples resulting in a set of posterior samples from the cold
posterior distribution. For low dimensional problems, we find this
produces a modest gain in efficiency at no additional cost. As an
example, analysing a CBC signal using a non-spinning model and
using the analytic marginalization of the distance, phase and time
(cf. Section 4.2), rejection sampling the hot chains produces an
~20 per cent efficiency improvement. However, for fully-precessing
CBC problems, we find the rejection sampling does not accept any
new points (i.e. the efficiency remains unchanged). In Sections 3 and
4, we do not utilize the rejection sampling method.

In this work, we will compare the efficiency of BILBY-MCMC with
that of the DYNESTY sampler using the random walk proposal method
described in Romero-Shaw et al. (2020). This proposal method has a
tuning parameter 7, that determines the number of internal MCMC
steps to take based on the estimated ACT. Following Speagle (2020)
(in which the DYNESTY sampler was shown to be more efficient than
the EMCEE sampler), we calculate the efficiency from equation (14),
with n&y ., calculated from the effective sample size as estimated
from the nested sampling weights. We note that this assumes that new
points proposed during nested sampling are independent, however
this is not required (Salomone et al. 2018) or guaranteed in practice.
If the points are correlated, n;ﬁ;pleswill significantly overestimate
the efficiency of the DYNESTY sampler. To guard against this (and
to investigate the potential impact on posterior estimation), for the
Rosenbrock and Unimodal Gaussian validation tests, we run the

2We draw u from a uniform distribution on the unit interval, if u# < w, the
sample is accepted, otherwise it is rejected.
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DYNESTY sampler with two different values of n, and verify that the
efficiency approximately scales with n,. This demonstrates that the
n,et Value chosen is sufficiently large to generate independent samples
and hence that the efficiency of the DYNESTY is not overestimated.

2.9 Timing model and parallelization

We distinguish two levels of computational parallelization that can
reduce the wall time: combining independent runs and multiprocess-
ing an individual run.

Combining independent runs is embarrassingly parallel: we simply
repeat N copies of the analysis using an identical data and con-
figuration, but a different random seed. If each analysis produces
Néamples independent samples, then, in total, we end up with Nngh ..
Such a configuration is ideal for use in an HTC environment
and has the added advantage that one can cross-compare between
chains. However, this approach is limited by the increase in burn-in
inefficiency (cf. equation 16): Each independent run has to burn-in.
This may be worthwhile to decrease the wall-time for important and
time-sensitive results.

Before discussing the use of multiprocessing, we introduce a
timing model to understand the wall-time required to produce
nggfnplesindependent samples from the posterior of a single serial run.
For CBC inference problems, the compute-time is determined by
t,, the time required to evaluate the likelihood® and the number of
likelihood evaluations required. In a serial-processing model, the
total time 7 can be estimated by

Nsamplese
T = nety = __samplestt

neff " c ~1
~ 28h samples 4 i (19)
1000 10 ms 0.01 per cent

where we have taken a typical efficiency from Section 4.3 for an
CBC analysis using niemps = 8.

If either nemps > 1 or neps > 1, BILBY-MCMC can be trivially
parallelized leveraging the multicore processors typically available
in modern processors. We implement this parallelization using
the PYTHON standard-library multiprocessing module. In this
model of multiprocessing, there is an overhead cost to transferring the
data (i.e. any data products required by the likelihood). For typical
CBC problems, this can be as much as a few milliseconds. [We
note that the LALINFERENCE MCMC sampler (Veitch et al. 2015)
mitigates this by the use of a distributed computing model with a
Message Passing Interface]. This overhead time is comparable to the
likelihood evaluation time #, and results in imperfect scaling of the
timing model equation (19). We model this by introducing m < 1, a
parallelization inefficiency that we will measure empirically. Then,
the timing model for an analysis parallelized over n¢gpes is

T — n:ﬁ{npleste 1 (20)
€ mncores
The number of cores should be matched to the number of paralleliz-

able jobs, i.e. Ncores = Miempsfens/M, Where m is a non-zero natural

3Typically, 7, ranges from a few to many hundreds of milliseconds and is
dominated by the cost to evaluate the waveform. Longer duration signals
typically take longer to evaluate. However, when calculating the likelihood
during an MCMC analysis, cached waveform evaluations can be used, e.g.
when proposing a move only in the extrinsic parameters. The discussion in
this section assumes a fixed #,, resulting in a conservative timing estimate
that ignores this potential computational saving.
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Figure 1. Empirically measured speed-up for a test analysis with nemps =
16 and neps = 1. Solid lines indicate the mean while shaded region indicates
the standard deviation as measured over three identical runs. The right-hand
axis provides the speed-up factor m at perfect matching.

number. If the number of cores is mismatched with the number of
parallelizable jobs, i.€. ncores > Niemps/lens, this will always leave one
or more cores idle. When n¢ores = Miempshens» We refer to this as perfect
matching.

We can measure m empirically by looking at the speed-up for
an identical analysis as a function of ng.es. We find that direct
parallelization results in values of m that are as small as (or in the
worst case smaller than) 1/nos, 1.€. the parallelization can be slower
than a serial run. This is because of the substantial data-transfer
overhead. To mitigate the data transfer overhead, in parallel analyses,
we transfer data and then take a fixed number, L, of ‘internal’ MCMC
steps. To further improve the efficiency, we do not store these internal
steps. In effect, this pre-thins the MCMC chains by a factor of L;.
When L; > 1, the ACT and other associated quantities are calculated
on the stored chain, but can be re-scaled.

In Fig. 1, we determine the speed-up factor m for a test case in
which npps = 16 and the per-likelihood evaluation time #, is held
fixed at 10 ms. We run the experiment twice. First, we use L; =
10, which demonstrates poor parallelization scaling with an overall
speed-up factor of m ~ 1/8 for perfect matching. Then, we increase L;
to 100 and see improved scaling with m ~ 3/4 for perfect matching.
For ngoes = 8 or less, the performance is near-optimal m ~ 1. The
marginal improvement in speed between ngyes of 10, 12, and 14
demonstrates the effect of imperfect matching.

Using the empirically measured m from Fig. 1, if our analysis is
using Agemps = 8, Nens = 1, we can see the rough timing predicted by
equation (20) for perfectly matched parallelized runs:

niz‘:fm les 17 € - m -1
T~ Sh el (+52)
1000 10 ms 0.01 per cent 0.75

« (”T)1 @1

It is worth pointing out two caveats to this timing model. First, while
increasing L; improves m, if L; is greater than the typical ACT,
this itself introduces a new type of inefficiency (namely an over-
thinned chain). Second, these quantities are not independent. For
example, if one wants to combine a large number of independent
runs, each producing nﬁfmples = 10 samples, it may appear that
equation (21) would predict an ~3-min analysis time. However,
the burn-in inefficiency would be increased leading to a decrease
in the efficiency and hence increase in the overall run time. This
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Table 2. Validation tests reported in this work.

Efficiency
Test Sampler Configuration Memps Evidence JSD [mb] ACT (r) (percent) ng/ 10° n:g'nples
Standard Normal DYNESTY Niive = 2000, nyee = 50 - 0.02 £ 0.04 09 - 0.58 1.1 6200
BILBY-MCMC AG-DE-UN 1 - 0.5 6 15.0 0.05 8000
BILBY-MCMC AG-DE-UN 16 0.03 £ 0.01 05 5 1.2 0.5 6000
BILBY-MCMC AG-DE-UN 32 —0.007 £ 0.01 0.5 5 0.6 0.8 5000
Rosenbrock DYNESTY Miive = 2000, 1y = 10 - 0.08 £ 0.07 2.7 - 0.7 1.1 7500
DYNESTY Nlive = 2000, naer = 50 - 0.04 £ 0.07 1.6 - 0.1 6.7 7500
BILBY-MCMC AG-DE-UN-GM-NF-KD 16 —0.02 £ 0.01 0.7 10 0.6 33 20000
BILBY-MCMC AG-DE-UN-GM-NF-KD 1 - 0.3 16 6.2 0.34 20000
BILBY-MCMC AG-DE-UN-NF 1 - 0.3 19 5.2 0.40 21000
BILBY-MCMC AG-DE-UN-KD 1 - 0.3 110 0.9 2.2 20000
BILBY-MCMC AG-DE-UN-GM 1 - 0.3 17 6.1 0.37 22000
BILBY-MCMC AG-DE-UN 1 - 0.5 171 0.6 34 20000
Unimodal Gaussian ~DYNESTY Niive = 2000, 15e¢ = 10 —0.05 £ 0.2 0.8 - 0.09 22 20000
DYNESTY Nive = 2000, naee = 50 - 0.07 £ 0.2 0.7 - 0.01 150 20000
BILBY-MCMC AG-DE-UN-GM-NF-KD 1 - 0.05 85 1.2 0.45 5000
BILBY-MCMC AG-DE-UN-GM-NF-KD 16 —0.25 £ 0.13  0.006 70 0.09 5.7 5000
BILBY-MCMC AG-DE-UN-GM-NF-KD 32 —0.03 £ 0.06 0.003 61 0.05 10 5000
Bimodal Gaussian DYNESTY niive = 2000, nye = 50 - 0.02 £ 0.2 0.4 - 0.005 390 20000
BILBY-MCMC AG-DE-UN-GM-KD 16 —0.05 £ 0.1 0.3 3 0.02 32 5000
DYNESTY niive = 2000, nyee = 50 - 514 £ 0.2 - - 0.010 160 16 000
BBH A BILBY-MCMC - 8 49.7 £ 0.2 - 7 x 103 0.0018 300 5000
DYNESTY Niive = 2000, nye = 50 - 1334 £ 0.2 - - 0.006 86 220 15000
BNS A BILBY-MCMC - 8 132.6 + 0.3 - 60 x 10> 0.00021 2500 5000

White-shaded rows are those from the standard validation tests (Section 3) while grey-shaded rows are tests from gravitational-wave validation tests (Section 4).
For the standard validation tests, we give the BILBY-MCMC configuration by the set of proposals (described in Section 2.1), while for the DYNESTY sampler,
we give njive and nger (cf. Romero-Shaw et al. 2020). For the gravitational-wave validation tests, we use the proposal set described in Table 1. In the Evidence
column, we report Aln Z = In Z — In Z’ for the standard validation tests where the exact evidence In Z’ is known; for the gravitational-wave validation tests
(grey rows), where the evidence is not known, we report the natural logarithm of the signal versus Gaussian noise Bayes factor. Where the posterior distribution
can be directly sampled from, we report the maximum JSD (see Section A) in milli-bits [mb]. For the MCMC configurations, we list the final-estimated ACT t;
this is always given in raw steps (i.e. we re-scale runs that use L > 1). For the gravitational-wave validation tests, T is given by the mean valued averaged over
all independent runs; typically, this varies by several tens of per cent. We also report the posterior sampling efficiency described in Section 2.8, the total number
of likelihood evaluations, and the number of independent samples the analysis produced.

may still be preferable, but we urge users to give consideration
to the efficiency before starting analyses. We comment that the
inefficiencies commented on above are specific to the naive approach
of combining multiple independent runs. The fundamental issue
arises that a standard MCMC chain produces unbiased samples from
the target density as the number of steps tends to infinity. There are
sophisticated approaches that will overcome these inefficiencies by
instead aiming to obtain unbiased samples as the number of MCMC
chains tends to infinity (Jacob, O’Leary & Atchadé 2020). These
approaches could be used in future to improve the efficiency of
BILBY-MCMC when parallelized over many cores.

In this section, we have seen that BILBY-MCMC can be parallelized
both by combining independent runs and utilizing multiprocessing.
By comparison, the run-time of the DYNESTY nested sampler can
only be reduced by the use of multiprocessing. This is because it is not
possible to configure a nested sampler to run part of the full analysis
(i.e. only to produce a small subset of the required total number
of independent samples). In this work, we utilize multiprocessing
of the DYNESTY sampler in Section 4 that can take advantage of
multicore processors. We note that DYNESTY can also be used in High
Performance Computing (HPC) environments by multiprocessing
using many multicore processors (Smith et al. 2020). We discuss the
relative merits of these two approaches with reference to a specific
example in Section 4.3.
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3 STANDARD VALIDATION TESTS

In this section, we outline a suite of tests designed to validate the
BILBY-MCMC package for standardized problems. These tests build
on previous validation tests of gravitational-wave samplers (Veitch
et al. 2015; Biwer et al. 2019) and tests of the DYNESTY sampler
(Speagle 2020) implemented in BILBY (Ashton et al. 2019; Romero-
Shaw et al. 2020). Though not reported here, we additionally perform
integration checks on individual aspects of the sampler and verify that
when the likelihood is uninformative the prior is properly recovered.
The scripts used to perform all verification checks and additional
figures are available from git.ligo.org/gregory.ashton/bilby_mcmc_v
alidation; in Table 2, we also link to the individual tests.

3.1 Standard normal distribution

As an initial test, we evaluate a 1D standard-normal likelihood, where

e—0%/2
L) = Nk (22)
and the prior is uniform between —10 and 10:
m(0) = U(—10, 10). (23)
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In this case, the evidence can be estimated as

o0

Z= / L(O)(0)do ~ i (24)
oo 20

and the posterior p(#) is a standard-normal distribution.

Running the BILBY-MCMC and DYNESTY samplers on this
problem, in Table 2, we report the configurations, the difference
in log-evidence, and quantities related to the performance.

To verify the posterior sampling, we calculate the JSD (see
Appendix A for an extended discussion) between 5000 independent
posterior samples drawn using the sampler and samples drawn
directly from the known posterior. For all configurations, we report
JSD values below a threshold of 2 mb (where mb is the shorthand
for a milli-bit of information): this demonstrates the posteriors are
statistically identical. As such, we conclude that both the DYNESTY
and BILBY-MCMC samplers are able to sample this simple inference
problem without bias and report accurate estimates of the uncertainty.

To verity the estimates of the Bayesian evidence, we compare with
the known evidence calculated in equation (24). Both the DYNESTY
and BILBY-MCMC sampler using nemps = 32 produce estimates
of the evidence that agree with equation (24) to within the stated
uncertainties. However, it is known that parallel-tempered evidence
estimates have a bias that can be reduced by increasing the number
of temperatures (Xie et al. 2010; Maturana-Russel et al. 2019). This
point is demonstrated by the BILBY-MCMC analyses with nemps = 16,
which does not produce a result consistent with the known evidence.

3.2 Rosenbrock likelihood

We analyse the Rosenbrock likelihood (Rosenbrock 1960), taking the
explicit form and priors from equation (C2) of Fowlie, Handley & Su
(2020). The banana-shaped posterior is challenging to sample from
and representative of the types of posteriors seen in CBC inference
problems. This makes it an ideal validation test. Results for several
configurations of both samples are listed in Table 2.

We sample directly from the posterior distribution of the Rosen-
brock likelihood using a re-parametrization. This enables us to
calculate the maximum JSD between samples drawn using different
configurations of the BILBY-MCMC and DYNESTY samplers and the
directly sampled posterior. The maximum JSD for the BILBY-MCMC
analyses all fall below the 2-mb threshold for statistically identical
posteriors. However, we find that the samples from the DYNESTY
sampler using 7, = 10 are marginally above this threshold while
the analysis with n,, = 50 is below. In re-running these analyses,
we find variations in the JSD value of the order of~50 per cent:
this indicates the DYNESTY analyses are subtly biased. n,q is a
user-controlled parameter described in Romero-Shaw et al. (2020),
which determines the number of internal MCMC steps to take based
on the estimated ACT. A value of 10 was previously found to be
sufficient for BBH analyses (Romero-Shaw et al. 2020), but this test
demonstrates larger values may be necessary to ensure convergence
for the Rosenbrock likelihood. The dependence on n, indicates the
cause is likely to be the MCMC-within-nested-sampling algorithm
itself (we used the version in BILBY v1.1.3 for the analyses in this
work); investigation is needed to determine if this is failing and to
resolve this bias.

We visualize the results in Fig. 2: BILBY-MCMC and the ‘direct’
samples agree, but samples from the DYNESTY analyses (With 1, =
50) are overly constrained. This is a typical failure mode of posterior
samples generated by nested sampling methods that use bounding
ellipsoids to improve performance of the sampler. We note that we do
not see similar issues for CBC inference problems (see Sections 4.3

Biy-MCMC 2045
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Figure 2. Comparison of the DYNESTY sampler (with nje = 2000 and
nact = 50), the BILBY-MCMC sampler (with nemps = 1 and the full set of
learning proposals), and samples drawn directly from the posterior for the
Rosenbrock test. The JSD test between each of the samplers and the direct
samples (see Table 2) quantifies that the BILBY-MCMC sampler produces
statistically identical posterior samples while the DYNESTY sampler produces
JSD values at the failure threshold. Visually, we see that the posterior samples
produced by the DYNESTY sampler are overly constrained.

and 4.4). This failure requires further investigation and highlights the
need for cross-sampler comparisons.

The various MCMC configurations in Table 2 enable a comparison
of the impact of the learning proposals. Using all three learning
proposals (AG-DE-UN-GM-NF-KD), reduces the ACT by a factor of
2 10 with respect to the analysis without any learning proposals (AG-
DE-UN). By running each of the learning proposals individually,
we see that the normalizing flows and GMM proposals both have
a similar performance improvement (with respect to the AG-DE-
UN proposals alone) to all three together. Meanwhile the KDE
proposal alone provides only a factor of ~2 reduction in the ACT.
This demonstrates that learning-proposals are a powerful tool in
improving the efficiency of the MCMC algorithm.

Finally, we turn to evidence estimation. The Rosenbrock likelihood
used in this work has an analytically approximated evidence of
In 2’ = —5.804 (Fowlie et al. 2020). In Table 2, we provide evidence
estimates for the DYNESTY and BILBY-MCMC sampler with nemps =
16. For the DYNESTY sampler, the evidences agree to within the stated
uncertainties. For the BILBY-MCMC sampler, the evidence estimate
disagrees at the level of 1 standard deviation. This performance is
consistent with the findings of Veitch et al. (2015) in which the
LALINFERENCE MCMC sampler similarly struggled to consistently
estimate the evidence of the Rosenbrock likelihood.

3.3 15D unimodal Gaussian

We analyse the 15D unimodal multivariate Gaussian distribution
originally proposed in Veitch et al. (2015) using the specific con-
figuration from Romero-Shaw et al. (2020). We report the results in
Table 2, varying the number of parallel-tempered chains, but utilizing
the standard proposal sets. For all samplers and configurations,
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Figure 3. Violin plot showing posteriors from five parameters of the 15D
unimodal Gaussian test. Each violin shows 5000 samples drawn directly from
the posterior (grey), from the DYNESTY analysis with n,cc = 50 (blue) and
the BILBY-MCMC analysis with nemps = 1 (orange). Vertical lines denote the
median and 90 per cent credible interval.

the maximum JSD falls below the nominal 2-mb threshold for
statistically identical samples. To visualize the results, in Fig. 3,
we plot a subset of five posteriors in a violin plot. This shows strong
agreement between the samplers and with samples drawn directly
from the posterior.

The evidence for this 15D unimodal Gaussian test case can be
estimated directly (Romero-Shaw et al. 2020) as In 2’ ~ —34.54.
The DYNESTY sampler correctly estimates the evidence to within
the stated uncertainty in both configurations. Meanwhile, the BILBY-
MCMC sampler gets close to the true evidence, with 7emps = 32, but
suffers the previously discussed bias when 7epps is small.

We study the performance of BILBY-MCMC while varying #emps-
In this unimodal case, even a single-temperature sampler can sample
the posterior. Increasing the number of parallel temperatures from
1 to 16 marginally reduces the ACT. AS nipps is increased, the
uncertainty on the evidence estimate decreases, but the ACT does
not significantly change. This is expected since it is a unimodal
target density that does not require parallel-tempering to hop between
modes. As such, increasing the number of temperatures (to achieve
a meaningful estimate of the evidence) results in a reduction in the
efficiency as predicted by equation (16).

3.4 15D bimodal Gaussian

We analyse a bimodal Gaussian distribution consisting of two copies
of the unimodal Gaussian distribution (cf. Section 3.3) and means
separated by 8 standard deviations in each dimension (as used
in Romero-Shaw et al. (2020)). This test probes the ability of
the sampler to efficiently hop between modes. With a single cold
chain, the MCMC sampler is unable to find both modes (in other
words, the ACT is infinite). With nemps = 16, BILBY-MCMC is
able to sample from both modes. Comparing to samples drawn
directly from the posterior, the maximum JSD for the DYNESTY
sampler and BILBY-MCMC sampler both fall below the threshold
for statistically identical samples. Romero-Shaw et al. (2020) noted
that the DYNESTY sampler tends to overweight one or other of
the two modes in this test. But, that combining over many runs
the effect averages out. We confirm this in our individual run of
the DYNESTY sampler. For the BILBY-MCMC sampler, we find
that the effect is weaker. Quantifying the effect by the number of
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samples in each mode, the BILBY-MCMC tends to produce more
equal-weighted posteriors (in agreement with the true posterior).
This can be understood because the MCMC sampler is proposing
jumps between modes while for the DYNESTY sampler the relative
weights of the two modes is determined by the bounding ellipsoids.

The evidence for the 15D bimodal Gaussian be directly estimated
(Romero-Shaw et al. 2020) as In Z’ ~ —34.54. Comparing the
evidence estimated by the samplers to this direct estimation, we find
similar performance to that of the 15D unimodal Gaussian studied
in Section 3.3. Namely, the DYNESTY sampler outperforms BILBY-
MCMC in accuracy and uncertainty.

4 GRAVITATIONAL-WAVE VALIDATION TESTS

In this section, we discuss the specifics and validation of the
BILBY-MCMC sampler for CBC gravitational-wave inference. The
inference of CBC coalescence signals has been well studied in the
literature. The fundamentals can be found in Veitch et al. (2015), a
recent review in Thrane & Talbot (2019), and the specifics of the
BILBY interface in Ashton et al. (2019) and Romero-Shaw et al.
(2020). In Section 4.1, we introduce the basics of the CBC model
and describe the best-known parametrization of 0 to reduce the ACT.
Then, in Section 4.2, we discuss the use of analytic marginalization
methods that reduce the dimensionality of 6 in sampling.

4.1 Models, optimal parametrization, and priors

A circularized gravitational-wave signal from a CBC can be de-
scribed by a set of 17 model parameters 6. We can partition 0 into
11 intrinsic parameters (two mass, six spin parameters, the binary
phase, and up to two tidal deformability parameters) and 6 extrinsic
parameters (the 3D localization, polarization, merger time, and the
angle between the total angular momentum and the line of sight).
There are many ways to choose these 17 parameters in the
literature. These different parametrizations offer varying levels of
computational convenience and interpretability. In this work, we use
the following parametrization for CBC analyses based on which
parameters lead to the shortest auto-correlation lengths in our tests.

4.1.1 Mass

Labelling the detector-frame mass of the two objects in the binary
m, and m,, we sample in the detector-frame chirp mass,

o mmy)*P
T (my +m)VS’

and mass ratio ¢ = m,/m;. We apply prior cuts, discussed below,
such that ¢ < 1. This is the standard choice employed for compact
binary analyses as the chirp mass is the best measured parameter
for binary inspirals, followed by the mass ratio (Cutler & Flanagan
1994).

(25)

4.1.2 Spin

The spin of the compact objects contribute 6 degrees of freedom to the
problem. Following Farr et al. (2014), we sample in the magnitudes
and tilts parametrized in spherical coordinates with the z-axis aligned
with the total angular momentum using the magnitude a; and tilt 6;
(where i € [1, 2] labels the primary and secondary objects) along
with two azimuthal parameters {¢;, ¢1>}.
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4.1.3 Tides

Tidal deformability of neutron stars is typically described in terms
of either two dimensionless deformability parameters A; or combi-
nations of these two combinations of these parameters that directly
determine the contribution to the phase contribution {A, § A} (Flana-
gan & Hinderer 2008; Favata 2014; Wade et al. 2014). We sample in
the latter set as these reduce the ACT.

4.1.4 Location

The location of the binary is uniquely described by four parameters,
the distance to the source, the 2D sky location, and the merger time.
We choose these parameters as in LALINFERENCE. We specify the
merger time as the time of arrival of the merger signal at one of the
detectors, ideally the one where we expect the highest signal-to-noise
ratio (S/N). We characterize the sky location using a reference frame
based on the separation vector of two of the detectors; see Romero-
Shaw et al. (2020) section 3.1.7 for an explicit definition. For all of
the results presented here, we marginalize over the distance to the
source (see Section 4.2), so the specific choice of distance parameter
is irrelevant.

4.1.5 Orientation

Finally, we require three Euler angles to convert the binary frame to
the galactic reference frame. These are the inclination angle between
the binary angular momentum and the line-of-sight from the source
to the observer 6jy, the binary phase at a reference frequency ¢
(typically the merger frequency), and the polarization of the source
Y. Throughout, we sample in cos (0)x) and ¥ . In practice, there is a
strong correlation between the phase and the polarization and so we
sample in a phase offset parameter:
$+v On =

= {¢ Y O > 20
The change of sign is due to a change in the direction of the
degeneracy when observing from above/below the orbital plane. This
parametrization introduces a discontinuity in the likelihood at 6y =
/2. However, the proposal schemes outlined in Section 2.1, includ-
ing the machine-learned proposals, do not depend on assumptions
of smoothness. In practice we find that the parametrization improves
the performance relative to analyses that use the phase directly.

Following LALINFERENCE, we apply a prior uniform on the
component masses m; and m, with cuts in the chirp mass and
mass ratio. We then apply the non-informative priors on all other
parameters and a uniform in the source-frame prior for the luminosity
distance (Romero-Shaw et al. 2020).

[SIEISIE

4.2 Analytic likelihood marginalization

Of the 17D parameter space described in Section 4.1, there are three,
namely the luminosity distance, geocentric time, and binary phase,
over which we are able to efficiently marginalize the gravitational-
wave likelihood [see Veitch & Del Pozzo (2013), Farr (2014), Veitch
etal. (2015), Singer & Price (2016), Singer et al. (2016), and Thrane
& Talbot (2019) for a review]. In the context of an MCMC sampler,
the marginalized likelihood has a shorter ACT relative to the non-
marginalized likelihood. This is both due to the reduction in dimen-
sionality and to the reduction in the complexity of the posterior. Since
itis possible to reconstruct the marginalized parameters after analysis
(Thrane & Talbot 2019), where possible marginalized likelihoods

BiLpy-MCMC 2047

Table 3. Simulation parameters for the three fiducial events analysed in
Section 4.

Parameters BBH A BNS A
M 17.1 1.4875
Mass q 0.62 0.950
aj 0.296 0.01
a 0.393 0.01
0 0.09 0
22 1.20 0
o12 1.10 0
Spin oy 0.52 0
A 0 1500
Intrinsic Tidal Ay 0 750
RA 3.95 1.67
Dec. 0.22 —1.22
Loc. dp, 497 180
01N 1.88 —0.88
v 2.70 2.70
Extrinsic Orient. ¢ 3.69 3.69

Note. In the two left columns, we provide the parameter groups names as
described in Section 4.1.

are strongly recommended. For the luminosity distance, we always
marginalize the likelihood. For the geocentric time, we marginalize
the likelihood [and add the time jitter, #;, as described in Romero-
Shaw et al. (2020)] except in instances where the reduced-order-
quadrature method ROQ is used in which time-marginalization has
not yet been implemented. The assumptions made in marginalizing
the binary phase are invalid for precessing CBC systems or models
that include higher order emission modes. Therefore, we do not
marginalize the binary phase in this work. But, in future use cases,
where a non-pressing waveform without higher order emission
modes is considered, we do recommend using phase marginalization.

4.3 Fiducial BBH: BBH A

We simulate a fiducial (reference) BBH signal observed by the LIGO
Hanford and Livingston detectors (Aasi et al. 2015) at their design
sensitivity (Abbott et al. 2020). The simulation parameters, labelled
as BBH A, are given in Table 3. We use the IMRPhenomPv2
(Schmidt, Hannam & Husa 2012; Hannam et al. 2014) waveform
approximant to both simulate and analyse the signal. In this noise
realization, the simulated signal has a network matched-filter S/N of
~13.

We analyse 4 s of simulated data with the DYNESTY and BILBY-
MCMC samplers using the configurations described in Table 2, the
priors described in Section 4, and distance and time marginalization.
For the BILBY-MCMC sampler, we use 13 independent chains, a
thinning factor of y = 0.2, and run each chain until it produces 2000
samples. In total, this produces 25 000 samples with n&jf, .. = 5000.
For the DYNESTY sampler, we use the standardized configuration
listed in Table 2, but use two independent run to enable a robustness
check.

It is not possible to sample directly from the posterior in this
case, so we resort to cross-sampler comparisons to verify posterior
sampling. Across all CBC parameters, we find that the maximum
JSD between the samplers falls below the 2-mb threshold, i.e. we
find statistically identical posteriors between DYNESTY and BILBY-
MCMC. To visualize these difference in Fig. 4, we plot histograms of
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Figure 4. Histograms of the posteriors from the DYNESTY (blue) and BILBY-
MCMC (orange) analyses of the fiducial BBH. Configurations and summary
statistics are given in Table 2. Vertical lines mark the edges of the 90 per cent
credible interval for each sampler and black dotted lines mark the value used
to simulate the data. Note that we do not expect the posteriors to peak at the
simulation values due to the influence of the simulated noise and the Bayesian
prior. In the title of each figure, we give the JSD; across all parameters, this
JSD is found to be below the 2-mb threshold we use to determine if the two
sets of posteriors are statistically different.

several quantities of astrophysical interest, along with their individual
JSD.

In the evidence column of Table 2, we report the Bayes factor
between the signal evidence and the Gaussian noise evidence (for
a fixed realization of the noise and power spectral density this is a
fixed quantity). The evidence estimates disagree at the 1o level of
the quotes uncertainties. The difference is likely explained by the
known bias in parallel-tempered evidence (cf. Section 2.6) when
Niemps 18 small. Here, we tune ninmps for efficient sampling of the
posterior, rather than evidence estimation. In such a configuration,
we recommend that the evidence estimate only be used as a rough
guide, but not be used for quantitative analysis. To reduce the
bias, 7emps can be increased at the cost of posterior sampling
efficiency.

Comparing the performance of the two samplers, the DYNESTY
sampler is an order of magnitude more efficient than the BILBY-
MCMC sampler. However, this efficiency does not directly trans-
late into an order of magnitude reduction in wall-time. To un-
derstand why, we need to discuss the parallelization strategies
available.

As discussed in Section 2.9, we have two available levels of
parallelization: combining independent runs and multiprocessing
using nNeores processors. For the DYNESTY sampler, reductions in
wall-time can only be achieved via multiprocessing. This is because
it is not possible to configure a nested sampler to run part of the
full analysis (i.e. to only produce a small subset of the required
total number of independent samples). A simple model for the
wall-time of the DYNESTY run that agrees with our measured
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wall-time is

t —1
T —28h nyg 4 (ncores) i (27)
160 x 106 10 ms 16

where n, is the number of likelihood evaluations (cf. Table 2) and
t, is the approximate per-likelihood evaluation time for the BBH A
likelihood. Here, we use 16-core processors: below we will discuss
the potential scaling to larger multiprocessing pools.

On the other hand, for BILBY-MCMC we can parallelize using
independent runs and multiprocessing. We run several independent
runs, each producing 400 independent samples. In an HTC environ-
ment (and assuming access to resources is not limited), these can be
run at the same time so that the total analysis wall time is given by the
wall-time of any individual run. Using equation (20) and perfectly
matching 7ores tO Miemps»

neff t -1
T ~ 10h samples 4 €
400 10 ms 0.0017 per cent

JONCOR

where we use the actual efficiency from Table 2 and multiprocessing
speed-up factor from Section 2.9. Both equations (27) and (28) agree
with the empirically measured values (up to errors expected for
varying access to resources in an HTC environment).

The net result is that the BILBY-MCMC sampler is less efficient,
but can be set up to enable a shorter wall time by utilizing
independent runs. Some of this inefficiency arises from the sampler
itself, some from the burn-in inefficiency. For this configuration, the
burn-in inefficiency (equation 16) is a few per cent; further paral-
lelization (in terms of more independent runs) would increase this
inefficiency.

For the DYNESTY sampler, reducing the wall-time can only be
achieved via access to a larger multiprocessing pool. The ability to do
this is restricted by the available hardware: 715 Of 8—16 are typical in
most HTC environments though modern CPUs with up to 128 cores
do exist, which could provide significant speed ups. Beyond this,
massively parallelized nested sampling can leverage multiple CPUs
in an HPC environment: in Smith et al. (2020), processing pools
including several hundred cores have been used providing two orders
of magnitude of speed up. (We caution that we have not verified the
validity of equation 27) for such massively-parallel environments.)
However, access to such resources requires synchronized usage of a
dedicated HPC environment.

To investigate the potential for bias in the BILBY-MCMC sampler,
in Fig. 5, we show the results of a parameter-parameter (PP) test
(Cook, Gelman & Rubin 2006; Talts et al. 2018) for BBH systems.
This is an important test, typically it fails when one or more of the
proposal distributions does not respect detailed balance. In this test,
we simulate 100 BBH signals drawn from an astrophysical prior
distribution, analyse each using the BILBY-MCMC sampler, and then
check the consistency of the reported credible intervals. Specifically,
Fig. 5 shows the number of events in a given confidence interval as a
function of the confidence interval. We find that the BILBY-MCMC
sampler is unbiased at the level probed by this test.

4.4 Fiducial binary neutron star: BNS A

We simulate a fiducial binary neutron star (BNS) merger using the
IMRPhenomPv2 _NRTidalwaveform (Dietrich, Bernuzzi & Tichy
2017; Dietrich et al. 2019) that includes matter effects from the
two neutron stars. The simulation parameters of the system, BNS
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Figure 5. A parameter-parameter test for the BILBY-MCMC sampler for
simulated BBH systems. We plot the fraction of simulated events found
within the confidence interval (CI) as a function of the C.I. For an unbiased
sampling from the posterior distribution, lines of this plot are diagonal: we
add three grey shaded regions showing the 1o, 20, and 30 quantiles. To
quantify if the results are consistent with an unbiased sampling, we calculate
a p-value of the probability that they are unbiased. The p-value for each
individual parameter is given in the legend and a combined p-value is given
in the title. Under an unbiased result, we would expect the p-value to be a
draw from uniform distribution on [0, 1]. Since all individual parameters (and
the combined result) are greater than 1/15 (a nominal threshold based on the
number of parameters), we conclude the sampler is unbiased, at least at the
level probed by 100 simulations.

A, listed in Table 3 are much lower in mass than that of the
BBH systems previously studied. The result of this lower mass is
that the signal spends a longer duration in the observable band of
the detectors (typically, above 20 Hz). To capture this, we analyse
128 s of data. Necessarily, this results in a significant increase in
the time required to analyse the likelihood and hence overall wall-
time. To mitigate this, we use the Reduced-Order-Quadrature (ROQ)
method (Antil et al. 2012; Canizares et al. 2013, 2015; Smith et al.
2016; Qi & Raymond 2020) with the basis provided by Baylor,
Smith & Chase (2019) to decrease the per-likelihood evaluation
cost.

The simulated signal has small spin components aligned along
the angular momentum axis, an arbitrarily selected choice of tidal
deformability parameters, and nearly equal-mass components. In the
specific noise realization used, the network matched-filter S/N is
~18. We analyse the signal using both the DYNESTY and BILBY-
MCMC samplers using the configurations described in Table 2. The
analyses are identical to those of the BBH A analysis, except, we
use the IMRPhenomPv2_NRTidalwaveform model (through the
ROQ basis), use only distance marginalization, and restrict the spins
to a low-spin configuration (dimensionless spin magnitude less than
0.05; Abbott et al. 2019).

As with the BBH case, the Bayesian evidence estimates (see
Table 2 for the signal versus noise Bayes factor) disagree. Again,
we conclude this is due to the known bias in the parallel-tempered
evidence estimate. The posterior distributions from the DYNESTY and
BILBY-MCMC are statistically identical, except for the inclination
parameter 6;y. In Fig. 6, we reproduce histograms for selected
parameters of typical astrophysical inference visually demonstrating
the agreement and inclination difference. The cause of the difference
in inferred inclination is not yet fully understood, but we note
that the difference is only marginally above our threshold for
statistically identical. Comparing individual re-analyses between the
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Figure 6. Histograms of selected posteriors from the DYNESTY (blue) and
BILBY-MCMC (orange) analyses of the fiducial BNS A. Configurations and
summary statistics are given in Table 2. Vertical lines mark the edges of
the 90 per cent credible interval for each sampler and a black dotted lines
marks the value used to simulate the data. Note that we do not expect the
posteriors to peak at the simulation values due to the influence of the simulated
noise and the Bayesian prior. The largest JS-divergence reported across all
parameters occurs for the inclination, 6jn, above the threshold of 2 mb (see
Appendix A).

two samplers, the difference persists suggesting it is systematic
and not a random fluctuation. We note this is an instance where
the posterior is bimodal and speculate this could be a symptom of
the DYNESTY nested sampling failing to fully explore both modes.
However, the difference is sufficiently small for us to conclude the
underlying conclusions about the source (i.e. the 90 per cent credible
intervals) are robust, while the posterior shape is subject to some
sampling error (from one or both samplers).

Due to the larger S/N of the fiducial BNS, and the increase in
dimension of the prior, the efficiency of both the DYNESTY and
BILBY-MCMC samplers is reduced compared to that of the fiducial
BBH. The ratio of efficiencies is also increased: the DYNESTY
sampler is ~30 times more efficient in this case. As with the BBH
analyses, this efficiency does not directly translate into wall-time
savings due to the different parallelization approaches. However,
the efficiency is significant. In future work, we aim to improve the
choice of parametrization and proposals to improve the efficiency of
the BILBY-MCMC sampler.
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5 SUMMARY

We introduce BILBY-MCMC, a parallel-tempered ensemble sampler
with problem-specific and machine learning based proposals. The
BILBY-MCMC sampler is the first MCMC sampler implemented in
the BILBY (Ashton et al. 2019) inference package with demonstrated
performance for analysing CBC events observed by ground-based
gravitational-wave detectors. We demonstrate, using both compar-
isons to known results and cross-sampler comparisons, that the
posterior samples are unbiased. Compared to the DYNESTY nested
sampling algorithm, BILBY-MCMC suffers a known bias in its
estimation of the Bayesian evidence when the number of parallel-
tempered chains, Remps, is small. Increasing nemps reduces the bias,
but at the cost of posterior-sampling efficiency. We introduce a
method to re-sample from the tempered chains, recovering some
of this inefficiency, but find it provides little improvement for typical
CBC inference problems. We conclude that BILBY-MCMC is ideal
for problems in which only the posterior distribution is of interest, but
that nested sampling approaches should be preferred when evidence
calculations are required. This makes BILBY-MCMC unsuitable for
model-comparison via a Bayes factor (MacKay 2003). Instead, one
may wish to develop a hyper-model where the model is treated as
a random variable (see e.g. the Reverse Jump Markov Chain Monte
Carlo approach described in Cornish & Littenberg 2007)).

BILBY-MCMC can be trivially and asynchronously parallelized.
This enables it to be configured to leverage High-Throughput Com-
puting environments to reduce the wall-time. That the parallelization
is asynchronous makes it ideal for utilizing non-interacting dis-
tributed computing such as the Open Science Grid (Pordes et al. 2007;
Sfiligoi et al. 2009). By comparison, nested sampling approaches
can be parallelized solely through the use of multiprocessing. Smith
et al. (2020) demonstrated massive scaling of the DYNESTY (Speagle
2020) sampler to many hundreds of cores; BILBY-MCMC cannot
similarly be scaled due to the fundamental limit of the burn-in
inefficiency. However, the Smith et al. (2020) approach requires
synchronized access to a High-Performance Computing environment
in which the communication times between cores is rapid.

BILBY-MCMC provides the user access to a modular library of
proposal distributions that can be chained together. The choice
of parametrization and proposals has a significant effect on the
efficiency of the sampler. We anticipate further development in both
these aspects will improve the sampler efficiency resulting in reduced
wall-time. Users adapting BILBY-MCMC to other astrophysical infer-
ence problems can define their own sets of proposal distributions and
easily implement new problem-specific proposals by sub-classing the
existing software.
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APPENDIX A: THE JS-DIVERGENCE CRITERIA

As described in Romero-Shaw et al. (2020), we use the 1D JSD
(maximized over all dimensions) to quantify the agreement between
sets of posterior samples. In that work, a threshold of 2mb was
established for the maximum JSD*: Above this value, the differences
between posteriors where deemed statistically significant. Here, we
extend that analysis. We simulate pairs of posterior samples from
the 15D unimodal Gaussian distribution (cf. Section 3.3) varying the
number of samples drawn in each case. We find a strong correlation
between the number of samples and the inverse of the maximum JSD
(Fig. A1). This demonstrates that, while appropriate for sample sizes

10

8 4

1 / Max-JS [103/bits]

Number of samples [10?]

Figure A1. The maximum JSD for 1000 pairs of posteriors drawn form a 15D
unimodal Gaussian distribution. We vary the number of samples drawn in each
simulation. The horizontal grey line indicates the 2-mb threshold established
in Romero-Shaw et al. (2020). The purple curve is the new threshold given
in equation (Al).

of a few thousand, the original threshold is overly conservative for
small samples sized and too liberal for larger sample sizes.

To better capture the correlations observed in the simulated data,
we introduce a new threshold:

10

eff
samples

maximum JSD < (A1)
This threshold is demonstrated in Fig. A1 as the purple shaded region.

For the simulated 15-D system, we see maximum JSD values as
large as equation (Al) a few times in the 1000 simulations. This
threshold falsely identifies statistical differences between the sets of
posterior samples in our simulation as a rate of ~0.1 per cent. In this
sense, it can be used as a conservative bound: If the maximum JSD
between samplers is found to be larger than the prediction of equation
(A1), this highlights an area of concern warranting further study.

We note that a better fit to the lower bound on the inverse maximum
JSD could be found (e.g. by a probability-of-failure based rule), but
equation (A1) is easy to remember and hence provides a good rule
of thumb.

4The maximum over the set of sampled parameters.
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