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A B S T R A C T 

We introduce BILBY-MCMC , a Markov chain Monte Carlo sampling algorithm tuned for the analysis of gravitational waves 
from merging compact objects. BILBY-MCMC provides a parallel-tempered ensemble Metropolis-Hastings sampler with access 
to a block-updating proposal library including problem-specific and machine learning proposals. We demonstrate that learning 

proposals can produce o v er a 10-fold impro v ement in efficiency by reducing the autocorrelation time. Using a variety of standard 

and problem-specific tests, we validate the ability of the BILBY-MCMC sampler to produce independent posterior samples and 

estimate the Bayesian evidence. Compared to the widely used DYNESTY nested sampling algorithm, BILBY-MCMC is less 
efficient in producing independent posterior samples and less accurate in its estimation of the e vidence. Ho we ver, we find that 
posterior samples drawn from the BILBY-MCMC sampler are more robust: never failing to pass our validation tests. Meanwhile, 
the DYNESTY sampler fails the difficult-to-sample Rosenbrock likelihood test, o v er constraining the posterior. For CBC problems, 
this highlights the importance of cross-sampler comparisons to ensure results are robust to sampling error. Finally, BILBY-MCMC 

can be embarrassingly and asynchronously parallelized making it highly suitable for reducing the analysis wall-time using a High 

Throughput Computing environment. BILBY-MCMC may be a useful tool for the rapid and robust analysis of gra vitational-wa ve 
signals during the advanced detector era and we expect it to have utility throughout astrophysics. 

Key w ords: gravitational w aves – methods: data analysis – stars: neutron. 
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 INTRODUCTION  

ra vitational-wa ve astronomy has enabled the first measurements of 
asses of merging binary black holes (BBHs; Abbott et al. 2016 ),

ew constraints on the equation of state of nuclear matter (Abbott 
t al. 2018 ), and offers a new opportunity to measure the expansion
ate of the Universe (Abbott et al. 2017 ) and break the existing
easurement tension (Feeney et al. 2019 ). In the coming years, the
dvanced-LIGO (Aasi et al. 2015 ), Virgo (Acernese et al. 2015 ),

nd KAGRA (Aso et al. 2013 ) detectors are expected to start a fourth
bserving run that will see the rate of observed signals from binary
ergers increase by up to an order of magnitude. This brings with it

hallenges in data analysis: we need software that is rapid, reliable, 
nd can take advantage of available large-scale computing. 

Many of the science goals of gra vitational-wa ve astronomy rely on
he ability to robustly draw samples from the posterior distribution 
 ( θ | d ), where θ are the model parameters and d is the data, and
stimate the Bayesian evidence Z . [For an introduction to Bayesian 
nference for gra vitational-wa ve astronomy, see, e.g. Thrane & 

albot ( 2019 ).]. For compact binary coalescence (CBC) signals, 
he posterior distribution is highly non-Gaussian with complicated 
orrelations. Because of the complicated structure of the posterior, 
tochastic sampling is one of the only viable processes that can 
obustly generate these quantities for the full complexity of the 
odel (though see Green, Simpson & Gair 2020 and Gabbard et al.
 E-mail: gregory.ashton@ligo.org 
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019 for machine learning based approaches and Pankow et al. 2015
nd Lange, O’Shaughnessy & Rizzo 2018 for iterative-fitting based 
pproaches). 

Stochastic sampling algorithms to analyse CBC signals have 
redominately applied either a Markov chain Monte Carlo (MCMC) 
pproach (Metropolis et al. 1953 ; Hastings 1970 ), as introduced by
hristensen & Meyer ( 1998 ) or Nested Sampling (Skilling 2006 ),
s introduced by Veitch & Vecchio ( 2008 ). The dominant software
sed since the first observing run (O1) has been LALINFERENCE 

Veitch et al. 2015 ), which provides three independent stochastic 
amplers: two Nested Sampling algorithms, LALINFERENCE-NEST 

nd BAMBI (Graff et al. 2012 )) and a Metropolis–Hastings MCMC
 LALINFERENCE-MCMC ) algorithm. Veitch et al. ( 2015 ) provided a
ariety of standard analytical test cases to demonstrate the validity 
f each of the samplers. But, in the absence of analytical posterior
istributions for CBC signals, cross-sampler comparisons, especially 
etween different sampling algorithms, are an important check that 
esults are robust. That LALINFERENCE offered multiple samplers 
as critical to its success. 
The LALINFERENCE software had been widely used, well tested, 

nd become a benchmark for other packages developed since. Since 
ts development, a number of high-quality general-use stochastic 
ampling software packages are now available. Modern gravitational- 
ave data-analysis software has been developed that provides an 

nterface to use these off-the-shelf samplers for gra vitational-wa ve 
stronomy. F or e xample, both BILBY (Ashton et al. 2019 ) and
YCBC-INFERENCE (Biwer et al. 2019 ) utilize the DYNESTY (Speagle 
020 ) Nested Sampling algorithm, and the PTEMCEE (Vousden, Farr 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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 Mandel 2016 ) MCMC algorithm (amongst others). In Romero-
haw et al. ( 2020 ), a detailed cross-sampler comparison was per-
ormed between the BILBY -implementation of the DYNESTY sampler
nd LALINFERENCE and the two where found to agreement to within
tatistical uncertainties. Ho we ver, such samplers rarely work out
f the box and often need some customization and validation to
andle CBC signals. For example, a study by Kulkarni & Capano
 2020 ) compared the PTEMCEE and DYNESTY samplers and found
he PTEMCEE sampler unable to produce unbiased results for BBH
ystems. 

The BILBY package provides a modular interface to several
tochastic samplers and the ability to implement arbitrary likelihoods
nd priors. This flexibility has made BILBY a popular choice across
strophysics. Ho we ver, our testing with BILBY has revealed that the
mplemented MCMC algorithms do not produce results that match
hose of either the DYNESTY or LALINFERENCE packages for CBC-
ike use cases. This has a significant future impact: the ability to
ross-check between samplers remains a critical test for robustness.
n addition, MCMC-based methods are nearly embarrassingly-
arallelizable, making them ideal for use in a High Throughput
omputing (HTC) environment. 1 With these two moti v ations, we
erify an MCMC-based algorithm implemented within BILBY as of
ersion 1.1.3. 

We began by looking at off-the-shelf options. These are prefer-
ble as they are well tested and often actively maintained and
mpro v ed by the open-source community. An obvious choice that
as demonstrated performance for CBC inference (Biwer et al.
019 ) is the PTEMCEE MCMC sampler, an adaptive parallel-tempered
ersion of the EMCEE (Foreman-Mackey et al. 2013 ) algorithm.
The multimodal posterior distributions inherent to CBC problems
ecessitate the use of the PTEMCEE parallel-tempering approach
Gilks, Roberts & Sahu 1998 ; Earl & Deem 2005 )]. Both of these
lgorithms use ensemble-sampling in which n ens MCMC chains
 volve in tandem, ne w points are proposed based on the position of
ther chains in the ensemble (cf. Section 2.7 ). Ho we ver, in testing we
ound PTEMCEE to be inefficient compared to the DYNESTY sampler
by up to a factor of 100). In comparison, the LALINFERENCE-

CMC sampler has a demonstrated efficiency similar to that of
he Nest algorithm (Veitch et al. 2015 ). Unlike the off-the-shelf
amplers, LALINFERENCE-MCMC utilizes a proposal distribution
cf. Section 2 ) that takes advantage of knowledge about the problem
n hand (in our case, CBC signals). This suggests the need for a
arallel-tempered MCMC sampler with access to problem-specific
roposals. 
In this work, we develop BILBY-MCMC , a from-scratch MCMC

lgorithm with adaptive parallel tempering and ensemble sampling.
e develop BILBY-MCMC to take advantage of a wide variety

f proposal distributions including standard, problem-specific and
achine learning based proposals. We validate the BILBY-MCMC

ampler against the DYNESTY nested sampler (as described in
omero-Shaw et al. ( 2020 )) for its use in both standard validation
roblems and CBC inference. In this paper, we discuss the tuning and
alidation of BILBY-MCMC for efficient inference of CBC signals.
NRAS 507, 2037–2051 (2021) 

 HTC environments differ from High Performance Computing in that the 
nterconnect speeds between nodes is slow. This makes HTC environments 
ub-optimal for algorithms that require regular inter-node communication 
e.g, the massively parallel methods explored in Smith et al. ( 2020 )). As 
iscussed later in Section 2.9 , multiple independent MCMC algorithms can 
e run that continuously produce independent samples, making them ideal 
or an HTC environment. 

f  

a  

i
 

b  

d  

1  

b  

t  
o we ver, as part of the BILBY package, BILBY-MCMC can be used
s a sampler for any inference problem, and includes access to an
nterface to define custom problem-specific proposal distributions. 

We introduce the BILBY-MCMC sampler in Section 2 , then discuss
he validation for a set of standardized tests in Section 3 . In Section 4 ,
e apply a set of CBC-specific validation tests and describe the
erformance before concluding in Section 5 . 

 B  ILBY -MCMC  

CMC algorithms generate correlated samples from the target
istribution, in our case the posterior distribution, by a sequential
tepping process. We now describe the details of the algorithm
ele v ant to the BILBY-MCMC implementation, for a more thorough
ntroduction to MCMC algorithms in astrophysics we refer the reader
o recent re vie ws (Sharma 2017 ; Hogg & F oreman-Macke y 2018 ). 

We apply the Metropolis–Hastings algorithm (Metropolis et al.
953 ; Hastings 1970 ) to draw samples from the target density, 

( θ | d) ∝ L ( d| θ ) π( θ ) , (1) 

here L ( d| θ ) is the likelihood of the model parameters θ and π ( θ )
s the prior probability of the model parameters. Throughout, we
ssume a fixed model M , though formally we note that both the
ikelihood and priors are model-dependent [i.e. L ( d| θ ) is more
ompletely written as L ( d| θ, M) and similarly for the prior]. 

Given a current sample θ , a proposed sample θ
′ 
is generated from

 proposal distribution Q ( θ
′ | θ ). (We discuss proposal distributions

n Section 2.1 .) We accept the proposed sample θ
′ 
with a probability 

= min 

(
1 , 

Q ( θ | θ ′ ) L ( d| θ ′ ) π( θ ′ ) 
Q ( θ ′ | θ ) L ( d| θ ) π( θ ) 

)
, (2) 

nd append θ
′ 

to a chain of samples. If the proposal is rejected,
he current sample, θ , is appended to the chain. We implement the

etropolis–Hastings step in practice by drawing a random number u
rom a uniform distribution on the unit interval; if α ≥ u , the proposal
s accepted, otherwise it is rejected. 

We initialize the chain with a random draw from the prior
istribution π ( θ ) and iterate the Metropolis–Hasting algorithm to
enerate a chain of m samples { θ i } where i ∈ [0, m ). Samples
n the chain are generally correlated. Independent samples can be
btained from { θ i } by selecting a subset of m / τ samples where τ is
he autocorrelation time (ACT) of the chain. We select the subset by
aking a sample every τ steps. We iterate the algorithm until reaching
he stopping criteria, 

 samples ≥ m − n burn 

γ τ
, (3) 

here n burn is the number of samples discarded to remo v e the chain
nitialization, known as the burn-in period, and γ ≤ 1 is a thinning
actor (in the PYTHON interface, γ is thin by nact ). 

To estimate τ , we use the autocorrelation module provided by
he EMCEE v3.0 package (F oreman-Macke y et al. 2013 ). This

ethod impro v es on the traditional approach by adding an automated
unction to choose the window (cf. Hogg & F oreman-Macke y 2018
long with the software documentation; https://emcee.readthedocs.
o/en/st able/t ut orials/aut ocorr/). 

We provide a number of automated approaches to estimate the
urn-in period n burn . The primary method is a simple scaling: we
iscard r burn ACTs, i.e. n burn = r burn τ . By default, we use r burn =
0, but this scaling factor can be varied by the user through the
urn in nact option. In addition, proposal methods that violate

he assumptions of the MCMC algorithm (e.g. using dynamic tuning

https://emcee.readthedocs.io/en/stable/tutorials/autocorr/
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o impro v e conv ergence) set minimum values for n burn and the user
an also specify n burn directly if these automated approaches fail. 

To produce independent samples (matching the behaviour of the 
ALINFERENCE-MCMC sampler), we can set the thinning factor 
= 1. Ho we ver, thinning is inefficient in the sense that unthinned

amples ( γ < 1) are unbiased and provide greater precision for
ummary statistics (Link & Eaton 2012 ). In cases where γ < 1, we
ifferentiate between the number of samples equation ( 3 ), and the
f fecti ve number of samples n eff 

samples = γ n samples . For the standard
alidation tests in this work, we use γ = 1. For the CBC validation
ests, we use γ = 1/5 and n samples ≥ 25 000. This ensures a minimum
umber of 5000 independent samples while smoothing posterior 
lots and providing more accurate summary statistics. 
Having introduced the simple Metropolis-Hastings algorithm, we 

ow turn to the specifics of the BILBY-MCMC implementation that 
nable it to efficiently perform CBC parameter estimation. In Sec- 
ion 2.1 , we define the standard library of proposal distributions then
ntroduce the learning proposals in Section 2.2 and the gravitational- 
ave specific proposals in Section 2.3 . We note that BILBY-MCMC
ro vides a fle xible interface to define and use new proposals. As
uch, this list is not an e xhaustiv e set of all available proposals.
n Section 2.4 , we describe how the proposals are used together in
 block-updating sampling approach. In Section 2.5 , we describe 
he extension to a parallel-tempered sampler required to analyse 

ultimodal distributions then describe how ensemble-sampling is 
mplemented in Section 2.7 . In Section 2.8 , we provide a model for
he efficiency of the sampler, then introduce a timing model, and 
iscuss computational parallelization in Section 2.9 . 

.1 Standard proposal distributions 

roadly speaking, the performance of an MCMC sampler is deter- 
ined by the ACT of the chains it produces. Chains with smaller
CTs taker fewer steps to traverse the target distribution and hence 
roduce more independent samples for a fixed number of MCMC 

teps (or equi v alently, computational cost). The ACT itself depends 
n ho w ef ficient the proposal distribution Q ( θ

′ | θ ) is in proposing
oints that enable the chains to traverse the posterior. 
For the Metropolis–Hastings algorithm, there are two ways to 

ptimize a stochastic sampler to reduce the ACT. First, we can choose
 parametrization that reduces the complexity of the parameter space. 
f under a transformation T , the posterior distribution has a simpler
orm (e.g, if T maps a Banana-like distribution to a multi v ariate
aussian, or softens hard edges), then sampling in T ( θ ) rather than
is the most straight forward approach to improving the algorithm 

erformance (Hogg & F oreman-Macke y 2018 ). In Section 4.1 , we
iscuss the best known parametrization for CBC signals. Secondly, 
nce the best known parametrization is chosen, we optimize the 
hoice of proposal distributions. 

In this section, we introduce the standard library of proposals 
mplemented in BILBY-MCMC and discuss their performance and 
tility. For each proposal, we also provide the Hastings factor , 

 = 

Q ( θ | θ ′ ) 
Q ( θ ′ | θ ) 

, (4) 

hich ensures detailed balance is met (Hastings 1970 ) and enables 
nbiased sampling using asymmetric proposals. 

.1.1 FG: fixed Gaussian 

he Fixed Gaussian proposal implemented in BILBY-MCMC is 
 generalization of the zero-mean multi v ariate Gaussian proposal 
Gelman et al. 1996 ) in which a proposal for the i th parameter is
enerated from 

′ 
i = θi + σi w i ε, (5) 

here σ i is a user-defined scale parameter, w i is the prior support (if
he prior has infinite support, we set w i = 1) for θ i , and ε is a draw
rom a standard normal distribution. The introduction of the scaling 
y the prior support enables some automatic tuning to the anticipated
cale of the problem, while the σ i enables the user to define varying
ength-scales for each parameter. Of note, our implementation does 
ot allow the user to change the spatial orientation of the proposal (i.e.
hrough correlations between parameters). For the Fixed Gaussian 
roposal, which is symmetric, H = 1. 
In practice, the Fixed Gaussian proposals have limited use and re-

uire manual tuning (through the choice of σ i ) to achieve meaningful
erformance on realistic problems. As such, we do not enable this
roposal by default. 

.1.2 AG: adaptive Gaussian 

o circumvent the tuning requirements of a Fixed Gaussian proposal, 
aario, Saksman & Inen ( 2001 ) introduced the notion of an adaptive
roposal that uses past performance of the sampler to drive the
ampler to a target acceptance rate. 

Such adaptive proposal are non-Markovian and may lead to 
he generated samples not being representative of the posterior. 
o we ver, as discussed in Haario et al. ( 2001 ) and Veitch et al.

 2015 ) (in the context of CBC signals), if the adaptation rate decays
hroughout the run or the adaptation is halted sufficiently early in
he run, the equilibrium distribution may be sufficiently close to the
osterior. We verify that, within the statistical uncertainties rele v ant
or typical CBC problems, this is true for our Adaptive Gaussian
roposal. 
To dynamically adapt the proposal, we use the acceptance 

atio, 

 = 

n accepted 

n accepted + n rejected 
, (6) 

o quantify the current performance (Gelman et al. 1996 ). If a ∼ 1,
roposals are accepted too often: this suggests slow exploration of the
osterior. If a � 1, proposals are infrequently accepted: the proposed 
oints tend to jump away from areas of high posterior support.
n both cases, this leads to large ACTs. For well-tuned proposals
which reduce the ACT relative to poorly tuned proposals) and under
dealized settings, Roberts, Gelman & Gilks ( 1997 ) demonstrated 
hat a ∼ 0.23. We set this as a target acceptance rate and dynamically
dapt the proposal to achieve it. 

Our implementation of the Adaptive Gaussian proposal extends 
quation ( 5 ), 

′ 
i = θi + sσi w i ε, (7) 

dding a factor of s , the adapting scale parameter. Initially, s = 1,
hen on each iteration where the proposal is applied, we update s
ollowing Veitch et al. ( 2015 ): 

 → s + s γ
(1 − a ′ ) 

100 
, (8) 

f the previous proposed point was accepted or 

 → s − s γ
a ′ 

100 
, (9) 
MNRAS 507, 2037–2051 (2021) 
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f the previous proposed point was not accepted. Here a 
′ = 0.234 is

he target acceptance rate and the quantity, 

 γ = 

(
N 

n 

)1 / 5 

− 1 , (10) 

s the adaptation decay rate with n the number of points proposed
nd N a user-specified number of steps after which to stop adapting,
he default value is N = 10 5 . We set a minimum scale s ≥ N 

−1 . For
he Adaptive Gaussian proposal, which is symmetric, H = 1. 

.1.3 DE: differential evolution 

e implement the Differential Evolution proposal (Ter Braak 2006 ;
er Braak & Vrugt 2008 ) as described in Veitch et al. ( 2015 ). Two
amples θa and θb are drawn at random from the chain. Then 

′ = θ + γ ( θa − θb ) , (11) 

here γ is chosen randomly from γ = 

{
1 , N (0 , 2 . 38 / 

√ 

2 n dim 

}
.

hen γ = 1, this acts as a mode-hopping proposal improving
he performance of the sampler in multimodal problems. When γ
s drawn from the normal distribution [as proposed by Ter Braak
006 ; Roberts & Rosenthal 2001 ), the proposed points lie along the
ine passing through θ and θ

′ 
. As such, the proposal is well suited

o posterior distribution with linear correlations in which the line
assing through θ and θ

′ 
lies along the principle axes. As with the

daptive Gaussian proposal, formally this proposal makes the chain
on-Markovian. Later, in Section 3 , we verify that the equilibrium
istribution is statistically identical to the posterior, i.e the posterior
s unbiased. Like the Gaussian proposals, the Differential Evolution
roposal is symmetric, such that H = 1. 

.1.4 PR: prior proposal 

he prior proposal draws θ
′ 
from the prior π ( θ ). For well-measured

arameters, in which the posterior is much narrower than the prior,
his proposal is highly inef ficient. Ho we ver, we find it to be ef fecti ve
hen used as part of a block-updating set of proposals applied to
oorly measured parameters (e.g. the spin and tidal parameters of
he secondary lower mass object in a CBC inference problem). It
lso aids mode-mixing in high-temperature chains (see Section 2.5 ).
or the Prior proposal, the Hastings factor is H = π( θ ) / π( θ ′ ). 

.1.5 UN: uniform proposal 

 simplification of the Prior Proposal, this proposal proposes points
niformly within the prior bounds. We utilize this proposal as a robust
nd simpler variant of the Prior Proposal with similar performance.
or the Uniform proposal, which is symmetric, the Hastings factor

s H = 1. 

.2 Machine learning proposal distributions 

n BILBY-MCMC , we introduce a class of learning proposals that,
s we show in Section 3 , dramatically decrease the ACT while
roducing statistically identical posterior distributions. learning pro-
osals use a random sampling from the past MCMC chain to learn
he distribution and then generate new samples. For all learning
roposals, during an initialization stage (during which the MCMC
hain has not yet been e xplored), the y fall back to an Adaptive
aussian proposal. Once the initialization stage is complete, they

ample the MCMC chain, use the samples to fit the proposal
NRAS 507, 2037–2051 (2021) 
istribution, and then this distribution is used to propose new points.
eriodically, the proposal distribution is refitted using new samples
rom the MCMC chain to circumvent premature learning. As with the
daptive Gaussian proposal, the use of the past chain again breaks

he Markovian property of the chain, but we verify in Section 3 that
he resulting posterior remains unbiased using validation tests. 

.2.1 KD: Gaussian kernel density estimate 

e fit a Gaussian Kernel Density Estimate (KDE; Rosenblatt 1956 ;
arzen 1962 ) to a random draw of samples from the MCMC chain.
e find this non-parametric multi v ariate density estimate to be both

apid in learning (typical learning times are fractions of a second)
nd flexible enough to fit complicated features. KDE methods have
reviously been used in the context of CBC inference by the KOMBINE

Farr & Farr, in preparation) ensemble sampler. 
When used to estimate a probability density from a set of samples,

DE methods suffer a subtle dependence on a tuneable ‘bandwidth’
arameter and typically o v er-smooth hard edges and multimodal
istributions. Ho we ver, when used as a learning proposal density,
hese issues only result in loss of efficiency, and do not bias results.
o understand why, consider a parameter with a hard edge (e.g. the

ower bound on the spin of a black hole that cannot be ne gativ e).
 KDE proposal fitted to a chain will o v er-smooth the hard edge

nd propose non-physical points with ne gativ e spin. Howev er, the
CMC algorithm will never accept these points. This results in a

mall loss of efficiency, but no bias. 
We utilize the standard implementation of Gaussian KDE in the

CIPY (Virtanen et al. 2020 ) package with bandwidth estimated using
Scotts rule’ (Scott 2015 ). Once the KDE k ( θ ) is fitted, proposal
amples can be drawn directly and the Hastings factor calculated
y H = k ( θ ) /k ( θ ′ ). We find that fitting the KDE takes fractions of
 second while the proposal time is negligible compared to typical
BC likelihood e v aluation times. 

.2.2 GM: Gaussian mixture model 

hile KDEs smooth a set of samples as a Gaussian centred on
ach sample, in a Gaussian mixture model (GMM) the density
s estimated using a finite number of Gaussian distributions. As
ith KDE methods, this model is not good at fitting distributions
ith hard edges. The means and covariance matrices of these
aussian distributions are chosen using an expectation-maximization

lgorithm. We use the SKLEARN (Pedregosa et al. 2012 ) package to
t the GMM. In this work, we use 10 components in the mixture.
itting the GMM takes slightly more time than fitting the KDE;
o we ver, it is typically < 1 s and sampling from/e v aluating the GMM
s faster than sampling from the KDE as there are fewer components.
s with the KDE proposal, the Hastings factor is calculated from
 = g ( θ ) /g ( θ ′ ), where g ( θ ) is the fitted GMM. 

.2.3 NF: Normalizing flows 

he normalizing flows class of machine learning algorithms (Papa-
akarios et al. 2019 ) learn a bijective map from the target density

the set of training samples drawn from the MCMC sampler) to
 latent space, in our case a multi v ariate Gaussian. Normalizing
ows have previously been used in gra vitational-wa ve astronomy

o directly sample the CBC posterior distribution (Green et al.
020 ; Green & Gair 2021 ) and as way to propose new points in
 nested sampler (Williams, Veitch & Messenger 2021 ). Following
he work of Hoffman et al. ( 2019 ), Moss ( 2020 ), we use the NFLOWS
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Table 1. The gra vitational-wa ve proposals set used in this work. 

Proposal θ -subset Weight 

Adaptive Gaussian All 10 
Differential evolution All 10 

Adaptive GaussianI Intrinsic 10 
Differential evolution Intrinsic 10 
KDE Intrinsic 10 
GMM Intrinsic 10 

Differential evolution Extrinsic 10 
KDE Extrinsic 10 
GMM Extrinsic 10 
Adaptive Gaussian Extrinsic 5 

Differential evolution Mass 5 
GMM Mass 5 

Differential evolution Spin 5 
GMM Spin 5 

Adaptive Gaussian Measured-spin 5 

Differential evolution Mass ratio and primary spin 5 
Differential evolution Tidal deformability 5 
Prior proposal Tidal deformability 5 
Phase reversal Phase 0.1 
Phase and polarization reversal Phase and polarization 0.1 
Correlated phase/polarization Phase and polarization 0.1 
Prior ψ , φ12 , θ2 , � 1 , � 2 , t j 0.1 

Notes . For a description of the proposals themselves, see Section 2.1 . In 
cases where the θ -subset is ‘all’, the whole set of θ is updated. Where a 
subset is listed, see Section 4.1 , only that subset is updated by the proposal. 
The weights are unnormalized and determine the relative frequency of each 
proposal. In the final row of ‘Prior’ proposals, each is updated individually, 
not as a set. 
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ackage (Durkan et al. 2020 ), which implements the normalizing 
ows algorithm in PYTORCH (Paszke et al. 2019 ), to learn the
roposal distribution. We periodically optimize the normalizing flow 

sing the Jensen–Shannon divergence (JSD) test (cf. Appendix A ) 
etween samples drawn from the learnt map and a set of independent
alidation samples. Unlike the KDE and GMM proposals, the 
ormalizing flows proposals can take several tens of seconds to 
inutes to train. In practice (cf. Section 3 ), we find the normalizing
ows method has a similar performance to the GMM method, but 
t an increased computational cost. Therefore, we do not utilize it
or CBC inference problems. The Hastings factor is again given by 
he ratio of the normalizing flow density at the initial and proposed
oints. 

.3 Gra vitational-wa ve proposal distributions 

e implement the gra vitational-wa ve-specific polarization and 
hase corr elation , phase r eversal , and phase and polarization
eversal proposals as described in Veitch et al. ( 2015 ). We find these
roposals dramatically impro v e the sampling for analyses that do not
tilize analytic marginalization of the binary phase (cf. Section 4.2 ). 
e do not implement the sky reflection , extrinsic-parameter , and 
ibbs sampling of distance proposals described in Veitch et al. 

 2015 ), Raymond & Farr ( 2014 ). While we expect these to be general
mpro v ements to the algorithm, the use of distance marginalization 
cf. Section 4.2 ), and our choice of parametrization (cf. Section 4.1 )
iminish the expected utility of these proposals. 

.4 Block sampling 

ach of the proposal distributions described in the last three sections 
an update either all parameters in the set of model parameters θ ,
r only a subset of those parameters. The BILBY-MCMC sampler 
s initialized with a list of individual proposals, the subset of θ that
hey are to update, and their unnormalized weighting. We then use 
he weighting to create a cyclic proposal cycle . At each step of
he sampler, the next proposal in the cycle is chosen, a point is
roposed and accepted/rejected based on the condition described in 
quation ( 2 ). The proposal cycle enables weighted block-updating 
f proposals and ensures the detailed balance condition is met as
escribed in Veitch et al. ( 2015 ). 
For non-CBC inference problems (i.e. the standard tests con- 

idered in Section 3 ), we default to an equal-weighted set of the
dapti ve Gaussian, Dif ferential Evolution, Uniform, KDE, GMM, 

nd Normalizing Flow proposals. Though, this can be customized 
y users. For CBC inference problems, we define a proposal cycle 
escribed in Table 1 . We arrived at this choice by hand tuning:
unning analyses on simulated signals and identifying opportunities 
or impro v ement. As such, we do not anticipate that the proposals
elected in Table 1 are optimal and we expect improvements to be
ade in the future. Users can modify and extend proposal cycle using

he flexible interface. 

.5 Parallel-tempering 

he standard Metropolis Hastings algorithm does not produce 
stimates of the evidence, and fails when attempting to sample from
ultimodal distributions. Parallel-tempering (Gilks et al. 1998 ; Earl 
 Deem 2005 ) addresses both of these issues. 
As the name suggests, n temps parallel MCMC chains are run. (In

ractice, these can be updated sequentially, i.e. stepping each chain 
n turn, or using the parallelization techniques described later in 
ection 2.9 . Ho we ver, the chains must remain pseudo-synchronized
o enable swaps between chains). For the j th chain, the likelihood in
quation ( 2 ), is modified: 

 ( d| θ, M) → L ( d| θ, M) 1 /T j , (12) 

here T j ≥ 1 is the chain ‘temperature’. Note that the ladder of
emperatures { T j } is ordered T j + 1 > T j . The T 0 = 1 ‘cold’ chain
amples from the target posterior distribution. But, for ‘hot’ chains 
ith T j > 1, the likelihood is flattened out and easier to sample. 
Periodically, swaps are proposed between adjacent chains and 

ccepted with a probability, 

in 

[ 

1 , 

(L ( d| θm ) 

L ( d| θn ) 

)(1 / T n ) −(1 / T m ) 
] 

. (13) 

hese swaps provide a mechanism for the cold temperature chain 
which generates posterior samples) to explore multimodal like- 
ihoods. We utilize the dynamic temperature adaption methods 
escribed in Vousden et al. ( 2016 ) to optimize the choice of the
emperature ladder { T j } . Samples taken during this optimization
eriod are automatically labelled as part of the burn-in epoch. 

.6 Evidence calculation 

n addition to resolving the problem of sampling multimodal dis- 
ributions, parallel-tempering also enables an estimate to be made 
f ln Z , the natural logarithm of the Bayesian evidence. To esti-
ate the evidence in BILBY-MCMC , we implement thermodynamic 

ntegration (Goggans & Chi 2004 ; Lartillot & Philippe 2006 ) as
escribed in Littenberg & Cornish ( 2009 ) and Veitch et al. ( 2015 ),
MNRAS 507, 2037–2051 (2021) 
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nd the stepping-stone algorithm (Xie et al. 2010 ; Maturana-Russel
t al. 2019 ). In testing, we verify the findings of Maturana-Russel
t al. ( 2019 ): The stepping stone method is superior, producing more
ccurate results for the same computational cost. As such, while
ILBY-MCMC calculates both methods, we report only the stepping

tone evidence throughout this work. 

.7 Ensemble sampling 

n recent years, ensemble-sampling algorithms have been highly
uccessful in astrophysics (see, e.g. F oreman-Macke y et al. 2013 ;
ousden et al. 2016 ; Farr & Farr, in preparation). These algorithms
se an ensemble of interacting MCMC samplers. New points are
roposed based on the current distribution of the ensemble of points
nabling automatic tuning of the proposals to the target density. That
hese algorithms self-tune has been paramount to their versatility and
se throughout astrophysics. 
In BILBY-MCMC , an ensemble of n ens chains can be utilized

ith inter-chain swaps proposed by an ensemble stretch proposal
Goodman & Weare 2010 ). In comparison to the EMCEE and PTEMCEE

amplers, BILBY-MCMC is poorly vectorized and does not scale to
any hundreds of chains. 
If used in conjunction with parallel-tempering, one can either use

 temps ensembles (for a total of n temps × n ens samplers) or with one
arallel-tempered chain (for a total of n temps + n ens − 1 samplers).
he former configuration mirrors how the PTEMCEE sampler operates
hile the latter configuration may be useful, for example, to provide

n estimate of the evidence with a reduced computational cost. For
hermodynamic integration, each set of parallel-tempered chains
s used to calculate an estimate of the evidence, then the results
re averaged between chains. In the validation tests described in
ections 3 and 4 , we do not utilize the ensemble sampler as it was
ound to provide no practical improvement in efficiency. 

.8 Efficiency 

hroughout this work, we will quantify and compare the posterior
ampling efficiency of samplers by the ratio of the number of
ndependent samples to the number of likelihood e v aluations: 

= 

n eff 
samples 

n 
 
. (14) 

or a simple MCMC sampler, the number of steps is equal to the
umber of likelihood e v aluations. Ho we ver, in BILBY-MCMC we do
ot e v aluate the likelihood if the proposed sample is outside the prior
ounds. Nevertheless, the number of likelihood evaluations is the
ele v ant weighting as it is the dominant computational operation. 

We calculate the efficiency directly for the validation tests in
ection 3 , but here we first derive an efficiency model. For a
arallel-tempered ensemble sampler with n temps × n ens chains where
 burn = r burn τ are discarded for burn-in (in practice, there are
e veral alternati ve methods that can determine n burn as described
n Section 2 ), the efficiency is 

= 

1 

τn temps (1 − ξ ) 
, (15) 

here 

= 

r burn n ens 

n eff 
samples 

(16) 

s the burn-in inefficiency , the fraction of ‘wasted’ samples due to
he burn in process. 
NRAS 507, 2037–2051 (2021) 
When configuring the sampler, care should be taken to ensure ξ �
 to a v oid significant wasted computation. For example, drawing
000 independent samples using n ens = 1 and the default r burn =
0, the burn-in inefficiency is a reasonable 1 per cent. Ho we ver, if
e attempt to use 10 co-evolving ensembles n ens = 10, the burn-in

nefficiency also increases to 10 per cent. (The same logic equally
pplies to configurations that combine independent runs as discussed
n Section 2.9 , replacing n ens with the number of independent runs
nd n eff 

samples with the number of samples per run.). 
Provided ξ � 1, the efficiency is determined by the ACT τ and

he number of parallel-tempered chains n temps . The ACT is a property
f the sampling algorithm, which can be reduced using the methods
iscussed in Section 2.1 . Naively, reducing n temps appears to improve
he posterior sampling ef ficiency. Ho we ver, n temps > 1 is required to
ample from multimodal distributions, calculate the evidence, and
an reduce τ . In Section 3 we will demonstrate with a specific
xample, but as a rough rule of thumb about n temps = 8 is sufficient for
he multimodal posteriors of CBC inference problems and provides a
easonable estimation of the e vidence. Ho we ver, if a refined estimate
f the evidence is required, more temperatures are needed, decreasing
he posterior sampling efficiency. 

We develop a resampling approach to reclaim some of this lost
fficienc y. F or the j th chain with temperature T j , we define { θ i } ( j ) as
he set of posterior samples it produces from the tempered posterior
istribution: 

( θ | d) ∝ L ( d| θ ) 1 /T j π( θ ) . (17) 

or each sample θ from the tempered posterior distribution, we
alculate a weight, 

 = L ( d| θ ) 1 −(1 / T j ) , (18) 

rom the ratio of the hot likelihood to the T = 0 likelihood.
hen, we rejection sample 2 (MacKay 2003 ) the tempered posterior
amples resulting in a set of posterior samples from the cold
osterior distribution. For low dimensional problems, we find this
roduces a modest gain in efficiency at no additional cost. As an
xample, analysing a CBC signal using a non-spinning model and
sing the analytic marginalization of the distance, phase and time
cf. Section 4.2 ), rejection sampling the hot chains produces an
20 per cent efficiency improvement. Ho we ver, for fully-precessing
BC problems, we find the rejection sampling does not accept any
ew points (i.e. the efficiency remains unchanged). In Sections 3 and
 , we do not utilize the rejection sampling method. 
In this work, we will compare the efficiency of BILBY-MCMC with

hat of the DYNESTY sampler using the random walk proposal method
escribed in Romero-Shaw et al. ( 2020 ). This proposal method has a
uning parameter n act that determines the number of internal MCMC
teps to take based on the estimated ACT. Following Speagle ( 2020 )
in which the DYNESTY sampler was shown to be more efficient than
he EMCEE sampler), we calculate the efficiency from equation ( 14 ),
ith n eff 

samples calculated from the effective sample size as estimated
rom the nested sampling weights. We note that this assumes that new
oints proposed during nested sampling are independent, ho we ver
his is not required (Salomone et al. 2018 ) or guaranteed in practice.
f the points are correlated, n eff 

samples will significantly o v erestimate
he efficiency of the DYNESTY sampler. To guard against this (and
o investigate the potential impact on posterior estimation), for the
osenbrock and Unimodal Gaussian validation tests, we run the
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Figure 1. Empirically measured speed-up for a test analysis with n temps = 

16 and n ens = 1. Solid lines indicate the mean while shaded region indicates 
the standard deviation as measured o v er three identical runs. The right-hand 
axis provides the speed-up factor m at perfect matching. 
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YNESTY sampler with two dif ferent v alues of n act and verify that the
fficiency approximately scales with n act . This demonstrates that the 
 act value chosen is sufficiently large to generate independent samples 
nd hence that the efficiency of the DYNESTY is not overestimated. 

.9 Timing model and parallelization 

e distinguish two levels of computational parallelization that can 
educe the wall time: combining independent runs and multiprocess- 
ng an individual run. 

Combining independent runs is embarrassingly parallel: we simply 
epeat N copies of the analysis using an identical data and con-
guration, but a different random seed. If each analysis produces 
 
eff 
samples independent samples, then, in total, we end up with Nn eff 

samples .
uch a configuration is ideal for use in an HTC environment 
nd has the added advantage that one can cross-compare between 
hains. Ho we ver, this approach is limited by the increase in burn-in
nefficiency (cf. equation 16 ): Each independent run has to burn-in. 
his may be worthwhile to decrease the wall-time for important and 

ime-sensitive results. 
Before discussing the use of multiprocessing, we introduce a 

iming model to understand the wall-time required to produce 
 
eff 
samples independent samples from the posterior of a single serial run. 
or CBC inference problems, the compute-time is determined by 
 
 , the time required to e v aluate the likelihood 3 and the number of
ikelihood e v aluations required. In a serial-processing model, the 
otal time T can be estimated by 

 = n 
 t 
 = 

n samples t 
 

ε

≈ 28 h 

( 

n eff 
samples 

1000 

) (
t 
 

10 ms 

)(
ε

0 . 01 per cent 

)−1 

, (19) 

here we have taken a typical efficiency from Section 4.3 for an
BC analysis using n temps = 8. 
If either n temps > 1 or n ens > 1, BILBY-MCMC can be trivially

arallelized leveraging the multicore processors typically available 
n modern processors. We implement this parallelization using 
he PYTHON standard-library multiprocessing module. In this 
odel of multiprocessing, there is an o v erhead cost to transferring the

ata (i.e. any data products required by the likelihood). For typical 
BC problems, this can be as much as a few milliseconds. [We
ote that the LALI NFERENCE MCMC sampler (Veitch et al. 2015 )
itigates this by the use of a distributed computing model with a
essage Passing Interface]. This overhead time is comparable to the 

ikelihood e v aluation time t 
 and results in imperfect scaling of the
iming model equation ( 19 ). We model this by introducing m ≤ 1, a
arallelization inefficiency that we will measure empirically. Then, 
he timing model for an analysis parallelized o v er n cores is 

 = 

n eff 
samples t 
 

ε

1 

mn cores 
. (20) 

he number of cores should be matched to the number of paralleliz-
ble jobs, i.e. n cores = n temps n ens /m , where m is a non-zero natural
 Typically, t 
 ranges from a few to many hundreds of milliseconds and is 
ominated by the cost to e v aluate the waveform. Longer duration signals 
ypically take longer to e v aluate. Ho we ver, when calculating the likelihood 
uring an MCMC analysis, cached waveform e v aluations can be used, e.g. 
hen proposing a mo v e only in the extrinsic parameters. The discussion in 

his section assumes a fixed t 
 , resulting in a conserv ati ve timing estimate 
hat ignores this potential computational saving. 

I  

i  

t  

t
e
r  

e  

t
i  
umber. If the number of cores is mismatched with the number of
arallelizable jobs, i.e. n cores > n temps n ens , this will al w ays leave one
r more cores idle. When n cores = n temps n ens , we refer to this as perfect
atching . 
We can measure m empirically by looking at the speed-up for

n identical analysis as a function of n cores . We find that direct
arallelization results in values of m that are as small as (or in the
orst case smaller than) 1/ n cores , i.e. the parallelization can be slower

han a serial run. This is because of the substantial data-transfer
 v erhead. To mitigate the data transfer o v erhead, in parallel analyses,
e transfer data and then take a fixed number, L 1 , of ‘internal’ MCMC

teps. To further impro v e the efficienc y, we do not store these internal
teps. In effect, this pre-thins the MCMC chains by a factor of L 1 .

hen L 1 > 1, the ACT and other associated quantities are calculated
n the stored chain, but can be re-scaled. 
In Fig. 1 , we determine the speed-up factor m for a test case in

hich n temps = 16 and the per-likelihood e v aluation time t 
 is held
xed at 10 ms. We run the experiment twice. First, we use L 1 =
0, which demonstrates poor parallelization scaling with an o v erall
peed-up factor of m ∼ 1/8 for perfect matching. Then, we increase L 1 
o 100 and see impro v ed scaling with m ∼ 3/4 for perfect matching.
or n cores = 8 or less, the performance is near-optimal m ∼ 1. The
arginal impro v ement in speed between n cores of 10, 12, and 14

emonstrates the effect of imperfect matching. 
Using the empirically measured m from Fig. 1 , if our analysis is

sing n temps = 8, n ens = 1, we can see the rough timing predicted by
quation ( 20 ) for perfectly matched parallelized runs: 

 ≈ 5 h 

( 

n eff 
samples 

1000 

) (
t 
 

10 ms 

)(
ε

0 . 01 per cent 

)−1 ( m 

0 . 75 

)−1 

×
(n cores 

8 

)−1 
. (21) 

t is worth pointing out two caveats to this timing model. First, while
ncreasing L 1 impro v es m , if L 1 is greater than the typical ACT,
his itself introduces a new type of inefficiency (namely an o v er-
hinned chain). Second, these quantities are not independent. For 
xample, if one wants to combine a large number of independent 
uns, each producing n eff 

samples = 10 samples, it may appear that
quation ( 21 ) would predict an ∼3-min analysis time. Ho we ver,
he burn-in inefficiency would be increased leading to a decrease 
n the efficiency and hence increase in the overall run time. This
MNRAS 507, 2037–2051 (2021) 
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M

Table 2. Validation tests reported in this work. 

Test Sampler Configuration n temps Evidence JSD [mb] ACT ( τ ) 
Efficiency 
(per cent) n 
 /10 6 n eff 

samples 

Standard Normal DYNESTY n live = 2000, n act = 50 – 0.02 ± 0.04 0 .9 – 0 .58 1.1 6200 
BILBY-MCMC AG-DE-UN 1 – 0 .5 6 15 .0 0.05 8000 
BILBY-MCMC AG-DE-UN 16 0.03 ± 0.01 0 .5 5 1 .2 0.5 6000 
BILBY-MCMC AG-DE-UN 32 − 0.007 ± 0.01 0 .5 5 0 .6 0.8 5000 

Rosenbrock DYNESTY n live = 2000, n act = 10 – 0.08 ± 0.07 2 .7 – 0 .7 1.1 7500 
DYNESTY n live = 2000, n act = 50 – 0.04 ± 0.07 1 .6 – 0 .1 6.7 7500 
BILBY-MCMC AG-DE-UN-GM-NF-KD 16 − 0.02 ± 0.01 0 .7 10 0 .6 3.3 20 000 
BILBY-MCMC AG-DE-UN-GM-NF-KD 1 – 0 .3 16 6 .2 0.34 20 000 
BILBY-MCMC AG-DE-UN-NF 1 – 0 .3 19 5 .2 0.40 21 000 
BILBY-MCMC AG-DE-UN-KD 1 – 0 .3 110 0 .9 2.2 20 000 
BILBY-MCMC AG-DE-UN-GM 1 – 0 .3 17 6 .1 0.37 22 000 
BILBY-MCMC AG-DE-UN 1 – 0 .5 171 0 .6 3.4 20 000 

Unimodal Gaussian DYNESTY n live = 2000, n act = 10 − 0.05 ± 0.2 0 .8 – 0 .09 22 20000 
DYNESTY n live = 2000, n act = 50 – 0.07 ± 0.2 0 .7 – 0 .01 150 20 000 
BILBY-MCMC AG-DE-UN-GM-NF-KD 1 – 0 .05 85 1 .2 0.45 5000 
BILBY-MCMC AG-DE-UN-GM-NF-KD 16 − 0.25 ± 0.13 0 .006 70 0 .09 5.7 5000 
BILBY-MCMC AG-DE-UN-GM-NF-KD 32 − 0.03 ± 0.06 0 .003 61 0 .05 10 5000 

Bimodal Gaussian DYNESTY n live = 2000, n act = 50 – 0.02 ± 0.2 0 .4 – 0 .005 390 20 000 
BILBY-MCMC AG-DE-UN-GM-KD 16 − 0.05 ± 0.1 0 .3 3 0 .02 32 5000 
DYNESTY n live = 2000, n act = 50 – 51.4 ± 0.2 – – 0 .010 160 16 000 

BBH A BILBY-MCMC – 8 49.7 ± 0.2 – 7 × 10 3 0 .0018 300 5000 
DYNESTY n live = 2000, n act = 50 – 133.4 ± 0.2 – – 0 .006 86 220 15 000 

BNS A BILBY-MCMC – 8 132.6 ± 0.3 – 60 × 10 3 0 .000 21 2500 5000 

White-shaded rows are those from the standard validation tests (Section 3 ) while grey-shaded rows are tests from gra vitational-wa ve validation tests (Section 4 ). 
For the standard validation tests, we give the BILBY-MCMC configuration by the set of proposals (described in Section 2.1 ), while for the DYNESTY sampler, 
we give n live and n act (cf. Romero-Shaw et al. 2020 ). For the gra vitational-wa ve validation tests, we use the proposal set described in Table 1 . In the Evidence 
column, we report � ln Z = ln Z − ln Z 

′ for the standard validation tests where the exact evidence ln Z 
′ is known; for the gra vitational-wa ve validation tests 

(grey rows), where the evidence is not known, we report the natural logarithm of the signal versus Gaussian noise Bayes factor. Where the posterior distribution 
can be directly sampled from, we report the maximum JSD (see Section A ) in milli-bits [mb]. For the MCMC configurations, we list the final-estimated ACT τ ; 
this is al w ays giv en in ra w steps (i.e. we re-scale runs that use L 1 > 1). For the gra vitational-wa ve v alidation tests, τ is gi ven by the mean valued av eraged o v er 
all independent runs; typically, this varies by several tens of per cent. We also report the posterior sampling efficiency described in Section 2.8 , the total number 
of likelihood e v aluations, and the number of independent samples the analysis produced. 
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ay still be preferable, but we urge users to give consideration
o the efficiency before starting analyses. We comment that the
nefficiencies commented on abo v e are specific to the naive approach
f combining multiple independent runs. The fundamental issue
rises that a standard MCMC chain produces unbiased samples from
he target density as the number of steps tends to infinity. There are
ophisticated approaches that will o v ercome these inefficiencies by
nstead aiming to obtain unbiased samples as the number of MCMC
hains tends to infinity (Jacob, O’Leary & Atchad ́e 2020 ). These
pproaches could be used in future to impro v e the efficienc y of
ILBY-MCMC when parallelized o v er man y cores. 
In this section, we have seen that BILBY-MCMC can be parallelized

oth by combining independent runs and utilizing multiprocessing.
y comparison, the run-time of the DYNESTY nested sampler can
nly be reduced by the use of multiprocessing. This is because it is not
ossible to configure a nested sampler to run part of the full analysis
i.e. only to produce a small subset of the required total number
f independent samples). In this work, we utilize multiprocessing
f the DYNESTY sampler in Section 4 that can take advantage of
ulticore processors. We note that DYNESTY can also be used in High
erformance Computing (HPC) environments by multiprocessing
sing many multicore processors (Smith et al. 2020 ). We discuss the
elative merits of these two approaches with reference to a specific
xample in Section 4.3 . 
NRAS 507, 2037–2051 (2021) 
 STAND  ARD  VALID  ATION  TESTS  

n this section, we outline a suite of tests designed to validate the
ILBY-MCMC package for standardized problems. These tests build
n pre vious v alidation tests of gra vitational-wa ve samplers (Veitch
t al. 2015 ; Biwer et al. 2019 ) and tests of the DYNESTY sampler
Speagle 2020 ) implemented in BILBY (Ashton et al. 2019 ; Romero-
haw et al. 2020 ). Though not reported here, we additionally perform

ntegration checks on individual aspects of the sampler and verify that
hen the likelihood is uninformative the prior is properly reco v ered.
he scripts used to perform all verification checks and additional
gures are available from git.ligo.org/gregory.ashton/bilby mcmc v
lidation ; in Table 2 , we also link to the individual tests. 

.1 Standard normal distribution 

s an initial test, we e v aluate a 1D standard-normal likelihood, where 

 ( θ ) = 

e −θ2 / 2 

√ 

2 π
, (22) 

nd the prior is uniform between −10 and 10: 

( θ ) = U ( −10 , 10) . (23) 

https://git.ligo.org/gregory.ashton/bilby_mcmc_validation
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Figure 2. Comparison of the DYNESTY sampler (with n live = 2000 and 
n act = 50), the BILBY-MCMC sampler (with n temps = 1 and the full set of 
learning proposals), and samples drawn directly from the posterior for the 
Rosenbrock test. The JSD test between each of the samplers and the direct 
samples (see Table 2 ) quantifies that the BILBY-MCMC sampler produces 
statistically identical posterior samples while the DYNESTY sampler produces 
JSD values at the failure threshold. Visually, we see that the posterior samples 
produced by the DYNESTY sampler are o v erly constrained. 
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n this case, the evidence can be estimated as 

 = 

∫ ∞ 

−∞ 

L ( θ ) π( θ ) d θ ≈ 1 

20 
. (24) 

nd the posterior p ( θ ) is a standard-normal distribution. 
Running the BILBY-MCMC and DYNESTY samplers on this 

roblem, in Table 2 , we report the configurations, the difference 
n log-evidence, and quantities related to the performance. 

To verify the posterior sampling, we calculate the JSD (see 
ppendix A for an extended discussion) between 5000 independent 
osterior samples drawn using the sampler and samples drawn 
irectly from the known posterior. For all configurations, we report 
SD v alues belo w a threshold of 2 mb (where mb is the shorthand
or a milli-bit of information): this demonstrates the posteriors are 
tatistically identical . As such, we conclude that both the DYNESTY 

nd BILBY-MCMC samplers are able to sample this simple inference 
roblem without bias and report accurate estimates of the uncertainty. 
To verify the estimates of the Bayesian evidence, we compare with 

he kno wn e vidence calculated in equation ( 24 ). Both the DYNESTY

nd BILBY-MCMC sampler using n temps = 32 produce estimates 
f the evidence that agree with equation ( 24 ) to within the stated
ncertainties. Ho we ver, it is known that parallel-tempered evidence 
stimates have a bias that can be reduced by increasing the number
f temperatures (Xie et al. 2010 ; Maturana-Russel et al. 2019 ). This
oint is demonstrated by the BILBY-MCMC analyses with n temps = 16, 
hich does not produce a result consistent with the known evidence. 

.2 Rosenbrock likelihood 

e analyse the Rosenbrock likelihood (Rosenbrock 1960 ), taking the 
xplicit form and priors from equation (C2) of F owlie, Handle y & Su
 2020 ). The banana-shaped posterior is challenging to sample from
nd representative of the types of posteriors seen in CBC inference 
roblems. This makes it an ideal validation test. Results for several 
onfigurations of both samples are listed in Table 2 . 

We sample directly from the posterior distribution of the Rosen- 
rock likelihood using a re-parametrization. This enables us to 
alculate the maximum JSD between samples drawn using different 
onfigurations of the BILBY-MCMC and DYNESTY samplers and the 
irectly sampled posterior. The maximum JSD for the BILBY-MCMC 

nalyses all fall below the 2-mb threshold for statistically identical 
osteriors. Ho we ver, we find that the samples from the DYNESTY

ampler using n act = 10 are marginally abo v e this threshold while
he analysis with n act = 50 is below. In re-running these analyses,
e find variations in the JSD value of the order of ∼50 per cent :

his indicates the DYNESTY analyses are subtly biased. n act is a 
ser-controlled parameter described in Romero-Shaw et al. ( 2020 ), 
hich determines the number of internal MCMC steps to take based 
n the estimated ACT. A value of 10 was previously found to be
ufficient for BBH analyses (Romero-Shaw et al. 2020 ), but this test
emonstrates larger values may be necessary to ensure convergence 
or the Rosenbrock likelihood. The dependence on n act indicates the 
ause is likely to be the MCMC-within-nested-sampling algorithm 

tself (we used the version in B ILBY v1.1.3 for the analyses in this
ork); investigation is needed to determine if this is failing and to

esolve this bias. 
We visualize the results in Fig. 2 : BILBY-MCMC and the ‘direct’

amples agree, but samples from the DYNESTY analyses (with n act = 

0) are o v erly constrained. This is a typical failure mode of posterior
amples generated by nested sampling methods that use bounding 
llipsoids to impro v e performance of the sampler. We note that we do
ot see similar issues for CBC inference problems (see Sections 4.3 
nd 4.4 ). This failure requires further investigation and highlights the
eed for cross-sampler comparisons. 

The various MCMC configurations in Table 2 enable a comparison 
f the impact of the learning proposals. Using all three learning
roposals (AG-DE-UN-GM-NF-KD), reduces the ACT by a factor of 
 10 with respect to the analysis without any learning proposals (AG-
E-UN). By running each of the learning proposals individually, 
e see that the normalizing flows and GMM proposals both have
 similar performance impro v ement (with respect to the AG-DE-
N proposals alone) to all three together. Meanwhile the KDE 

roposal alone provides only a factor of ∼2 reduction in the ACT.
his demonstrates that learning-proposals are a powerful tool in 

mproving the efficiency of the MCMC algorithm. 
Finally, we turn to evidence estimation. The Rosenbrock likelihood 

sed in this work has an analytically approximated evidence of 
n Z 

′ = −5 . 804 (Fowlie et al. 2020 ). In Table 2 , we provide evidence
stimates for the DYNESTY and BILBY-MCMC sampler with n temps = 

6. For the DYNESTY sampler, the evidences agree to within the stated
ncertainties. For the BILBY-MCMC sampler, the evidence estimate 
isagrees at the level of 1 standard deviation. This performance is
onsistent with the findings of Veitch et al. ( 2015 ) in which the
ALINFERENCE MCMC sampler similarly struggled to consistently 
stimate the evidence of the Rosenbrock likelihood. 

.3 15D unimodal Gaussian 

e analyse the 15D unimodal multi v ariate Gaussian distribution 
riginally proposed in Veitch et al. ( 2015 ) using the specific con-
guration from Romero-Shaw et al. ( 2020 ). We report the results in
able 2 , varying the number of parallel-tempered chains, but utilizing

he standard proposal sets. For all samplers and configurations, 
MNRAS 507, 2037–2051 (2021) 

art/stab2236_f2.eps


2046 G. Ashton and C. Talbot 

M

Figure 3. Violin plot showing posteriors from five parameters of the 15D 

unimodal Gaussian test. Each violin shows 5000 samples drawn directly from 

the posterior (grey), from the DYNESTY analysis with n act = 50 (blue) and 
the BILBY-MCMC analysis with n temps = 1 (orange). Vertical lines denote the 
median and 90 per cent credible interval. 
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he maximum JSD falls below the nominal 2-mb threshold for
tatistically identical samples. To visualize the results, in Fig. 3 ,
e plot a subset of five posteriors in a violin plot. This shows strong

greement between the samplers and with samples drawn directly
rom the posterior. 

The evidence for this 15D unimodal Gaussian test case can be
stimated directly (Romero-Shaw et al. 2020 ) as ln Z 

′ ≈ −34 . 54.
he DYNESTY sampler correctly estimates the evidence to within

he stated uncertainty in both configurations. Meanwhile, the BILBY-
CMC sampler gets close to the true evidence, with n temps = 32, but

uffers the previously discussed bias when n temps is small. 
We study the performance of BILBY-MCMC while varying n temps .

n this unimodal case, even a single-temperature sampler can sample
he posterior. Increasing the number of parallel temperatures from
 to 16 marginally reduces the ACT. As n temps is increased, the
ncertainty on the evidence estimate decreases, but the ACT does
ot significantly change. This is expected since it is a unimodal
arget density that does not require parallel-tempering to hop between

odes. As such, increasing the number of temperatures (to achieve
 meaningful estimate of the evidence) results in a reduction in the
fficiency as predicted by equation ( 16 ). 

.4 15D bimodal Gaussian 

e analyse a bimodal Gaussian distribution consisting of two copies
f the unimodal Gaussian distribution (cf. Section 3.3 ) and means
eparated by 8 standard deviations in each dimension (as used
n Romero-Shaw et al. ( 2020 )). This test probes the ability of
he sampler to efficiently hop between modes. With a single cold
hain, the MCMC sampler is unable to find both modes (in other
ords, the ACT is infinite). With n temps = 16, BILBY-MCMC is

ble to sample from both modes. Comparing to samples drawn
irectly from the posterior, the maximum JSD for the DYNESTY

ampler and BILBY-MCMC sampler both fall below the threshold
or statistically identical samples. Romero-Shaw et al. ( 2020 ) noted
hat the DYNESTY sampler tends to o v erweight one or other of
he two modes in this test. But, that combining o v er man y runs
he effect averages out. We confirm this in our individual run of
he DYNESTY sampler. For the BILBY-MCMC sampler, we find
hat the effect is weaker. Quantifying the effect by the number of
NRAS 507, 2037–2051 (2021) 
amples in each mode, the BILBY-MCMC tends to produce more
qual-weighted posteriors (in agreement with the true posterior).
his can be understood because the MCMC sampler is proposing

umps between modes while for the DYNESTY sampler the relative
eights of the two modes is determined by the bounding ellipsoids. 
The evidence for the 15D bimodal Gaussian be directly estimated

Romero-Shaw et al. 2020 ) as ln Z 
′ ≈ −34 . 54. Comparing the

vidence estimated by the samplers to this direct estimation, we find
imilar performance to that of the 15D unimodal Gaussian studied
n Section 3.3 . Namely, the DYNESTY sampler outperforms BILBY-

CMC in accuracy and uncertainty. 

 GRA  VITATIONAL-WA  VE  VALIDATION  TESTS  

n this section, we discuss the specifics and validation of the
ILBY-MCMC sampler for CBC gra vitational-wa ve inference. The

nference of CBC coalescence signals has been well studied in the
iterature. The fundamentals can be found in Veitch et al. ( 2015 ), a
ecent re vie w in Thrane & Talbot ( 2019 ), and the specifics of the
ILBY interface in Ashton et al. ( 2019 ) and Romero-Shaw et al.
 2020 ). In Section 4.1 , we introduce the basics of the CBC model
nd describe the best-known parametrization of θ to reduce the ACT.
hen, in Section 4.2 , we discuss the use of analytic marginalization
ethods that reduce the dimensionality of θ in sampling. 

.1 Models, optimal parametrization, and priors 

 circularized gra vitational-wa ve signal from a CBC can be de-
cribed by a set of 17 model parameters θ . We can partition θ into
1 intrinsic parameters (two mass, six spin parameters, the binary
hase, and up to two tidal deformability parameters) and 6 extrinsic
arameters (the 3D localization, polarization, merger time, and the
ngle between the total angular momentum and the line of sight). 

There are many ways to choose these 17 parameters in the
iterature. These different parametrizations offer varying levels of
omputational convenience and interpretability. In this work, we use
he following parametrization for CBC analyses based on which
arameters lead to the shortest auto-correlation lengths in our tests. 

.1.1 Mass 

abelling the detector-frame mass of the two objects in the binary
 1 and m 2 , we sample in the detector-frame chirp mass, 

 = 

( m 1 m 2 ) 3 / 5 

( m 1 + m 2 ) 1 / 5 
, (25) 

nd mass ratio q = m 2 / m 1 . We apply prior cuts, discussed below,
uch that q ≤ 1. This is the standard choice employed for compact
inary analyses as the chirp mass is the best measured parameter
or binary inspirals, followed by the mass ratio (Cutler & Flanagan
994 ). 

.1.2 Spin 

he spin of the compact objects contribute 6 degrees of freedom to the
roblem. F ollowing F arr et al. ( 2014 ), we sample in the magnitudes
nd tilts parametrized in spherical coordinates with the z-axis aligned
ith the total angular momentum using the magnitude a i and tilt θ i 

where i ∈ [1, 2] labels the primary and secondary objects) along
ith two azimuthal parameters { φjl , φ12 } . 

art/stab2236_f3.eps
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Table 3. Simulation parameters for the three fiducial events analysed in 
Section 4 . 

Parameters BBH A BNS A 

M 17.1 1.4875 
Mass q 0.62 0.950 

a 1 0.296 0.01 
a 2 0.393 0.01 
θ1 0.09 0 
θ2 1.20 0 
φ12 1.10 0 

Spin φjl 0.52 0 

� 1 0 1500 
Intrinsic Tidal � 2 0 750 

RA 3.95 1.67 
Dec. 0.22 −1.22 

Loc. d L 497 180 

θ JN 1.88 −0.88 
ψ 2.70 2.70 

Extrinsic Orient. φ 3.69 3.69 

Note . In the two left columns, we provide the parameter groups names as 
described in Section 4.1 . 
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.1.3 Tides 

idal deformability of neutron stars is typically described in terms 
f either two dimensionless deformability parameters � i or combi- 
ations of these two combinations of these parameters that directly 
etermine the contribution to the phase contribution { ̃  � , δ ˜ � } (Flana- 
an & Hinderer 2008 ; Favata 2014 ; Wade et al. 2014 ). We sample in
he latter set as these reduce the ACT. 

.1.4 Location 

he location of the binary is uniquely described by four parameters, 
he distance to the source, the 2D sky location, and the merger time.

e choose these parameters as in LALINFERENCE . We specify the 
erger time as the time of arri v al of the merger signal at one of the

etectors, ideally the one where we expect the highest signal-to-noise 
atio (S/N). We characterize the sky location using a reference frame 
ased on the separation vector of two of the detectors; see Romero-
haw et al. ( 2020 ) section 3.1.7 for an explicit definition. For all of

he results presented here, we marginalize o v er the distance to the
ource (see Section 4.2 ), so the specific choice of distance parameter
s irrele v ant. 

.1.5 Orientation 

inally, we require three Euler angles to convert the binary frame to
he galactic reference frame. These are the inclination angle between 
he binary angular momentum and the line-of-sight from the source 
o the observer θ JN , the binary phase at a reference frequency φ
typically the merger frequency), and the polarization of the source 
. Throughout, we sample in cos ( θ JN ) and ψ . In practice, there is a

trong correlation between the phase and the polarization and so we 
ample in a phase offset parameter: 

φ = 

{
φ + ψ θJN ≤ π

2 
φ − ψ θJN > 

π
2 

. (26) 

he change of sign is due to a change in the direction of the
e generac y when observing from abo v e/below the orbital plane. This
arametrization introduces a discontinuity in the likelihood at θ JN = 

/2. Ho we ver, the proposal schemes outlined in Section 2.1 , includ-
ng the machine-learned proposals, do not depend on assumptions 
f smoothness. In practice we find that the parametrization impro v es
he performance relative to analyses that use the phase directly. 

Following LALINFERENCE , we apply a prior uniform on the 
omponent masses m 1 and m 2 with cuts in the chirp mass and
ass ratio. We then apply the non-informative priors on all other 

arameters and a uniform in the source-frame prior for the luminosity 
istance (Romero-Shaw et al. 2020 ). 

.2 Analytic likelihood marginalization 

f the 17D parameter space described in Section 4.1 , there are three,
amely the luminosity distance, geocentric time, and binary phase, 
 v er which we are able to efficiently marginalize the gravitational-
 ave lik elihood [see Veitch & Del Pozzo ( 2013 ), Farr ( 2014 ), Veitch

t al. ( 2015 ), Singer & Price ( 2016 ), Singer et al. ( 2016 ), and Thrane
 Talbot ( 2019 ) for a re vie w]. In the context of an MCMC sampler,

he marginalized likelihood has a shorter ACT relative to the non- 
arginalized likelihood. This is both due to the reduction in dimen- 

ionality and to the reduction in the complexity of the posterior. Since
t is possible to reconstruct the marginalized parameters after analysis 
Thrane & Talbot 2019 ), where possible marginalized likelihoods 
re strongly recommended. For the luminosity distance, we al w ays
arginalize the likelihood. For the geocentric time, we marginalize 

he likelihood [and add the time jitter, t j , as described in Romero-
haw et al. ( 2020 )] except in instances where the reduced-order-
uadrature method ROQ is used in which time-marginalization has 
ot yet been implemented. The assumptions made in marginalizing 
he binary phase are invalid for precessing CBC systems or models
hat include higher order emission modes. Therefore, we do not 

arginalize the binary phase in this work. But, in future use cases,
here a non-pressing waveform without higher order emission 
odes is considered, we do recommend using phase marginalization. 

.3 Fiducial BBH: BBH A 

e simulate a fiducial (reference) BBH signal observed by the LIGO
anford and Livingston detectors (Aasi et al. 2015 ) at their design

ensitivity (Abbott et al. 2020 ). The simulation parameters, labelled 
s BBH A, are given in Table 3 . We use the IMRPhenomPv2
Schmidt, Hannam & Husa 2012 ; Hannam et al. 2014 ) waveform
pproximant to both simulate and analyse the signal. In this noise
ealization, the simulated signal has a network matched-filter S/N of 
13. 
We analyse 4 s of simulated data with the DYNESTY and BILBY-
CMC samplers using the configurations described in Table 2 , the

riors described in Section 4 , and distance and time marginalization.
or the BILBY-MCMC sampler, we use 13 independent chains, a 

hinning factor of γ = 0.2, and run each chain until it produces 2000
amples. In total, this produces 25 000 samples with n eff 

samples = 5000.
or the DYNESTY sampler, we use the standardized configuration 

isted in Table 2 , but use two independent run to enable a robustness
heck. 

It is not possible to sample directly from the posterior in this
ase, so we resort to cross-sampler comparisons to verify posterior 
ampling. Across all CBC parameters, we find that the maximum 

SD between the samplers falls below the 2-mb threshold, i.e. we
nd statistically identical posteriors between DYNESTY and BILBY- 
CMC . To visualize these difference in Fig. 4 , we plot histograms of
MNRAS 507, 2037–2051 (2021) 
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Figure 4. Histograms of the posteriors from the DYNESTY (blue) and BILBY- 
MCMC (orange) analyses of the fiducial BBH. Configurations and summary 
statistics are given in Table 2 . Vertical lines mark the edges of the 90 per cent 
credible interval for each sampler and black dotted lines mark the value used 
to simulate the data. Note that we do not expect the posteriors to peak at the 
simulation values due to the influence of the simulated noise and the Bayesian 
prior. In the title of each figure, we give the JSD; across all parameters, this 
JSD is found to be below the 2-mb threshold we use to determine if the two 
sets of posteriors are statistically different. 
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everal quantities of astrophysical interest, along with their individual
SD. 

In the evidence column of Table 2 , we report the Bayes factor
etween the signal evidence and the Gaussian noise evidence (for
 fixed realization of the noise and power spectral density this is a
xed quantity). The evidence estimates disagree at the 1 σ level of

he quotes uncertainties. The difference is likely explained by the
nown bias in parallel-tempered evidence (cf. Section 2.6 ) when
 temps is small. Here, we tune n temps for efficient sampling of the
osterior, rather than evidence estimation. In such a configuration,
e recommend that the evidence estimate only be used as a rough
uide, but not be used for quantitative analysis. To reduce the
ias, n temps can be increased at the cost of posterior sampling
fficiency. 

Comparing the performance of the two samplers, the DYNESTY

ampler is an order of magnitude more efficient than the BILBY-
CMC sampler. Ho we ver, this ef ficiency does not directly trans-

ate into an order of magnitude reduction in wall-time. To un-
erstand why, we need to discuss the parallelization strategies
vailable. 

As discussed in Section 2.9 , we have two available levels of
arallelization: combining independent runs and multiprocessing
sing n cores processors. For the DYNESTY sampler, reductions in
all-time can only be achieved via multiprocessing. This is because

t is not possible to configure a nested sampler to run part of the
ull analysis (i.e. to only produce a small subset of the required
otal number of independent samples). A simple model for the
all-time of the DYNESTY run that agrees with our measured
NRAS 507, 2037–2051 (2021) 
all-time is 

 = 28 h 

(
n 
 

160 × 10 6 

)(
t 
 

10 ms 

)(n cores 

16 

)−1 
, (27) 

here n 
 is the number of likelihood e v aluations (cf. Table 2 ) and
 
 is the approximate per-likelihood e v aluation time for the BBH A
ikelihood. Here, we use 16-core processors: below we will discuss
he potential scaling to larger multiprocessing pools. 

On the other hand, for BILBY-MCMC we can parallelize using
ndependent runs and multiprocessing. We run several independent
uns, each producing 400 independent samples. In an HTC environ-
ent (and assuming access to resources is not limited), these can be

un at the same time so that the total analysis wall time is given by the
all-time of any individual run. Using equation ( 20 ) and perfectly
atching n cores to n temps , 

 ≈ 10 h 

( 

n eff 
samples 

400 

) (
t 
 

10 ms 

)(
ε

0 . 0017 per cent 

)−1 

×
( m 

0 . 75 

)−1 (n cores 

8 

)−1 
, (28) 

here we use the actual efficiency from Table 2 and multiprocessing
peed-up factor from Section 2.9 . Both equations ( 27 ) and ( 28 ) agree
ith the empirically measured values (up to errors expected for
arying access to resources in an HTC environment). 

The net result is that the BILBY-MCMC sampler is less efficient,
ut can be set up to enable a shorter wall time by utilizing
ndependent runs. Some of this inefficiency arises from the sampler
tself, some from the burn-in inefficienc y. F or this configuration, the
urn-in inefficiency (equation 16 ) is a few per cent; further paral-
elization (in terms of more independent runs) would increase this
nefficiency. 

For the DYNESTY sampler, reducing the wall-time can only be
chieved via access to a larger multiprocessing pool. The ability to do
his is restricted by the available hardware: n cores of 8–16 are typical in

ost HTC environments though modern CPUs with up to 128 cores
o exist, which could provide significant speed ups. Beyond this,
assively parallelized nested sampling can leverage multiple CPUs

n an HPC environment: in Smith et al. ( 2020 ), processing pools
ncluding several hundred cores have been used providing two orders
f magnitude of speed up. (We caution that we have not verified the
alidity of equation 27 ) for such massively-parallel environments.)
o we ver, access to such resources requires synchronized usage of a
edicated HPC environment. 
To investigate the potential for bias in the BILBY-MCMC sampler,

n Fig. 5 , we show the results of a parameter-parameter (PP) test
Cook, Gelman & Rubin 2006 ; Talts et al. 2018 ) for BBH systems.
his is an important test, typically it fails when one or more of the
roposal distributions does not respect detailed balance. In this test,
e simulate 100 BBH signals drawn from an astrophysical prior
istribution, analyse each using the BILBY-MCMC sampler, and then
heck the consistency of the reported credible intervals. Specifically,
ig. 5 shows the number of events in a given confidence interval as a
unction of the confidence interval. We find that the BILBY-MCMC
ampler is unbiased at the level probed by this test. 

.4 Fiducial binary neutron star: BNS A 

e simulate a fiducial binary neutron star (BNS) merger using the
MRPhenomPv2 NRTidal waveform (Dietrich, Bernuzzi & Tichy
017 ; Dietrich et al. 2019 ) that includes matter effects from the
wo neutron stars. The simulation parameters of the system, BNS
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Figure 5. A parameter-parameter test for the BILBY-MCMC sampler for 
simulated BBH systems. We plot the fraction of simulated events found 
within the confidence interval (CI) as a function of the C.I. For an unbiased 
sampling from the posterior distribution, lines of this plot are diagonal: we 
add three grey shaded regions showing the 1 σ , 2 σ , and 3 σ quantiles. To 
quantify if the results are consistent with an unbiased sampling, we calculate 
a p -value of the probability that they are unbiased. The p- value for each 
individual parameter is given in the legend and a combined p- value is given 
in the title. Under an unbiased result, we would expect the p- value to be a 
draw from uniform distribution on [0, 1]. Since all individual parameters (and 
the combined result) are greater than 1/15 (a nominal threshold based on the 
number of parameters), we conclude the sampler is unbiased, at least at the 
level probed by 100 simulations. 
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Figure 6. Histograms of selected posteriors from the DYNESTY (blue) and 
BILBY-MCMC (orange) analyses of the fiducial BNS A. Configurations and 
summary statistics are given in Table 2 . Vertical lines mark the edges of 
the 90 per cent credible interval for each sampler and a black dotted lines 
marks the value used to simulate the data. Note that we do not expect the 
posteriors to peak at the simulation values due to the influence of the simulated 
noise and the Bayesian prior. The lar gest JS-diver gence reported across all 
parameters occurs for the inclination, θ JN , abo v e the threshold of 2 mb (see 
Appendix A ). 
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, listed in Table 3 are much lower in mass than that of the
BH systems previously studied. The result of this lower mass is

hat the signal spends a longer duration in the observable band of
he detectors (typically, abo v e 20 Hz). To capture this, we analyse
28 s of data. Necessarily, this results in a significant increase in
he time required to analyse the likelihood and hence o v erall wall-
ime. To mitigate this, we use the Reduced-Order-Quadrature (ROQ) 

ethod (Antil et al. 2012 ; Canizares et al. 2013 , 2015 ; Smith et al.
016 ; Qi & Raymond 2020 ) with the basis provided by Baylor,
mith & Chase ( 2019 ) to decrease the per-likelihood e v aluation
ost. 

The simulated signal has small spin components aligned along 
he angular momentum axis, an arbitrarily selected choice of tidal 
eformability parameters, and nearly equal-mass components. In the 
pecific noise realization used, the network matched-filter S/N is 
18. We analyse the signal using both the DYNESTY and BILBY-
CMC samplers using the configurations described in Table 2 . The 

nalyses are identical to those of the BBH A analysis, except, we
se the IMRPhenomPv2 NRTidal waveform model (through the 
OQ basis), use only distance marginalization, and restrict the spins 

o a low-spin configuration (dimensionless spin magnitude less than 
.05; Abbott et al. 2019 ). 
As with the BBH case, the Bayesian evidence estimates (see 

able 2 for the signal versus noise Bayes factor) disagree. Again, 
e conclude this is due to the known bias in the parallel-tempered

vidence estimate. The posterior distributions from the DYNESTY and 
ILBY-MCMC are statistically identical, except for the inclination 
arameter θ JN . In Fig. 6 , we reproduce histograms for selected 
arameters of typical astrophysical inference visually demonstrating 
he agreement and inclination difference. The cause of the difference 
n inferred inclination is not yet fully understood, but we note 
hat the difference is only marginally abo v e our threshold for
tatistically identical. Comparing individual re-analyses between the 
wo samplers, the difference persists suggesting it is systematic 
nd not a random fluctuation. We note this is an instance where
he posterior is bimodal and speculate this could be a symptom of
he DYNESTY nested sampling failing to fully explore both modes. 
o we ver, the dif ference is suf ficiently small for us to conclude the
nderlying conclusions about the source (i.e. the 90 per cent credible
ntervals) are robust, while the posterior shape is subject to some
ampling error (from one or both samplers). 

Due to the larger S/N of the fiducial BNS, and the increase in
imension of the prior, the efficiency of both the DYNESTY and
ILBY-MCMC samplers is reduced compared to that of the fiducial 
BH. The ratio of efficiencies is also increased: the DYNESTY 

ampler is ∼30 times more efficient in this case. As with the BBH
nalyses, this efficiency does not directly translate into wall-time 
avings due to the different parallelization approaches. However, 
he efficiency is significant. In future work, we aim to impro v e the
hoice of parametrization and proposals to impro v e the efficienc y of
he BILBY-MCMC sampler. 
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 SUMMARY  

e introduce BILBY-MCMC , a parallel-tempered ensemble sampler
ith problem-specific and machine learning based proposals. The
ILBY-MCMC sampler is the first MCMC sampler implemented in

he BILBY (Ashton et al. 2019 ) inference package with demonstrated
erformance for analysing CBC events observed by ground-based
ra vitational-wa ve detectors. We demonstrate, using both compar-
sons to known results and cross-sampler comparisons, that the
osterior samples are unbiased. Compared to the DYNESTY nested
ampling algorithm, BILBY-MCMC suffers a known bias in its
stimation of the Bayesian evidence when the number of parallel-
empered chains, n temps , is small. Increasing n temps reduces the bias,
ut at the cost of posterior-sampling efficiency. We introduce a
ethod to re-sample from the tempered chains, reco v ering some

f this inefficiency, but find it provides little impro v ement for typical
BC inference problems. We conclude that BILBY-MCMC is ideal

or problems in which only the posterior distribution is of interest, but
hat nested sampling approaches should be preferred when evidence
alculations are required. This makes BILBY-MCMC unsuitable for
odel-comparison via a Bayes factor (MacKay 2003 ). Instead, one
ay wish to develop a hyper-model where the model is treated as
 random variable (see e.g. the Reverse Jump Markov Chain Monte
arlo approach described in Cornish & Littenberg 2007 )). 
BILBY-MCMC can be trivially and asynchronously parallelized.

his enables it to be configured to leverage High-Throughput Com-
uting environments to reduce the wall-time. That the parallelization
s asynchronous makes it ideal for utilizing non-interacting dis-
ributed computing such as the Open Science Grid (Pordes et al. 2007 ;
filigoi et al. 2009 ). By comparison, nested sampling approaches
an be parallelized solely through the use of multiprocessing. Smith
t al. ( 2020 ) demonstrated massive scaling of the DYNESTY (Speagle
020 ) sampler to many hundreds of cores; BILBY-MCMC cannot
imilarly be scaled due to the fundamental limit of the burn-in
nef ficiency. Ho we ver, the Smith et al. ( 2020 ) approach requires
ynchronized access to a High-Performance Computing environment
n which the communication times between cores is rapid. 

BILBY-MCMC provides the user access to a modular library of
roposal distributions that can be chained together. The choice
f parametrization and proposals has a significant effect on the
fficiency of the sampler. We anticipate further development in both
hese aspects will impro v e the sampler efficiency resulting in reduced
all-time. Users adapting BILBY-MCMC to other astrophysical infer-

nce problems can define their own sets of proposal distributions and
asily implement new problem-specific proposals by sub-classing the
xisting software. 
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PPENDIX  A:  THE  JS-DIVERGENCE  CRITERIA  

s described in Romero-Shaw et al. ( 2020 ), we use the 1D JSD
maximized o v er all dimensions) to quantify the agreement between
ets of posterior samples. In that work, a threshold of 2 mb was
stablished for the maximum JSD 

4 : Abo v e this value, the differences
etween posteriors where deemed statistically significant. Here, we 
xtend that analysis. We simulate pairs of posterior samples from 

he 15D unimodal Gaussian distribution (cf. Section 3.3 ) varying the
umber of samples drawn in each case. We find a strong correlation
etween the number of samples and the inverse of the maximum JSD
Fig. A1 ). This demonstrates that, while appropriate for sample sizes

igure A1. The maximum JSD for 1000 pairs of posteriors drawn form a 15D
nimodal Gaussian distribution. We vary the number of samples drawn in each
imulation. The horizontal grey line indicates the 2-mb threshold established 
n Romero-Shaw et al. ( 2020 ). The purple curve is the new threshold given
n equation ( A1 ). 

f a few thousand, the original threshold is o v erly conserv ati ve for
mall samples sized and too liberal for larger sample sizes. 

To better capture the correlations observed in the simulated data, 
e introduce a new threshold: 

aximum JSD ≤ 10 

n eff 
samples 

. (A1) 

his threshold is demonstrated in Fig. A1 as the purple shaded region.
For the simulated 15-D system, we see maximum JSD values as

arge as equation ( A1 ) a few times in the 1000 simulations. This
hreshold falsely identifies statistical differences between the sets of 
osterior samples in our simulation as a rate of ∼0 . 1 per cent . In this
ense, it can be used as a conserv ati ve bound: If the maximum JSD
etween samplers is found to be larger than the prediction of equation
 A1 ), this highlights an area of concern warranting further study. 

We note that a better fit to the lower bound on the inverse maximum
SD could be found (e.g. by a probability-of-failure based rule), but
quation ( A1 ) is easy to remember and hence provides a good rule
f thumb. 

 The maximum o v er the set of sampled parameters. 
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