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ABSTRACT

In this paper, we describe Mobile CoWPI, a deployable, end-to-end
secure mobile group messaging application with proofs of security.
Mobile CoWPI allows dynamic groups of users to participate in,
join, and leave private, authenticated conversations without requir-
ing the participants to be simultaneously online or maintain reliable
network connectivity. We identify the limitations of mobile mes-
saging and how they affect conversational integrity and deniability.
We define strong models of these security properties, prove that
Mobile CoWPI satisfies these properties, and argue that no protocol
that satisfies these properties can be more scalable than Mobile
CoWPI. We also describe an implementation of Mobile CoWPI and
show through experiments that it is suitable for use in real-world
messaging conditions.
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1 INTRODUCTION

Texting and social media-based messaging applications have be-
come nearly as common as face-to-face communications for con-
versation between individuals and groups. The popularity of these
messaging applications stems in part from their convenience, al-
lowing users to communicate even in a mobile and asynchronous
setting, where their network availability may be unreliable and
they may come online and go offline at different times. In response
to increasing privacy concerns, some of the most widely deployed
messaging applications, including WhatsApp [29], Google Allo [19],
Facebook [18], and Signal [27], have been deploying end-to-end
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encryption to protect the confidentiality and integrity of messages
in users’ conversations.

However, message confidentiality and integrity are not sufficient
to protect a conversation. While current applications protect the
integrity of individual messages — an adversary cannot modify a
message while in transit from Alice to Bob — they do not protect
the integrity of the conversation. Consider the following conversa-
tion between Alice and Bob, in which the order that messages are
displayed can drastically affect the meaning of the conversation,
even if the individual messages cannot be modified:

Alice’s View:

Alice: Are you going to the protests?
Alice: Have you had lunch yet?
Bob: No... Yes.

Bob’s View:

Alice: Have you had lunch yet?
Alice: Are you going to the protests?
Bob: No... Yes.

We refer to the security property that a conversation must be
displayed consistently to all participants as conversation integrity.
This is an example of an additional security property we deem
necessary for any future protocols to achieve end-to-end secure
messaging.

Another property provided by some end-to-end encryption pro-
tocols is deniability. Consider the following conversation:

Reporter: What is your company doing illegally?
Whistleblower: They are dumping poison into the water.

Message deniability guarantees there is no cryptographic proof to
a third party that the whistleblower authored the message. Now
consider the following conversation:

Whistleblower: My SSN is 123-45-6789.
Reporter: What is your company doing illegally?
Whistleblower: They are dumping poison into the water.

A protocol that provides message deniability allows the whistle-
blower to argue that they did not author the messages. But only
the whistleblower knows their social security number so a proto-
col must also provide message unlinkability, guaranteeing there is
no cryptographic proof to a third party that both messages were
authored by the same participant.

Finally, most deployed secure messaging applications are based
on the Signal two-party protocol, which is non-trivial to extend to
group settings. Recently, multiple vulnerabilities [23, 25] have been
discovered in the way these applications implement end-to-end se-
cure messaging for groups. These vulnerabilities allow an adversary
to drop or reorder messages in two-party and group conversations.
Other messaging applications ignore end-to-end security of group
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conversations entirely. We consider group conversations just as im-
portant as two-party conversations and future deployable protocols
must be designed with that in mind.

On the other hand, secure messaging protocols appearing in
the research literature [6, 8, 10, 16, 26] make assumptions that do
not fit the modern mobile internet which makes them unrealistic
for practical mobile deployments. Most of these works require
synchronous communication, and provide little to no guarantees
about conversation integrity. Moreover, many of these protocols
provide deniability but not unlinkability.

Another related effort is the recent IETF Working Group on Mes-
sage Layer Security (MLS) [4, 21]. MLS is focused on improving the
scalability of end-to-end encryption to support thousands of users
while explicitly not supporting conversation integrity or deniability.
While this is one possible tradeoff, we argue that it is equally useful
to support stronger security properties for smaller groups of people
who can mutually authenticate each other.

In this paper we address the problem of designing a deploy-
able, end-to-end secure mobile group messaging application. Our
contributions include:

e We identify key constraints of the mobile end-to-end secure
messaging model as well as describe the security properties a
protocol should provide. We also identify a real-world threat
model a protocol must provide these properties under (Sec-
tion 2).

o We describe a relatively simple and provably secure protocol
for Mobile Conversations With Privacy and Integrity (Mo-
bile CoWPI) in Section 9. We show in Section 4 that Mobile
CoWPI provides the desired security properties.

e We then analyze the security properties of our mobile mes-
saging model and show the restrictions they impose on any
mobile end-to-end secure messaging protocol (Section 6). We
argue that under these restrictions, Mobile CoWPI is within
a constant factor of optimal in terms of message size.

e We implement Mobile CoWPI as a Java server and library
and show that it performs well in a realistic internet en-
vironment (Section 5) deployed on Amazon AWS[3] and
Linode [15] with both desktop and Android [1] clients.

2 BACKGROUND

In this section we lay out the system model of modern secure
messaging applications and show how this model is insufficient to
provide conversation integrity. We then detail our system model and
discuss how it enforces conversation integrity. We also overview
our strong threat model along with all of the security properties
we provide in our protocol.

2.1 Mobile Messaging Model

All popular mobile messaging applications provide the same core
features using a consistent system model. The key feature is provid-
ing a conversation for two or more participants. These applications
allow participants to start a new conversation, send messages, and
add or remove participants from a conversation even while other
participants are offline. When the offline participants return they
are updated with all missed messages in the conversation. To im-
prove conversation flow with offline participants the members of
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the conversation are notified when other participants have received
the messages. This informs the author of a message not to expect a
response until the recipients have received the message.

To provide these conversation properties the service provider
handles routing and caching messages in the conversation. The
messages are cached for delivery to offline participants. All popular
secure messaging applications rely on a single service provider to
perform the message routing and caching.

Unfortunately, if the server providing this service to a partic-
ular conversation is compromised, it can break the conversation
integrity property! of any protocol that allows a conversation to
progress while some participants are offline. The service provider
simply needs to “fork” the conversation (into two separate sub-
conversations) after a target message and can partition the group
into multiple views of the same conversation. We illustrate this with
an example. Consider a conversation between Alice, Bob, Charlie,
and Dave. The service provider forks the conversation after Alice’s
second message. The group is partitioned into two views, one where
Alice and Bob believe they are the only participants online and the
other where Charlie and Dave believe they are the only participants
online.

Alice’s and Bob’s View:

Alice: Lets go to the protest if 3 people want to?
Alice: I want to go.
Bob: I cannot make it.

Charlie’s and Dave’s View:

Alice: Lets go to the protest if 3 people want to?
Alice: I want to go.

Charlie: I am in.

Dave: Yes, me too.

2.2 Multi-providers for conversation integrity

To avoid this conversation integrity attack the system model of
Mobile CoWPI consists of a routing/caching service provider with
multiple order-enforcing-service (OES) providers. In this model,
users register and communicate directly only with the routing
service provider. However, when sending the i‘" message in a
conversation, the user uploads it to the routing service provider,
who forwards the message to each OES, receiving a confirmation
binding the message to index i. Since service providers should
only confirm a single message at each index i, if users only accept
messages confirmed by all OES providers, the protocol can ensure
that messages are handled in an order that preserves the integrity
of the conversation if at least one provider is honest. In this “any
trust” model we believe a single routing provider and two OES
providers are sufficient to provide practical conversation integrity;
we discuss some limitations of this model in Section 6.

2.3 Service Availability

Service availability is not a security goal of Mobile CoWPI. When
discussing the protocol we describe multiple service providers. We
do not necessarily expect each service to be provided by a single
machine, but require each service to be provided by a separate

!Informally, that all participants should have the same view of a conversation.



Session 2: Secure Communication

entity. Standard techniques for achieving high availability can be
deployed to ensure the service is reliably available.

Denial of Service protection is also a non-goal of Mobile CoWPI.
It is trivial for a service provider to deny service to a client by not
processing or forwarding messages. It is possible for a malicious
provider to behave incorrectly and send malformed or incorrect
messages to a client and cause a denial of service. This is equivalent
to not sending the messages at all. All messaging applications that
rely on a service provider are vulnerable to this type of denial of ser-
vice. Additionally, if any participants are offline or cannot process
a message, all other participants can still progress the conversation.
They are not blocked on the offline/denial of serviced participants.

2.4 Threat Model

The security provided by Mobile CoWPI needs to withstand strong
adversaries. We consider an adversary that may compromise mul-
tiple service providers and multiple users. The adversary also has
full network control and may drop, modify, reorder, and add net-
work traffic. In effect the adversary can control the routing service
provider and all OES providers as well as any number of partici-
pants, unless it would trivially allow the adversary to compromise
a target security property. This strong threat model is consistent
with modern secure messaging threat models.

2.5 Security Properties

Besides the system goals of offline users and message receipts we
now informally discuss the security goals of secure mobile mes-
saging. Unger et. al. [28] provide a comparison of security goals
of different secure messaging applications. We relate our security
goals to the goals of their work where appropriate. In Section 4
we provide sketches of the security proofs for these properties and
provide both the formal definitions of these properties and the full
proofs that Mobile CoWPI achieves these properties in Appendix A.
Message Confidentiality is the property that only conversation
participants can read a message. More formally, an adversary that
does not control a participant in the conversation cannot learn the
plaintext of a message. There are two additional properties related
to message confidentiality which limit the window of compromised
messages even if an adversary is able to compromise any or all
participants.

Forward Secrecy is similar to message confidentiality but intro-
duces the concept of key ratcheting. After users have ratcheted
their key material all messages sent prior to the key ratchet are
confidential even if the adversary is able to reveal the long-term
and session state information of any or all participants after the
key ratchet.

Post-Compromise Secrecy is similar to message confidentiality
but introduces the concept of key healing. If an adversary is allowed
to reveal the long-term and session state of any or all of the users
in a conversation, after the key healing, all future message remain
confidential. The forward and post-compromise secrecy properties
bound the window of exposure of any key compromise to a limited
period.

Message Authentication is the security property that all partici-
pants can verify the author of a message and that a message has not
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been modified in transit. Message authentication implies message
integrity.

Participant Authentication is the property that all honest partic-
ipants can verify all other honest participants are really who they
claim to be. Participant verification transfers between conversa-
tions. This is commonly accomplished by verifying long-term key
fingerprints in person.

Conversation Integrity is the property that all participants see
the same conversation. This includes the order of messages in a
conversation and the order of participant changes in a conversation.
As we showed earlier, conversation integrity cannot be achieved if
the adversary controls all of the routing and OES providers. Thus,
the adversary is allowed to control all but one of the OES providers.
In relation to Unger et. al. this goal implies speaker consistency,
causality preservation, and a global transcript.

Additionally, we consider post-compromise conversation in-
tegrity which introduces key healing. A protocol provides post-
compromise conversation integrity if after a key healing process,
the conversation integrity of future message is not compromised
by an adversary that may have revealed the long-term and session
state of users or OES providers.

Participant Consistency guarantees all participants of a conver-
sation agree on the set of all participants in the conversation. In
Mobile CoWP], setup and participant change messages are handled
in the same manner as conversation messages. Thus, conversation
integrity implies participant consistency.

Deniability is the property that participants may deny taking part
in a conversation. Unger et al. refer to this as participant repudiation.
They also discuss two additional deniability properties: message
repudiation and message unlinkability. Message repudiation allows
participants to deny sending a message and is implied by partic-
ipant repudiation. Message unlinkability is the property that if a
distinguisher can be convinced a user authored one message, this
should not prove the authorship of any other message.

3 DESIGN

3.1 Overview

At a high level Mobile CoWPI is designed as follows. Users register
with the routing service provider out-of-band. This registration
links a user identity, a long-term public key, and multiple single
use pre-keys. When messages are sent as part of a conversation
they are uploaded to the routing provider. The routing service
then forwards the message to all of the OES providers, each OES
returns a confirmation binding the message to its index in the
conversation. The routing server then delivers the message and
OES confirmations to the clients. The participants do not process a
message until it has been received from the routing service provider
and has an order confirmation from all of the OES providers. As
long as a single OES provider is honest conversation integrity and
participant consistency are enforced.

There are 4 types of protocol messages in Mobile CoWPIL; setup,
conversation, participant update, and receipt. Setup messages are
used to instantiate a new Mobile CoWPI session and are detailed
in Section 3.7. Conversation messages contain a message to be dis-
played to the participants of the session, detailed in Section 3.9.
Participant Update message allow adding and removing participants
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from a conversation, detailed in Section 3.10. Finally, Receipt mes-
sages indicate a participant has received, accepted, and processed
all prior messages, detailed in Section 3.8.

For a conversation between Alice, Bob, and Charlie. All messages
sent by Alice are of the form:

Sid, “TYPE”, Alice, idx, P, cap, Cac, authgs, , . . ., authgs,,

All messages received by Bob from Alice will be of the form:

Sid, “TYPE”, Alice, idx, P, cqp, authyg, , . . ., authp

Where Sid is the session identifier, idx is the index of the mes-
sage, cqx 1s a pairwise ciphertext block between Alice and each
participant detailed in Section 3.5 and authgs,, authy, are pair-
wise authentication blocks between Alice or Bob and each OES
provider detailed in Section 3.6. Sending a message is linear in the
number of participants plus the number of OES providers, while
receiving a message is constant in the number of participants and
linear only in the number of OES providers. This linear size does not
limit the scalability of the Mobile CoWPI as Snapchat’s end-to-end
encrypted snaps are also linear in size and more than a Billion are
sent a day [24].

3.2 Message Order

To enforce conversation integrity there are seven rules to message
ordering.

(1) An OES confirmation must be received from every OES
provider for a protocol message before processing the mes-
sage. The protocol messages must also be processed in the
order they are received and confirmed.

(2) All conversations start with a setup message.

(3) When Alice sends a receipt, it must acknowledge all setup,
conversation, and participant update messages prior to the
receipt that she has not yet acknowledged. Typically they
are sent shortly after every message is received.

(4) Prior to Alice sending a conversation or participant update
message, Alice must have sent a receipt.

(5) When Alice sends a receipt, she acknowledges messages
with every participant separately. If Bob has just joined the
conversation she only acknowledges the messages that she
and Bob have in common.

(6) When Alice sends a conversation or participant update mes-
sage, she must acknowledge the most recent prior setup,
conversation or participant update message. She must also
acknowledge all receipts received after that prior message
in order.

(7) If Alice receives an invalid protocol message from the routing
server she terminates the conversation on her client and does
not process any future messages.

Rule (1) implies that even the author of a message must wait until
they have received confirmation of the message order from all
OES providers before processing it. Otherwise, if two users sent a
message at the same time, both users would think their message
would come first, causing an order inconsistency.

Rule (6) implies strong ordering of setup, conversation, and par-
ticipant update messages but not receipts. This was a design choice
as requiring receipts to acknowledge receipts would cause signifi-
cant overhead and excess network traffic when every client sends
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a receipt at the same time, forcing n — 1 receipts to be outdated and
resent.

Rules (3) and (4) restrict the amount of time a message is vul-
nerable if the keys used to encrypt it are compromised. We discuss
this more as it relates to forward and post-compromise secrecy in
Section 4.

3.3 Primitives

We assume standard cryptographic primitives. Let [ be the security
level in bits of Mobile CoWPI. All primitives are assumed to provide
at least [ bits of security. Let G be a group of prime order p generated
by g where the decisional Diffie-Hellman assumption is hard.

We assume a hash function and three key derivation functions:

H:{O,l}lXZpl—)Z;

KDF; : SXGXGXGXUxU  {0,1}}
KDF, : {0,1}} — {0,1}}
KDF3:GXxGxGxUxU — {0,1}}

Where H and KDF; are used for two-party NAXOS [14] key agree-
ments, KDF is used to produce a random symmetric key from an
input string, and KDFj3 is used for the secure channel between the
clients and routing service provider. S is the set of possible session
identifiers and U is the set of possible participant identifiers. That
is, KDF; takes as input a session identifier, three group elements
and two user identities, the sender and receiver. These functions
are modeled as random oracles. We choose NAXOS as it has the
property that to distinguish between a random key and a NAXOS
key the distinguisher must know both the long-term and ephemeral
secret keys of one of the participants. KDF; is a minor modifica-
tion of the NAXOS KDF that also includes the session identifier of
the current Mobile CoWPI session, where as, KDF3 is the original
NAXOS key agreement.

We assume a symmetric authenticated encryption with associ-

ated data (AEAD) scheme. AEAD consists of two functions, Ency (m, d) +—

¢, and Dec(c,d) — m, or L if c and d do not authenticate with key
k. The AEAD scheme must provide indistinguishable from random
chosen-plaintext-attack security (IND$ — CPA) [22] and integrity
of ciphertext security (INT — CTXT) [5]. We choose AES-GCM
with random IVs for our AEAD scheme.

3.4 Registration

To register with the providers Alice generates a long-term public
private key pair:

Iskg «—Rr Z;, Ipkq « g'ska

She also generates a list of ephemeral pre-keys where i is the id of
the pre-key:

eska[i] R {O,l}l, epka[l] - gH(eSku[i],lska)

Alice registers her identity, public long-term key Ipk, and public
ephemeral pre-keys epk, with the providers out-of-band. Alice
should generate enough pre-keys to support as many conversations
as she expects to start while she is offline. She can always upload
new pre-keys in the future. Each pre-key may only be used once.
The participants must enforce this rule.
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3.5 Two Party Ciphertext Blocks

All protocol messages contain pairwise ciphertext blocks c,j;, where
a is the sender and b is the receiving participant. These blocks are
used to send additional key information and authenticate the proto-
col message. They are computed using a simple key ratchet where
the initial block uses a pre-key to perform a NAXOS authenticated
key agreement and then utilizes AEAD to encrypt and authenti-
cate the message. All subsequent blocks after the initial block use
ephemeral keys sent in the previous block to derive a new NAXOS
key and then encrypt with AEAD as in the initial block. In this
section we describe how to compute these ciphertext blocks in
terms of Alice sending to Bob.

Here we describe how Alice computes the initial ciphertext block
cap to send to Bob in session Sid. This ciphertext block encrypts
message m and authenticates associated data d. m is only used when
sending conversation messages, in which case it is random sym-
metric key material. When sending setup, receipt, and participant
update message m is empty.

First, Alice fetches Bob’s long-term public key Ipkj, and an ephemeral

pre-key epkj, from the routing service provider where idp, is the id
of epky,. Alice generates a new ephemeral key:

eskqp — {0, 1}, epkgp, — g (¢skav:Ipka)

Then Alice computes a symmetric key:

. Isk,
kiy « epkbs

kiy « Ipky (PRavIska)

. H(epkap,lskq
kiz — epk, (epkas )

k « KDF,(Sid, kiy, kiz, ki3, a, b)
Alice generates her next ephemeral key pair:
id, 1
eskl;, <R Zp
epk!,  gH(eskuplska)
She computes the ciphertext block as:
Cap ¢ epkap, idy, Enci((m, id),, epk! ), d)

When Bob receives c,p, = epk,p, idp, ¢ from the providers he
first fetches Alice’s long-term public key Ipk, and looks up the
ephemeral secret key esk;, associated with idj, and computes the
symmetric key as:

kiy — lpk(Il-I(eskb,lskb)
lSkb

ab

. H(epkb,lskl,)
kiz «— epkab

k «— KDF;(Sid, ki1, kiz, ki3, a, b)

kiy <« epk

Then he verifies ¢ and d with k and decrypts:
(m,id],,epk’,) < Deci(c,d)

and stores id/, and epk’, for latter use. Note that the implicit
authentication of NAXOS key exchange authenticates that the mes-
sage originated from someone with knowledge of Alice’s long-term
secret key.
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All subsequent ciphertext blocks are generated and processed
in the same manner as the initial ciphertext block replacing the
pre-keys with the ephemeral keys received in the previous block.
This key ratcheting provides the self healing necessary for forward
and post-compromise secrecy. The users do not send the ephemeral
public keys in the clear in subsequent ciphertext blocks. That is the
ciphertext block has the form:

Cqp  idy, Encpo((m,id))) , epk’,), d)

Alice and Bob may try to initialize the two-party key ratchet at
the same time. If this happens the providers will enforce an order
to the messages and future ciphertext blocks should use the most
recently initialized key ratchet.

These ciphertext blocks are what provide message integrity and
authentication. This is due to the NAXOS key agreement implicitly
authenticating the symmetric keys.

3.6 OES Authentication Block

Every protocol message that Alice sends contains an OES authenti-
cation block authg; for every OES provider j € S where S is the set
of OES providers. The authentication blocks are necessary since
Alice only uploads the message to the routing service provider. The
routing service provider then forwards the message to the OES
providers. The authentication blocks allow the OES providers to
verify that the message is from Alice and for Alice to verify the
index a message she receives.

These OES authentication blocks are generated and handled in
the same way as the two-party ciphertext blocks discussed ear-
lier. The key ratcheting provides self healing for post-compromise
conversation integrity.

3.7 Setup Message

All conversation messages are similar in format. For Alice to setup
a conversation she first fetches ephemeral pre-keys for every other
particpant and each OES provider. Then she generates a random
Sid and computes the setup message:

datay < Sid, Alice, “SETUP”, idx, P

where idx is the index of the message in the session. For setup
messages the index is always 0. Next, Alice computes the two party
ciphertext block cq; for every participant i € P\{Alice} as described
in Section 3.5, where datay is the associated data to authenticate in
those ciphertext blocks. Let n = |P| and :

datay « datag, cqp, .. .,Can—1

Next, Alice computes the OES authentication block auth,; for every
OES provider j € S as described in Section 3.6 where data; is the
associated data to authenticate.

Alice then sends to the routing service provider:

datay, authgy, . . ., authgs

where s = |S].

The routing provider sends to each OES provider j the message
datay, authgj along with an ephemeral pre-key for every partici-
pant except for Alice. Each OES provider verifies the message data;
is from Alice. Then every provider for every participant i € P gen-
erates an authj; as described in Section 3.6 with datay, c4;i as the
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associated data. Each OES provider then returns all of the authj.
blocks back to the routing service.

The routing service forwards datag, cgj, auths; to every user
i € P. Every user verifies the auth.; blocks for every OES provider
and that that datag, cq; is from Alice. The routing service only send
datay, auth.q to Alice as there is not a ciphertext block for herself.

Once a participant has received the setup message along with
an OES authentication block from the routing service provider and
verified the message, they setup a new Mobile CoWPI session with
session identifier Sid. All providers must verify Sid is not used for
any existing session before processing the message.

3.8 Receipt Message

Participants send receipts after they have accepted any setup, con-
versation, or participant update message. If multiple messages are
sent while Alice is offline she sends a single receipt that acknowl-
edges all messages m; with participant i € P\{Alice}. The messages
to acknowledge depend on the participant they are being acknowl-
edged to. m; is composed of all protocol message, excluding receipts
more recent than the last setup, conversation, or participant update
message, that have not been acknowledge previously and have been
sent after participant i has been added to the conversation. This
is because i cannot acknowledge messages they have not seen. m;
should be a list of all datag blocks from the messages to acknowl-
edge in order.

A receipt is similar to a setup message. When Alice generates a
receipt for messages she computes:

datay « Sid, Alice, “RCPT”, pidx

where pidx is the index of the previous setup, conversation, or
participant update message. Then she computes the two party ci-
phertext block cg4; for every participant i € P {Alice} as detailed in
Section 3.5 with the associated data to authenticated as datag, m;.
Let

datay < datag, cqo, - .., Can-1

She then computes the OES authentication blocks as detailed in
Section 3.6 with the associated data as data;. Finally, she sends
data; and the authentication blocks to the routing provider.

The routing service provender and OES providers handle the
message in the same way as a setup message detailed earlier. Except
this the routing server sends the index of the receipt (idx) to the OES
providers. They verify that pidx and idx are correct and generate
the OES block for user i with datayg, cq4i, idx as the associated data.

When a participant receives a receipt they first verify the OES
authentication blocks then verify that the receipt authenticates the
correct messages. If anything does not verify, they terminate the
session.

3.9 Conversation Message

Conversation messages are similar to receipts except they contain
a ciphertext. Let idx be the index of the next message in the session
Sid. When Alice wants to send the conversation message m. She
first generates a random symmetric key input k, «g {0, 1}! then
computes the symmetric key k «<— KDF,(k,). Let

datay « Sid, Alice, “MSG”, idx, Encj.(m)
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She then generates the ciphertext block c,; for every i € P\ {Alice}
as detailed in Section 3.5 with k, as the data to encrypt in the
ciphertext block and datay as the associated data. Let

datay « datag, cq0, . .., Can—-1

She then computes the OES authentication blocks as detailed in
Section 3.6 with the associated data as dataj. Finally, she sends
data; and the authentication blocks to the routing provider.

The routing service and OES providers handle the message in the
same manner as receipt messages, verifying the OES authentication
blocks and index. After receiving the message, each participant
verifies the OES authentication blocks and index and displays the
message. If the message does not verify the session is terminated.

3.10 Participant Update Message

To change the set of participants in a conversation a member of
the conversation can send a participant update message. Who is
allowed to send the messages as well as what modifications they are
allowed to make are out-of-scope of this paper. However, participant
modifications must be enforceable by the providers since they need
to forward and authenticate messages.

Participant update messages are similar to conversation mes-
sages except that the conversation message ciphertext is replaced
with a list of participants. Again let idx be index of the next message
in session Sid. When Alice wishes to change the participants of a
conversation to P’ she creates a message:

datay « Sid, Alice, “UPDT”, idx, P’

She then creates the ciphertext block cg; for participant i € (PUP’)\
{Alice} as described in Section 3.5 where datay is the associated
data for the ciphertext blocks. Let

datay « datag, cqo, .. .,Can—1

Alice then creates the provider authentication block auth,; for
provider j € S as detailed in Section 3.6 with datay as the associated
data. She uploads data; along with the provider authentication
blocks to the routing provider.

The routing services and OES providers handle the update mes-
sage in the same way as a setup message. Each provider checks
that Alice is allowed to make the desired group modification and
verifies the index is correct. Each participant verifies the messages
is authentic from Alice and updates their participant list after they
have received the message from every provider. If the message does
not verify the session is terminated.

This message authenticates the group change to all old and new
participants which leaks any new participants to participants that
have been removed. To avoid this leakage it is up to the implemen-
tation to send a separate group update message removing users
before sending a message adding the new users.

3.11 Two Party Channels

All communication between the clients, OES providers, and the
routing service is performed over a two-party channel that sup-
plies all of the security properties discussed in Section 2. The OES
providers act as clients when communicating with the routing
provider. This is a synchronous channel that is setup by performing
a NAXOS key agreement to provide authentication to the channel.
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Then all messages are secured by using a NAXOS key agreement
with keys being ratcheted on every message to provide forward
and post-compromise secrecy.

Algorithm 1 Client To Provider Channel Setup

1: function C2SCHANNELSETUP(C, S, Ipks, Iskc)
2 eskc[0] «—Rr Z3, epkc[0] — gH(eSkc[O]’lSkc)
3 SEND(S, C, epk.[0])

4 epks[0], c1 « ReCv(S)

kmy — lpkg-l(eskc[()],lskc)

kmy «— epks[O]ISk"

kms epks[O]H(eSk"[o]’lSk")

k1 « KDFs(kmy, kmg, kms, S, C)

t,epks[1] « Decy (c1)

10: eskc[1] <R Z3, epkc[1] «— gH(eSkC[l]’lSkC)
11 kmg — epkg[1]'ske

H(eskc[0],lsk¢)

12: km5 — lpks
13: kme — epks[l]H<eSk"[0]’lSkC)

14: ko « KDF3(kmg, kms, kmg, C,S)
15: co = Ency, (t, epkc[1])

16: SEND(S, co)

17: return esk., epks
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Algorithm 2 Provider To Client Channel Setup

1: function S2CCHANNELSETUP(S, C, Isks)
2 C, epkc[0] « Recv(C)

3 Ipk. «LookuPUser(C)

4 esks[0] — 0,1, epks[0] «— gH(eSksloj’lSks)
5 esks[1] « Z;,epks[l] — gesksl]

6: kmi « eka[O]lSkS

7: kmz — lpk({_I(ESks[o],lSks)
H(esks[0],1sks)

8: kms « epk.[0]
9: k1 — KDFg(kml,kmg,km3,5, C)
10: ts «—g {0,1}!

11: c1 « Ency (ts, epks[1))

12: SEND(C, epks[0], c1)

13: c2 « Recv(C)
14: kmg — lpkf(”kS[l]’lSks)

15: kms «— epkc[O]lSks

16: kmg «— epkc[O]H(esks[l],lskS)

17: k3 « KDF3(kmgy, kms, kmg, C, S)
18: te,epke[1] < Decy,(c1)

19: if ty = t. then

20: return (C, esks, epkc)
21: else
22: return L

Algorithm 1 details the algorithm for setting up the channel from
the initiator. Line 2 generates the clients first ephemeral NAXOS
keys. Lines 3 sends the clients identity and NAXOS ephemeral pub-
lic key to the provider. Line 4 receives the provider’s response and
line 5-9 compute the shared NAXOS key and decrypt the provider’s
next ephemeral public key and a challenge. Line 10 generates the
clients next ephemeral keys. Finally, Lines 11-16 ratchets the chan-
nel keys and sends the challenge back encrypted.

Algorithm 2 details setting up the channel from the provider.
Lines 2 receives the clients identity and NAXOS ephemeral public
key. Line 3 looks up the long-term public key of the client. Lines
4-5 compute the next two ephemeral NAXOS keys of the provider.
Line 6-8 compute the NAXOS shared key. Lines 9-12 encrypt the
challenge and the providers next ephemeral DH key and send it to
the client. Lines 13-22 decrypt the clients response and check that
the client’s response matches the challenge, storing the clients next
ephemeral key.

Algorithm 3 details how a message is sent using the two-party
channel. Lines 2-3 find the id of the senders last sent ephemeral
DH key and the receivers last seen ephemeral public key. Line 4
computes the shared secret from the two keys and line 5 generates
the senders next ephemeral DH keys. Line 6 encrypts the message
and the next ephemeral public key. Finally, line 7 sends the en-
crypted message along with the id of the receivers public key used
to encrypt it.

Algorithm 4 details receiving a message from the channel. Line
2 finds the id of the sender’s last ephemeral public key. Line 3
reads the id of the receiver’s ephemeral key used to encrypt the
message and the ciphertext. Line 4 computes the shared key and
line 5 decrypts the message and the senders next ephemeral public
key.
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Algorithm 3 Channel Send

1: function SECURESEND(S, R, m, Isks, esks, Ipky, epky)
2 ng < |esky|

% np e lepk|

4 kmy « epk,[n, — 1]!sks

5 kmy «— Ipk,[n, — l]H(eskS[nS—lj,lsks)

6 kms «— epkr[nr _ 1]H(esks[ns—lj,lsks)

7 k <« KDFs(km1, kmy, kms, S, R)

8 esks[ns] « Z;,epks[ns] — g“ks["sl
9 ¢ « Ency(m, epks[ns])

10: SEND(R, ny — 1,¢)

11: return (esks, epk;)

Algorithm 4 Channel Receive

1: function SECURERECV(R, S, esk,, epks)
2: ns < |epks]|

3 ny,c «<—Recv(C)

kmy — lpkf(“kr[nr_l]’hkr)

kmy «— epkg[ns — l]lSkV

kmsg «— epks [ns _ l]H(eskr[nr—l],Iskr)
k « KDFs(kmy, kmgy, kms, S, R)

m, epks[ns] < Decy(c)

return (esk,, epks)

R A A

3.12 Long-term Key Verification

The ability for Alice to verify that Bob is actually Bob is a chal-
lenging problem in messaging systems. This is enforced in Mobile
CoWPI by verifying the real Bob knows the private key associated
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with the long-term public key Alice retrieves from the providers.
Mobile CoWPI does not necessitate a specific mechanism for verify-
ing these keys and identities but some such mechanism is required
to provide participant authentication. In practice key fingerprints
can be compared in person or with an interactive scheme such as
the Socialist Millionaire Protocol (SMP) as applied by Alexander
and Goldberg [2].

4 SECURITY

In this section we discuss the security provided by Mobile CoWPI.
We argue that it provides all of the desired security properties dis-
cussed in Section 2. We provide full proofs in Appendix A. We model
our hash function (H) and key derivation functions (KDF;, KDF5)
as random oracles. We also assume the decisional Diffie-Hellman
problem is hard. We utilize the fact distinguishing between a ran-
dom key and a key generated with the NAXOS key agreement is
hard if the adversary does not know the long-term and ephemeral
secret keys of one of the parties in the key agreement as shown
by the NAXOS authors. We assume our AEAD scheme provides
IND$ — CPA and INT — CTXT security. Finally, we assume all par-
ticipants in a conversation have verified their long-term keys either
manually or with SMP.

4.1 Message Confidentiality

Message confidentiality is the property that only participants of a
conversation can read a message. We provide message confiden-
tiality against a powerful adversary that may corrupt any or all of
the providers, may control any user that is not a participant in the
target conversation, and may reveal the long-term and ephemeral
keys of any participant on any non-target message.

To compromise the confidentiality of a message:

Sid, “MSG”, A, idx, Encg pr,(k,) (M) a1, - - ., authay, . ..

The adversary must be able to distinguish between Encg pr,(,,)(m)
and a random string. If an adversary can make this distinction they
must be able to do one of the following:

(1) Compute a two-party NAXOS key without being one of the
parties allowing them to decrypt one of the ciphertext blocks
¢, and retrieve the key input kg, thus decrypting the m.

(2) Decrypt one of the c. ciphertext blocks without knowing the
symmetric key and learn kg, thus breaking the IND$ — CPA
security of the AEAD scheme.

(3) Distinguish the ciphertext ENCg pF,(k,)(m) from random
without knowing kg, thus breaking the IND$ — CPA security
of the AEAD scheme.

4.2 Message Authentication and Integrity

Message authentication provides the property that when Bob re-
ceives a message from Alice in session Sid, Alice must have sent that
message. Mobile CoOWPI provides message authentication against a
strong adversary that may control any or all of the providers and
any users in any session. As long as Alice and Bob have not had their
long-term keys and ephemeral keys of session Sid compromised,
all messages received by Bob from Alice are authentic.
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For an adversary to forge a message from Alice to Bob the ad-
versary must create a message:

Sid, “MSG”, A, idx, Encgpr,(k,) (M) Cabs - - - » atithqy, . ...

If the adversary can forge the message they must be able to do one
of the following:

(1) Compute a two party NAXOS key without knowing Alice’s
or Bob’s long-term and ephemeral keys, allowing the adver-
sary to create the ciphertext block cp.

(2) Forge a valid ciphertext block c,p, from Alice to Bob without
knowing the symmetric key, thus breaking the INT — CTXT
security of the AEAD scheme.

4.3 Forward Secrecy

Forward secrecy is the property that past messages are confidential
even if future key material is revealed. Mobile CoWPI provides
forward secrecy of a message m after every user i € P has processed
the receipt of every user j € P acknowledging m. Forward secrecy
assumes the same adversary as message confidentiality.

Let P be the set of participants in session Sid and let m, be the
message:

Sid, “MSG”, A, idx, EncKDFz(ku)(m),cal, ...,authgy, ...

be a message sent from user A € P. The adversary cannot distin-
guish Encg pr,(k,)(m) from random after every participant i € P
has processed a receipt from A, acknowledging m,, and A has pro-
cessed a receipt form i acknowledging m,,. First we show that every
ephemeral private key esk;, used to compute ciphertext block cq;
will never be used again and thus can be deleted. Then we show that
without eski, the adversary cannot distinguish Encg pr,(k,)(m)
from random similar to message confidentiality.

The ciphertext block c,; is computed using a’s ephemeral private
key eskq; and i’s ephemeral public key epk;,. In cqi, a distributes
a new ephemeral public key epk/; and can safely delete eskq;, so
all esky; have been deleted after sending my.

Now we show esk;, can be deleted after i has sent a receipt that
acknowledges m, and processed a receipt from a acknowledging
mg. Let the receipt from i be:

ri « Sid, “RCPT”,I,pidx, Ci1,...,authjy,...

Ciphertext block c;, is generated using ephemeral private key
eskiq and ephemeral public key epk’ .. In c;q, i distributes a new
ephemeral public key epk; . Let r, be the receipt from a acknowl-
edging m,. The ephemeral private key esk;, can be deleted after i
processes both r; and r,. Since receipts do not enforce an order, a
may use esk;, when sending r,. After a sends r,; she may only send
a conversation message or group update message, which acknowl-
edges r; and thus uses epklfa. This shows that esk,; and eskj, can
be deleted after a and i process the receipts r, and r;.

After keys have been ratcheted Mobile CoWPI provides the same
message confidentially property as discussed previously.

4.4 Post-Compromise Secrecy

Post-Compromise secrecy is the property that compromising prior
long-term and ephemeral key material does not break the confiden-
tiality of future messages. If Alice’s long-term or ephemeral state
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are revealed, all conversation messages following Alice’s next re-
ceipt provide post-compromise secrecy. Similar to forward secrecy
we need to show that Alice’s compromised ephemeral private keys
are not used in the next conversation message.

Let eskq; be Alice’s compromised ephemeral key used for the
two-party ciphertext block with user i. We show that after Alice’s
next receipt, the following conversation message does not use eskg;.
Let Alice’s receipt be:

rq < Sid, “RCPT”, Alice, pidx, cq1, . . ., authqy, . . .

Recall that the ciphertext block cg; is encrypted with a key gen-
erated from esk,; and contains a new ephemeral key esk/ ;. Let
c/; be the ciphertext block of the conversation message. Since all
messages must acknowledge all prior receipts, ¢;, must use Alice’s
ephemeral key epk/; from her receipt.

Similar to forward secrecy, after keys have been ratcheted Mobile
CoWPI provides message confidentiality as discussed previously.

4.5 Conversation Integrity

Conversation integrity is the property that all honest participant in
a conversation see the same conversation. That is all honest partic-
ipants agree on the order of all setup, conversation, and participant
update messages. Conversation integrity considers an adversary
that controls the network, can compromise all but one OES provider,
and can compromise participants in the conversation. The adver-
sary is not allowed to compromise all the OES providers, otherwise
breaking conversation integrity is trivial, regardless of the protocol.
If all of the providers are compromised the adversary can simply
partition the group.

Consider a conversation between Alice, Bob, and Charlie. After
Alice sets up the conversation the adversary can partition the con-
versation by never forwarding messages from Charlie to Alice or
Bob, and similarly never forwarding any messages, after the setup
message, from Alice or Bob to Charlie. Alice and Bob will believe
Charlie has never come online and continue the conversation, while
Charlie will believe Alice and Bob are always offline and continue
the conversation alone. Thus, at least one provider must be honest.

If at least one provider is honest, to break conversation integrity
the adversary must send a message:

Sid, “MSG”, A, idx, Enck pry(k,)(M)s Cx, - . ., atithy, . ...

where two honest users (Alice and Bob), decrypt different key
inputs values from their respective ciphertext that both decrypt
Encg pF,k+(m) to different valid plaintext. Let ¢, d be arbitrary strings;
then the probability €;,; that Decy(c,d) #L for a random key k
must be negligible, since an adversary can win the INT — CTXT
game by simply submitting c,d as a ciphertext query. This holds
even when ¢ = Ency/(m, d) for some fixed k’. Thus if the adver-
sary makes at most g queries to KDF;, the probability of finding
a k’ = KDF,(k) breaking conversation integrity in this way is at
most g€jns.

If the adversary cannot find a valid ciphertext under two random
keys, to break conversation integrity the adversary must convince
two participants to accept different messages as the i‘" message of
conversation Sid. The honest participants only accept a message
after verifying all the OES authentication blocks bind the message
to the specific index. An honest OES provider will authenticate all
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messages in a consistent order to all participants. The adversary
must be able to forge an OES authentication block for a message
to an honest participant A as if it came from honest OES provider
S. If the adversary can forge such a message, it must be able to do
one of the following:

(1) Compute a two party NAXOS key without knowing A’s or
S’s long-term and ephemeral keys, allowing the adversary
to create the authentication block authgg.

(2) Forge a valid authentication block auths, from S to A with-
out knowing the symmetric key, thus breaking the INT —
CTXT security of the AEAD scheme.

4.6 Participant Consistency

Participant consistency is the property that all users agree on the
set of participants in a conversation. We provide participant con-
sistency under a strong adversarial model. The adversary controls
the network and may compromise all but one OES provider and
any participants. The adversary wins if she can cause two honest
users to have different sets of users for session Sid after processing
a setup or participant update message and not terminating. Since
setup and participant update messages in Mobile CoWPI are part
of the protocol transcript and Mobile CoWPI provides conversation
integrity, Mobile CoWPI also provides participant consistency.

4.7 Deniability

Recall deniability as discussed in Section 2. Deniability is provided
if a single user can run a simulator and produce a simulated tran-
script that is indistinguishable from a transcript of a real protocol
execution. The simulator must only take as input information that
is known to a single user. That is, only a single users view of the
conversation, which is simply a sequence of two-party messages.
The distinguisher is given all of the long-term secret information
and any secret state information of the simulating user. This re-
quires the simulator to also output any state information of the
user.

We now detail the simulator. Let Alice be the party running the
simulator. She acts as all parties in the conversation and behaves
as normal expect when performing NAXOS key agreements. The
NAXOS key agreements are the only part of the Mobile CoWPI
protocol that Alice cannot perform honestly as she does not have
the secret key material of all participants. Their are two cases of
the NAXOS key agreement she needs to simulate:

(1) When she is a participant of the NAXOS key agreement.
(2) When she is not a participant of the NAXOS key agreement.

In the first case let Bob be the other participant. Alice may have a
valid ephemeral public key of the other participant if she is sending
the SETUP message. Otherwise she generates an ephemeral key
epky, for the other participant as a random group element. She then
computes the NAXOS key as she normally would.

If she has a valid ephemeral key for Bob the NAXOS key agree-
ment is a real key agreement. If she generates a random key from
Bob the distinguisher must distinguish between the random key
and a real NAXOS ephemeral key epk;, < g ({0.1}%15ks) Since H
is modeled as a random oracle the distinguisher can only win if it
queries the random oracle on all 2 possible ephemeral secret keys
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with Bob’s long-term secret key. Thus the adversary cannot tell
epky apart from a random group element with less than 2! oracle
queries.

In the second case let Bob and Charlie be the two participants.
Alice will have a valid ephemeral public key for one of them if they
are sending a SETUP message. As before, Alice will generate any
ephemeral keys she does not have as random group elements and
then generates the NAXOS key as a random symmetric key; the
distinguisher cannot tell if the randomly generated ephemeral keys
are real with less than 2! oracle queries. Since the distinguisher
does not know the ephemeral secret key of either party it cannot
distinguish between a random key and a real NAXOS key.

Using these NAXOS simulators, Alice can simulate all parties of a
Mobile CoWPI protocol session and produce a simulated transcript
that is indistinguishable from a real transcript. Thus, Mobile CoWPI
provides message and participant deniability.

4.7.1  Message Unlinkability. Message unlinkability is the property
that proving authorship of any one message does not prove author-
ship of any additional message. This property has not been formally
defined previously. It was first discussed in relation to mpOTR [10],
as mpOTR is considered not to provide message unlinkability. This
is due to mpOTR using the same ephemeral signing key to sign
every message. Thus, the distinguisher having knowledge of the
ephemeral verification key can verify every message sent by a user.
Since Mobile CoWPI does not use signatures and all authentication
material is only used for a single message Mobile CoWPI provides
message unlinkability. In Appendix A, we prove a stronger version
of message unlinkability that provides the distinguisher with a
protocol message from a real transcript but can still not distinguish
the full transcript from a simulated transcript.

5 EVALUATION

We implemented Mobile CoWPI
as a Java server and client library?.
Since all protocol messages can
be processed without interaction
between clients the overhead of
Mobile CoWPI is low. To mea-
sure the run time overhead we de- 50

Send Protocol Message Time
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Time (ms)
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ployed Mobile CoWPI in an inex- B R I e

Group Size

pensive deployment with a rout-
ing service and one OES on an
AWS [3] free tier t2.micro EC2 in-
stance in Ohio and a second OES
hosted on a $5/month Linode [15]
virtual private server located in
New Jersey. Since Mobile CoWPI
uses an any trust model two OES
providers is sufficient. We ran all of the client measurements from
a personal desktop machine over a home internet connection. The
client machine contains an AMD FX 8300 CPU. The network round-
trip-time between the client and the router is  30ms and between
the router and Linode OES is ~ 20ms. The network round trip
of a message is from client to routing server to OES to routing

Figure 1: The wallclock
(25, 50t and 90th per-
centile) and CPU time
to send a protocol mes-
sage.

Zhttps://github.com/mschliep/cowpi
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server then back to the client. This introduces an ~ 50ms latency
for messaging.

We ran the measurements with 2 to 50 participants in a conver-
sation and sent 100 messages for each conversation size. The results
show Mobile CoWPI is practical for real-world deployments.

Figure 1 shows the time in
milliseconds that it takes for a
user to send a protocol message
and receive a protocol message.
This represents the time it takes
to display the message. Figure 2
shows the outgoing message size
in bytes when sending a message. o 1 0 3 40 50

Group Size

All outgoing messages are O(n+s)

in size where n is the number of
participants and s is the number
of OES providers. This is due to
the authentication being pairwise
with all receivers. We discuss why this overhead is necessary in
Section 6. Pairwise ciphertext blocks allow for very little overhead
to receive a message. Conversation and receipt messages are O(s)
while setup and participant update messages must be O(n + s) in
size to distribute the list of participants. The overhead of Mobile
CoWPI for incoming messages is less than 300 bytes.
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Figure 2: Outgoing mes-
sage size in bytes.

5.1 Scalability

We evaluated the scalability of our deployment by measuring the
message throughput and storage costs of our AWS t2.micro routing
server provider and OES provider along with the performance of
our Java implementation on a Motorola G3 [17] Android [1] phone.

Figure 3a shows the time in milliseconds to create a protocol
message on the Android device. Figure 3b shows the maximum
throughput of the router for processing messages from a client and
an OES for each group size. It also shows the maximum throughput
of an OES provider. Figure 3c shows the storage space required
per conversation of each size for both the router and OES. Our
implementation uses a PostgreSQL [11] database which causes the
steps seen in Figure 3c.

Mobile CoWPI can easily scale horizontally by sharding across
multiple servers by the conversation SID. For example, for a router
service provider to support processing 1 Billion messages a day for
groups of size 5 and (10). One t2.micro can support ~ 289(165) mes-
sages per second, it would require 40(66) instances. The t2.micro
instances are priced at $0.0116/ per hour under burstable work-
loads and are charged an addition $0.05 per hour under sustained
high workloads. Thus the cost would range from $11.14($18.38) to
$59.14($97.58) per day.

6 DISCUSSION

In this section we detail the limitations of Mobile CoWPI along
with restrictions enforced by the system model.

6.1 Limitations of Group Key Agreements

The MLS draft protocol scales to larger group sizes than Mobile
CoWPI can support by using a tree-based Group Key Agreement
(GKA) scheme. GKAs provide a mechanism for a group of users to
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vice.

compute a symmetric encryption key, which can then be used to
encrypt a message and authenticate that the message originated
from a member of the group. However, such a scheme by itself does
not provide a mechanism to verify that a message came from a
specific member of the group.

To provide message sender authentication, another authenti-
cation mechanism must be introduced and it must be deniable.
Recently MLS has proposed to use a signature scheme to provide
sender authentication with a tree-based GKA scheme. However, by
its nature a signature on a message is unforgeable and thus not deni-
able. Another possible approach would be to use a multi-designated
verifier signature scheme [13], which provides source hiding signa-
tures that can be validated by anyone and can be generated either
by the author or by the full group of receivers. This would provide
a weaker form of deniability than Mobile CoWPI provides, since
simulation requires the cooperation of all users.

The key challenge is to provide message authenticators that can
be simulated by any subset of the group, but cannot be forged by
any subset of the group. Mobile CoWPI achieves this by using de-
niable pairwise ciphertext blocks to authenticate every message.
While this limits the size of groups that can be supported, in practice
this has not been problematic for existing end-to-end encryption
schemes; for example, both Signal and Snapchat’s end-to-end en-
cryption [24] are linear in the number of receivers and have been
deployed to support billions of messages per day.

6.2 Multiple Providers

Requiring multiple providers for conversation integrity adds dif-
ficulty to deploying Mobile CoOWPL However, if this requirement
cannot be met the conversation integrity property could be mod-
ified to include a time aspect. Most users are expected to only be
offline for short periods of time, for example less than one week. It
is also the case that after Alice receives a receipt from Bob, she can
be confident that Bob’s transcript provides conversation integrity
with her transcript. Thus, if every user sends a receipt after every
message, we can add a time constraint to the conversational in-
tegrity property and warn users after a time limit (e.g. one week) of
not having seen a receipt from every other participant. We chose to
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(c) Provider storage cost per conversation.

require multiple providers for Mobile CoWPI as it provides much
stronger conversation integrity for every message.

6.3 Denial of Service

Mobile CoWPI does not protect against denial of service attacks
from compromised servers: a server can simply not forward conver-
sation messages to a participant. Since the participant must receive
the message from every server, the participant will simply keep
waiting and not make progress. A potential solution to this problem
would be to have multiple servers perform a byzantine agreement
on the messages of a conversation and then participants could pro-
cess a message after receiving it from a majority of servers. This
changes the trust model from a single honest server to a majority of
honest servers and it is not straight forward how this modification
would affect the deniability properties of the conversation.

Mobile CoWPI also does not offer denial of service protection
against a compromised participant. A compromised participant
can send an invalid ciphertext block c. to a victim. The victim
will terminate the session and all non-victims will not know of
the attack. The implementation should warn the user of the attack
allowing them to notify the other participants out-of-band. It may
be possible to mitigate this issue by modifying the ciphertext blocks
to provide zero knowledge proofs of correctness that the servers
can verify. However, we do not know of an efficient mechanism
that would allow for this and also preserve message deniability and
unlinkability.

These denial of service limitations are not unique to Mobile
CoWPL All existing protocols in the literature and in wide deploy-
ment are also vulnerable to denial of service by both the server and
individual participants.

7 RELATED WORK

Off-The-Record (OTR) [6] is the first academic work to look at
providing private instant messaging. OTR provides message con-
fidently, integrity, authentication, repudiation, and unlinkability.
However OTR does not provide participant repudiation or conver-
sation integrity. The main limitation of OTR is it only supports
conversations between two individuals. There is not a straight
forward mechanism to apply OTR in a group setting.
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Multiparty OTR (mpOTR) [10] tries to provide the properties of
OTR for group conversations. At a high level it works as follows.
First, All participants setup pairwise secure channels using a deni-
able authenticated key agreement (DAKE). Then over the secure
channels the participants execute a Group Key Agreement (GKA)
to compute an ephemeral encryption key. The users also distribute
ephemeral verification keys used to sign conversation messages.
The participants also compare a hash of the group information
to enforce participant consistency. When Alice wants to send a
message to the group she encrypts the message with the ephemeral
group key then signs the ciphertext with her ephemeral verification
key. Then broadcasts the ciphertext and signature to all participants
of the conversation. All recipients can verify the signature is from
Alice and decrypt the message. To enforce conversation integrity,
at the end of a conversation the participants execute a byzantine
agreement on a lexographically ordered list of the messages. Even
though mpOTR provides participant repudiation via the DAKE dur-
ing setup it does not provide message unlinkability due to the use
of the verification keys. With knowledge of a verification key a
distinguisher can verify all messages authored by a particular user.
mpOTR also lacks strong conversation integrity since the transcript
consistency is not checked until the conversation has ended and is
only checked on a lexographically order transcript. This requires
mpOTR to operate in the non-mobile model.

Group Off-The-Record (GOTR)[16] utilizes a “hotplugable” Bermister-

Desmedt GKA to provide secure messaging for dynamic groups. To
set up a conversation all the users first set up secure pairwise chan-
nels. Then over those channels the participants execute the GKA.
When sending a message Alice encrypts the message with her send-
ing key generated by the GKA. Then periodically the participants
perform a transcript consistency check to verify all users have seen
the same conversation. The details of the consistency check are not
addressed in the paper. GOTR only works in the synchronous model
as all users must be online to execute the GKA and consistency
checks, making it not suitable for mobile communication.

SYM-GOTR [26] is a recent proposal for synchronous end-to-end
secure group conversations with the same properties as our work.
SYM-GOTR works with existing XMPP servers and a client plugin.
Similar to GOTR, participants first setup pairwise secure channels
between all participants. Then the participants share symmetric
key inputs and verification keys. When Alice sends a message she
first computes a symmetric encryption key by hashing all of the
symmetric key input material from all the other participants and en-
crypts the message. She broadcast the ciphertext to all participants.
After receiving a ciphertext all participants perform a two phase
consistency check of the ciphertext over the pairwise secure chan-
nels. The first phase verifies all users have received the ciphertext
and the second phase identifies any users who have misbehaved.
Modifying the participants of the conversation is as simple as dis-
tributing new symmetric key inputs and verification keys. The main
limitations of SYM-GOTR is that it requires all participants to be
online at the same time and the two phase interactive consistency
check causes additional delay in message processing.

Signal [27] (formerly TextSecure) is the most widely deployed
protocol for secure mobile messaging. However it has only recently
received formal analysis of its security properties [7, 9, 12]. With [23,
25] identifying multiple participant consistency and conversation
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integrity vulnerabilities in two-party and group conversations. We
now quickly describe the group conversation protocol of Signal.
When Alice registers with the Signal server she uploads pre-keys
allowing other users (Bob) to execute an X3DH [20] two-party
key agreement with her while she is offline. When Bob wants to
start a conversation with Alice and Charlie he fetches a pre-key for
each of them, then executes the X3DH key agreement and sends
each a secure “Group Setup” message. Conversation messages are
sent in the same fashion, setting up or ratcheting forward a two-
party symmetric key with every pair of users, then sending an
encryption of the conversation message to each user individually.
When Alice receives a group message from Bob she sends a receipt
of the message back to Bob. When Bob’s phone receives the first
receipt of a messages it indicates to Bob the message was delivered.
Signal lacks conversation consistency of messages and receipts,
Charlie can not verify if Alice has received Bob’s message and no
order of messages is enforced.

Asynchronous Ratcheting Trees (ART) [8] describes a group key
agreement protocol with forward and backward—Post Compromise—
secrecy. The protocol is asynchronous in that it allows a single user
to set up the group key while the other users are offline. ART is
only a group key agreement and not a full messaging protocol like
Mobile CoWPL It does not provide authentication of the author of
a message, support for dynamic groups, or conversation integrity.
ART works by bootstrapping on secure two-party channels similar
to our NAXOS two-party channels. When setting up a group all
participants are added one at a time. The group key agreement
forms a DH tree where the root node is the group key. Setting up a
group with ART is O(n) but performing a single user key ratchet is
O(log(n)) where n is the number of users in the group.

Recently, the IETF has formed a working group to provide a
standard for Message Layer Security (MLS) [4, 21]. The focus of
the working group has been on improving scalabity to thousands
of users with limited security trade offs. The two major trade offs
compared to Mobile CoWPI is the lack of conversation integrity
and deniability of MLS. These security properties are currently
considered OPEN ISSUES by the working group.

8 CONCLUSION

In this work we addressed the problem of practical end-to-end se-
cure mobile messaging with support for group conversations. We
identified a mobile messaging model and showed that (1) multi-
ple service providers are required to provide strong conversation
integrity and (2) to provide deniable message sender authentica-
tion, messages must be O(n) in size. We then showed that given
an any-trust model, a relatively simple protocol, Mobile CoWP]I,
can achieve these strong security properties while being practically
efficient. We provide proofs of the security of Mobile CoWPI, and
analyze the performance of a Java implementation with groups
of varying size to show the protocol performs well with realistic
internet latencies.
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Figure 4: IND$-CPA Game
function INTTIALIZE(])
k <R {0,1}!
b <R 0,1}

function TesT(m, data)
co < Ency(m,data)
¢ g {0,1}1]
return ¢y,

function FINALIZE(d)
return (d = b)

Figure 5: INT-CTXT Game
function INTTIALIZE(])
k <R {0,1}!
S« {}

function Exc(m, d)
¢ « Enci(m,d)
S«—SuU{c}
return c
function VF(c)
m « Decy(c,d)
if m# Landc ¢ S then
win <« true
return (m # 1)

function FINALIZE(d)
return win

[29] WhatsApp. 2017. https://www.whatsapp.com/security

A FORMAL DEFINITIONS AND PROOFS

We define all of our security conditions in terms of a game in
which a challenger runs a procedure INITIALIZE to set up an initial
state, before running an adversary that may access several oracles
that can access and modify the game state; the game concludes
when the adversary calls the FINALIZE oracle, which determines
if the adversary has won the game. For each game, the complete
experiment is defined by the initialization procedure, the set of
oracles defined for the game, and the finalization function. For
all experiments that involve running Mobile CoOWPI, we assume
that each client ¢ maintains a list M, of the tuples of the form
(sid, s, i,pm) indicating that ¢ accepted pm #.L as the i-th protocol
message in session sid, with sender s.

A.1 Security Assumptions

We assume our symmetric AEAD scheme ciphertexts are indis-
tinguishable from random bit strings (IND$-CPA) as defined by
the game in Figure 4 and provides integrity of ciphertexts as de-
fined in Figure 5. The advantage of an adversary M winning each
of the games is defined as Adv!ND-CPA(Ny = Pr[M wins]
AdoINT-CTXT ()f) = Pr[Mwins] respectively.

2>
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Figure 6: NAXOS Game

function INITIALIZE(U)
Initialize PKI for all users in U.

function SEND(A, B, comm)
Send comm to A on behalf of B
This query allows A to start a NAXOS AKE with B.
return A’s communication to B

function LoNG-TERM KEY REVEAL(A)
return Long-term private key of A

function EPHEMERAL KEY REVEAL(sid)
return Returns the ephemeral private key of a possibly
incomplete session sid.

function REVEAL(sid, Sid)
return Session key of completed NAXOS session sid with
Mobile CoWPI session id Sid

function TEsT(sid, Sid)
b <R {0,1}
if b = 0 then
C «REVEAL(sid, Sid)
else
Cc <R {o,1}!
return C

function FINALIZE(d)
return (d = b)

We assume the NAXOS protocol is a secure authenticated key
agreement protocol. Figure 6 describes the game used by the original
authors [14], modified to include an additional bit string ({0, 1)
into the EPHEMERAL KEY REVEAL and TEST queries that is included
in the input of KDF, of NAXOS. This modification is to allow the
Mobile CoWPI session id Sid to be incorporated into the KDF and
does not affect the security of NAXOS. The NAXOS session id is

sid = (role,ID,ID*, commy, . . .,commy)
where ID is the identify of the executing party and ID* is the
identities of the other party, role € {I, R} is the role of initiator or
responder, and comm; is the ith
This preserves the session matching of NAXOS.

An adversary wins if it queries TEST on a clean session and guess
the correctly in FINALIZE. Let sid be the NAXOS session between
parties A and B. Let sid” be the matching session of sid executed by
B, sid* may not exist. A session is not clean if any of the following
hold:

e Aor B is an adversary-controlled party

e REVEAL is queried on sid or sid*

o sid* exists and both the long-term and ephemeral key of A
or B are revealed

e sid* does not exist and the long-term key of B was reveled
or both the long-term and ephemeral key of A was revealed

An adversary M’s advantage at winning the NAXOS game is defined

as AdoNAXOS(Af) = Pr[M wins] — %

communication sent by the parities.

68

WPES 19, November 11, 2019, London, United Kingdom

Figure 7: Message Confidentiality Game Gy

function IN1TIALIZE(U)

b — R {0, 1}

Initialize PKI for all users in and servers U.
function SEND(R, S, m)

Send m to R from S where R and S may be participants or
servers.

return Network output of R after processing m

function SETUuPGROUP(Sid, P, U)
Setup session Sid, as participant P for users U.
return Network output of P

function SENDGROUPMESSAGE(Sid, P, m)
Send message m from P to group Sid.
return Network output of P.

function UpDATEPARTICPANTS(Sid, P, U)

Send participant update message as P for participants U in
session Sid.

return Network output of P.

function REVEALEPHEMERALKEYS(Sid, A, B)

return The ephemeral secret keys of A that A uses for
communication with B in session Sid. A or B may be users or
servers. If A or B is a server, Sid is ignored.

function REVEALLONGTERMKEYS(T)
return The Long-term keys of T where T may be a server
or participant.

function TesT(Sid, P, m)
if b = 0 then
P sends protocol broadcast message of m in session Sid
else
P send a random bit string in Sid

return P’s network traffic to send the message

function FINALIZE(d)
return (d = b)

A.2 Message Confidentiality

Message Confidentiality is the property that only conversation
participants can read a message. The adversary we consider con-
trols the network and is allowed to register malicious users and
reveal the long-term keys and ephemeral keys of users. When dis-
cussing message confidentiality we consider the confidentiality of
individual (target) messages in a session. The adversary is only
limited to avoid trivially breaking message confidentially. Message
confidentiality is captured by the game in Figure 7.

First the adversary INITIALIZEs with a set of honest user identi-
ties. The challenger sets up the public key infrastructure (PKI) and
generates long-term keys for the honest users. The adversary is
allowed to register additional users and long-term keys with the
PKI. SEND is called by the adversary to send network messages
from entity S to entity R. The adversary is also allowed to instruct
users to SETUP, SENDGROUPMESSAGE, and UPDATEPARTICIPANTS,
to setup a session, send group messages, and update the set of
participants in a session. Additionally, the adversary is allowed to
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reveal the long-term and ephemeral secret keys of any participant
or server with REVEALLONGTERMKEYS and REVEALEPHEMALKEYS.
The adversary may issue a single TEST query where the challenger
flips a coin and sends either the encrypted message or a random
ciphertext. Finally, the adversary calls FINALIZES providing its guess
of the bit. The adversary wins if it guesses correctly.
To prevent the adversary from trivially wining it is not allowed
to:
e Control a participant in the target session at the time of the
target message.
o Call REVEALLONGTERMKEYS and REVEALEPHEMERALKEYS of
the sender P and a receiving participant R # P in session Sid.
This does allow the adversary to compromise the long-term
and ephemeral keys between receivers.

The advantage of adversary M is defined as Advco™f (M) = Pr[Mwins]—
1

3
THEOREM A.1. Mobile CoWPI provides message confidentiality if
all hash and key derivation functions are modeled as random oracles.
For any message confidentiality adversary M that runs in time at
most t and creates sessions with at most w users. We show that there
exists a NAXOS adversary My, an IND$-CPA adversary My, and an
INDS$-CPA adversary M3 such that

Adv®™ (M) <w — 1 AdoNAXOS ()
+w—1 -AdvIND_CPA(Ml)
+Ad’UIND_CPA(M3)

Where My, My, and M3 run in time O(t).

Proor. We prove Mobile CoWPI provides message confidential-
ity in a sequence of games:

Go The challenger behaves correctly.

G1.i The challenger replaces the NAXOS key exchange in the
ciphertext block between the sender and the i’ h receiver of
the test message.

Gz.i The challenger replaces the first ciphertext block between
the sender and the i‘" receiver of the test message with a
random bit string.

G3 The challenger replaces the ciphertext block of the test mes-
sage with a random bit string.

The first games show the adversary can not learn the NAXOS keys
of the ciphertext block of the test message, the second games show
the adversary can not learn the key used to encrypt the test message,
and the final game shows the adversary cannot distinguish the test
message from random. Thus the protocol transcript is effectively
random.

Let G1.0 = Gop. We now construct a challenger M, that given
a distinguisher Dy that can distinguish between playing G;.i and
Gj.i + 1 with probability Sp, My can win the NAXOS game.

The challenger My plays Gj.i in the following way:

o During INITIALIZE the challenger initializes a NAXOS game
and setups the PKI for U.

e When REVEALLONGTERMKEYS(T) is called, My returns LoNG-
TERM KEY REVEAL(T) of the NAXOS game.

o The challenger plays the NAXOS game replacing all NAXOS
keys as detailed next.
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e When REVEALEPHEMERALKEYS(Sid, A, B) is called, My re-
turns EPHEMERAL KEY REVEAL((A, B, epk,p) of the NAXOS
game for the most recent NAXOS session between A and B
in Sid.

e When D finalizes the game and guesses Gi.i, My finalizes
the NAXOS game and 0. If Dy guesses Gi.i + 1, My guesses
1.

We now describe how My computes the NAXOS key of the
ciphertext block between the sender and the receiver.Let A be the
sender of the block and B the receiver. Compute the key as follows:

(1) epkyp < SEND(A, B)

(2) epkp, < SEND(A, B, epk,p), epky, may be a pre-key of B.

(3) When computing a NAXOS key of a ciphertext block not
part of the test message, k,j, < REVEAL(A, B, epk,p, epkba)
is used as the key.

(4) When computing the NAXOS key of the i*# ciphertext block
of the test message, k,, < TEST(A, B, epk,yp, epkp,) and is
used by A to encrypted the ciphertext block and B to decrypt
it.

My wins the NAXOS game if Dy guesses correctly. Thus the
advantage of M, is AdoNAX OS(MO) = So. The advantage of distin-
guishing between G;.0 and G1.w — 1 is at most AdoNAXOS(pfy) -
w—1.

Let G2.0 = G1.w — 1. We now construct a challenger M; that
given a distinguisher D; that can distinguish between playing Gy.i
and Gy.i + 1 with probability S;, M; can win the IND$-CPA game.

The challenger M; plays Gs.i in the following way:

e During INITIALIZE the challenger initializes an IND$-CPA
game.

o The challenger replaces the ciphertext block of the test mes-
sage between the sender and the ith receiver with an IND$-
CPA TEST query detailed next.

e When D; finalizes the game and guesses Gz.i, M; finalizes
the IND$-CPA game and 0. If D1 guesses Gz.i+ 1, M guesses
1.

We now detail how the challenger M; generates the ciphertext
block between the sender and the i*# participant. Let A be the
sender of the block and B the receiver. Let m be the plaintext to be
encrypted by the block, d the associated data, and idp,, the id of
B’s ephemeral public key used to compute the key. The blocks is
generated as follows:

(1) cqp « idpgy, TEST(M, d).
(2) When B receives c,p, it uses m and d as the plaintext and
associated data respectively.

M;j wins the IND$-CPA game if D guesses correctly. Thus the ad-
vantage of M; is Adv™ D$—CPA(pL,) = S;. The advantage of distin-
guishing between G,.0 and G2.w—1 is at most AdUIND$_CPA(M1) .
w-—1

We now construct a challenger M, that given a distinguisher
D, that can distinguish between playing Go.w — 1 and G3 with
probability So, Ma can win the IND$-CPA game.

The challenger M, plays G3 in the following way:

e During INITIALIZE the challenger initializes an IND$-CPA
game.
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Figure 8: Message Authentication Game
function IN1T1ALIZE(U, C)

Initialize PKI for all users in and servers U.
Initialize Out[P] « {} forP e U

function SEND(R, S, m)

Send m to R from S where R and S may be participants or
servers.

return Network output of R after processing m

function SETuPGRrROUP(Sid, P, U)
Setup session Sid as participant P for users U.
return Network output of P

function SENDGROUPMESSAGE(Sid, P, m)

Send message m from P to group Sid.

Record the broadcast protocol message pm output of P as
Out[P] < Out[P] U {pm}.

return Network output of P.

function UpDATEPARTICPANTS(Sid, P, U)

Send participant update message as P for participants U in
session Sid.

return Network output of P.

function REVEALEPHEMERALKEYS(Sid, A, B)

return The ephemeral secret keys of A that A uses for
communication with B in session Sid. A or B may be users or
servers. If A or B is a server, Sid is ignored.

function REVEALLONGTERMKEYS(T)
return The Long-term keys of T where T may be a server
or participant.

function FINALIZE

return True iff there exist clients R,P, session id Sid, index
i and protocol message pm such that (Sid, P, i, pm) € Mg, pm ¢
Out[P], and R and P are clean.

o The challenger replaces the ciphertext of the test broadcast
message an IND$-CPA TesT query detailed next.

e When D; finalizes the game and guesses Go.w, M3 finalizes
the IND$-CPA game and 0. If Dy guesses G3, My guesses 1.

M3 constructs the protocol message as follows:

(1) ¢ « Test(m,-).

(2) The protocol message is thus Sid, “MSG”, P, c, Cpis - -

(3) When the participants receive the sent protocol message
with ¢ they use m as the plaintext.

M, wins the IND$-CPA game if D, guesses correctly. Thus the
advantage of My is AdvIND$_CPA(M2) = Sy. We have now shown
that the protocol output is indistinguishable from random. O

A.3 Message Integrity and Authentication

Message authentication and integrity is the property that receivers
can verify the author of a messages and are confident that the
messages has not been modified in transit. Message authentication
implies message integrity. Mobile CoWPI provides message authen-
tication under an adversary that may compromise the servers or

.,authp*,....
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participants as well as control the network. Message authentica-
tion is provided as long as the adversary cannot trivially break the
authentication. That is the adversary is not allowed to control the
sender or have revealed the long-term and ephemeral keys for the
target message.

Figure 8 captures the message authentication and integrity prop-
erty in a game similar to message confidentiality. The adversary
first INrTIALIZES the PKI and can register adversary controlled users
and long-term keys. The adversary controls the network and uses
the SEND function to send messages between users and servers. The
adversary may also instruct honest users to SETUPGROUP, SEND-
GROUPMESSAGE, and UPDATEPARTICIPANTS as with message confi-
dentiality. The adversary is allowed to REVEALLONGTERMKEYS and
REVEALEPHEMERALKEYs of users. Finally, the adversary FINALIZES
the game and wins if a participant R accepted protocol broadcast
message pm from P in session Sid where the P did not send ¢ and R
and P have not had their long-term and ephemeral keys of cipher-
text block of pm revealed.

That is R must have received a message:

Sid, “MSG”, P, c,cpr

Where cpp is the ciphertext block used to authenticate pm with
AEAD from P.

To avoid trivially winning the game the adversary is not allowed
to:

e Control the sender of the winning protocol message.
o Issue REVEALLONGTERMKEYS and REVEALEPHEMERALKEYS
of the sender or receiver of the winning protocol message.

The advantage of an adversary M is defined as Adv?“!h(M) =
Pr[Mwins].

THEOREM A.2. Mobile CoWPI provides message authentication
and integrity if all hash and key derivation functions are modeled as
random oracles.

For any message authentication adversary M that runs in time
at most t, w is the maximum number of participants in a session, q
is the maximum number of messages received in a session, y is the
maximum number of sessions. We show that there exists a NAXOS
adversary My and an INT-CTXT adversary M; such that

Adv®¥th(py <——
o) (w—T)qy

+AdUINT—CTXT(M1) .

-AdUNAXOS(M())

1
(w—1)qy
Where My and My run in time O(t).

Proor. We prove Mobile CoWPI provides message authentica-
tion in a sequence of games:

Go The challenger behaves correctly.

G The challenger replaces the NAXOS key exchange used to
decrypt a random ciphertext block between the sender and a
random receiver of a random forged message with a random
key.

Gy The challenger replaces the ciphertext block of a forged
message between the sender and a random receiver with an
instance of the INT-CTXT game.
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Game G; shows the adversary can not learn the NAXOS keys be-
tween users and is used as a transition to a game that M; can play.
We construct a challenger My that given a distinguisher Dy that
can distinguish between playing G and G; with probability S, Mo
can win the NAXOS game.
The challenger My deviates from Gy in the following way:

o During INITIALIZE the challenger initializes a NAXOS game
and setups the PKI for U.

e When REVEALLONGTERMKEYS(T) is called, My returns LoNG-
TERM KEY REVEAL(T) of the NAXOS game.

o The challenger plays the NAXOS game replacing all NAXOS
keys as detailed next.

o When REVEALEPHEMERALKEYS(Sid, A, B) is called, My re-
turns EPHEMERAL KEY REVEAL((A, B, epk,p) of the NAXOS
game for the most recent NAXOS session between A and B
in Sid.

e When D finalizes the game and guesses Gy, M finalizes the
NAXOS game and 0. If Dy guesses Gy, My guesses 1.

We now describe how My computes the NAXOS key of the
ciphertext block between the sender and the receiver.Let A be the
sender of the block and B the receiver. Compute the key as follows:

(1) epkqp < SEND(A, B)

(2) epky, <« SEND(A, B, epk,yp), epkp, may be a pre-key of B.

(3) When computing a NAXOS key of a ciphertext block not
part of the test message, k,;, < REVEAL(A, B, epk},, epkba)
is used as the key.

(4) When computing the NAXOS key of the ciphertext block
of the of a received protocol message that was not sent,
kap < TEST(A, B, epk,p, epkp,) and is used by B to decrypt
the ciphertext block.

My wins the NAXOS game if it guesses the correct forged mes-
sage, correct receiver, and Dy guesses correctly. Thus the advantage
of My is AdoNAXOS (M) = Sp. The advantage of distinguishing
between Gy and G is at most Ado™NAXOS(pf,) - m

We now construct a challenger M; that given a an adversary M
that can win the authentication game Sy, M; can win the INT-CTXT
game.

The challenger M; behaves as follows:

e During INITIALIZE the challenger initializes an INT-CTXT
game.

o The challenger guesses a random sent message in a random
session and guesses a random receiver of the message. Then
challenger replaces the instance of the ciphertext block with
a query to ENc(m, d) of INT-CTXT game.

e When the challenger receives an unsent protocol message
in the chosen session from the chosen sender, it submits the
ciphertext block between the sender and chosen recipient to
VF of the INT-CTXT game.

M; wins the INT-CTXT game if it guesses session, protocol
message, and receiver of a forged message correctly and M wins.

Thus the advantage of M is AdvINT_CTXT(Ml) =51 m
O
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Figure 9: Conversation Integrity Game Gy
function IN1TIALIZE(U)

Initialize infrastructure and PKI for all users and servers in
U.

function SEND(R, S, m)

Send m to R from S where R and S may be participants or
servers.

return Network output of R after processing m

function SETUuPGROUP(Sid, P, U)
Setup session as participant P for users U.
return Network output of P

function SENDGROUPMESSAGE(Sid, P, m)
Send message m from P to group Sid.
return Network output of P.

function UpDATEPARTICPANTS(Sid, P, U)

Send participant update message as P for participants U in
session Sid.

return Network output of P.

function REVEALEPHEMERALKEYS(Sid, A, B)

return The ephemeral secret keys of A that A uses for
communication with B in session Sid. A or B may be users or
servers. If A or B is a server, Sid is ignored.

function REVEALLONGTERMKEYS(T)
return The Long-term keys of T where T may be a server
or participant.

function FINALIZE()

return True iff there exist honest users A,B, session Sid,
and index i such that (Sid, sq, i,pmg) € Mg, (Sid, sy, i,pmyp) €
Mgp, and pmg # pmy,.

A.4 Conversation Integrity

Conversation integrity is the property that all users see all messages
in the same order. Since participant update messages are treated the
same as conversation messages, participant consistency is implied.
The adversary is allowed to compromise all but one of the OES
providers and any of the participants. Conversation integrity is
provided between honest participants.

Figure 9 details the conversation integrity game. First the adver-
sary INITIALIZES the PKI and registers corrupt users and providers.
The adversary may then issue commands instructing participants
and providers to execute protocol operations the same way as the
previous two games. Finally, the adversary wins the game if he con-
vinces two participants A and B of session Sid to accept different
messages as the i’" message.

To avoid trivially winning the game the adversary is not allowed
to:

e Issue REVEALLONGTERMKEYS and REVEALEPHEMERALKEYS
of all the OES providers and one of A or B.

The advantage an adversary M has at winning the game is de-
fined as Adv!NT-CONV (p1) = Pr[M wins].

Recall from Section 4 the probability of an adversary finding a
protocol ciphertext that successfully decrypts under two separate
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keys is at most gej,;. If an adversary cannot constructs such a
message they must be able to forge a message from an honest server
to an honest participant indicating that an out-of-order protocol
message should be processed.

THEOREM A.3. Mobile CoWPI provides conversation integrity if
all hash and key derivation functions are modeled as random oracles.

For any conversation integrity adversary M that runs in time at
most t, performs at most ¢ KDF, oracle queries and sends at most
y messages between honest OES providers and honest participants.
We show that there exists a NAXOS adversary My and an INT-CTXT
adversary M; such that

Adp!NT-CONV 5y <i. AdoNAXOS (1
Y

1
+AdUINT_CTXT(M1) .
y

+q€int

Where My and My run in time O(t).

Proor. We prove Mobile CoWPI provides conversation integrity
in a sequence of games:

Go The challenger behaves correctly.

G1 The challenger replaces the NAXOS key exchange used to
create arandom OES authentication block between an honest
server and participant with a random key.

Games G show the adversary can not learn the NAXOS keys used
in the OES authentication block and is used as a transition to a
game that M; can play. If if M can win the conversation integrity
game, then M; can win the INT-CTXT game.

We construct a challenger My that given a distinguisher Dy that
can distinguish between playing Gy and G; with probability So, My
can win the NAXOS game.

The challenger M deviates from Gy in the following way:

o During INITIALIZE the challenger initializes a NAXOS game
and sets up the PKI for U.

e When REVEALLONGTERMKEYS(T) is called, My returns LONG-
TERM KEY REVEAL(T) of the NAXOS game.

o The challenger plays the NAXOS game replacing all NAXOS
keys as detailed next.

e When REVEALEPHEMERALKEYS(Sid, A, B) is called, My re-
turns EPHEMERAL KEY REVEAL((4, B, epk,p) of the NAXOS
game for the most recent NAXOS session between A and B
in Sid.

e When D finalizes the game and guesses Gy, M finalizes the
NAXOS game and 0. If Dy guesses G1, My guesses 1.

We now describe how My computes the NAXOS key in the OES
authentication block honest servers and participants. Let A be the
participant and B the server. Compute the key as follows:

(1) epkyp < SEND(A, B)

(2) Send epk,y to B.

(3) Upon B receiving epk,yp, epkp, < SEND(A, B, epk,p), epkpq.

(4) When computing a NAXOS key of a OES authentication

block not part of the test message,

kap < REVEAL(A, B, epkyp, epkpq)
is used as the key.
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Figure 10: Deniability Game Gy
function INITIALIZE(T,S)

Initialize an PKI and executes the protocol on plaintext tran-
script 7 producing protocol transcript Tp, and state information
outputy.

Run the protocol simulator S with input 7 and input to
produce protocol transcript T; and state information output;

Flip a coin b «—p {0,1}

return (Ty, outputy, inputy)

function FINALIZE(d)
return (d == b).

(5) When computing the NAXOS key of the OES authentication
block of the of a received protocol message that was not sent,
kap < TEST(A, B, epkp, epkpq) and is used by B to decrypt
the OES authentication block.

My wins the NAXOS game if it guesses the OES authentication
block correctly and Dy guesses correctly. Thus the advantage of My
is AdoNAXOS(pMp) = Sp - 5

We now construct a challenger M; that given an adversary M
that can win the conversation integrity game with probability Sy,
M;j can win the INT-CTXT game.

The challenger M; behaves as follows:

e During INITIALIZE the challenger initializes an INT-CTXT
game.

o The challenger replaces a random OES authentication block
between an honest OES provider and participant with an
INT-CTXT game detailed next.

We now detail how the challenger M; generates the random
OES authentication block between an honest OES provider and
participant. Let A be the sender of the message and B the receiver.
Let m be the plaintext to be encrypted by the block, d the associated
data, and idp,, the id of B’s last received ephemeral public key used
to compute the key. The blocks is generated as follows:

(1) cgp « idpg, ENc(m,d).

(2) When B receives the next authentication block auth; b *
authgp, the challenger submits auth;b to VF of the INT-
CTXT game.

M;j wins the INT-CTXT game if it guesses the OES authentication
block correctly and M wins the game. Thus the advantage of M; is
Ado™NT-CTXT (A1) = 5, - % o

A.5 Deniability

We capture the deniability property with the general-purpose game
detailed in Figure 10. The distinguisher INITIALIZES the game with a
plaintext transcript 7. Then the challenger executes Mobile CoWPI
on 7 producing a real protocol transcript Tp and three outputs
inputy, inputs, outputy. The challenger then runs a simulator with
inputs 7 and inputs producing a forged protocol transcript T; and
state output. The challenger returns a random transcript Tj, output
outputy, and inputy to the distinguisher. The distinguisher wins the
game if it guesses b correctly. The advantage of the distinguisher
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M is defined as AdvPENY=*(M) = Pr[M wins] — 1. The DENY-*
game depends on how input;, input,, and output, are defined.

When proving message deniability and participant deniability it
is sufficient to define the inputs and output as follows:

inputy = {(Isko, epko) . . ., (Iskn, epkn)}
inputs = {Upko, ePkO), B (lPkn, epkn)}, (Iskqa, eskq)
outputy, = {eskqo, eskaw }

where n is the number of participants, a is the user running the
simulator, and w is the number of ciphertext blocks where a is a
participant. In this case the distinguished is provided with long-
term secret keys and single use public pre-keys of all users in the
transcript. The simulator is only given the public values and the
secret values of a single user and must output all of a’ ephemeral
secret keys.

THEOREM A.4. Mobile CoWPI provides message and participant
deniability if all hash and key derivation functions are modeled as
random oracles.

For any participant deniability adversary M that runs in time at
most t, performs at most ¢ H oracle queries and supplies a transcript
that produces at most y ciphertext blocks between participants that
are not the simulating participant. We show that there exists a NAXOS
adversary My such that

Ad’UDENY—PART(M) <y ~Ad’UNAXOS(M0)
(1)
Where My runs in time O(t) and q < 2k,

Proor. Recall the Mobile CoWPI simulator discussed in Sec-
tion 4. We prove the simulated transcript is indistinguishable from
the real transcript in a sequence of games. In each game we replace
an additional NAXOS key agreement, between two parties that are
not the simulating party, from the real transcript with a random
NAXOS key. In the final game the real transcript is generated in
the same way as the simulated one.

Below is the sequence of games:

Go The challenger behaves correctly.
Gj.i The challenger replaces the NAXOS key exchange used to
encrypt the ith ciphertext block between two user that are
not the simulating user.

Game Gj.i shows the adversary cannot distinguish between a sim-
ulated and real NAXOS key agreement and is used as a transition
to a game that M; can play. If M can win the participant deniability
game, then M; can win the NAXOS game.

Let G1.0 = Gy, we construct a challenger My that given a dis-
tinguisher Dy that can distinguish between playing Gy.i and Gj.i
with probability Sp, My can win the NAXOS game.

The challenger My deviates from Gy.i — 1 in the following way:

o During INITIALIZE the challenger initializes a NAXOS game
and sets up the PKI for U and issues REVEALLONTERMKEYS
forall U.

o The challenger replaces the first i — 1 NAXOS keys between
non-simulating participants with random keys.

e The challenger plays the NAXOS game replacing the ith
NAXOS key between non-simulating participants with a
NAXOS TEsT query detailed next.
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e When Dy finalizes the game and guesses Gj.i—1, My finalizes
the NAXOS game and 0. If Dy guesses G1.i, My guesses 1.
We now describe how My computes the ith NAXOS key. Let B
and C be the participants. Compute the key as follows:
(1) epkp. < SEND(B,C)
(2) Send epky, to C.
(3) Upon C receiving epkp, epk.p, < SEND(C, C, epky.), epkcp.
(4) When computing a NAXOS key of all ciphertext blocks after
the ith kj,, < REVEAL(B, C, epky., epkcb) is used as the key.
(5) When computing the NAXOS key of the ith ciphertext block
N kbc — TEST(B, C, epkbc, epkcb).
My wins the NAXOS game if Dy guesses correctly. Thus the
advantage of My is Ado™N4XOS(My) = Sy. There are y ciphertexts
blocks the between non-simulating participants. O

A.6 Message Unlinkability

We now detail message unlinkability provided by Mobile CoWPI.
Compared to participant deniability we consider a stronger def-
inition where the distinguisher is given a real protocol message
and the ephemeral public keys of the sender for the message. The
simulator is given the ephemeral secret key used to encrypt the
message.

inputy =lIsks, (Isko, epk1) . . ., (Iskn, epkn), epksi, i, pm;
inputs =Ipks, (Ipko, epk1) . . ., (Ipkn, epkn),
Iskg, eskqi, epksi, i, pm;
outputy, = {eskqo, eskgw }

Where epk,, is the ephemeral secret key of receiver n shared with
the sender, esks; is the ephemeral secret key of the sender shared
with the simulating party for the ith message, eskg; is the secret
key of the simulation party for the ith message, and i is the index
of the protocol message pm; in the transcript. The simulator must
output all of a’s ephemeral keys.

This definition provides the distinguisher with knowledge of
a non-deniable protocol message. The goals is to simulate a tran-
script that contains pm; and is identically distributed to the real.
The message unlinkability simulator behaves as a participant re-
pudiation simulator discussed earlier. When the simulation party
sends its’ last ciphertext block prior to pm; the simulator uses
epkai — gHi(eskailska) 4 the next ephemeral public to the sender.
Similarly, when the sender of pm; sends it last ciphertext block to
the simulating party it uses epks; as it next ephemeral public key.
The simulator then sends pm; as the i th message in the transcript.
The simulator then continues to behave the same as the participant
deniability simulator from earlier. The simulated transcript is iden-
tically distributed to the real transcript and contains the undeniable
message pm; in position i. The proof is identical to the proof of
participant deniability.
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