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NECESSARY AND SUFFICIENT CONDITIONS FOR THE NONINCREASE OF
SCALAR FUNCTIONS ALONG SOLUTIONS TO CONSTRAINED
DIFFERENTIAL INCLUSIONS *

MOHAMED MAGHENEM!, ALESSANDRO MELIS? AND RICARDO G. SANFELICE®

Abstract. In this paper, we propose necessary and sufficient conditions for a scalar function to be
nonincreasing along solutions to general differential inclusions with state constraints. The problem of
determining if a function is nonincreasing appears in the study of stability and safety, typically using
Lyapunov and barrier functions, respectively. The results in this paper present infinitesimal conditions
that do not require any knowledge about the solutions to the system. Results under different regularity
properties of the considered scalar function are provided. This includes when the scalar function is
lower semicontinuous, locally Lipschitz and regular, or continuously differentiable.
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1. INTRODUCTION

1.1. Background

The problem considered in this paper is to characterize, via necessary and sufficient conditions, the property
of a function to be nonincreasing when evaluated along the solutions to a nonlinear system. In the particular
case where the system is given by & = F(x) and the function is B : R™ — R, this problem consists in establishing
necessary and sufficient conditions such that the scalar function ¢ — B(¢(¢)) is nonincreasing for every solution
t — ¢(t) to & = F(x). For such conditions to be useful, they need to be infinitesimal, meaning that they do not
depend on the solutions; namely, they only involve B and F. The aforementioned problem is known to be one
of the fundamental problems in calculus [1], and has attracted the attention of mathematicians over the years,
dating back to the work of Pierre de Fermat on local extrema for differentiable functions in the 17" century [2].

A key difficulty in solving such a problem emerges from the smoothness of (or lack of) the maps F and B.
As expected, initial solutions to this problem deal with the particular case where both F' and B are sufficiently
smooth. In such a basic setting, a necessary and sufficient condition for B to be nonincreasing is that the scalar
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product between the gradient of B and F is nonpositive at each € R"; namely, (VB(z), F(z)) < 0 for all
x € R™. When B is not continuously differentiable, the problem requires nonsmooth analysis tools since the
gradient of B may not be defined according to the classical sense.

When B is nonsmooth, the existing solutions to the problem use the notion of directional subderivatives [3-5].
It appears that directional subderivatives were first proposed and used by Ulisse Dini in 1878 [6]. Since then,
many extensions were proposed in the literature, see [7-10]. These extensions allow to cover general scenarios
where F' is a general set-valued map, and thus the system is a differential inclusion of the form & € F(z),
and B is merely continuous, or just semicontinuous. Moreover, in those extensions, the classical gradient VB
is replaced by its nonsmooth versions, such as the proximal subderivative [11], denoted dpB, and the Clarke
generalized gradient [12,13], denoted 9¢ B.

1.2. Motivation

To the best of our knowledge, the existing solutions to the stated problem consider a system & € F(z) defined
on an open subset C C R"™ where the solutions cannot start from the boundary of the set C', denoted OC. This
requirement is customarily used in the literature of unconstrained systems, see, e.g., [9,10,14]. However, the
assumption that the solutions cannot start from 0C' is restrictive when dealing with general constrained systems
of the form

Hy: &€ F(x) zx e C CR"™, (1)

where C' is not necessarily open and the solutions might start from or slide on 9C.

In this context of constrained systems, the existing solutions to the considered problem are not applicable.
Indeed, assume that the set C is closed. In this case, it might be possible to find a vector n € F(z) for some
x € 0C such that the direction 17 does not generate solutions, for example, when 7 points towards the complement
of C. Such vectors should not be included in an infinitesimal condition for the nonincrease of ¢t — B(¢(t)),
otherwise this condition would not be necessary; see the forthcoming Example 1 for more details. At the same
time, the vector 7, although not generating solutions, may affect the global behavior of the solutions. Hence,
such vectors should be somehow included in the characterization of the nonincrease of ¢t — B(¢(t)), otherwise
the condition may fail to be sufficient; see the forthcoming Example 2 for more details. As we show in this
paper, to handle such a compromise, extra assumptions relating F' to the boundary of C' must be imposed.

Solving the considered problem in the context of constrained systems finds a natural motivation when charac-
terizing safety in terms of barrier functions. Indeed, characterizing the nonincreasing behavior of such functions
along solutions is critical for the safety property to hold.

1.3. Contributions

In this paper, we propose solutions to the stated problem in the general case of constrained differential
inclusions. This problem is studied under different conditions on the scalar function B, including the following
three cases:

e When the scalar function B is lower semicontinuous (i.e., for each 2 € R™ and for each sequence
{zn},—y € R™ with liminf, ,» z, = z € R", we have liminf,_, B(z,) > B(z)) we transform the
problem of showing that B is nonincreasing along the solutions to Hy = (C, F) into characterizing
forward pre-invariance of the set epi B N (cl(C) x R), where epi B := {(z,7) € R® xR :r > B(z)} is

the epigraph of B and cl(C) is the closure of C, for the augmented constrained system

m c {F Ef)] (@,r) € C xR, (2)

Namely, we propose necessary and sufficient conditions guaranteeing that each solution to (2) starting
from epi BN(cl(C) xR) never leaves this set for all time instants at which it is defined. As a consequence,
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the proposed conditions are inequalities involving F', the proximal subdifferential of B, denoted dpB,
and the contingent cone to C, denoted T, which is, roughly speaking, used to rule out directions of F’
not generating solutions.

e When the function B is locally Lipschitz, similar inequalities to the lower semicontinuous case are
proposed. Due to the assumption of a stronger smoothness property for B, the Clarke generalized
gradient, denoted J¢ B, is used instead of the proximal subdifferential dp B.

e When the function B is continuously differentiable, the conditions proposed are a corollary of those
when B is locally Lipschitz. In particular, when B is continuously differentiable the Clarke generalized
gradient ¢ B reduces to the classical gradient VB.

To the best of our knowledge, there are no results in the literature characterizing the nonincrease of
t — B(¢(t)), for each ¢ solution to Hy = (C,F), using necessary and sufficient infinitesimal conditions. A
preliminary version of this paper is in the conference article [15], where the proofs, detailed explanations, and
some examples have been omitted.

Notations and preliminaries. For z, y € R, 2" denotes the transpose of z, |z| the Euclidean norm
of x, (z,y) := z "y the scalar product between z and y, and co{z,y} the set of all convex combinations
between = and y. For a scalar function B : R” — R, VB(xz) denotes the gradient of the function B evaluated
at 2. Note that the epigraph of a lower semicontinuous function B is a closed subset of R*™*!. By B we
denote the closed unit ball in R™ centered at the origin. For a subset K C R", we use |z|x = infycx |2 — y|
to denote the distance from z to K, int(K) to denote the interior of K, 0K its boundary, and U(K) to
denote a sufficiently small open neighborhood around K. For O C R", we use K\O to denote the subset
of elements of K that are not in O. Furthermore, we use Tk (z), Ck(z), Nk(x), and NE(z) to denote,
respectively, the contingent, the Clarke tangent, the normal ', and the prozimal normal cones of K at x
given by Tk (z) := {v € R™ : liminf),_,o+ [ 4+ hv|x /h = 0}, Ck (z) := {v € R™ : lim,_,, 40+ |y + hv|x /h = 0},
Nk(z) == {veR": (v,w) <0 VYw € Tk(z)}, and NE(z) := {C€R™:Ir >0 : |z +7r(|s =r[¢|}. Finally,
for a set-valued map F': R™ = R",

o F is outer semicontinuous at x € R™ if, for all {z;};°, C R™ and for all {y;},°, C R" with z; — z,
y; € F(z;), and y; — y € R™, we have y € F(x); see [17, Definition 5.9].

e F is lower semicontinuous (or, equivalently, inner semicontinuous) at x € R™ if, for each ¢ > 0 and
for each y, € F(x), there exists U(x) a neighborhood of x such that, for each z € U(z), there exists
Y. € F(z) such that |y, — y.| < €; see [18, Proposition 2.1].

o [ is upper semicontinuous at € R™ if, for each € > 0, there exists U(x) such that, for each y € U(z),
F(y) C F(x) + €B; see [2, Definition 1.4.1].

e [ is continuous at x € R™ if it is both upper and lower semicontinuous at x.

e F'is outer (lower, and upper, respectively) semicontinuous if it is outer (lower, and upper, respectively)
semicontinuous at every x € R™. Finally, F' is said to be continuous if it is continuous at every x € R™.

e Fis locally bounded if, for each x € R™, there exist U(x) and K > 0 such that |(| < K for all ( € F(y),
and for all y € U(x).

e Fis locally Lipschitz if, for each compact set K C R™, there exists k > 0 such that, for each x € K and
y € K, F(y) C F(z) + kl|z — y|B.

2. CONSTRAINED DIFFERENTIAL INCLUSIONS

Consider the constrained differential inclusion H; := (C, F) in (1) with the state variable € R", the set
C C R™ and the set-valued map F : R™ = R". As opposed to the existing literature dealing with unconstrained
differential inclusions, where C' = R™ [9,10], the set C in (1) is not necessarily open and does not neccessarily
correspond to R™. Next, we introduce the concept of a solution to Hy.

1 Also named subnormal cone in [16].
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Definition 1. (Concept of Solution to Hy) A function ¢ : dom ¢ — R™ with dom ¢ C R and t — ¢(t) locally
absolutely continuous is a solution to Hy if

(51) ¢(0) € cl(C),

(S2) ¢(t) e C for all t € int(dom ¢),

(S3) %(t) € F(o(t)) for almost all t € dom ¢.

Remark 1. Condition (S1) allows solutions starting from OC\C to flow into C such that (S2) is satisfied.
Furthermore, (S2) allows solutions starting from C' to reach JC\C. Hence, symmetry between forward and
backward solutions is preserved. °

A solution ¢ to H is said to be maximal if there is no solution ¥ to H; such that ¢(t) = ¥ (t) for all t € dom ¢
with dom ¢ a proper subset of dom. Furthermore, it is said to be forward complete if dom ¢ is unbounded.
Finally, we recall the definitions of forward pre-invariance and pre-contractivity of a set K C R"™ for the system

Hy.

Definition 2 (Forward pre-Invariance). A set K C R™ is said to be forward pre-invariant for a constrained
system Hy = (C, F') if each solution to Hy starting from K remains in it. .

Definition 3 (Pre-contractivity). A closed set K C R™ is said to be pre-contractive for a constrained system
Hy = (C,F) if, for every nontrivial solution, i.e., solution whose domain contains more than one element, ¢
starting from x, € OK, there exists € > 0 such that ¢(t) C int(K) for allt € (0,€]. .

The “pre” in forward pre-invariance and forward pre-contractivity is used to accommodate maximal solutions
that are not complete.
Throughout this paper the set-valued map F' satisfies the following mild assumption.

Assumption 1. F : R" = R" is upper semicontinuous and F(x) is compact and convez for all x € R™. °
Before concluding this section, the following remarks are in order.

Remark 2. Assumption 1 is customarily used in the literature as the tightest requirement for the existence of
solutions and adequate structural properties for the set of solutions, see [9,10,16]. When F is single valued,
Assumption 1 reduces to the continuity of F'. In some of the existing literature, e.g. [17], Assumption 1 is replaced
by the equivalent assumption stating that F' needs to be outer semicontinuous and locally bounded with convex
images. Indeed, outer semicontinuous and locally bounded set-valued maps are upper semicontinuous with
compact images [19, Theorem 5.19], the converse is also true using [17, Lemma 5.15] and the fact that upper
semicontinuous set-valued maps with compact images are locally bounded. D)

Remark 3. Constrained differential inclusions H; = (C, F) constitute a key component in the modeling of
hybrid systems. Indeed, according to [17], a general hybrid system modeled as a hybrid inclusion is given by

[ ieF(x) zeC
H'{I+EG(JI) x €D, (3)

where, in addition to the continuous dynamics or flows H; = (C, F'), the discrete dynamics are defined by the
jump set D C R™ and the jump map G : R® =% R™. Furthermore, solutions to H; = (C, F) correspond to
solutions to H, according to [17, Definition 2.6], that never jump. °

3. PROBLEM STATEMENT, MOTIVATIONAL APPLICATION, AND EXISTING SOLUTIONS

In this section, we formulate the problem treated in this paper. After that, we illustrate a motivation from
stability and safety analysis using Lyapunov and barrier functions, respectively.

Given a constrained differential inclusion Hy = (C, F) as in (1) and a scalar function B : R" — R, we would
to address the following problem.
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Problem 1. Provide necessary and sufficient infinitesimal conditions (involving only B, F, and the set C)
such that the following property holds:

(x) The scalar function B is nonincreasing along the solutions to Hy; namely, for every solution t — ¢(t) to
Hy, the map t — B(¢(t)) is nonincreasing 2.

3.1. Motivational Application

In addition to the theoretical motivation mentioned in Section 1.2, Problem 1 naturally emerges when study-
ing safety for hybrid systems using barrier functions [20,21]. More precisely, given a hybrid system of the form
H:=(C,F,D,G) (see Remark 3), given a set of initial conditions X, C ¢l(C') U D and an unsafe set X,, C R",
the hybrid system H is said to be safe with respect to (X,, X,) if the solutions starting from X, never reach
the set X,,. To certify safety with respect to (X,, X, ), scalar functions B : R" — R satisfying

B(z) >0 Vze X, (4)
B(z) <0 VzeX,, (5)

named barrier function candidates, is used in [22-24], among many others. A barrier function candidate
guarantees safety for H with respect to (X,, X,,) if the following properties hold:

B(n) <0 VneG(x), Vee KND, and (6)
(x*) The function B is nonincreasing along the solutions to #y = (C\int(K), F'), where
K :={zec(C)uD:B(z) <0}.

In particular, (%) guarantees that solutions to H from K cannot flow out of K, while (6) assures that such
solutions cannot jump from K N D to a point outside of K. Note that condition (6) is already infinitesimal.
Furthermore, we recover in (%) the non-increase condition along the solutions to a constrained system. Hence,
it is natural that one wants to replace (xx) by sufficient infinitesimal conditions, which will depend on whether
B is smooth or not.

On the other hand, the converse safety problem pertains to showing, when # is safe with respect to (X,, X,),
the existence of a barrier function candidate B : R™ — R such that (6) and (%x) are satisfied. Note that this
converse problem is addressed in [20,21] by constructing a barrier function B that depends on both = and the
(hybrid) time. However, one still needed to show that the constructed barrier function enjoys some smoothness
properties to replace (%) by an equivalent infinitesimal condition — which, as pointed out in Section 1.1, is
a solution-independent condition (as in Lyapunov stability theory). The latter is addressed for unconstrained
continuous-time systems in [25]. However, once tackling the constrained case, Problem 1 is faced.

3.2. Existing Results in the Unconstrained Case

Existing solutions to Problem 1 in the unconstrained case, i.e. C'= R™, include the ones listed below *:

e When n = 1, B is continuously differentiable, and F = 1: the function B is nonincreasing along the
solutions to Hy = (C, F) if and only if VB(z) <0 for all z € R.

e When n > 1, and F satisfies Assumption 1, the continuously differentiable function B is nonincreasing
along the solutions to H; = (C, F) if

(VB(z),() <0 ¥(e F(z), YoeR™ (7)

20r, equivalently, B(¢(t1)) < B(¢(ta)) for all (t1,t2) € dom ¢ x dom ¢ with t1 > to.
3The first two solutions can be derived easily.
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The equivalence is true when, additionally, F' is continuous.

When the function B is only continuous, the standard gradient VB cannot be used. Existing solutions
to Problem 1, in this case, use the directional subderivative. Indeed, in the simple case where n = 1 and
F =1, the following result is available in [9, Page 3].

Lemma 1. A continuous function B : R — R is nonincreasing if and only if

DB(z) := liminf Bla+t) - Bl)

t—0+ t

<0 VzeR. (8)

When n > 1, F satisfies Assumption 1, B is nonincreasing along the solutions to H; = (R", F) if

lim inf Bla +tw) - Blx)

w— ¢ t
t— 0t

<0 V¢ € F(x), VxeR"™ (9)

The equivalence is true when, additionally, F' is continuous; see [3,10].
When n > 1, F satisfies Assumption 1, and B is locally Lipschitz, B is nonincreasing along the solutions
to Hy = (R™, F) if [12,26]

(n,{) <0 V¢ e F(z), Vn€dcB(z), VreR™ (10)

The equivalence is true when, additionally, F' is continuous and B is regular. Recall that 0o B : R™ = R™
is the Clarke generalized gradient of B, which, according to the equivalence in [9, Theorem 8.1, Page
93], can be defined as follows.

Definition 4 (Clarke generalized gradient). Let §2 be any subset of zero measure in R™, and let Qp be
the zero-measure set of points in R™ at which B fails to be differentiable. Then, the Clarke generalized
gradient at x is defined as

OcB(z) := co{‘lim VB(z;):x; >z, ©; ¢ Qp, x; € Q} (11)
1— 00
[ ]
Furthermore, the regularity of B is defined below, following [9, Proposition 7.3, Page 91].

Definition 5 (Regular functions). A locally Lipschitz function B : R™ — R is reqular if epi B is regular;
namely, Tepi B(2) = Cepi () for all x € epi B. °

When n > 1, F satisfies Assumption 1, and B is locally Lipschitz and regular, B is nonincreasing along
the solutions to H; = (R”, F) if [13,14,27]
n,¢) <0 Vn € 0cB(x), V(e F(x):3ceR:(n,)=cforallnedcB(x), VreR" (12)

Equivalence holds when, additionally, F' is continuous. Compared to (10), in (12), we check the inequal-
ity only for vector fields that yield the same scalar product with all the vectors in 0cB.

When n > 1, F satisfies Assumption 1 and, additionally, F' is continuous, and B is locally Lipschitz, B
is nonincreasing along the solutions to Hy = (R™, F) if and only if [28]

(VB(z),() <0 V¢ € F(z), VYa € R" such that VB(x) exists. (13)

Compared to (10), in (13), we check the inequality for all vectors in F(z) but at points x where the
gradient of B is well defined.
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e When the function B is lower semicontinuous, n > 1, and F is locally Lipschitz with closed and convex
images, B is nonincreasing along the solutions to Hy = (R", F) if and only if [9, Theorem 6.3]

(n,¢)<0  VCeF(z), VnedpB(x), VweR", (14)

where Op B : R™ = R"” is the proximal subdifferential of B, which is defined below.

Definition 6 (Proximal subdifferential [9]). The prozimal subdifferential of a function B : R™ — R is
the set-valued map OpB : R™ = R™ such that, for all x € R™,

OpB(z) :=={neR":[n" —1]T € Nl p(z,B(z))}. (15)

Remark 4. When B is twice continuously differentiable, 0pB(z) = {VB(x)}. Moreover, the latter
equality holds also when B is only continuously differentiable provided that dp B(x) # 0. °

4. CHALLENGES IN THE CONSTRAINED CASE

In this section, we illustrate why the conditions in (10)-(14) do not solve Problem 1 in the general constrained
case. For this purpose, we introduce the following useful set C:

C:={zxecC):3peSx), dome # {0}}, (16)

where S(z) is the set of solutions starting from x.

Remark 5. For a constrained system Hy = (C, F'), there are numerous solutions-independent methods to find
the set C’, i.e., to know whether, from x, € C, a nontrivial solution exists or not. In the following, we recall
some of such conditions:
e When F(z,) NTc(z,) = 0, we conclude that each solution to Hj starting from z, is trivial; see [16,
Proposition 3.4.1].
e When there exists a neighborhood U(x,) such that F(z) NTc(z) # 0 for all z € U(x,) Ncl(C), then
there exists a non-trivial solution to H starting at x,; see [16, Proposition 3.4.2].
e When F(z,) C Dc(x,), where

De(z,) :={veR":3e,a>0:2+(0,0](v+€B) C C},

then there exists a nontrivial solution to Hy starting from x,; see [16, Theorem 4.3.4].
Other results can be derived when, additionally, the set C is convex or F' is locally Lipschitz; see [9]. These
techniques are well established in the literature and not within the scope of our paper. In our case, we start
from a constrained system H; = (C, F) for which we are able to find C. .

When the set C' is not open; namely, nontrivial solutions to ¢ start from OC, the solutions to Problem 1 in
(7), (10), and (14) are not applicable. Indeed, suppose that the set C is closed. When z € 9C N C, only vectors
in F(x) that generate nontrivial solutions should be considered in the conditions solving Problem 1. Otherwise,
the conditions will not be necessary. In particular, the vectors in F'(z)\T¢(2) must not be included. Hence, we
propose to modify the conditions (7), (10), and (14), respectively, as:

(VB(z),() <0 V(e F(z)NTe(zx), Vzel. (17)
(n,¢) <0  Y¢eF(x)NTo(x), VYnedeB(x), VYreCl. (18)
n,¢) <0  Y¢eF(x)NTo(x), VnedpB(z), VreC. (19)
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F(-x) FO)  Fx)
c—* 1, X

FIGURE 1. Illustration of the data of the system H; in Example 1.

X2
» G
— |F) — _~F(x)
<<,

FIGURE 2. Illustration of the data of the system #H; in Example 2.

The new conditions (17)-(19) still fail to be necessary. Indeed, in the following example, we consider a situation
where F is locally Lipschitz with closed and convex images, the set C' = C is closed, and the continuously
differentiable function B is nonincreasing along the solutions but, for some z, € C , there exist v, € F(x,) N
Te(z,) such that inequality in (17) is not satisfied.

Example 1. Consider the system H; = (C, F) with z € R?,
F(z):=co{[l 0], [~cos(z}) sin(z})]"} vz € C,

and C := {z € R? : 25 = 0}. Furthermore, consider the function B(z) := —a.

Note that F' is locally Lipschitz and has closed and convex images. Furthermore, starting from each initial
condition z, := [T, To2]" € C, the only nontrivial solution is given by ¢(t) := [x,; +¢t 0]' for all ¢+ > 0;
hence, C = C and B is nonincreasing along each nontrivial solution. However, for z, = 0, we show that, for
v, :=[-1 0]T € F(0)NTc(0), condition (17) is not satisfied. Indeed, we note that (VB(0),v,) =1>0. O

On the other hand, the vectors in F'(x) not generating solutions may affect the global behavior of the solutions
in a way that they fail to render the map ¢t — B(¢(t)) nonincreasing. The latter is more likely to happen when
B is discontinuous. Consequently, assumptions on some elements of F(z) not generating solutions should be
considered, otherwise, the conditions can fail to be sufficient. In the following example, we propose a constrained
system Hy = (C, F') where F is locally Lipschitz with closed and convex images, the set C' is closed, and (19)
is satisfied. However, the lower semicontinuous function B fails to be nonincreasing along solutions.

Example 2. Consider the system H; = (C, F) with z € R?,

=412 ifa >0
F(z) '_{ n oo’ if 2, <0 vz ed

Ci={zeR?: |z >2i}U{zeR’ 21 <0}U{z eR?*: 25 =0}.

Furthermore, consider the lower semicontinuous function
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B(x)

FIGURE 3. Illustration of the set epi BN (C' x R) in Example 2.

L 0 1fx2§0
B(z) = {1 if a3 > 0.

We will show that in this case condition (19) holds, but the function B is not nonincreasing along the solutions
to Hy. Indeed, we start noting that
epiB:{(x,r)eRgszSO, r20}U{(m,r)€R3:x2>0, 7“21},
epiBN(C xR) = {(az,r) ER3:2,<0, r>0, 21 < \/fo}u
{(a:,r)ERB:a:2>O, r>1, =y Sw/xg}u{(x,r)e]R?’:xl >0, r>0, a:2=0}.

Furthermore, note that F' is locally Lipschitz with closed and convex images. Now, to show that (19) is
satisfied, we start noticing that

d(epiB) N (C x R) = {(x,r) eER}:29<0, r=0, 21 < \/—152} U {(x,r) eER}:29>0, r=1, 21 < \/xg}

U{(x,T)G]R?’::cg:O, 0§r§1}.

That is, for each = € C, thus (z, B(x)) € d(epi B)N(CxR), we have [F(z)NTc(z) 0]T C Toepi B)n(cxr) (2, B(2));
hence, (19) follows using [16, Proposition 3.2.3], the fact that

[0pB(z) —1]C Né; Bn(cxr) (@ B(2)) C Nepi Br(oxr) (@, B(z)) Yz € C,

and since C' C C when C is closed. Finally, in order to show that the function B is not nonincreasing along
solutions, we consider the function (¢(t), B(x,)) := [t t> 0]T € (C x R) for all ¢ > 0, which is absolutely
continuous and solution to the differential equation (i,7) = ([1 21]T,0) € (F(z),0). O

To manage such a compromise, extra assumptions on the data (C, F') of the system #; need to be made.

5. MAIN RESULTS

In this section, we formulate necessary and sufficient infinitesimal conditions solving Problem 1 when the set
C in H; given in (1) is not necessarily R™, not necessarily open, and nontrivial solutions are allowed to start
from 0C.
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5.1. When B is Lower Semicontinuous and C is Generic

The proposed approach, in this case, is based on transforming Problem 1 into the characterization of forward
pre-invariance of a closed set for an augmented constrained differential inclusion, as described in the following
lemma. The proof is in the appendix. Recall that the set C' is defined in (16).

Lemma 2. Consider a constrained differential inclusion Hy = (C,F). A lower semicontinuous function B :
R™ — R satisfies (x) in Problem 1 if and only if the set epi BN (cl(C) x R) is forward pre-invariant for the
extended constrained differential inclusion in (2). O

Proof. To prove necessity of epi B N (cl(C) x R) being forward pre-invariant, we consider a nontrivial solution
(¢,7) : dom ¢ — R™*1 starting from (z,,7,) € d(epi B N (cl(C) x R)) such that ¢t — B(¢(t)) is nonincreasing
on dom ¢ (note that solutions from int(epi B N (cl(C) x R)) reaching the boundary are already covered by this
case). From the definition of the solutions to (1), we conclude that ¢(t) € cl(C) for all t € dom¢. So, to
complete the proof of the necessary part, it is enough to show that (¢(¢),r(t)) € epi B for all t € dom ¢. Indeed,
(Zo,70) € O(epi B N (cl(C) x R)) implies that either (z,,7,) € (int(epi B) N (cl(C) x R)), thus r, > B(z,),
or (xe,7) € (A(epi B) N (cl(C) x R)), thus r, = B(z,). Hence, in both cases r, > B(z,). Moreover, since
t — B(¢(t)) is nonincreasing, it follows that r, > B(¢(t)) for all ¢ € dom ¢ since ¢(0) = x, € IC. The latter
fact implies that the solution (¢, r) satisfies (¢(t),r(t)) € epi B for all ¢ € dom ¢ and necessity follows.

To prove the sufficient part, we use a contradiction argument. Suppose there exists z, € cl(C') and a nontrivial
solution ¢ to H s such that, for some € > 0, B(¢(t)) > B(¢(0)) for all ¢ € (0, ¢]. Since the set epi BN (cl(C) x R)
is forward pre-invariant, every solution (¢,r) starting from (z,, B(z,)) € 9(epi B) N (cl(C) x R) remains in
epi BN (cl(C) x R) for all ¢ € dom ¢. The latter fact implies that (¢(t), B(z,)) € epi B for all ¢ € dom ¢; hence,
B(z,) > B(¢(t)) for all t € dom ¢, which yields a contradiction. O

Forward pre-invariance has been extensively studied in the literature, see, e.g., [9,16]. Infinitesimal conditions
for forward pre-invariance involving F' and tangent cones with respect to the considered closed set are shown
to be necessary and sufficient when C' = R™. Our approach, in this case, is based on characterizing forward
pre-invariance of the set epi B N (cl(C') x R) using infinitesimal conditions.

Consider the following assumptions on the data (C, F) of H:
(M1) For each z, € 0C'N C, if F(z,) NTe(z,) # O then, for each v, € F(z,) N Te(x,), there exist U(z,) — a
neighborhood of x, — and a continuous selection v : 9C NU(x,) — R™ such that v(z) € F(x) NTe(z) for
all z € 0CNU(x,) and v(z,) = v,.
(M2) For each z, € AC N C, there exists U(z,) — a neighborhood of x, — such that F(z) C Teo(z) for all
x € U(z,)NOC.
The need for (M1) and (M2) is discussed in Remarks 6 and 10. Furthermore, we consider the following
condition:

(Gv) <0 V[T a]" € Nopi proxmy (@ B(2), Vo € Fz)NTe(z), Yrel. (20)

The following result solves Problem 1. Its proof is inspired from [16, Theorem 5.3.4] and [9, Theorem 3.8].

Theorem 1. Consider a system Hy = (C, F') such that Assumption 1 holds and, additionally, F' is continuous.
Let B : R™ — R be a lower semicontinuous function. Then,
1. (x)+ (M1) = (20).
2. F locally Lipschitz + (20) + (M2) = (x).
Consequently, when F is locally Lipschitz and (M1)-(M2) hold, (x) < (20). O

Proof. Using Lemma 2, items 2. and 1. in Theorem 1 follow if the following two statements are proved, respec-
tively.
1%. The set epi BN (cl(C) x R) is forward pre-invariant for (2) if (M2) and (20) hold.
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2x. If the set epi BN (cl(C) x R) is forward pre-invariant for (2) and (M1) holds, then (20) holds.

In order to prove item 2x, we assume that the set epi BN (cl(C) x R) is forward pre-invariant, that is, for each
(2o, B(z,)) € d(epi B)N(C xR), each nontrivial solution starting from (z,, B(z,)) remains in epi BN (cl(C) x R)
along its entire domain. Furthermore, let us pick v, € F(x,)NTc(z,) and using (M1), we conclude the existence
of a continuous selection v : dC N U(x,) — R™ such that v(z) € F(x) N Te(x) for all z € 9C N U(z,) and
v(z,) = v,. Moreover, since F is continuous; thus, lower semicontinuous, and has closed and convex images,
we use Michael’s selection theorem [18] to conclude that the continuous selection v on dC N U(zx,) can be
extended to a continuous selection w : U(z,) — R™ such that w(z) = v(z) for all x € 9C N U(x,). Next,
using [16, Proposition 3.4.2], we conclude the existence of a nontrivial solution ¢ starting from z, solution to
the system & = w(x); thus, ¢ is also solution to H in (1). Next, since the set epi BN (cl(C) x R) is forward pre-
invariant, it follows that ¢ — (¢(¢), B(x,)) is also a solution to (2) satisfying (¢(¢), B(x,)) C epi BN (cl(C) x R)
for all ¢t € dom¢. Furthermore, consider a sequence {ti}?io — 0 and let v; = 2(t:)=¢(0) Now, since ¢

t;
is solution to & = w(z) and w is continuous, it follows that lim; .o v; = v,. At the same time, having
(p(t:), B(xo)) = ((¢(0) + v;t;), B(x,)) € epi BN (C x R) and using the equivalence (see [2, Page 122])

v € Tk(x) <= F{hi};ey — 07 and {v;},cy = vz + hiv; € K, (21)

we conclude that [v] 0]T € Tepi Bn(C xR) (To, B(,)). Hence, using* [16, Proposition 3.2.3], we conclude that
for each [(T «a]T € Neii Bm(CXR)(IO,B(l‘O)), €T a]" € Nepi Bn(CxR)(To, B(7,)). Thus, (20) by definition of
the normal cone Nepi Bn(CxR)-

Next, we prove item 1x using contrzjdiction. Indeed, we consider ¢; > 0 such that a solution z to (2) starting
from z40 1= (20, B(x,)) € d(epi B)N(C x R) satisfies z,(t) := (x(t), B(z,)) € (cl(C) xR)\ epi B for all t € (0,%;)
and such that

2a(t) € Fu(za(t)) := [F(x(t))T 0]7 for a.a. te(0,t).
Furthermore, for ¢ € [0,¢1), we use y(t) to denote the projection of z,(¢) on the set epi BN (cl(C) x R) and we
define
5(8) 1= zalt) —y(t)] V€ [0,1).
That is, by construction, we have 6(0) = 0 and 6(¢) > 0 for all ¢t € (0,¢;) for ¢; sufficiently small. Now, using
the fact that
6(t+h) = [za(t +h) —y(t +h)| <[za(t +h) —y(t)],
plus the identity a — b = (a? — b?)/(a + b) for a and b > 0, we derive the following inequality for some h > 0
sufficiently small

za(t+h) = y(t)* = |za(t) — y()|?
6(t+h)—=6(t) <lza(t+h) —yt)| — |za(t) —y(t)| = . (22
(4 ) = 8(0) < [za(t+ ) = (D) = 2a(6) = (o) = LAY BV )
Furthermore, assume that ¢ is chosen such that 2,(t) exists. Hence, we can replace z,(t + h) by
za(t + h) = 24(t) + hz,(t) + o(h), (23)

where o(h) is the remainder of the first order Taylor expansion of h +— z,(t + h) around h = 0, which satisfies
limy, 0 o(h)/h = 0. Furthermore, using the inequality

|2a(t +h) = y(t)] = [za(t) = y(t)] = hlZa(t) + o(h)/A],

4With = (20, B(zo)), v=[T 0]T, K =epi BN (C x R), and N% = Ng.
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we conclude that the denominator in (22) satisfies
|2a(t + h) — y()|+2a(t) —y ()] = 2|2a(t) — y(t)] — hlza(t) + o(h)/h|
while the numerator in (22) is upper bounded by
20(t) " (2a(t) = y(1) + h*|2a(8) + o(h) /hf* + 20(h) T (2a(t) — y(t))-
Hence, letting h — 07 we obtain,

3(t+h) = 0(t) _ (za(t) —y(t)) " Za(t)

lim sup < 24
L ) — u(0) 2y
We have the following claim.

Claim 1. Under (20), (M2), and when t > 0 is sufficiently small, the following holds:
(za(t) —y(t) "ny <O Vn, € Fa(y(t)). (25)
[}

Under (25) and for each 7, € F,(y(t)), the inequality (24) can be re-written as
_ _ Trs _
fmeup 30 1) = 80) _(zalt) ~ y(®) 2alt) ] o
h—0+ h |2a(t) = y(1)]

Since 2,(t) € Fu(24(t)), using the fact that the map F, is locally Lipschitz, it is always possible to find a
constant v > 0 and 7, € F(y(t)) such that, when replacing n, by 7, in (26), we obtain, for almost all ¢ € (0,%1),

S(t+h) — 8(t)
h

lim sup <y]2a(t) =yl =75 (t)- (27)

h—0t

The contradiction follows since (27) implies that §(¢) = 0 for all ¢ € (0,¢1) due to §(0) = 0 by construction.

Proof of Claim 1: To prove the latter claim, we start noticing, using the continuity of the system’s solutions,
that for any neighborhood sufficiently small around z,, denoted U(zg,), there exists t; > 0 sufficiently small
such that y(t) € U(zqo) for all t € [0,¢;). Furthermore, under (M2) and for U(z,,) small enough, we show
that y(t) either belongs to d(epi B) N (C' x R) or to the set int(epi B) N (8C x R). Indeed, by definition of the
projection, y(t) cannot belong to int(epi B) N (int(C') x R) = int(epi B N (C' x R)). Furthermore, (M2) implies
that, when U(z4,) is small enough, a nontrivial solution starting from y(t) always exists; hence, y(t) € C' x R.
Now, we consider the two possibilities of y(t).

e When y(t) € d(epi B) N (C x R), (25) follows from (20). Indeed, by definition of NplBﬁ(CXR)’
conclude that z,(t) — y(t) € NeI;Bﬂ(CxR) (y(t)). Furthermore, using (M2) for ¢ > 0 small enough, we
conclude that Fy(y(t)) C Tepi pr(oxr) (y(1))-

e When y(¢) € int(epi B) N (OC x R), since y(t) € U(zq0), it follows using (M2) that Fy,(y(t)) C Teo(y(t)).
Furthermore, since y(t) € int(epi B), it follows that F,(y(t)) C Tepi Bn(cxr) (¥(1))-

Now, in order to conclude (25), for each n, € F,(y(t)), we introduce the inequality, for some h > 0,

|za(t) — y(@)] < |2a(t) — y(t) — hny| + |y(t) + hny|x, (28)

where K := epi BN (C x R). To obtain the previous inequality, we used the fact that |- |k is globally Lipschitz
with Lipschitz constant equal to 1 and |z, (t) — y(t)] = |24(t)|x. Next, by taking the square in both sides of
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inequality (28) and dividing by h, we obtain, for each 1, € F,(y(t)),

7a(t) —y(OF _ |za(8) =y(t) = hny|* | Jy(8) + byl | 21za(t) =y (8) = hany[ly(t) + iy |
h = h h h
(t) —y(®)| ly(®) + hnylx)2 L 2lzalt) = y(@) = by lly(0) + hy s

|Za 2
< - + hlngl? = 2(za(t) — y(&))my + I W 5

. (29)

Finally, letting h — 07 through a suitable sequence, (25) is proven using the fact that lim inf,_, o+ M =0

since we already have n, € Tk (y(t)). O

Remark 6. Condition (M1) ensures the existence of a nontrivial solution (i.e., solution whose domain is not a
singleton) along each direction in the intersection between the images of F' and the contingent cone T¢. The
latter requirement is necessary in order to prove the necessary part of the statement in the general case where
C is not R™ and nontrivial solutions start from 9C, see Example 1.

In other words, when ¢ — B(¢(t)) is nonincreasing along the nontrivial solutions to H s, showing that, for
each z, € C, every v, € F(x,) N Te(x,) satisfies (20) naturally imposes the existence of at least one nontrivial
solution starting from x, that is tangent to v, at z,. °

Remark 7. The existence of a nontrivial solution along each direction within the set F'(x,) holds for free when
x, € int(C). Indeed, in this case, for each v, € F(z,)NTc(z,) = F(x,), there exists a selection v : U(z,) — R",
U(z,) C C, such that v(z) € F(x) for all x € U(x,) and v(x,) = v,. The latter selection can be chosen to
be continuous when F' is locally Lipschitz. Hence, the differential equation # = v(z) admits a continuously
differentiable solution ¢ starting from x, with qb(O) = v,, which is also solution to H¢; thus, the solution ¢ is
tangent to v, at z,. °

Remark 8. The assumption (M1) holds for free for example if C is closed, dom(F NT¢) NOC is open relative
to OC, F NT¢ is lower semicontinuous at least on dom(F NT¢) NOC, and the set C is regular. Indeed, having
Te(z) = Co(x) for all z € cl(C) implies that T is convex for all 2 € cl(C') and the same holds for F(x) NTe(x)
since F'(x) is also convex for all € C. Hence, a direct application of Michel’s Theorem [18, Theorem 3.2] to
the set-valued map F' N T defined on the open set dom(F NT¢) N IC relative to dC, (M1) follows. .

Remark 9. Assumption (M1) can be replaced by the following relaxed assumption involving some extra
knowledge concerning the system’s solutions.

(M1’) For each z, € CNC and for each v, € F(x,) NTe(x,), there exists a solution ¢ : [0, ] — ¢(t), for some
h > 0, starting from z, and a sequence {h;},>, — 0 and lim;_,oc(¢(h;) — 20)/h; = vo.

Remark 10. When (M2) is not satisfied, as shown in Example 2, there exist situations where the statement
of Theorem 1 does not hold even if all the remaining conditions therein are satisfied. As a consequence,
constraining more vector fields rather than only those in F(x) N T¢(x), as proposed in (20), is important to
prove the sufficient part in Theorem 1. However, strengthening (20) would affect the statement in 2., the reason
why a global assumption similar to (M2) that is independent from the function B must be considered. .

In the following, we show how Theorem 1 applies to solve Problem 1 on a concrete example.

Example 3. The continuous dynamics of the bouncing-ball hybrid model is given by Hy := (C,F) with
F(z):=[zs —1] forallz € C:= {2z €R?*:2; >0}. The constant v > 0 is the gravitational acceleration.

First, F' is single valued and continuously differentiable; hence, Assumption 1 holds. Second, note that C =
C\ {x eER?2: 2, =0, 20 < 0}. Hence, starting from z, € CNaC = {x eER?:2, =0, x> 0}, F(z,) =
(o2 —7]T € Te(x,); thus, (M2) follows. Moreover, (M1) is also satisfied since 9C' N C is open and, for each
z, € 0CNC, F(z,) € To(z,). Finally, using Theorem 1, we conclude that a lower semicontinuous function
B : R? — R satisfies (x) if and only if (20) holds. In particular, the energy function of the bouncing ball satisfies

(20) since, by definition, it cannot increase along the solutions. O
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The following result shows that, in some situations, (M1) is not needed. However, such situations require
that the set C' and the function B satisfy the following extra assumptions:

Assumption 2. z — blckdiag{Il,,0} Né;iBm(CxR)(ac,B(x)) is lower semicontinuous on C. o
Assumption 3. U(z) Nint(C) # 0 for all z € 0C N C and for all U(z). o

Theorem 2. Consider a system Hy = (C, F) such that Assumption 1 holds and F is additionally continuous.
Let B : R™ — R be a lower semicontinuous function. Then,

o (%) + Assumption 2 + Assumption 3 = (20).
Consequently, when F is locally Lipschitz and (M2) and Assumptions 2-3 hold, (x) < (20). O

Proof. We distinguish two situations.

e First, we consider the case where x € int(C). In this case, according to Remark 7, (M1) holds trivially.
Hence, using Theorem 1, we conclude that

(¢v) <0 V[T al" € NJiproxm (z, B(x)), Vv e F(z)NTo(x). (30)

e Next, when 2 € C\int(C), we show that (30) holds using a contradiction. That is, let us assume the
existence of [(] «a,]T € N;;BQ(CX]R) (z,B(x)) and v, € F(z) N To(x) such that ((,,v,) > 0; thus,
(Co,v0) > € for some € > 0. Next, using the continuity of F both with Assumption 3, we conclude
that for each e; > 0 there exist U(z) such that for each y € U(z) Nint(C) (U(z) N int(C) # ) under
Assumption 3) there exists v, € F(y) such that |v, — v,| < €1. On the other hand, using Assumption
2 under Assumption 3, we conclude the existence of z; € U(z) N int(C) sufficiently close to x and
(1 ]! € NeiiBﬂ(CxR) (21, B(x1)) such that |1 — (| < €1. Furthermore, since x; € int(C), using the
first part of the proof, we conclude that (i, v,,) < 0. However, since ((,, v,) > € it follows that

(Cos Vo) =(C1,vay) + ((Co = €1)5 Vo) + (Cos (Vo — ay)) + ((C1 = Co), (Vo — v2,)) > €

Hence, ((1,v:,) > € — (|vo] +[{,|)e1 — €2. Finally, taking e; = min {m, 1}, the contradiction
follows since the latter implies that (Cq,v.,) > €/2 > 0.
U

In the sequel, we will show that the inequality in (20) does not need to be checked for all [(T o' €
Né; Br(cxr) (@ B(x)) when z € int(C). That is, when x € int(C), we will show that it is enough to verify

the inequality in (20) only for the vectors [( a]T € N:;iBm(cl(C)xR) (z, B(x)) with & = —1 to conclude that it
holds for all [(T «a]T € Ne];iBﬂ(C'x]R) (x, B(x)). The former subset is generated by the proxzimal subdifferential

OpB introduced in (15). Although 0pB can fail to exist at some points (x, B(x)) € epi B N (int(C) x R), its
density property in Lemma 3 in the Appendix is enough to preserve the equivalence in Theorem 1.

Proposition 1. Consider a system Hy = (C,F) such that Assumption 1 holds, F is additionally locally
Lipschitz, and let B : R™ — R be a lower semicontinuous function. Then, (30) is satisfied at x € int(C) if

(¢m <0 VCedpB(x), VneF(). (31)

O

Proof. Let z € int(C) and let [(T  0]T € N (x, B(x)). After Lemma 3, we conclude the existence of a sequence
(w5, €,¢) € int(C) x Ryg x dpB(z;) such that (z;,€;,¢) — (2,0,¢) and [(;] —¢]" € Nel;B(zi,B(xi)).
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Moreover, since F' is locally Lipschitz, it follows that, for each n, € F(z), there exists v; € F(x;) such that
|v; — 1| < K|a; — x| for some K > 0. According to (31), we conclude that, for all i € N,

<<iavi> = <Cvnz> + <Ci>vi - 77x> + <<z - Cvn:r> <0.

Finally, on the limit we conclude that (¢, n,) < 0 for all n,, € F(z). O

5.2. When B is Lower Semicontinuous and cl(C) is Pre-Contractive

When the set C = R™, or when C is open, the following necessary and sufficient infinitesimal condition
solving Problem 1 is provided in [9, Theorem 6.3].

¢,n) <0 V¢ € 0pB(x), vn € F(x), Vz € int(C). (32)

In the following statement, we recover [9, Theorem 6.3] as a direct consequence of Theorem 1 and Proposition
1. Furthermore, as we will show, Condition (32) can also be used when the following extra assumptions hold.

Assumption 4. The set cl(C) is pre-contractive. .
Assumption 5. B is continuous on 0C N C. °

Corollary 1. Consider a system Hy = (C, F) such that Assumption 1 holds and F' is additionally continuous.
Let B : R™ — R be a lower semicontinuous function. Then,

1. (%) = (32).
2. When F is locally Lipschitz and either C is open or Assumptions 4-5 hold, (x) < (32).
O

Proof. The proof of item 1 follows from the first item in Theorem 1 since (M1) holds trivially when z, € int(C),
see Remark 7. B

The proof of item 2, when C' is open, follows from a direct application of Theorem 1 and Proposition 1.
Indeed, we notice that when C is open, (M1) and (M2) hold trivially because 9C' N C = 0. Now, we assume
that Assumptions 4-5 hold. Using the previous step, we conclude that, along the solutions ¢ : dom ¢ — int(C),
t — B(¢(t)) is nonincreasing if and only if (31) holds. To complete the proof, we will show that, under
Assumptions 4-5, if t — B(¢(t)) is nonincreasing along the solutions ¢ : dom ¢ — int(C') then so it is along the
solutions ¢ : dom ¢ — cl(C) using contradiction. Consider a solution ¢ : dom ¢ — cl(C) such that ¢t — B(¢(t))
fails to be nonincreasing. Since ¢ cannot flow in C' under Assumption 4, ¢ — B(¢(t)) is nonincreasing in the
interior C, and since B is only lower semicontinuous, for the map ¢ — B(¢(t)) to fail to be nonincreasing either
one of the following holds: For some € > 0, B(¢(0)) < B(¢(t)) for all t € (0,€], or, for some T" > 0 such that
o(T) € 0C, B(¢(T)) > B(¢p(T —1t)) for all t € (0, ¢]. The latter scenario contradicts the lower semicontinuity of
B, and the first one contradicts Assumption 5. O

Before closing this section, the following remark is in order.

Remark 11. It is important to notice that, when x € 9C N 5, we need to impose a condition similar to
(20) since the relaxed condition in (31) is not enough to guarantee the equivalence. Indeed, when x € int(C),

31) indicates that the inequality therein holds for all [ —1]T € NP x, B(x)), moreover, when
epi BN(C xR)
¢ 0T € N2 x,B(x)), it is possible to show that the inequality in (31) remains satisfied using
epi BN(C xR)

Lemma 3. Hence, using Lemma 3, we can find a point in any neighborhood of U(x) such that (31) holds. The
latter fact is not necessarily true when « € C'NC, since the points in the neighborhood of  are not necessarily
in C; thus, there is no guarantee to find a point within any neighborhood of = such that (31) holds. °
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5.3. When B is Locally Lipschitz and C is Generic

In this case, we show that (M2) is not required. Indeed, such a relaxation is possible since the generalized
gradient dc B introduced in Definition 4 will be used instead of the proximal subdifferential. Thanks to Lebourg’s
mean-value Theorem in Lemma 4 and to the lower Dini-derivative-based condition in Lemma 1, which combined
together provide a useful relation between the lower Dini derivative of B along the system’s solutions and the
generalized gradient d¢ B.

In this section, we consider the following infinitesimal conditions:

(n,¢) <0 VnedcB(z), Y(eF(x)NTe(z), VzeCl. (33)
,¢) <0 VnedeB(x), VCeF@)NTo(x):IceR: () =cloralnedcB(z), YzelC.  (34)

Furthermore, we recall from [29] the following notion of nonpathological functions.

Definition 7. A locally Lipschitz function B : R™ — R is nonpathological if, for each absolutely continuous

function ¢ : dom ¢ — R™, dom ¢ C R, the set dcB(p(t)) is a subset of an affine subspace orthogonal to ¢(t) for
almost all t € dom ¢. Namely, for almost all t € dom ¢, there exists a; € R such that

n.d(t)) =ar  Vn€dcB(B(t)).

Remark 12. Using [29, Theorem 4], we conclude that locally Lipschitz and regular functions are nonpatholog-
ical functions. In addition, locally Lipschitz functions that are semiconcave or semiconvex are nonpathological
— in particular, finite-valued convex functions are nonpathological. °

Now, we are ready to provide our characterization of (x) when B is locally Lipschitz.

Theorem 3. Consider a system Hy = (C,F) such that Assumption 1 holds. Let B : R™ — R be a locally
Lipschitz function. Then,
1. (33) = (x).
2. When (M1) holds, F is continuous, and B is regular, (x) < (33).
3. When B is nonpathological, (34) = (*).

O
Proof. We prove item 1 using contradiction. That is, consider a nontrivial solution ¢ : [0,7] — cl(C), T > 0,

such that the function ¢ — B(¢(t)) is strictly increasing on [0, T]. That is, using Lemma 1, it follows that, for
each t, € [0,T), we have

i ing BOD) = B(t,)

t—tt t—t,

>e>0. (35)

Next, using Lemma 4, we conclude that, for each t € [t,, T], there exists u; belonging to the open line segment
(p(to), (1)) such that

B(6(t)) = B(6(t.)) _ {< 9(t) = Blto) > e acg(w} | (36)

t—t, t—t,
Hence, there exists w; € 0o B(us) such that

B0) = Btl) _ (,, 8= 900,

t—to t_to
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Furthermore, (35) implies the existence of a sequence {t,,},- C (to, T| with t, — t, such that

lim
n—00 tn, — to n—oo

B(@(tn)) = B(@(t) _ 1. - <wtm w> >e>0. (38)

Now, since d¢ B is locally bounded, there exist U(¢(t,)) and K > 0 such that |(| < K for all { € doB(z) and
for all x € U(¢(t,)). Furthermore, since the system’s solutions are continuous, it follows that for T" sufficiently
small, both ¢(t) and u; belong to U(¢(t,)) for all ¢ € [t,, T]. Hence,

lwe, | < K Vn € N. (39)

Similarly, since F' is locally bounded, then, there exists U(#(t,)) and K > 0 such that |y| < K for all y € F(z)
and for all x € U(é(t,)). Furthermore, since the system’s solutions are continuous, it follows that for 7 > 0
sufficiently small, ¢(s) € U(¢(t,)) for all s € [t,, T|]. Hence, in view of the integral

o(t) — P(t,) = d)(s)ds (b(s) € F(é(s)) for a.a. s € [t,,t] and Vit € [t,, T, (40)

to

we conclude that

'd’(“)_w") <K VneN. (41)

tn — o

By passing to a subsequence, we conclude the existence of w, € R™ and v, € R™ such that

wy, — w, and 7(1)(75;) :f(to) — Up.

Furthermore, since we, € dcB(uy,), ut, — ¢(t,) and dcB is upper semicontinuous, we conclude that w, €
dcB(o(t,)). On the other hand, we shall show that v, € F(¢(to)) N Te(d(t,)). Indeed, for v, = 2ln)=¢te)

tnh—1to

O(tn) = d(to) + vp(tn —t,) € C with ¢, = t, and v, — v,.

Hence, using (21), we conclude that v, € Te(é(t,)). Now, to show that v, € F(4(t,)), we use (40) to conclude
that we can always find a,, € (o,t,) such that v, € F(¢(w,)). Finally, since F' is upper semicontinuous
and a, — t,, we conclude that v, € F(¢(t,)). Finally, if we reconsider (38), after passing to an adequate
subsequence we obtain

lim
n—oo

(i, )= 8

P— > = (Wo, Vo) > € > 0. (42)

However, since w, € 0cB(¢(t,)) and v, € F(¢(to)) N Tc(P(t,)), (33) implies that (w,,v,) < 0; thus, a contra-
diction follows.

In order to prove item 3, we use the same exact steps as in the proof of item 1 while picking ¢, € [0,7') such
that the following properties hold simultaneously:

. (;;(to) exists,
* (to) € F(o(to)) NTe(o(to)),
o (1,0(to)) = ay, for all n € doB(¢(to))-
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Indeed, we already know that each of the latter three properties holds for almost all ¢ € [0, T]; hence, we can
always find ¢, € [0,T) that satisfies these three conditions simultaneously. Next, the contradiction reasoning
leads us to (42). Note that, in this case, we have

Htn) = 9o) _ 54 ) € F(6(t.)) N Te(6(t),

V= lim
n—oo tn —to

and, for each n € doB(4(t,)), we have (n, ¢(t,)) = as,. Thus, using (34), we conclude that (w,,v,) < 0; which
yields to a contradiction.

In order to prove item 2, we use the proof of item 1 in Theorem 1 to conclude, under (M1) and the continuity of
F, that, when the function B is nonincreasing along the solutions to # ¢, for each z, € C and v, € F(z,)NTo(x,),
(Vo 0]T € Topi pn(oxr) (To, B(,)). Hence, [v, 0] € Topi p(wo, B(x,)). Next, since B is Lipschitz and regular,
we use Lemma 6 to conclude (33). O

Remark 13. The first item in Theorem 3 can be found in [12] for the unconstrained case and in [26] for the
constrained case. However, the original proof proposed in this paper illustrates the reason why we cannot obtain
a similar result when B is discontinuous using the OpB. °

Example 4. Consider the constrained system Hy = (C, F') introduced in Example 2. We already showed that
Assumption 1 holds, F' is locally Lipschitz, and (M1) holds. Hence, using Theorem 3, we conclude that a locally
Lipschitz and regular function B : R? — R is nonincreasing along the solutions to # ¢ if and only if (33) holds.
|

As in Theorem 2, (M1) can be relaxed provided that Assumptions 2 and 3 hold.

Theorem 4. Consider a system H; = (C,F) such that Assumption 1 holds. Let B : R™ — R be a locally
Lipschitz function. Assume further that Assumptions 8 and 2 hold with © +— N;iBn(CXR)(x,B(a:)) therein
replaced by x — [0cB(x)T  —1]" and B is reqular. Then,

1. When F is continuous, (x) = (33).

Proof. T establish the proof, we distinguish the following two situations:
e When (x, B(z)) € 9(epi B) N (int(C) x R), according to the proof of 2. in Theorem 2, we notice that
(M1) holds trivially. Furthermore, using the proof of the necessary part in Theorem 1, we conclude that
[Vo 0] € Tepi p(z, B(x)) for each v, € F(x). Hence, (33) follows using Lemma 6 since B is locally
Lipschitz and regular. B
e Next, when (z, B(z)) € d(epi B)N((C\int(C)) xR), (33) follows using the same contradiction argument
used in the proof of Theorem 2 and the fact that Né;iBﬂ(CxR) = [0cB —1]7, see Lemma 6 in the
appendix.
O

5.4. When B is Locally Lipschitz and cl(C) is Pre-Contractive

As in Corollary 1, when the solutions to H; do not flow in OC' (i.e., Assumption 4 holds), we will show that
we can use infinitesimal inequalities that we check only on the interior of the set C. That is, we introduce the
following conditions:

n,¢) <0 Vn € dc¢B(x), V¢ € F(x), Va € int(C). (43)
n,¢) <0 Vn € 0cB(x), V(e F(z):3ceR:(n,¢) =clorallpe dcB(x), Vreint(C). (44)
(VB(x),¢) <0 V¢ € F(x), Va € int(C) : VB(z) exists. (45)
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Corollary 2. Consider a system Hy = (C,F) such that Assumption 1 holds. Let B : R™ — R be locally
Lipschitz. Then,

1. When Assumption 4 holds, (43) = (x).
2. When Assumption 4 holds and B is nonpathological, (44) = (x).
3. When Assumption 4 holds and F is continuous, (45) = (43).

O

Proof. We start using Theorem 3 and the proof therein to conclude that when (43) holds, or (44) holds and B
is nonpathological, then ¢ — B(¢(t)) is nonincreasing along every solution ¢ : dom ¢ — int(C).

Next, using contradiction, we show that, under Assumption 4, if ¢t — B(¢(t)) is nonincreasing along every
solution ¢ : dom ¢ — int(C) then so it is along every solution ¢ : dom ¢ — cl(C). Indeed, consider a solution
¢ : dom ¢ — cl(C) such that ¢ — B(¢(t)) fails to be nonincreasing. Using Assumption 4, we conclude that the
solution ¢ cannot flow in dC. Furthermore, since t — B(¢(t)) is nonincreasing in the interior C' and since B is
continuous, the map ¢ — B(¢(t)) fails to be nonincreasing under one of the two following scenarios:

e For some ¢ > 0, B(¢(0)) < B(¢(t)) for all t € (0, ¢].
e For some T > 0 such that ¢(T") € 9C, B(¢p(T)) > B(p(T —t)) for all t € (0, ¢].

The latter two scenarios contradict the continuity of the map ¢ — B(¢(t)).
Finally, the proof of item 3 can be found in [28, Proposition 1]. O

5.5. When B is Continuously Differentiable and C is Generic
When a function B : R" — R is continuously differentiable, o B = V B; hence, (33) becomes

(VB(z),n) <0  Vne F(z)NTe(z), VaeC. (46)
Similarly, (43) becomes
(VB(x),n) <0 Vn € F(z), Vz e int(C). (47)

The following corollaries are in order.

Corollary 3. Consider a system H; = (C, F) such that Assumption 1 holds. Let B : R™ — R be a continuously
differentiable function. Then,

(1) (46) = (x).
(2) When (M1) holds and F is continuous, (x) < (46).
g

Proof. Using Theorem 3, the statement follows under (P4) and the fact that each continuously differentiable
function is both locally Lipschitz and regular. O

Next, using the continuity argument in Theorem 2 under Assumption 3, we will show that (M1) is also not
required.

Corollary 4. Consider a system Hy = (C, F) such that Assumption 1 holds. Let B : R™ — R be a continuously
differentiable function. Assume further that Assumption 8 holds. Then,

(1) (46) = (x).
(2) When F is continuous, (x) = (46).
g

Proof. The proof follows from Theorem 4 while using (P4), the fact that each continuously differentiable function
is locally Lipschitz and regular, and VB continuous. O
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Example 5. Consider the constrained system H; = (C, F) introduced in Example 2. We already showed
that Assumption 1 holds and F' is locally Lipschitz. Moreover, we will show that Assumption 3 is also satisfied.
Indeed, for each z, € dCNC, ie. z, = [1,1 0] for some z,; € R, there exists € > 0 such that x. = [z,1 €] €
int(C) can be made arbitrary close to x,; thus, Assumption 3 follows. Hence, using Corollary 4, we conclude
that a continuously differentiable function B : R? — R satisfies (x) if and only if (46) is satisfied. O

5.6. When B is Continuously Differentiable and cl(C) is Pre-Contractive

In this case, Corollary 2 reduces to the following statement.

Corollary 5. Consider a system Hy = (C, F) such that Assumption 1 holds. Let B : R™ — R be continuously
differentiable. Then,
(1) (x) = (47).
(2) When Assumption 4 holds and F is continuous, (47) < (%).
O

Proof. The proof follows from a direct application of Corollary 2 while using the fact that each continuously
differentiable function is locally Lipschitz and regular, and, VB = 0¢ B. d

6. CONCLUSION

This paper characterizes the nonincrease of scalar functions along solutions to differential inclusions defined
on a constrained set. Such a problem is shown to arise naturally when analyzing stability and safety in con-
strained systems using Lyapunov-like techniques. Different classes of scalar functions are considered in this
paper including lower semicontinuous, locally Lipschitz and regular, and continuously differentiable functions.
As a future work, one could consider replacing Assumptions (M1) and (M2) by tighter assumptions or analyze
their necessity.

APPENDIX A. SUPPORTING RESULTS

In this section, we recall a useful intermediate result as well as some useful properties of dcB and dpB [2,9].
The following result can be found in [9, Problem 11.23, Page 67].

Lemma 3. Let B : R™ — R be lower semicontinuous and let (¢,0) € Ne};iB(va(m))' Then, for each € > 0,

there exists ¥’ € x + €B and ({', —\) € NeI;iB(z’, B(2")) such that

)‘>07 |B($/)—B(£E)| <, |(Ca0)_((a_>‘)| S e

U
Remark 14. According to Definition 6, dp B(x) is empty whenever Ne[;iB(x, B(z)) C R™ x {0}. However, the

set of points where Op B(x) is nonempty is dense in R™ and Lemma 3 is a consequence of the density theorem
in [9, Theorem 3.1, Page 39]. o

Next, we recall from [9, Theorem 2.4, Page 75] the following version of the mean-value theorem in the case
of locally Lipschitz functions, which will play a fundamental role to solve Problem 1 when B is locally Lipschitz
and regular.

Lemma 4 (Lebourg’s mean value theorem). Let (z,y) € R™ x R™, and suppose that B : R™ — R is locally
Lipschitz. Then, there exists a point u in the open line-segment relating x to y denoted (x,y) such that

B(z) — B(y) € {{z,z —y) : 2 € 0cB(u)} . (48)

d



TITLE WILL BE SET BY THE PUBLISHER 21

Remark 15. When the function B is only lower semicontinuous, since dp B is not guaranteed to exist every-
where in R™, it is not possible to formulate a mean-value theorem similar to (48) using dp B instead of B
with u belonging to the open segment (z,y); see [30]. °

The following useful properties of the Clarke generalized gradient can be found in [9, Proposition 1.5, Page
73], [9, Proposition 3.1, Page 78], and [9, Theorem 5.7, Page 87]. In the following lemma, we recall only those
that are useful to prove our results.

Lemma 5. Consider a locally Lipschitz function B : R™ — R. Then,

(P1) the set-valued map OcB is locally bounded and upper semicontinuous,
(P2) 0cB(z) #0  VxeR",
(P3) for each x € R™, ( € 0cB(z) &
([¢T —1]",v) <0 Vv € Nepi (z, B(x)),
(P4) B is continuously differentiable = 0cB(x) = {VB(z)} Vo € R".

O
the following lemma is a direct consequence of Definition 5 and (P3).
Lemma 6. Consider a locally Lipschitz and regular function B : R™ — R. Then, for each x € R",
(P5) n€ 8cB(z) < [n" —1]" € Nepi gz, B(z)).
O
Lemma 7. Given a subset S C R"™, the proximal normal cone Ng is a subset of the normal cone Ng. O

Proof. By definition, z € N¥ (x) implies the existence of 7 > 0 such that |z+rz|s = r|z|. Let y := x+72 and note
that |y|s = r|z| = |rz| = |[y—z|. Hence, x belongs to the projection of y on S. Now, using [16, Proposition 3.2.3],
we conclude that (y —z) = rz € Ng(x). Finally, since Nk is a cone and r > 0, it follows that z € Ng(z). O
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