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Using R-Functions to Control the Shape
of Soft Robots

Declan Mulroy ", Esteban Lopez

Abstract—In this letter, we introduce a new approach for soft
robot shape formation and morphing using approximate distance
fields. The method uses concepts from constructive solid geometry,
R-functions, to construct an approximate distance function to the
boundary of a domain in R%. The gradients of the R-functions can
then be used to generate control algorithms for shape formation
tasks for soft robots. By construction, R-functions are smooth
and convex everywhere, possess precise differential properties, and
easily extend from R? to R? if needed. Furthermore, R-function
theory provides a straightforward method to creating composite
distance functions for any desired shape by combining subsets of
distance functions. The process is highly efficient since the shape
description is an analytical expression, and in this sense, it is better
than competing control algorithms such as those based on potential
fields. Although the method could also apply to swarm robots, in
this letter it is applied to soft robots to demonstrate shape formation
and morphing in 2-D (simulation and experimentation) and 3-D
(simulation).

Index Terms—Modeling, control, and learning for soft robots,
multi-robot systems, swarm robotics.

I. INTRODUCTION

HIS letter demonstrates how to incorporate distance func-
tions and image morphing techniques (transfinite interpo-
lation [1]) to derive control algorithms for soft robots performing
both shape formation and shape morphing tasks. Distance func-
tions have been employed in modeling solids [2], mesh gener-
ation [3], topology optimization [4], SLAM and path planning
applications [5], dynamic system planning [6], and rendering
and animation [7]. In this work, the distance functions are imple-
mented via R-functions [8]. Compared to other techniques, such
as radial-basis functions that require the use of tedious numerical
algorithms, R-functions provide an analytical solution. As a
proof of concept, we apply these techniques to a soft robot based
on a boundary constrained granular swarm (see Fig. 1).
A boundary constrained granular swarm robot is composed of
a closed-loop series of active sub-robots, each with the ability to
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Fig. 1. Illustration of three-dimensional boundary constrained soft robot. The
robot consists of an elastic membrane enclosing granular material. On the
elastic membrane exists “active™ sub-robots with the ability to locomote in the
environment. Examples of experimental prototypes of boundary constrained
swarms can be found in [9]-[12].

locomote [9]-[12]. Each sub-robot is connected to its neighbors
with an elastic membrane, and the whole forms a single robot.
In the case of the studies cited above, the membrane encloses
a passive granular interior, which provides structure and allows
the robot to switch between rigid and soft states via granular
jamming phase transitions.

Prior work has demonstrated that robotic swarms (including
traditional, non-boundary-constrained systems) can form de-
sired shapes through a potential field-based control algorithm
by using the gradients of the potential field to drive the swarm
robots to a desired contour, .S. This desired curve is embedded
into potential fields as the minima of the field. One example
was in [13], which created the potential fields using radial basis
functions [14]. However, creating complex shapes is difficult
using radial basis functions; distance functions can be employed
as an alternative. Distance functions have some of the same
desired properties as potential fields, the most important of
which is that they attain a zero-level set over a prescribed curve or
surface, S. In general, distance functions are created using one
of several numerical techniques such as surface interpolation,
multiple-object averaging, spatially weighted interpolation, or a
distance transform [15], [16]. For this work, since it is beneficial
to retain distance-like properties of the distance functions, we
focus on the creation and use of approximate distance functions
via R-functions [8], [17], [18]. The result is a single analytical
equation rather then a numerical representation.

To transform boundary constrained granular swarms from
an initial shape, S;, to a final shape, S . we will use image
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morphing techniques. Image morphing has previously been
applied to unmanned aerial vehicle control algorithms for
obstacle avoidance [19]. However, they have not been applied
to shape formation tasks. To accomplish shape transformation
tasks, we used space-time transfinite interpolation as proposed
in [1]. This method incorporated R-function theory and trans-
finite interpolation between two pre-described curves to morph
from an initial curve S;, to a final curve, Sy, represented as
distance function.

In summary, this letter describes how to apply approximate
distance functions to soft robots in order to form desired shapes
in 2D and 3D. Additionally, the letter shows the application of
space-time transfinite interpolation, originally conceptualized
and proposed for image morphing, to accomplish shape morph-
ing objectives. The techniques are demonstrated on both sim-
ulated and experimental boundary constrained soft robots. The
letter is organized as follows. Section II provides background
information on distance functions and R-functions. Section V-A
discusses the morphing algorithm and Section IV presents the
control algorithms, the experimental platform, and the simula-
tion platform. Section V presents the results of a simulated and
experimental system forming and morphing between arbitrary
shapes. Finally, Section VI provides a discussion of the results.

II. DISTANCE FUNCTIONS AND R-FUNCTIONS

This section provides a brief background on distance func-
tions and R-functions. We use well-known distance functions
to represent features of the desired curve, S. R-function theory
is used to combine the features into a single analytical distance
function that can be used by a soft robot to form a desired shape.

A. Distance Functions

A distance function is an implicit representation for curves and
surfaces. To define a distance function, firstlet S ¢ ¢ denote an
object with boundary 85. The exact distance function d(x) gives
the shortest distance between any point € R¢ to dS. Therefore,
d(x) is identically zero on 95.

Exact distance functions have several drawbacks. First, com-
puting the exact distance function to an arbitrary object is
computationally expensive. Second, exact distance functions
do not possess continuous derivatives on the medial axis of
an object. Since the objective in this work is to use distance
functions in gradient-based control algorithms, their derivatives
must be continuous and thus exact distance functions are not
appropriate. Instead, approximate distance functions (formally
represented by ¢(x)) that have a closed-form expression and are
computationally more efficient are a more viable solution.

For a point € ¢ on A5, it is essential that any approximation
to the distance function satisfy ¢ = 0. ¢; = ¢;(x) is used to
denote the approximate distance function of each piece-wise
element for S in N2 and N3. Features of most shapes are
represented using a combination of simple distance functions
described by four piece-wise elements: a circle, a line, a sphere,
and a plane. A description of the distance function for each of
these is as follows.
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Fig. 2. (a): Distance function for a circle of radius 0.75. (b): Union of two

circles, each with radius 0.75, centered at = = [0,0.5] and x = [0, —0.5].
(c): Distance function of a line. (d): R-Equivalence of two line segments with
m = 2.

1) Circle: The approximate distance function for a circle,
¢c(x), with a radius R and center x.. is given as:

g - Bt e

A visual of a approximate distance function for a circle is shown
in Fig. 2(a).

2) Line: The distance function for a line with end points
xy = [z1,y1], and @y = [z, yo| was defined in [20] as:

2
Su(x) = \/ f@)?+ (w) @

where f(x), t(x) and (x) are defined as:

ey

fla) = B2 —v) - Wyl —z1) 5

2
ta) =+ [(%) e - scc||2] @

p(x) = Vi(x)* + f(x)* (&)

where L = ||z2 — x1||2 and @, = (z1 + T2)/2. A visual of a
approximate distance function for a line is shown in Fig. 2(c).

3) Sphere: The distance function of a sphere centered at x,
with a radius R is described as:

bs(x) = (T — T,) - (T — o) — R (6)
4) Plane: The distance function for a plane is given as:
op(x) =(r—20) -1 (7)

where x, is a known position on the plane and n is a vector
perpendicular to the plane. For making curves or surfaces,
the approximate distance functions for a circle or sphere are
subjected to a trimming function as shown in [20].
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B. R-Functions

R-functions are the tools that combine multiple distance func-
tions to create a single distance function for complex shapes
beyond piece-wise elements such as those described in the pre-
vious section. The R-functions, first proposed by T. L. Rvachev
in 1963 [8], construct a composite approximate distance func-
tions, ¢(x), to any arbitrarily complex boundary, 35, when
approximate distance functions, ¢;(x), to the partitions of 95
are known.

A function, F'(-), is an R-function given the following. Con-
sider a real-valued function F'(wy,ws,...,wy), where w;(x) :
R+ R (i=1,...,q) are also real-valued functions. If the
sign of F(-) is solely determined by the signs of its argu-
ments, w;(x), then F(-) is known as an R-function [8], [17],
[18]. R-functions can be used to implicitly describe geometry
by utilizing set-theoretic Boolean operations. R-functions can
be combined using techniques similar to a Boolean operation
(referred to as R-negation, R-disjunction, and R-conjunction) or
through what is known as a R-equivalence operation. Each is
described below.

C. Disjunction and Conjunction Operations

Just as Boolean functions are written using the symbols —
(complement), V (union), and A (intersection), every R-function
can be written as the composition of the corresponding elemen-
tary R-functions: R-negation (—w), R-disjunction (w; V wa),
and R-conjunction (w; A w3). When defining R-functions for re-
gions in 14, a solid can then be composed using the set-theoretic
operations of —, V, and A. In U = %2, the simplest examples of
R-functions are the R-disjunction (union) and the R-conjunction
(intersection) functions, given respectively as:

wl—l—wg:I:\/w%—l—w%—stlwg
1+s

where the (+) and (—) signs define R-disjunction and R-
conjunction, respectively, and s > 0. If w; and w9 are positive,
then so are w; V wp and wy A wa. Fig. 2(b) provides an example
of an R-disjunction operation performed on two circles.

The R-functions defined in (8) are not analytic at points
where w; = wy = 0. Smoothness can be obtained by defining
the function (where s = 0Ois selected) [17]. Note that although R-
disjunction and R-conjunction can be used to create approximate
distance functions in both ®? and R?, they are not associative.
A superior method, R-equivalence, is associative and described
in the next section [21].

®

Re(wi,wa) :=

D. R-Equivalence Operation

Given two normalized distance functions ¢; and ¢, for two
curves 57 and S, a distance field ¢(¢1, ¢2) for the union
S1 U S5 must be zero when either ¢; = 0 or ¢ = 0 and positive
otherwise. An R-equivalence solution that preserves normaliza-
tion up to order m of the distance function at all regular points
(nonvertices for polygonal curves) is given by [22]:

D102

d(o1, d2) := W
1 2

(€))
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When 95 (closed curve) is composed of n pieces, then a ¢, that
is normalized up to order m, is described as:

1
ﬁb(d)l-,----,ﬁbn):: 1 1 1
VYartart ot

(10)

An example of R-equivalence is shown in Fig. 2(d) of two
lines joined with R-equivalence operation. Since R-equivalence
is associative [22], we do not need to consider the order in
which the functions are joined to obtain the desired distance
function ¢.

In summary, we demonstrated two techniques to combine four
piece-wise distance functions: point, line, circle, and plane, to
create a single analytical expression for a distance function, ¢,
for an arbitrary shape. This is superior to other numeric tech-
niques because the R-functions provide an analytical descrip-
tion of a required field that can be computationally efficiently
updated. The next section explores how a robot might transform
from one shape to another.

III. SPACE-TIME TRANSFINITE INTERPOLATION

The approximate distance functions provide a gradient field
used to drive a boundary-constrained granular swarm soft robot
to a particular shape, but in order to transform from an initial
shape, S;, to a final shape, Sy, intermediate shapes between
the two must be created. This is accomplished using space-time
transfinite interpolation [1], which is a technique used in image
morphing applications. Space-time transfinite interpolation is
given as:

(‘?5(93, t) = w1 (:B, t)éa(m) + ws (:B, t)ﬁbf(:c) (11)

where ¢;(x) and ¢ () correspond to the approximate distance
function for the initial and final shapes and w1 (x, t) and wa (x, 1)
are weight functions given by:

_ QQ(I’, t)
) S0 T 0D )
and
_ g1 (:I:: t)
) w0 T 0D )
where g1 (x,t) and g2(x, t) are defined as:
g91(z,t) = Rs(gi, —f(2)) (14)
and
g2(®,t) = Rs(¢y, £(2) — 1) (15)

where R(-) is the R-conjunction function described in (8),
with s = 0 and the function f(¢) is a time varying function
that monotonically increases from 0 to 1. As f(¢) — 1, the
approximate distance function gradually transforms from an
initial function, ¢;(x), to a final function, ¢(x). For f(t), we
use a modified hyperbolic tangent function:
et —1

=5

where p is a positive constant (p > 0) that dictates the speed
at which the function f(¢) transforms from 0 to 1, and thus

(16)
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Fig. 3. (a): The experimental two-dimensional planar boundary-constrained

soft robot. (b): The simulated system. (c): Snapshots of the simulated and six
experimental systems pursuing a target.(d): Distance from the target for the
simulated and the average of the six experimental systems.

the speed at which the robot will transform from one shape to
another.

In summary, (11) and (16) provide a way to smoothly tran-
sition a distance function from an initial shape, S;, to a final
shape, S, in a controlled manner. The next section will discuss
the simulation and experimental platforms that the distance
functions and space time transfinite interpolation were applied
to with the objective of forming a desired shape and morphing
between shapes.

IV. MATERIAL AND METHODS

This section describes the control algorithm, simulation envi-
ronment, and experimental platform used to verify the approach.

A. Experimental Platform

The experimental robot (see Fig. 3(a)) is a two-dimensional
planar representation of the general system shown in Fig. 1. The
robot consists of ten omnidirectional sub-robots that each use a
commercial Sphero Bolt to provide locomotion. Each sub-robot
is flexibly connected to each other through shape memory alloy
springs (Kellog’s Research Labs, 0.5mm wire size, 9.5mm
mandrel size, tight pitch, 35 °C transition temperature, spring
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coefficient k =6.4Nm~! off and k =13.8 Nm~! on) and ex-
tensible fabric (Gilbins BO75395K3J). The shape memory alloy
springs help the robot execute a jamming function, a feature not
utilized in this work, which only focuses on shape formation.
Interior particles consist of Styrofoam passive spheres (Crafjie
76.2mm and 101.6 mm foam balls), roughly the same size of
the active subunits.

Experiments were performed on a letter-covered table (Sav-
age SAV461253) with an overhead camera (Logitec Brio 960-
001105) that visually tracked each sub-robot’s pose in real
time using AprilTags [23]. A central computer running ROS
computed all desired control inputs, which were broadcast to
the subunits via Bluetooth. Although the system contains rigid
bodies, it exhibits the continuous nature and configurable prop-
erties of a soft robot.

B. Simulation

The robot model consists of three components: active bound-
ary sub-robots, passive particles in the interior, and an elastic
membrane. The membrane is approximated through a series
of spring-mass systems, both in 2D and 3D. See Fig. 3(b).
The passive interior and robots are modeled as rigid bodies.
For the passive interior we used a mixture of particles with
radii of r;=3.25 cm, and ry = /2r. The inclusion of particles
with different radii was done to prevent crystallization, which
is a phenomenon that emerges in granular media with identical
particles [24]. The properties used were: sub-robot (radius 3 cm,
mass 200 g, number 30), interior particle (radius 3.25 cm, mass
= 30 g, number 180), friction coefficient 0.2, spring stiffness
50 Nm™'.

The system’s equation motion is expressed as:

Mi+Kz=u—+F, (17)

where n is the number of rigid bodies, M € R3"*3" s the
system’s generalized mass matrix, and K € R3™3" is a matrix
representing the interconnected springs between the boundary
particles and active robots. € R3™*1 is a column vector con-
taining the degrees of freedom of the system (x,y, @ for each
rigid body), u € R3™*! contains the control inputs to all degree
of freedoms (zero for passive degrees of freedom). The column
vector, F, € R3"*1 contains the contact forces that emerge as
the constituting bodies interact with each other. The model was
simulated in the open source physics engine Project Chrono [25].
To verify the simulation platform, we simulated the experi-
mental robot moving towards a desired target and compared it to
six experimental tests performing the same task (see Fig. 3(c)).
Fig. 3(d) compares the distance from the robot’s center of mass
to the target of the experimental and simulated systems with
respect to time. Both Fig. 3(c) and (d) show good alignment.

C. Control

The control law for the i™ active boundary sub-robot is
given as:

u; = —an)(a:)lmzqi (18)
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Fig. 4. (a): The simulated system forming a Pac-Man shape (see Movie S1).
(b): Snap shots of the experimental system transitioning shapes (see Movie
S1). (c): Distance function utilized for the experimental system with the final
positions of the experimental sub-robots overlaid.

where u; is the system’s control input, V¢ () is the gradient of
the distance function corresponding to the desired shape, g; =
[xi,;] is the position vector of the 7™ sub-robot, and « is sub-
robot’s thrust. (18) is commonly used in other potential field
control laws [13], [26], [27]; The difference here is that the
function used to calculate the gradient, ¢(x), is an approximate
distance function rather than a potential field. Note that only one
distance function, ¢, is generated for shape formation objectives
and that two distance functions are generated for shape morphing
objectives. The field, ¢;, corresponding to the initial shape, and
the field, ¢, corresponds to the desired shape. Additionally, we
replace ¢(x) with ¢(x, t) as shown in (11).

V. RESULTS

In this section, we present experimental and simulation results
that demonstrate that the approximate distance functions can be
used to control the shape of a soft robot. The demonstrations
include forming a single shape and transitioning from one shape
to another for the two-dimensional simulation and experimental
platform. We then extend this to demonstrate how the approach
would work for a three-dimensional system in simulation only.
Note for both the simulations and experiments the robots have
no knowledge of the other robots, only their own position.

Fig. 4(a) shows a simulated system forming and maintaining
a Pac-Man like shape. Starting at 10s and ending at 15s, a
series of external disturbances are applied to the system, but
the system is shown to recover. Fig. 4(c) shows snapshots of
the experimental system forming a similar shape. The distance
function was created using R-equivalence of two line segments
and an arc.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022
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Fig. 5. (a): Approximate distance function of the initial shape, S;. (b): Ap-
proximate distance function of the desired shape, S¢. (c): Snapshots of the
simulated system transitioning shapes using space time transfinite interpolation
(see Movie S1).

A. Morphing

Fig. 5 shows an example of the system morphing from a
circular configuration, S;, to a wrench-shaped configuration, S,
using the approximate distance function shown in Fig. 5(c).

B. 3-D Shape Forming

This section demonstrates how distance functions might be
used to control shape formation for a three-dimensional soft
robot assuming the sub-robots have omnidirectional locomotion
capabilities. To simulate this system we used an alternative plat-
form, PyBullet [28], for its ability to easily interface rigid bodies
with soft structures. This allowed us to simulate a membrane
that encapsulates the passive interior particles. The system is
modeled with an icosphere mesh where each of the 162 nodes
represents an active boundary sub-robot. The control algorithm
enacts a shape formation by forming a cube (see Fig. 6). The
approximate distance functions were constructed by perform-
ing R-disjunction, (8), with a series of approximate distance
functions for a plane, (7).

VI. DiscussioN, CONCLUSION, AND FUTURE WORK

In this letter, we present a control methodology incorporating
distance functions, R-functions, and transfinite interpolation to
control soft robotic systems. We demonstrated these techniques
on soft robots based on boundary constrained granular swarms in
both experiments and simulation. An advantage of this technique
is that the robot’s elastic outer membrane and granular interior
implicitly enforce distance constraints. This is in contrast to
most traditional swarm robot systems in which each robot needs
knowledge of their neighbors’ poses to form a desired shape.

The control methods based on R-functions may be compared
with more well-known potential field-based methods. The main
advantage of the method presented here is the easy evaluation
of the surface ¢ for arbitrarily complex desired shapes of the
soft robot in terms of analytical compositions of elementary
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Fig. 6. A 3D JAMoEBA system forming a cube. Here we had 162 boundary
robots with 800 interior particles.

functions. The resulting ¢ has guaranteed differentiability prop-
erties leading to further stability in the controller. An important
step in the proposed method is the creation of ¢ for complex
shapes, preferably in an automated fashion. This requires the di-
vision of the composite shape into more elementary sub-shapes
(e.g., arcs, lines, surfaces and planes). A promising alternative
might be to exploit nurbs to define complex shapes for which
R-functions are already available [29]. One could subsequently
use the equivalence operation to fully automate the process of
the creation of ¢.

One potential issue, as it pertains to the present experimental
platform, is the emergence of localized jamming when a shape
transformation is attempted too quickly. This can be mitigated
by slowing the speed of the transfinite interpolation or by intro-
ducing small amplitude random oscillations in the robot forces.
Future work will need to be conducted to mitigate localizing
jamming of the system. Additionally, we will also apply these
techniques for grasping and transporting objects.
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