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Detection of a stochastic background of gravitational waves is likely to occur in the next few years.
Beyond searches for the isotropic component of a stochastic gravitational-wave background, there have
been various mapping methods proposed to target anisotropic backgrounds. Some of these methods have
been applied to data taken by the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo.
Specifically, these directional searches have focused on mapping the intensity of the signal on the sky via
maximum-likelihood solutions. We compare this intensity mapping approach to a previously proposed, but
never employed, amplitude-phase mapping method to understand whether this latter approach may be
employed in future searches. We build up our understanding of the differences between these two
approaches by analyzing simple toy models of time-stream data, and we run mock-data mapping tests for
the two methods. We find that the amplitude-phase method is only applicable to the case of a background
which is phase coherent on large scales or, at the very least, has an intrinsic coherence scale that is larger
than the resolution of the detector. Otherwise, the amplitude-phase mapping method leads to an overall loss
of information, with respect to both phase and amplitude. Since we do not expect these phase-coherent
properties to hold for any of the gravitational-wave background signals we hope to detect in the near future,
we conclude that intensity mapping is the preferred method for such backgrounds.
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I. INTRODUCTION

Over the past two decades, several efforts have been
made to understand the problem of gravitational wave
(GW) map-making. The term “map-making” [1,2] is
typically used when considering stochastic GW back-
grounds (SGWBs), which are expected to be incoherent
superpositions of GW signals arriving at a detector from all
directions of the sky. These GWs are generated by a variety
of underlying mechanisms, which include both compact or
diffuse sources at both astrophysical or cosmological
distances (see, e.g., [3,4]).
The primary map-making method adopted in searches

for anisotropy in stochastic signals is a maximum-

likelihood approach that targets the overall background
intensity [5], entirely discarding any time-domain phase
information present in the data. This method, hereinafter
referred to as intensity mapping, has been used on cross-
correlated data from the Laser Interferometer Gravitational-
wave Observatory (LIGO) detectors [6–8] and, more
recently, also on data from the Virgo observatory [9].
We review the basics of this method in Sec. III. Intensity
mapping is best suited for a background that is truly
stochastic. In this case the signal is characterized by waves
that have random time-domain phases but whose intensity
varies as a function of frequency and, in principle, angular
direction. This motivates the development of methods that
compress the data by discarding the time-domain phase
information of the signal. For noise-dominated detectors,*arenzini@caltech.edu
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such as LIGO-Virgo, this is achieved by integrating the
equal-time cross-correlation of the time stream of pairs of
detectors. Each detector pair has a characteristic correlated
sky response to the GW signal, which is time-dependent
following the Earth’s rotation. The set of responses deter-
mine the mapping capabilities of the detector array.
Other methods have been proposed that solve for the

phase information as well, effectively mapping the ampli-
tude and phase—or real and imaginary parts—of the two
GW polarization modes on the sky [10–12]. We refer to
these as amplitude-phase mapping in what follows. A clear
motivation for preserving phase information would be the
case of a diffuse, anisotropic, but coherent GW back-
ground. It is often argued that the primordial background
generated by an inflationary epoch satisfies this condition
[13,14]. This is due to the squeezing of modes induced by
any period of superhorizon evolution. It has been shown,
however, that, at accessible frequencies, any primordial
coherence is wiped out by the effect of large-scale structure
on the GWs as they propagate through the evolving
universe [15,16]. Hence, reconstructing the phase informa-
tion itself is effectively not necessary in stochastic analyses;
however, there remains a question of whether it is actually
possible to determine the phase information for a stochastic
source. This question is what we set out to answer with
this paper.
In this paper we compare the application and validity of

intensity and amplitude-phase mapping methods for
SGWB analyses. We do this by analyzing mock data,
focusing on the cross-correlation of measurements made by
a network of detectors. It is important to note, at this stage,
that a key element in any stochastic analysis is the accurate
modeling and estimation of detector noise. We do not focus
on this aspect here since our aim is to clarify the
applicability of the mapping methods with respect to the
signal properties. Our analysis assumes the simplest pos-
sible noise component and artificially high signal-to-noise
ratios (SNRs). Our conclusions, nonetheless, are indepen-
dent of these choices.
This paper is organized as follows: in Sec. II, we review

the strain description of the GW signal and the key
assumptions made throughout the paper. Section III details
the two map-making methods. In Sec. IV we discuss
different measurement scenarios to build an understanding
of the issues encountered when reconstructing an aniso-
tropic SGWB using intensity and amplitude-phase map-
ping methods. In Sec. V we apply the two methods to mock
datasets and provide a comparison between the mapping
fidelity. We conclude with Sec. VI, where we discuss our
findings and future prospects.

II. GW SIGNAL

The stochastic GW metric perturbations at time t and
position vector xmay be written as an infinite superposition
of plane waves having polarization A, having frequency f,

and arriving from direction n̂ ¼ ðsin θ cosϕ; sin θ sinϕ;
cos θÞ [5]:

hijðt;xÞ¼
Z þ∞

−∞
df
Z
S2
dn̂
X

A¼þ;×

hAðf; n̂ÞeAijðn̂Þe−i2πfðn̂·xþtÞ;

ð1Þ

where ðθ;ϕÞ are the standard angular coordinates on the 2-
sphere and the spatial wave vector is written explicitly as
k ¼ −2πjfjn̂. We set the speed of light c ¼ 1 here for
simplicity. The metric perturbations hijðt; xÞ are real; hence
a reality condition is imposed on the complex, frequency-
domain modes, h⋆Aðf; n̂Þ ¼ hAð−f; n̂Þ. In the above expres-
sion, we choose the linear polarization basis A ¼ fþ;×g,
where the orthogonal polarization basis tensors eA may be
written as

eþ ¼ θ̂ ⊗ θ̂ − ϕ̂ ⊗ ϕ̂; ð2Þ

e× ¼ θ̂ ⊗ ϕ̂þ ϕ̂ ⊗ θ̂; ð3Þ

where

θ̂ ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ; ð4Þ

ϕ̂ ¼ ð− sinϕ; cosϕ; 0Þ ð5Þ

are the standard unit vectors tangent to the sphere. Since
fhþ; h×g are complex valued, we can write them in terms
of either their real and imaginary components or their
amplitude and temporal phase,

hAðf; n̂Þ ¼ hRA ðf; n̂Þ þ ihIAðf; n̂Þ ¼ AAðf; n̂ÞeiφAðf;n̂Þ; ð6Þ

all of which, in general, will depend on the frequency and
direction of the waves.
For a stochastic background, the metric perturbations

hijðt; xÞ and hence the Fourier components hAðf; n̂Þ are
random fields, whose probability distributions define the
statistical properties of the background. For the following
discussion, we will assume that the background is
(i) Gaussian, (ii) stationary, and (iii) unpolarized, which
means that (i) the statistical properties of the random fields
are completely characterized by their first- and second-
order moments, (ii) there is no preferred origin of time
(implying that random variables corresponding to different
frequencies are statistically independent of one another),
and (iii) the statistical properties of the background are
invariant under rotations of the polarization tensors in the
plane perpendicular to n̂ (implying statistically independent
and equivalent þ and × polarization components). From
these assumptions it follows that

hhAðf; n̂Þi ¼ 0; ð7Þ
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that fhRA ; hIAg are statistically independent variants drawn
from the same Gaussian distribution with zero mean and
half the variance of hA, and that the phase φA is uniformly
distributed between 0 and 2π and is statistically indepen-
dent of the amplitude AA, which is Rayleigh distributed
being the square root of the sum of squares of two
statistically independent Gaussian random variables each
with zero mean and equal variance.
We will further assume (iv) that the background has no

nontrivial phase coherence across the sky. This means that
the phase of the GWB signal coming from two different
directions on the sky are statistically independent of one
another1:

Cov½eiφAðf;n̂Þ; eiφA0 ðf0;n̂0Þ� ∝ δAA0δðf − f0Þδðn̂; n̂0Þ: ð8Þ

Although primordial backgrounds, such as those generated
during an epoch of inflation, may be phase coherent as
modes reenter the horizon and begin to propagate, this
coherence is lost through propagation effects [16]. It is
therefore reasonable to assume that phase incoherence is a
generic feature of any stochastic background that may, or
may not, have angular correlations in amplitude. In other
words, the intrinsic angular scale Δn̂ over which the phases
are correlated goes to 0, even though the correlation scale
for the amplitude may be finite. Hence, any attempt to
measure the GW phase using a detector with finite angular
resolution will necessarily average the true phase over this
angular resolution scale. This loss of information will
degrade reconstruction of the amplitude if one tries to
estimate it from the real and imaginary parts of the Fourier
components. We will show this explicitly in Secs. IVand V.
Putting together all of the above results, we can write

hhAðf; n̂Þh⋆A0 ðf0; n̂0Þi ¼ 1

2
Iðf; n̂ÞδAA0δðf − f0Þδðn̂; n̂0Þ; ð9Þ

where

Iðf; n̂Þ≡ 2

T

X
A

hA2
Aðf; n̂Þi ð10Þ

defines the intensity of the GWB as a function of frequency
f and direction n̂. Here T is the total observation time. The
angle brackets h� � �i denote ensemble averaging over the
random amplitudes and phases of the Fourier coefficients of
the metric perturbations at a fixed spatial location x, under
the assumption of time stationarity. In practice, this
averaging is realized by averaging over all the available
GW time-series data, assuming that the background is
ergodic. The distribution of energy and matter in the
universe, e.g., large-scale structure, which gives rise to

the GW background is fixed with respect to this averaging
process.
The GW background may be isotropic, anisotropic, or

statistically isotropic (i.e., invariant under arbitrary rota-
tions of the sky) depending on the statistical properties of
Iðf; n̂Þ with respect to the sky direction n̂. For example, for
both isotropic and anisotropic backgrounds, the intensity
field is a deterministic quantity; it is independent
of sky direction for a purely isotropic background—i.e.,
Iðf; n̂Þ≡ IðfÞ, and has preferred directions for an aniso-
tropic background. For a statistically isotropic background,
the intensity is a random field, assumed here to be
approximately Gaussian, whose mean is independent of
sky direction

hIðf; n̂ÞiΩ ≡ IðfÞ; ð11Þ

and whose quadratic expectation values depend only on the
angular separation between two points on the sky as

hIðf; n̂ÞI⋆ðf; n̂0ÞiΩ ≡ Cðf; n̂ · n̂0Þ

¼
X∞
l¼0

2lþ 1

4π
ClðfÞPlðn̂ · n̂0Þ; ð12Þ

where Pl is the Legendre polynomial of order l. In the
above expressions, h� � �iΩ denotes averaging over different
GWuniverses [17] (e.g., over different realizations of large-
scale structure) which are drawn from a rotationally
invariant probability distribution described by the angular
power spectrum ClðfÞ. We note that there is a subtle
difference if one imposes statistical isotropy on the hA
fields; for more details regarding this see [11].
In all cases, the intensity Iðf; n̂Þ may be related to the

fractional energy density parameter ΩGWðf; n̂Þ via [5]

ΩGWðf; n̂Þ ¼
4π2f3

ρcG
Iðf; n̂Þ; ð13Þ

which is the fundamental relation that allows one to
connect GWB observations to the cosmological implica-
tions of the background. Integrating the above equation
over direction on the sky yields

ΩGWðfÞ ¼
4π2f3

ρcG
IðfÞ; ð14Þ

which relates the monopole components of the fractional
energy density parameter and the intensity of the back-
ground. Finally, we note that it is common in the literature
to assume that the intensity factorizes as

Iðf; n̂Þ ¼ EðfÞIðn̂Þ; ð15Þ

where EðfÞ and Iðn̂Þ encode the spectral and directional
dependence of the background, respectively. We employ

1We define the covariance of two complex variables A and B as
CovðA; BÞ≡ hAB�i − hAihB�i.
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this assumption throughout as it considerably simplifies
map-making.

III. MAP-MAKING METHODS WITH GW
DETECTOR DATA

In this section we present two proposed maximum-
likelihood map-making methods for GWBs in a common
formalism. First we review the intensity mapping method
which has been previously presented in several references,
e.g., [5,18,19], and applied consistently to LIGO data [7–
9,20–22]; then, we lay out the amplitude-phase mapping
method which follows the presentation in [12].

A. Intensity mapping

Intensity mapping, such as that used for map-making
with the LIGO-Virgo detectors, works with the cross-
correlation of time-coincident data directly to discard the
autocorrelated noise terms which would otherwise domi-
nate the calculation.
To start, we consider a set of detectors i ¼ f1;…; Ng.

The data collected by detector i in a time segment τ may be
considered as made up of separate signal and noise
components, dτi ðtÞ ¼ sτi ðtÞ þ nτi ðtÞ. We write the corre-
sponding discrete Fourier transform as

d̃τi ðfÞ ¼ s̃τi ðfÞ þ ñτi ðfÞ → dτ;f; ð16Þ

where we have dropped the tilde and detector label in favor
of the more concise boldface vector notation. As we are
dealing with a real time-stream Fourier transformed into a
discretized Fourier space, it is convenient to relabel
frequencies as a discrete index, which picks out a single
frequency mode in the transform. The signal component in
the data is modeled as

sτ;f ¼
Z
S2
dn̂
X
A

Rτ;f
A ðn̂ÞhfAðn̂Þ; ð17Þ

where R is the response function spanning detector space.
Note that the h field has no τ dependence as it is assumed to
be stationary. A pair of detectors i, j then observe dτ;fi , dτ;fj ,
respectively; these form a baseline and we can consider a
correlated data vector as spanning the space of different
baselines directly, Dτ;f

ij ≡ dτ;fi dτ;f⋆j ≡ Dτ;f. We can write
down the likelihood for the residuals of the cross-correlated
data as

L ∝
Y
τ;f;ij

1

jCN j1=2
e−

1
2
ðD−SÞC−1

N ðD−SÞ⋆ : ð18Þ

Note that we are using shorthand notation here, omitting τ
and f everywhere in Eq. (18). As in [19], we take the signal
model S for the cross-correlation to be

Sτ;f ¼
Z
S2
dn̂Γτ;fðn̂ÞIðn̂Þ; ð19Þ

which may be derived directly from Eq. (9). Here Γ is the
cross-correlated response vector to the GW intensity,
obtained via the squared sum of the response terms above
as

Γτ;f
ij ðn̂Þ≡

X
A

Rτ;f
Ai ðn̂ÞRτ;f⋆

Aj ðn̂Þ: ð20Þ

The spectral dependence of I has been assumed factoriz-
able here and absorbed into Γ for simplicity, assuming
Eq. (15). The time dependence (encapsulated in τ) and
spatial dependence of the response function are fundamen-
tal to map-making, as they define the scan strategy of the
set of baselines, which sets the resolution of the measure-
ment. More details on this may be found in [1,23–26].
The noise covariance matrix may be written in baseline

space, Nτ;f
ij ≡ nτ;fi nτ;f⋆j ≡ Nτ;f; hence the noise covariance

matrix is

Cτ;f
N ¼ hNτ;f ⊗ Nτ;f⋆i≡ diagðPτ;f

i Pτ;f
j Þ; ð21Þ

assuming uncorrelated noise between detectors, where Pi is
the (two-sided) noise power spectrum in detector i.
Maximizing the likelihood (18) above yields the mapping
equation for GW intensity

Iðn̂Þ ¼ Mðn̂; n̂0Þ−1zðn̂0Þ: ð22Þ

We refer to z as the projection of the dataset into pixel
space, while M is the Fisher matrix of the mapping
problem. These are constructed from the following quan-
tities calculated at the individual f and τ, as each of these
constitutes an independent measurement according to the
likelihood in Eq. (18),

zτ;fðn̂Þ ¼ Γτ;fðn̂ÞðCτ;f
N Þ−1Dτ;f;

Mτ;fðn̂; n̂0Þ ¼ Γτ;fðn̂ÞðCτ;f
N Þ−1Γτ;fðn̂0Þ; ð23Þ

which are then summed over all times, frequencies, and
baselines ij in the set to obtain the full (and most
informative) projection and Fisher matrix,

zðn̂Þ ¼
X
τ;f;ij

zτ;fðn̂Þ; Mðn̂; n̂0Þ ¼
X
τ;f;ij

Mτ;fðn̂; n̂0Þ: ð24Þ

Note that the integration over frequencies here requires an
assumption for the frequency dependence of the GWB,
which we have transferred to the response function. One
could also choose to not integrate over frequencies, and
solve for maps mode by mode, avoiding this frequency
modeling step.
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At this stage, it is necessary to pick a working resolution
on the sky in order to explicitly carry out the calculations.
Using the HEAPLIX PYTHON package to deal with pixeliza-
tion, we can set a working resolution and translate sky
direction n̂ to pixel p. The data model then becomes

Sτ;f ¼ 4π

Npix

X
p

Γτ;f
p Ip: ð25Þ

The components of Eq. (23) can then be considered in the
pixel domain, where n̂ → p.

B. Amplitude-phase mapping

Let us now take a step back and reconsider the data
model in Eq. (16), which we can write compactly as
dτ;f ¼ sτ;f þ nτ;f. Assuming zero-mean Gaussian noise in
the strain, i.e., hnτ;fi ¼ 0, Eq. (17) serves as our signal
model. As fhþ; h×g are complex valued, there are four
independent (real) fields on the sky to estimate:
fhRþ; hR×; hIþ; hI×g. We write down the likelihood in terms
of the residuals in the strain as

L ∝
Y
τ;f;i;j

1

jCnj1=2
e−

1
2
ðd−sÞ†ðCnÞ−1ðd−sÞ; ð26Þ

assuming each time segment τ and frequency f in the
dataset are statistically independent of one another, where
we are again employing shorthand notation, using boldface
font to represent a vector that now spans just the space of
the detectors (and not baselines). Cn is the noise covariance
Cn ¼ n ⊗ n⋆. As the noise is modeled independently and
is not part of the maximum likelihood estimation, it is
possible to reduce the mapping problem to a closed-form χ2

solution minimizing

χ2 ¼ −
1

2

X
τ;f;i;j

ðd − sÞ†ðCnÞ−1ðd − sÞ: ð27Þ

We solve for the four h fields separately; hence it is useful
to decompose the signal model into real and imaginary
components simply as

sτ;f ¼
Z
S2
dn̂
X
A

Rτ;f
A ðn̂Þ½hRA ðn̂Þ þ ihIAðn̂Þ�; ð28Þ

where the spectral dependence of the stochastic field has
been explicitly factored out of hAðn̂Þ and has been absorbed
into the response term R so as to keep track of fewer
dependencies. Minimizing χ2 with respect to each field
yields the maximum likelihood solution 

hRA0

hIA0

!
n̂

¼
 
MR

AA0 −MI
AA0

MI
AA0 MR

AA0

!−1

n̂;n̂0

 
zRA0

zIA0

!
n̂0
; ð29Þ

where

 
zRA0

zIA0

!
n̂

¼
X
τ;f;i;j

 
zRA0

zIA0

!
τ;f

n̂

;

 
MR

AA0 −MI
AA0

MI
AA0 MR

AA0

!
n̂;n̂0

¼
X
τ;f;i;j

�
MR

AA0 −MI
AA0

MI
AA0 MR

AA0

�τ;f

n̂;n̂0
: ð30Þ

Each component is, explicitly,

zRA ðn̂Þ¼RR
A ðn̂ÞC−1

n dRþRI
Aðn̂ÞC−1

n dI;

zIAðn̂Þ¼RR
A ðn̂ÞC−1

n dI−RI
Aðn̂ÞC−1

n dR;

MR
AA0 ðn̂; n̂0Þ ¼RR

A ðn̂ÞC−1
n RR

A0 ðn̂0ÞþRI
Aðn̂ÞC−1

n RI
A0 ðn̂0Þ;

MI
AA0 ðn̂; n̂0Þ ¼RR

A ðn̂ÞC−1
n RI

A0 ðn̂0Þ−RI
Aðn̂ÞC−1

n RR
A0 ðn̂0Þ: ð31Þ

For the sake of conciseness we do not include the frequency
and time labels in each of the terms above; these mirror
those in Eq. (23). Note that the projection z and Fisher
matrix M here are not the same as for intensity mapping—
however, we have chosen to keep the same notation to draw
the comparison between the two approaches. In the
uncorrelated noise case the (noise) covariance matrix
becomes diagonal in detector space,

ðCnÞij ¼ δijPj; ð32Þ

so calculations in Eq. (31) simplify considerably.
Furthermore, as in the intensity mapping approach
described above, the integration over frequencies in
Eq. (30) requires an assumption for the spectral shape of
the signal. However, in the amplitude-phase case one must
take extra care: when broadband integrates here one must
assume a certain phase-coherence across modes, or else the
phase introduced in Eq. (6) will (correctly) average to zero
and yield null sky maps.
Finally, as in the previous section, we can discretize the

sky and transform sky direction n̂ to pixel p, to apply this
method to data. The signal model becomes

sτ;f ¼ 4π

Npix

X
p

X
A

Rτ;f
A;phA;p; ð33Þ

and similarly the terms in Eq. (31) may be translated into
the pixel domain.

IV. INSTRUCTIVE CONSIDERATIONS

Before discussing the application of the map-making
methods laid out above, let us start with some useful
considerations about the nature of the measurement of
broadband, stochastic GWs from all sky directions with a
set of interferometers. In particular, let us focus on the
notion that a detector naturally low-pass filters the signal,
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both in terms of temporal resolution and angular resolution;
the subsequent digitization/sampling of the data needs to
respect the maximum temporal and spatial frequencies
present in the signal if aliasing of power is to be avoided.
It is useful to first break down the measurement into two

components: the time or frequency-domain measurement,
and the sky-dependent response. These two steps are
inextricable in a real GW detector. However, to get an
idea of the accessibility to each information component we
can consider two simple scenarios separately: first, we can
focus on the estimation of the amplitude and phase of a
complex field in the frequency domain through time-
domain measurements; then we can analyze the effect of
a window-averaged response on the measurements of a
complex field on the semicircle, in analogy with what
happens with GW detectors observing the full sky.
When analyzing GW detector time streams that contain a

measurement of a stationary stochastic field, say hðtÞ, we
typically start by taking the Fourier transform (FT) of the
data, as the frequency domain representation allows us to
access information more efficiently. A way to see this is to
note that the quadratic expectation value in the time and
frequency domains are related by

hhðtÞhðt0Þi ¼ Cðt − t0Þ↔FT hh̃ðfÞh̃⋆ðf0Þi ¼ PðfÞδðf − f0Þ:
ð34Þ

Thus, the Fourier transform of a stationary time series maps
our measurement to the diagonal space for the autocorre-
lation of the field, where PðfÞ is the (two-sided) power
spectrum of the field. In other words, while in the time
domain the correlation between the stationary field at
different times depends (only) on the time difference
t − t0, in the conjugate space (frequency space) the corre-
lation between different frequency components is a delta
function, and thus the frequency dependence is totally
“compactified” in the power spectrum. We can either write
an estimator for a real field, for example, PðfÞ, if we are
interested only in the intensity of the signal, or we can aim
to measure the complex field h̃ðfÞ, to include both
amplitude and phase information. In either case, we model
the signal in the frequency domain and estimate it through
time-domain measurements. Thus, in practice the meas-
urement of the field is performed in the conjugate space of
the model, over an observation time T, sampled at the finite
time resolution Δtd. According to the Nyquist-Shannon
sampling theorem, given the Nyquist frequency of the
measurement fNyq ≡ 1=ð2ΔtdÞ, the field h̃ðfÞ may be
completely determined as long as it is made up of modes
with frequency content 1=Δt < fNyq, where Δt is the time-
coherence scale of the field. Hence, if the GWs in the time
stream are at frequencies below fNyq, it is theoretically
possible to fully reconstruct the Fourier coefficients hAðfÞ,
in the case of an isotropic background. If the target signal is

stochastic in nature, and the phase information is simply
uninteresting, then the choice of method boils down to what
is most computationally effective when dealing with noisy
time streams and multiple detectors.
To understand the effects of the integrated beam of GW

detectors, let us start by considering a complex and
statistically isotropic field h̃ðn̂Þ on the sphere,

h̃ðn̂Þ ¼ Aðn̂Þeiφðn̂Þ; ð35Þ

where the phase φ has a certain functional dependence on
direction. This is effectively a frequency-independent,
unpolarized version of the GW strain in the Fourier domain

given by Eq. (6). Note that, as in the relation t↔
FT
f, there is a

useful conjugate space to direction n̂ space,

hh̃ðn̂Þh̃⋆ðn̂0Þi ¼ Cðn̂ · n̂0Þ↔SHDhal0m0al0m0 i ¼ Clδll0δmm0 ;

ð36Þ

where alm are the spherical harmonic coefficients of h̃ðn̂Þ
and Cl is the angular power spectrum of h̃. The Cl’s are
related to Cðn̂ · n̂0Þ via

Cðn̂ · n̂0Þ ¼
X∞
l¼0

2lþ 1

4π
ClPlðn̂ · n̂0Þ; ð37Þ

where PlðxÞ are the Legendre polynomials. The spherical
harmonic decomposition (SHD) introduced in Eq. (36)
allows us to transform the field from directional space n̂ to
degree l and order m space, and, again, the correlation is
diagonal in the latter. The measurement of h̃, however, does
not occur in n̂ space directly, but in the time domain; the
relation between these two spaces depends on the specific
detector used to make the measurement. This is the crucial
difference between measurements of a frequency-depen-
dent GW observable and a direction-dependent one.
Let us now discuss an instructive example. Let us

consider a case where we can fix the observation to a
single value of ϕ on the sphere, such that we reduce the
mapping problem to the estimation of a one-dimensional
field on the semicircle. h̃ is then parametrized solely
by 0 ≤ θ ≤ π on the semicircle, such that effectively
we are observing h̃ðθ;ϕ ¼ constÞ≡ h̃ðθÞ ¼ AðθÞeiφðθÞ.
We assume that our detector makes a time-dependent
measurement rðtÞ of the field on the semicircle,

rðtÞ ¼
Z

π

0

dθRðt; θÞh̃ðθÞ; ð38Þ

filtered by the detector response Rðt; θÞ, which scans the
semicircle as time goes by. Note here the similarity with the
model for the GW strain in Eq. (17), relevant to the
measurement of anisotropic GWBs.
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The intrinsic coherence scale of the field, Δθ, sets the
input resolution of our example, inducing π=Δθ indepen-
dent samples on the semicircle. We take the phase φðθÞ to
be random at the intrinsic scale, such that the field has
statistically independent phases at each sample. The
amplitude A is assumed to vary much more slowly than
the phase, such that the scale over which the amplitude
varies appreciably is much larger than Δθ. We model the
instantaneous response of the detector at time t0 as a top-hat
function with width Δθd,

Rðt0; θÞ ¼
�
1; − Δθd

2
< θðt0Þ < Δθd

2

0; otherwise
; ð39Þ

and the time dependence is imposed by the scanning
strategy, i.e., the angular function θðtÞ. In this simple
example we take θðtÞ ¼ πt=τ where τ is the time period
over the semicircle, such that consecutive measurements
correspond to consecutive angular samples on the semi-
circle, and continuity between measurements at 0 and π is
ensured. The measurement of h̃ is then mediated by the
detector-induced window width Δθd, and the comparison
between Δθ and Δθd will determine to what degree the
field is resolvable. Δθd is the angular resolution of the
measurement, and as long as Δθd is sufficiently less than
Δθ, the field is overresolved and its amplitude and phase
information may be measured exactly. However, if
Δθd > Δθ, there is loss of information as the window
averages over the phases, which are randomly distributed
along the semicircle. In the extreme case where Δθd ≫ Δθ,
the measurement becomes compatible with 0, and
the amplitude of the field is entirely lost. Translating
the measurement into the conjugate space, one may
interpret this limit as an angular Nyquist frequency,
lNyq ≡ π=ð2ΔθdÞ, imposed by the detector. In this sense,
the measurement only works when lNyq > lmax, where
lmax ∼ π=Δθ is the maximum angular frequency of the
signal. Note the analogy then between Δθd and the
sampling rate Δtd described above. The useful estimator
for this example is one that marginalizes over the phases
and aims for the field intensity CðθÞ directly, which is

hh̃ðθÞh̃ðθ0Þi ¼ CðcosðθÞÞδðθ − θ0Þ; ð40Þ

obtained from Eq. (36) assuming total phase incoherence of
h̃ðθÞ. Equal-time measurements r1ðtÞ and r2ðtÞ made by
two identical detectors 1 and 2 then satisfy

hr1ðtÞr⋆2ðtÞi ¼
Z

π

0

dθR1ðt; θÞR⋆
2ðt; θÞCðcosðθÞÞ; ð41Þ

where the angle brackets introduce an expectation value
similar to Eq. (9); i.e., they imply ensemble averaging over
different data samples, and the Dirac delta in Eq. (40) has
already been applied. Mapping then amounts to inverting

Eq. (41) to estimate CðθÞ. Hence to preserve the amplitude
information it is necessary to cross-correlate (i.e., square)
signals before averaging over the response window. Note
that the spatial averaging introduced in Eq. (38) is analo-
gous to what happens in a GW detector: the directional
information is not directly accessible in the measurement,
but rather needs to be reconstructed based on observation
features, such as the time dependence of R.
In the simple case above the only relevant coherence

scale of the field is that of the phase; however, in general it
is also necessary to worry about the coherence scale of the
intensity, ΔθC. Note this is directly related to the coherence
scale of the amplitude, as in this case C ¼ A2. When
ΔθC < Δθd, this will have an impact on the observation of
C (or, equivalently, of A, taking the square root of the
intensity) similar to what occurs for φ. However, note that
as the intensity is positive definite, this field will never
average to zero but would rather approach zero from above
in the limit of ΔθC ≪ Δθd.

V. MOCK-DATA MAPPING TESTS

Simplified mock-data mapping tests are presented here
to illustrate the points made in the previous sections. We
consider the two LIGO interferometers that have a well-
known response function, illustrated, for example, in [18].
In these examples, the noise is taken to be white, Gaussian,
stationary, and much weaker than the signal. This is to
highlight the potential and shortcomings of the mapping
algorithms based on the characteristics of the signal
component only. As the noise is assumed to be known,
it is not part of the estimation. In practice, all GW mapping
attempts to date using ground-based detectors have relied
on independent estimators for the noise, which is a valid
approach when the signal is entirely subdominant and
hence does not bias the noise estimation, at least on a
segment-by-segment basis. This methodology needs to be
revisited in the presence of competing signal and noise
components—an example of this may be seen in [27] for
the Laser Interferometer Space Antenna.
The reconstructions presented here are obtained follow-

ing the data-handling recipe of [19], which imitates the
steps performed on real LIGO data [28,29]. In both
intensity and amplitude-phase mapping, the mock data
are generated in segments that represent Fourier trans-
formed one-minute segments of a detector array time
stream. The one-minute timescale is chosen such that the
response of the detectors may be considered constant on
the sky throughout the segment. This not only sets a natural
lower bound on the frequency range probed but also
imposes a pixelization scheme: in order for the
reconstruction to be complete, the sky response should
vary smoothly from segment to segment.
The most challenging part of this procedure is the safe

inversion of the Fisher matrix. This arises since the spatial
sampling of the sky is suboptimal, as explored, for
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example, in [19]. However, as long as the noise is
subdominant it is possible to pseudo-invert M discarding
a minimal number of modes and recovering the sky signal
perfectly, as shown below. The situation capsizes in the
presence of noise: in that case, it is necessary to choose a
cutoff on the singular values of the eigenmodes of M, to
differentiate between the signal and noise modes. This is a
highly nontrivial problem, so we do not discuss it here—see
the discussion in [9] for example.

In all mapping examples presented here, the signal is
modeled as a diffuse point source on the sky, with varying
phase as a function of direction. This is obtained in practice
by associating a random phase to each pixel of the
amplitude sky map, which is then scanned to prepare the
data segments. This is explicitly performed via Eq. (33) in
the case of amplitude-phase mapping and Eq. (19) in the
case of intensity mapping. The pixelization schemes used
for data generation and map reconstruction need not match
—in fact, one may not in general expect that the natural
coherence scale of the field be comparable to that of the
detector. The size of the unit pixel at injection, 4π=Nin

pix, is
analogous to Δθ in the example made in Sec. IV, while the
size of the unit pixel at reconstruction, 4π=Nout

pix, is
analogous to Δθd. For simplicity, we do not add a
frequency-dependent phase term, although in reality it is
present and may not be neglected in a real GW measure-
ment; we discuss this further below.
Figure 2 shows results obtained with the amplitude-

phase mapping algorithm, using the input maps from Fig. 1.

The top row of Fig. 2 shows the case when the input and
output resolutions match exactly,Nin

side ≡ Nout
side ¼ 16; hence

the phases of the hA fields in each pixel are perfectly
recovered. However, the second and third rows of Fig. 2
show two cases where the output resolution is lowered from
the input Nin

side ¼ 16 to Nout
side ¼ 4 and Nout

side ¼ 2, respec-
tively; here, the phase components are averaged out within
neighboring pixels; hence the phase information is lost.
This leads to an overall loss of intensity information as
well, by the same reasoning described for the example in
Sec. IV. Note that style choices have been made to
underline the effect: the values chosen for the color bars
in the intensity I plots in Fig. 2 match the correct values one
would obtain when coarse graining the Iin intensity map to
the relevant Nout

side. The coarse-graining exercise is per-
formed with the ud_grade function of the HEALPY

package [30].
This effect does not occur in the case of intensity

mapping, since the phase information is not required to
reconstruct the intensity on the sky. We have repeated the
exercise above using the same input map as in Fig. 1
employing the intensity mapping algorithm, varying the
values of Nout

side, and we find that the Iout maps agree with
the ud_graded input maps within less than 1%. To
quantitatively compare intensity and amplitude-phase
mapping, we show in Fig. 3 the difference between the
recovered maps with intensity mapping, Iout;I−map, and
amplitude-phase mapping, Iout;AP−map, in the cases where
Nout

side < Nin
side. In both cases, it is clear that most of the

FIG. 1. Set of input sky maps used in the mock-data tests described in the text. The top row shows injected maps for the four
components of the h field, used for data injection and reconstruction with the amplitude-phase algorithm. The pixel phase is chosen
randomly pixel to pixel. The bottom map corresponds to the total injected intensity Iin resulting from the combination of the maps in the
top row. All these maps are injected at Nin

side ¼ 16.
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overall power is lost when performing amplitude-phase
mapping, and in particular in the case where Nout

side ¼ 2, the
injected point source is hardly discernible from the fluc-
tuations around 0 in the pixels.
Hence, we confirm that in the case of intensity mapping,

the overall GW intensity is conserved, and the structure on
the sky as well, as long as the coherence scale of the
intensity is larger than that of the detector. In Fig. 4, we
show an example where this is not the case: here, the
injected signal is a very high resolution input map,
Nin

side ¼ 32, which is null everywhere apart from a tiny
patch, mimicking a pointlike source, and is recovered at
Nout

side ¼ 8. Here indeed the signal from the (almost unique)
incoming direction is averaged within the neighboring
pixels, and hence the point value in that specific direction
is much lower than the injection (by a factor of ∼10). Note,

however, that the recovery is perfectly in line with a coarse
graining of the input map: the monopole is conserved in the
operation, and the correct value is recovered in the single
“hot” pixel. Hence, in this case there is as little loss of
information as possible. But this may present an issue when
the signal is competing with a high level of noise.
Adding frequency-dependent phase terms to the injected

maps has no effect on the intensity mapping results, as the
data are first cross-correlated in the frequency domain and
the phase term cancels out. However, in the amplitude-
phase case this adds another level of complexity, as we need
to keep track of the individual mode phases as well as those
in each pixel. In fact, each frequency bin is independent,
given the assumption of time stationarity, hence band-
integrating over frequency bins would then have a similar
effect as attempting map-making with a detector resolution

FIG. 2. Set of sky map reconstruction examples with the amplitude-phase algorithm, using maps shown in Fig. 1 as input. The top row
shows reconstructed maps with Nout

side ¼ 16, which corresponds to the case when the intrinsic coherence scale of the field is equal to that
of the detector. The second and third rows show reconstructions with Nout

side ¼ 4 and Nout
side ¼ 2, respectively. The bottom row shows the

corresponding recovered intensity maps for the three different Nside cases. In the case when Nout
side ¼ Nin

side, the recovered intensity
matches exactly the one shown in Fig. 1; in the other cases, the intensity is degraded.
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FIG. 3. A comparison between the recoveries of the same injected map Iin with the intensity I (first and third rows) and amplitude-
phase AP (second and fourth rows) mapping algorithms, with the two different values of Nout

side as shown in Fig. 2. On the right, the
difference maps Iin − Iout are shown to quantitatively compare the performance of the algorithms. Note that the input map has been
ud_graded to allow for this comparison; the actual input map is at Nside ¼ 16 as shown in Fig. 1.

FIG. 4. Sky map injection (left panel) and reconstruction (right panel) with the intensity mapping algorithm, in a case where the
intrinsic coherence scale of the signal intensity is considerably smaller than that of the detector.
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that is larger than the intrinsic coherence scale of the field:
the signal is degraded as the recovered amplitude averages
to zero with the number of bins.

VI. DISCUSSION

We have taken a pedagogical approach in discussing the
advantages and shortcomings of two different maximum-
likelihood map-making techniques—intensity mapping
and amplitude-phase mapping. The intent was to demystify
these techniques and clarify the potential of detection and
mapping of GWBs in general. Intensity mapping targets the
GWB intensity as a function of direction. It constrains the
average GW power on the sky and any anisotropies about
this average. Versions of the method presented here have
been applied to LIGO-Virgo data and have been proposed
for LISA [1,2,12,31]. This method is best suited to
astrophysical stochastic backgrounds, which carry no phase
information, and hence solving for it would unnecessarily
complicate the mapping procedure. On the other hand,
amplitude-phase mapping allows one to do just that;
however, we have shown that it is only possible to resolve
the phase component if the intrinsic angular coherence
scale of the signal is comparable to or larger than the
angular resolution of the detector. When this is not the case,
attempting to estimate the phase on the sky leads to loss of
information, including the amplitude of the signal. Hence,
this method is to be avoided in the case of stochastic
backgrounds, where the intrinsic coherence scale is usu-
ally zero.
A possible exception to this rule may be the case of a

stochastic background dominated by very few sources,
such as that considered in [10]. This is a possibility for the
stochastic background probed by pulsar timing arrays
(PTAs), as the signal should be dominated by ∼102 −
103 sources on the sky, such that a single source should
dominate a pixel of ∼40 deg2, which may be taken as the
intrinsic coherence scale of the background. Even in this
case, we are not quite there yet: achieving such an angular
resolution with SNR ∼ 3 would require a pulsar array with
almost 104 pulsars [11], while current PTAs are monitoring
∼102 pulsars, setting the present resolution to ∼400 deg2.

Hence, this remains a target for future observatories, such
as the Square Kilometre Array.
We have provided a useful investigation into the relation-

ship between the time-frequency and the pixel-angular
frequency domains. Time samples t are conjugate to
frequencies f, while pixels p which correspond to sky
locations n̂ are conjugate to the angular “frequency” scale l.
However, our sky observations are effectively carried out in
the time domain. A detector naturally low-pass filters the
data, in terms of both temporal resolution and angular
resolution; however, while the temporal resolution is well-
known and controlled by the experimenter, the angular
resolution is determined by the geometry and motion of the
detector array. Furthermore, the digitization and sampling
of the data needs to respect the maximum temporal and
spatial frequencies, if aliasing of power is to be avoided.
The first detection of a GWB is drawing near, whether it

be with PTAs, possibly by the NANOGrav Collaboration
[32], or with the LIGO-Virgo-Kagra ground-based inter-
ferometer network. Currently, searches are focusing on the
isotropic background, as astrophysical backgrounds are not
expected to be highly anisotropic [17,33]. However, under-
standing how to handle any anisotropy to confirm or rule
out this hypothesis remains an essential task of our
collaborations. Ideally, the isotropic GWB could be esti-
mated as the monopole of GWB maps (as in Ref. [21], for
example), and not under the strict assumption of zero
anisotropy.
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