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Abstract—Hypothesis generation, which tries to identify im-
plicit associations between two concepts, has attracted much
attention due to its ability of linking key concepts scattered
in different articles and enriching plausible new hypotheses.
Among existing approaches for hypothesis generation, matrix
factorization based methods have achieved start-of-the-art per-
formance. However, matrix factorization based methods suffer
from the following limitations: 1) Bridge concepts are determined
only as a post-hoc analysis of matrix factorization results; 2)
The embeddings of concepts by matrix factorization cannot be
explained, and thus it is hard to understand whether the concepts
are linked in a semantically meaningful way. To overcome
these limitations, we propose an interpretable and accurate
hypothesis generation model (InterHG), which improves both
accuracy and interpretability compared with existing methods.
First, we propose to explicitly model the relationship between
bridge concepts and given concept pairs, and conduct tensor
factorization to identify link concepts. This reduces information
loss and improves accuracy compared with post-hoc approaches.
Second, we leverage the description of categories in the tensor
factorization, which can output concept embedding as a weighted
combination of known categories. With this meaningful embed-
ding representation, medical researchers are able to check the
correctness of the suggested link concepts for a given concept pair.
We conduct experiments based on MeSH terms (a controlled
vocabulary of biomedical concepts) extracted from MEDLINE
corpus and category information obtained from UMLS (a com-
prehensive biomedical concept database). Results demonstrate
that the proposed InterHG is highly accurate and produces
meaningful embeddings for explanations.

Index Terms—Hypothesis generation, Interpretation, Biomed-
ical domain

I. INTRODUCTION

Medical informatics [1] has become a prosperous field
which aims to analyze the vast amounts of medical information
such as medical literature and electronic health records. One
important task that can advance medical discovery and benefit
medical research is hypothesis generation based on existing
medical literature. Given two medical concepts, one may want
to find t heir i mplicit c onnections t hat are hidden i n t he vast
medical corpus. An example is shown in Figl, in which
concept; and concept; are a given concept pair, and the goal
of hypothesis generation is to find concepts in the middle that
can bridge the given concept pair. Due to the vast volume of
medical articles, it is impossible for medical researchers to
query and evaluate such hypotheses manually. For example,
given a concept pair hypertension and diabetes, there are
91,457 articles that mention both of them and numerous
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candidate concepts that may connect them. This challenge
motivates the study on hypothesis generation, which auto-
matically ranks bridge concepts based on their associations
to the target concept pair shown in the medical corpus. The
hypothesis generation tool thus can assist medical researchers
in evaluating the probability of linking two concepts and
exploring their connections further via the suggested paths.

Among existing approaches for hypothesis generation, ma-
trix factorization (MF) based methods have shown start-of-
the-art performance. In general, matrix factorization based
methods adopt the following procedure: 1) Concepts are
projected into a low-dimensional space based on the concept
co-occurrence matrix via matrix factorization; 2) Given a pair
of concepts, bridge concepts are ranked based on similarity
between bridge concepts and target concepts in the embdedded
space. It was shown that matrix factorization based approaches
have achieved the best performance [2], [3] in the experiments
that were conducted on MEDLINE!, a major bibliographical
database. In these experiments, Medical Subject Headings
(MeSH) terms associated with each article are considered as
co-occurred concepts.

However, MF methods suffer from two major limitations.
First, the ranking of the bridge concepts is conducted as a
post-hoc analysis of the matrix factorization results. The post-
hoc analysis does not affect the matrix factorization process,
and thus the matrix factorization results may not be optimal
in modeling the implicit associations between target concepts.
Ideally, this association should be modeled and optimized
directly. Second, even though existing hypothesis generation
methods can return the top bridge concepts for medical
researchers to evaluate their hypothesis of the link between
target concepts, it does not provide an explanation on why the
concepts are ranked in this way. The ranking is decided based
on the similarity defined in the embedded space achieved by
matrix factorization, but it is difficult to interpret the meaning
of the embedding. In fact, interpretability is crucial in medical
informatics [4], [5], but it is missing in current hypothesis
generation methods. If we look at MF methods used in broad
domains including link predictions and recommendations,
some efforts have been made to improve their interpretability.
However, these methods cannot be used to interpret hypothesis
generation. When explaining hypothesis generation results. It
is important to leverage existing medical knowledge, such

Uhttps://www.nlm.nih.gov/bsd/medline.html
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as the rich ontology and descriptions of medical categories.
It is impossible to incorporate such medical knowledge into
post-hoc interpretation models [6]-[9]. Some approaches have
been developed to leverage external knowledge graphs for the
interpretation of link prediction [10]-[12], but they cannot
be applied to hypothesis generation tasks because: 1) In
biomedical knowledge graphs, a lot of concepts only have
one or two neighbours, so it is nearly impossible to learn
meaningful interpretation for those concepts. (2) Some popular
concepts may connect to thousands of neighbours and it is hard
to select appropriate paths for the interpretation.

To overcome these limitations of existing methods, we pro-
pose an interpretable hypothesis generation model (InterHG).
We directly model the chance of a bridge concept connecting
to the two target concepts as an entry in a tensor. Via tensor
factorization, the proposed model is able to directly output
the ranked list of bridge concepts given any pair of target
concepts. We propose effective strategies to make the tensor
factorization process efficient and scalable. To enable reason-
able interpretation, we propose to leverage the descriptions
of categories available in MEDLINE, which are maintained
by subject-matter experts. From these descriptions, we can
identify the relationship between categories and concepts, and
such information is incorporated into the tensor factorization
objective such that concept embeddings can be represented
as a weighted combination of categories. By checking these
weights, medical researchers are able to verify the correctness
of the bridge concept embedding and the plausibility of the
hypothesis formed by the target concept pair.

The contributions in this paper are summarized as following
four points. 1) We propose InterHG, a novel method that
greatly improves both the accuracy and interpretability of
hypothesis generation. 2) We propose to model hypothesis
generation as a tensor factorization task to directly optimize
the output bridge concepts. We further propose effective
strategies to reduce the complexity of the tensor factorization
solution. 3) To the best of our knowledge, our work is the
first to introduce interpretability into the design of a hypoth-
esis generation model. We leverage category descriptions as
external knowledge and enable a reasonable interpretation of
the output concept embedding. 4) We conduct qualitative study
to show the interpretability of the proposed InterHG model.
We also conduct quantitative experiments which show that
InterHG has higher accuracy compared with state-of-the-art
algorithms.
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Fig. 1. The schematic of hypothesis generation.

concepts that bridge
concept; and concept;
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II. METHODOLOGY
A. Preliminaries

In this section, we get started with the preliminaries includ-
ing problem formulation and one state-of-the-art hypothesis
generation method. Throughout the paper, we denote vectors
by boldfaced lower- case letters and matrices by boldfaced
uppercase letters. All vectors are considered as column vectors.

1) Problem Formulation: Suppose there is a concept set
C = {concepty, concepta, - - - , concept,, }, and we know the
number of times the concepts ¢; and c¢; co-occurs within a
document over the corpus D at time {. R denotes the co-
occurrence matrix, where R;; = #(c, cj) meaning the times
¢; and c¢; co-occurs at time ?.

Hypothesis Generation: Given co-occurrence matrix R and
two concepts c; and c; at time ¢, the goal is to predict the top-
k concepts most likely co-occur with the given two concepts
at time ¢ + 1.

Interpretation for Hypothesis Generation: To complete
the hypothesis generation task, designing an interpretable
model to generate top-k concepts, and the reason why gen-
erates those concepts can be understood by medical re-
searchers.

2) Matrix Factorization for Hypothesis Generation: The
method, a state-of-the-art model in [3], is inspired by the word
embedding model GloVe [13], which describes the association
between two given concepts and one other bridge term via their
co-occurrence probabilities. Intuitively, it predicts the loga-
rithmic co-occurrence times via matrix factorization and then
computes cosine similarity between concepts’ embeddings to
generate hypotheses. Formally, it predicts the logarithmic co-
occurrence times according to the following equation:

log(Rix,) = ul vy, + b; + by, (H

where u; is the ith concept’s embedding when the concept
works as a target term and vy, is the kth concept’s embedding
when the concept works as a bridge term, and b;, by, are bias
terms. Therefore, the martix factorization-based loss function
can be written as

argmin Y f(Ri;)(log(Ri;) — uiv; + b + ;)
vy (i,j)eDt+

+A(U|IE + IVIIF) )

where Dt = {(i,j)|R;; > 0} and f(z) = (z/Tmaz)®

However, observing its loss function, we can find that it
tends to model hypothesis generation via a circuitous ap-
proach, which complements the co-occurrence matrix R firstly
and then completes hypothesis generation task. Therefore, the
loss function is not related to our task directly, which may
result in the following problems: making the task more difficult
to solve. Take binary classification as an example. If we can
design a perfect and ideal regression model, it can handle the
classification task in theory, but designing a perfect regression
model is extremely difficult. Similarly, if the completion task
is solved greatly, hypothesis generation task can be solved as
well. However, it increases the difficulty of the task.
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B. Tensor-based Loss Function for Hypothesis Generation

Recall the matrix factorization-based method in section
II-A2. It solves the task via two stages and increases the task’s
difficulty. To overcome the problem, we design a tensor-based
loss function to model the problem directly:

= ‘Creconstruction + )\Ereg
Yo Tgr—uluy —ufu)® + A|U|[%

£Tensor

(1.5.K) €D e
R, +R;
where 7 is a tensor defined as T, = M, and
Zp:l Rpk
Difsor = {(i,7,k)|Rix + Rjx > 0}. Intuitively, the tensor

T describes the probability that the concept c; both has
connection with concept c; and c;. Therefore, predicting the
value of 7;;i is clearly targeted at hypothesis generation task.
However, different from other tensor factorization-based tasks
like tag recommendation, the scale of 7 here is much greater
than that in other task, resulting in computational bottleneck.
Proposition 1 illustrates the fact.

Proposition 1: Denote the number of non-zero elements in R
is ||R]|o- Then the number of non-zero elements in 7 satisfies
the following inequation:

1T 1lo = nlIRIfS

Proof 1: We use o; denoting the number of non-zero
elements in the ith row of R. Then ||R||o can be represented
by o; as follows: [|R]lg = > ,0;. And ||T||o satisfies:
1 Tllo > S0y S0 0 = nlIRI[E.

Usually, the medical dataset has more than 20 thousand
words corpus and the value of ||R||o is over 10 million. Thus,
according to Theorem 1, the scale of 7T is too large to be
computed efficiently. We propose the following two methods
to address this bottleneck.

Only retain the top-k probability. Consider a concept cy,
and every concept pair (c;,c;) where (i,j) € {(i,7)|i #
J.i # k,j # k,Riy, > 0,Rj;, > 0}. The triple (4,j,k)’s
corresponding value in 7 is 7;;. For some chosen k, we find
the distribution of 7; . j is close to the long-tailed distribution,
few high probability data and much more low probability
data. Therefore, to trade off computational complexity and
information loss, we can sort 7; . retain the top-k values.
Then ||7|o, the number of non-zero elements in 7, is O(nk),
which is an acceptable scale of the problem. We name this
method InterHG-Tensor for short.

Optimize a probability co-occurrence matrix factorization
loss function. Recall the reconstruction loss term (75 —
R, + Ry,
s LA
dp=1

i
R,
if we can enable uluy to be close to

wluy —ulug)? = ( uy, —u) uy,)?. Intuitively,

R
22:1 Ry,

, the reconstruction loss can

and enable

_ R
22:1 Rk
be close to zero as well. To prove the correctness of our intu-
itiveness, we propose Proposition 2 below. Thus, optimizing

ujuy, to be close to
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the L, cconstruction €an be converted to optimize a probability
co-occurrence matrix factorization loss

R..
Lprob—MF = Z ( L

(i,j)eD+ szl Ry;

T, \2
—U; ;)" + Lyeg

The scale of probability co-occurrence matrix factorization is
equal to ||R||p, which is easy to be implemented. We name
this method InterHG-PMF for short.

Proposition 2: Optimize the probability co-occurrence ma-
trix factorization loss function is equal to optimize the upper
bound of the tensor-based loss function.

Proof 2:
Ereconstruction
Z R T R T 2
— (ﬁfulukﬁ*ﬁ*u]uk)
. + p=1pk p=1pk
(6:3:K)€Dyensor
R T 2 R T N2
< 2 E ( n —u; uk) +( n —u; llk)
> 1 Rok > p1 Rk
. + p=1""P p=1""P
(Z’]’k)eptensor

probability co-occurrence matrix loss function

Therefore, the original problem can be converted to the
probability co-occurrence matrix factorization problem.

C. Interpretable Model for Hypothesis Generation

To design a task-specific interpretable model, there are two
questions worth considering: (1) Which source or information
can be used to interpret hypothesis generation? (2) How can
we guarantee that our interpretation are reasons of model
decisions?

Because medical researchers are the target population of
our interpretable model, it is reasonable to assume medical
knowledge can be understood by them. Thus, considering
the particularity of hypothesis generation, a task belonging to
medical domain, we design an interpretable model fusing other
medical knowledge to explain learned embeddings. Since the
embeddings of concepts in Section II-B are not interpretable,
we design a model representing concepts via medical knowl-
edge explicitly, which makes them transparent and can make
sure they are related to decisions directly.

In medical domain, there is a knowledge source consisting
of categorical information and their definitions are provided by
the subject matter experts. Most concepts can be classified into
one or several categories in the knowledge source. We take the
definition of category “Nucleotide Sequence” in the knowledge
source as an example, where ’__’ means the concept occurs
in corpus D:

Nucleotide Sequence: "The sequence of purines and
pyrimidines in nucleic acids and polynucleotides. Included
here are nucleotide-rich regions, conserved sequence, and
DNA transforming region.”

Thus, considering categories in the knowledge source as
an “dictionary”, we assume that concepts in corpus D can
be represented by the combination of dictionary words with
weight. Then our goal is to learn how to represent concepts
via categories, and interpreting hypothesis generation can
be solved by analyzing the weights of categories of given
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concepts. Besides, definitions from experts in the knowledge
source are very precise and the underlined words can summa-
rize definitions briefly, so we leverage the underlined words
defining the category and aim to infer the representation of
the category. Because learning the representation of categories
and concepts will influence each other, we design a co-training
framework to learn their representation jointly. We show the
formulation of the framework as follows.

Suppose the representation of concepts is U
wi:ul;. . ;ul] € R"™* and the representation of cate-
gories is D = [d;d%;...;d"] € R™*F. For the ith cate-
gory (e.g. Nucleotide Sequence), the concepts defining it are
{ciisciny -5 iy} (e.g. purines, pyrimidines, nucleic acids,
etc), which is denoted as set Def(i). As our assumption, the
representation of ¢; is the weighted combination of dy,d>, . . .,
d,,, which can be formulated as u; = DT 0, where 0; is a m-
dimension column vector. To enhance its interpretation, we
hope 6; can model probability such as (6;)r, = P(dy|u;).
We leverage a similarity function to measure the similarity
between dj, and u; to define the probability:

eswidr)/T
(ai)k = Z;nfl esuidy)/T
where s(-) is a similarity function which can be specific in a
very general form (e.g. Euclidean distance, Mahalanobis Dis-
tance, scaled inner product, etc.), and 7 is a hyper-parameter
controlling the smoothness of (6;).

Similarly, the representation of dictionary words can be

formulated a d; ~ Ugef(z-),@i = ZkeDef(i) ur(Bi)k, where
) es(d,;,uk) /T
(Bi) is defined as (B;)r = 5 NG

leDef (i)

d; to be close to U, #(iyBi> we leverage the square error to
punish their gap:

. To enable

m

LDictiona’ry = Z ||d1 - Ugef(z)SOftmaX(UDef(z)dz/T)||§

i=1

Here, we take s(-)/7 as scaled inner product. And as sugges-
tion in [6], we impose orthogonal constraint on D. Therefore,
to summarize, the whole loss function can be formulated as
follows:

arg min £ = Ereconstruction + )\Ereg + aﬁDictionary
U,D

S.t.DDT = Im><m (3)

D. Optimization

Because of the orthogonal constraint, it is difficult to opti-
mize U and D directly. Thus, we relax the constraint as a soft
regularizer firstly, and then the optimization problem can be
solved by any popular gradient-based solvers like SGD, Adam,
etc. Specifically, we convert optimization problem Eqn 3 to an
unconstrained optimization problem for U and D:

. T 2
arg min Lreconstruction + )\Ereg + aﬁDictionary + ’7| ‘DD - I‘ |F
U,D

And then we optimize U, D respectively via Adam.
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III. EXPERIMENT

In this section, we evaluate our proposed interpretable hy-
pothesis generation framework with the aim of answering the
following research questions. 1) Does our proposed framework
outperform state-of-the-art baselines? 2) Is the output of the
proposed framework interpretable?

A. Experiment Settings

1) Dataset.: Following [2], [3], [14], we choose MED-
LINE, one of the largest and most popular available scientific
repositories, as the data source of our experiments. For each
article, it associates with its unique identifier (PMID), title, ab-
stract, publication date and Medical Subject Headings (MeSH)
terms. According to several previous studies [15], using whole
concepts from titles and abstracts will introduce extra noise,
and MeSH terms are accurate and high-quality enough for this
task. Therefore, we conduct our investigation by setting MeSH
terms as our unit of analysis following [2], [3], [14], [16],
[17]. Fortunately, the category information of MeSH terms can
be obtained from UMLS?. So the category information and
dictionary words’ definitions are from UMLS. In this paper,
we use corpus in 2015 from MEDLINE as training data, and
corpus in 2016 from MEDLINE as testing data.

To evaluate the performance of the proposed model, fol-
lowing studies [2], [3], [14], [18] in this area, the “golden
dataset” is chosen as test cases in the following experiments.
We enumerate test cases as follows:

1) Fish-oil (FO) and Raynaud’s Disease (RD) (1985)

2) Magnesium (MG) and Migraine Disorder (MIG) (1988)
3) Somatomedin C (SMC) and Arginine (ARG) (1994)
4) Indomethacin (INN) and Alzheimer Disease (AD) (1989)
5) Schizophrenia (SZ) and Calcium-Independent Phospholi-
pase A2 (CI-PA2) (1997)
However, because, in 2015’s articles, SMC does not appear,
we take place SMC with ”Somatomedin (SM)”.

2) Comparison Methods.: To evaluate the performance
of our proposed interpretable model, we compared it with
classical and state-of-the-art baselines suggested in [2], [19]:
1) Jaccard [20], a popular technique for link prediction,
captures the association between two concepts via the ratio
of co-occurrence of them. 2) Preferential Attachment [21],
another classical link prediction technique, measures the asso-
ciation between two concepts via the sum of the occurrence
of the two concepts. 3) AMW (average minimum weight) is
one of the best algorithms for literature-based discovery [18].
4) Arrowsmith [18], a famous and popular algorithm for
literature-based discovery, measures the similarity between
two concepts via the number of concepts co-occur with any
concept of the two concepts. 5) Word2Vec [22] is a state-of-
the-art method to learn words’ representation in an embedding
space via model words’ co-occurrence relationship. It includes
two forms: Skip-grams model (SG) and continuous-bag-of-
words model (CBOW), and we use SG model in our paper.
We implement it via Gensim library [23]. 6) Matrix Factor-
ization (MF), a state-of-the-art algorithm for link prediction,

Zhttps://semanticnetwork.nlm.nih.gov
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TABLE I
EVALUATION ON FO-RD, MG-MIG, SM-ARG, INN-AD, AND SC-CI,PA2.

\ FO-RD \ MG-MIG \ SM-ARG \ INN-AD \ SC-CLPA2

| SP@20 | SP@S0 | SP@100 | SP@20 | SP@50 | SP@100 | SP@20 | SP@S0 | SP@100 | SP@20 | SP@50 | SP@I00 | SP@20 | SP@S0 | SP@100
Jaccard 04992 | 03334 | -0.1981 | -0.5485 | -0.3163 | -0.3761 | -0.6073 | -0.5600 | -0.6288 | -0.5598 | -0.5343 | -0.3615 | 00760 | 0.1452 | 03202
PA 08135 | 0.8029 | -0.7684 | -0.6645 | -0.5520 | -0.5907 | -0.6914 | -0.8716 | -0.8813 | -0.5750 | -0.5840 | -0.4392 | -0.6023 | 03178 | -0.3282
AMW 07925 | 0.6340 | 0.6950 | -0.6614 | 02322 | -0.4233 | 0.0355 | 03068 | 0.1050 | -0.3325 | -0.3826 | -0.1624 | 04326 | 03508 | 0.4093
Arrowsmith 07908 | 07932 | 07804 | -0.5935 | -0.8710 | -0.8813 | -0.5935 | -0.8710 | -0.8733 | -0.4795 | -0.5880 | -0.4474 | 05915 | 03227 | -0.3578
Word2vec 0.1038 | 0.0489 | 01900 | -0.1648 | 0.1695 | 0.1674 | 0.0792 | 0.1376 | 03170 | -0.1123 | -0.0719 | 0.0766 | 0.1196 | 0.0300 | 02142
MF 0.0421 | 00612 | 01047 | 0.1166 | 0.0037 | 0.1865 | 0.1878 | 0.0666 | 0.0820 | 0.0897 | -0.2451 | 0.1132 | 0.1114 | 0.0586 | 02547
IntertHG-PMF | 0.5654 | 0.5064 | 0.6849 | 0.0783 | 0.4249 | 03670 | -0.0550 | 0.3324 | 0.5465 | 04868 | 03124 | 03432 | 02333 | 0.1451 | 03891
InterHG-Tensor | 0.5293 | 0.5828 | 07042 | 01723 | 03914 | 03915 | 0.0181 | 03730 | 05364 | 02298 | 02188 | 02701 | 03243 | 0.1409 | 03388

achieves great success in hypothesis generation task, according
to [2], [3]. It is worth mentioning that, [2], [3] all consider a
dynamic system, but we consider static situation here. Thus,
to be fair, we only leverage static MF as our baseline.

3) Evaluation Metric.: Hypothesis generation is to generate
top-k concepts most likely to bridge a given concept pair, so
Spearman’s rank correlation (SP) is used to evaluate results.
Besides, due to lacking of standard ground truth set, following
previous work [2], [3], [14], [18], we also generate a ground
truth set on testing set according to ranking the following
(ki) + #<ck7cj), where #(cg, ¢;) de-

> #ek, )

notes the number of times concept ¢ and concept ¢; co-occurs.

Besides, the predicted intermediary concepts c;, are ranked via
os(uy,u;) * cos(uy, u;)

scores: gt(ck) =

. L C
F;-cosine similarity score: 2 , where
cos(up,u;) + cos(uy,u;)

cos(uy,u;) is the cosine similarity between uy, and u;.

TABLE I
TOP-6 CATEGORY FOR INTERPRETING CONCEPTS.

Concept | Category
vitamin chemical viewed functionally
FO food archaeon
research activity finding
mammal daily or recreational activity
RD clinical drug organ or tissue function
mental or behavioral dysfunction anatomical structure
pathologic function manufactured object
INN cell or molecular dysfunction physiologic function
patient or disabled group clinical drug
finding laboratory or test result
AD indicator, reagent, or diagnostic aid activity
research activity organism function

B. Comparison with Baselines

In this section, we report the performance of baselines and
the proposed InterHG in Table I to answer the first question.
From them, we have following important findings.

First, InterHG outperforms the most state-of-the-art base-
lines greatly. According to the five tables, InterHG-PMF and
InterHG-Tensor have better performance than baselines on
most cases, especially on INN-AD. Although it does not
outperform AMW on some cases, the gap between them is
very small. Thus, the proposed InterHG is both interpretable
and effective.

Second, Co-training interpretation module and tensor-based
loss function is effective. In [6], they interpret Word2vec
by category information via learning a transformation matrix.
However, in their work, interpretation and learning process
are independent, which does not take full advantage of the
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category information for model accuracy. Thus, that model
has the same performance as MF. In contrast to it, the
InterHG train the interpretation module and prediction module
together, making full use of the mapping between categories
and definitions to improve model accuracy. And this point is is
reflected in the performance of InterHG-PMF, InterHG-Tensor
and MF in tables.

Third, Both InterHG-PMF and InterHG-Tensor have
great performance, but they have their own advantages
and disadvantages. Recalling the meaning of InterHG-PMF
and InterHG-Tensor, InterHG-PMF is the probability co-
occurrence matrix factorization method and InterHG-Tensor
is the method retaining the top-k probability. According to the
tables, it is obvious that both the two strategies are effective.
However, InterHG-PMF optimizes an upper bound of Lrepsors
so there may still have a gap with Lpepnsor. For InterHG-
Tensor, it rejects data that is in the tail of data’s distribution.
Although it make the algorithm efficient enough, it also can
not fit those rejected data. Therefore, they perform best in most
cases but perform not as good as AMW or Word2Vec in few
cases.

C. Interpretation for Hypothesis Generation

In order to interpret the embedding of concepts learned
by the proposed InterHG, we show top six categories with
the greatest weight value in 3; of concepts in “golden
dataset”, without loss of generality. One category is more
likely to correspond to the concept if it has larger weight.
The results is reported in Table II sorted by weight in
descending order. According to the learned categories, we
can interpret how the model learning concepts’ representation.
Besides, it helps biomedical researchers check the correctness
of representation—if the learned categories are reasonable, the
representation is more reliable. We invite experts providing
interpretation as follows:

1) Fish oil usually contains some [vitamin] A and D. It is
a [chemical viewed functionally] for healthcare. It is also a
kind of [food] supplement. However, it is hard to related fish
oil to [archaeon], [research activity] or [experimental model
of disease], etc.

2) Raynaud’s disease is a disease in [mammal] (human).
It affects [daily or recreational activity] (skin turn white and
blue) by impairing [organ or tissue function] (disorder of
the blood vessels) in [anatomical structure] (blood vessels).
However, it is hard to relate Raynaud’s disease to [mental or
behavioral dysfunction], [virus] or [idea or concept], etc.
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3) Indomethacin is a [manufactured object] (drug) used to
relieve [pathologic function] (pain, swelling, and joint stiff-
ness) caused by [cell or molecular dysfunction] (arthritis, gout,
bursitis, and tendonitis). It is also used to relieve pain from
various other conditions. This medication is known as a [clin-
ical drug] (nonsteroidal anti-inflammatory drug (NSAID)). It
works by blocking your body’s [physiologic function] (pro-
duction of certain natural substances that cause inflammation).
However, it is hard to relate indomethacin to [organization],
[research activity] or [experimental model of disease], etc.

4) Alzheimer disease is the [indicator, reagent, or diagnostic
aid] (most common cause of) dementia, a general term for
memory loss and other cognitive abilities serious enough to
interfere with [activity] (daily life). However, it is hard to relate
alzheimer disease to [finding], [laboratory or test result] or
[research activity], etc.

From experts’ interpretation, it can be observed that the
ten concepts can be interpreted via learned categories. Be-
sides, most of concepts can be interpreted via the top three
categories. It demonstrates that the proposed InterHG is inter-
pretable and the interpretation is reliable.

IV. CONCLUSIONS

Hypothesis generation is a vital task in medical informatics
that enables medical researchers to verify the implicit connec-
tions between two target concepts. However, the limitations
of existing matrix factorization based approaches (i.e., the
indirect modeling of bridge concept associations with target
concepts and the lack of interpretability) prohibit their usage
in real practice. Towards conquering these limitations, we
propose a novel hypothesis generation model called InterHG
that can output accurate and interpretable results. We proposed
to model hypothesis generation as a tensor factorization tasks
so that the association between bridge and target concepts
is modeled directly. To reduce its computational complexity,
we proposed two effective strategies, i.e., InterHG-Tensor and
InterHG-PMF. Furthermore, we proposed to incorporate a
regularizer based on the known category-concept relationship
into the objective function so that the learned concept embed-
dings can be interpreted as a set of category weights. Such
output allows medical researchers to verify the effectiveness
of concept embedding and the plausibility of the connection
between target concepts. Our experiments on MEDLINE data
demonstrate that the proposed InterHG model achieved high
accuracy and meaningful interpretable hypothesis generation
results.
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