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Abstract

Many astronomical surveys are limited by the brightness of the sources, and gravitational-wave searches are no
exception. The detectability of gravitational waves from merging binaries is affected by the mass and spin of the
constituent compact objects. To perform unbiased inference on the distribution of compact binaries, it is necessary
to account for this selection effect, which is known as Malmquist bias. Since systematic error from selection effects
grows with the number of events, it will be increasingly important over the coming years to accurately estimate the
observational selection function for gravitational-wave astronomy. We employ density estimation methods to
accurately and efficiently compute the compact binary coalescence selection function. We introduce a simple pre-
processing method, which significantly reduces the complexity of the required machine-learning models. We
demonstrate that our method has smaller statistical errors at comparable computational cost than the method
currently most widely used allowing us to probe narrower distributions of spin magnitudes. The currently used
method leaves 10%—-50% of the interesting black hole spin models inaccessible; our new method can probe >99%

of the models and has a lower uncertainty for >80% of the models.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675);

Gravitational wave sources (677)

1. Motivation

The phenomenon of Malmquist selection biases in brightness-
limited astronomical surveys has been known for nearly a
century (Malmquist 1922, 1925), and methods for mitigating this
bias have remained an active area of research in astronomy (e.g.,
Freudling et al. 1995; Loredo 2004; Foreman-Mackey et al. 2014;
Farr et al. 2015; March et al. 2018; Connor 2019; Mandel et al.
2019). Gravitational-wave searches are affected by Malmquist
bias as the parameters of the merging binaries determine the
luminosity of the source. More massive binaries produce larger
gravitational-wave strain, all else equal, and so they can be
observed at greater distances, at least until the mass becomes so
large that the signal begins to shift out of the observing band.
Additionally, binaries with black holes that are spinning along
axes aligned with the orbital angular momentum are visible to
farther distances (Campanelli et al. 2006; Ng et al. 2018).

Over the past several years, there has been increasing interest
in population studies, which seek to measure the distribution of
astrophysical parameters such as the mass, spin, and distance of
merging compact objects using events observed with Advanced
LIGO/Virgo (Aasi et al. 2015; Acernese et al. 2015; see, e.g.,
Abbott et al. 2021a; Roulet et al. 2021; The LIGO Scientific
Collaboration et al. 2021b and references therein). To perform
unbiased inference on the distribution of astrophysical para-
meters, it is necessary to account for selection biases when
performing population inference; see, e.g., Loredo (2004), Farr
et al. (2015), Mandel et al. (2019), Thrane & Talbot (2019),
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and Vitale et al. (2020). The standard method employed in
gravitational-wave searches requires computing the total
sensitivity of search pipelines for a given population model.
Evaluating the sensitivity for different population parameters
involves integrating the time-dependent sensitivity to all binary
parameters over the whole observing time.

Astrophysical population inference is typically performed using
Markov Chain Monte Carlo (MCMC; Metropolis et al. 1953;
Hastings 1970) or nested sampling algorithms (Skilling 2004),
which can require 0(103—107) likelihood evaluations for a well
converged run, and the selection function must be evaluated on
the fly at every iteration. As the binary black hole catalog grows,
this integral must be evaluated with increasing precision
(Farr 2019), and correspondingly increased computational cost.
Additionally, as the catalog grows, so does our resolving power,
meaning that subdominant effects, e.g., the effect of black hole
spin on the sensitivity, must be considered. Guaranteeing
sufficient precision is especially challenging for narrow population
models as the Monte Carlo integrals currently performed are
poorly suited to probing these distributions. In this work, we
demonstrate that by performing a density estimation step on the
set of found injections, we can dramatically increase the efficiency
of these calculations, enabling us to probe narrow population
models.

The rest of this paper is structured as follows. In the next
section, we define some relevant quantities and outline methods
for accounting for Malmquist bias in gravitational-wave
searches. We then briefly summarize a few preliminaries for
gravitational-wave population inference in Section 3. Follow-
ing this, in Section 4, we describe the problem of density
estimation and discuss various commonly used methods. In
Section 5 we estimate the gravitational-wave transient selection
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function as a function of binary parameters using a Gaussian
mixture model. After this, we apply our methods to the binary
black hole systems identified in The LIGO Scientific
Collaboration et al. (2021a). Some closing thoughts are then
provided. The notebook that performed the analysis presented
here can be found at Talbot (2022).

2. Sensitivity Estimation

Most gravitational-wave population analyses impose a
detection threshold on the analyzed triggers to avoid contam-
ination from terrestrial noise sources, for example, demanding
that the false-alarm rate of a trigger is less than once per year.
Applying this threshold leads to a selection bias in the observed
sample. We quantify this by considering the probability that a
signal with parameters 6 (e.g., binary mass and black hole spin)
would surpass our threshold pg°

mezﬁwcmmwn )

The integral is over all observed data, and p,,, is the fraction of
the data that surpasses the threshold under the assumption that
a signal with parameters 6 is present. For population analyses,
we require the fraction of all sources that are detectable, for a
given population model, characterized by parameters, A,

Piad) = [ 0 p(OIA) pyq (6). @

where p(f|A) is a conditional prior for 6 given population
(hyper-)parameters A, e.g., the shape of the black hole mass
distribution. For a detailed derivation of these quantities see,
e.g., Finn & Chernoff (1993), Messenger & Veitch (2013), Farr
et al. (2015), Tiwari (2018), Thrane & Talbot (2019), and
Mandel et al. (2019).

We emphasize that all population analyses that apply a
threshold necessarily have a corresponding selection bias that
must be accounted for, including analyses that explicitly model
contamination of the sample from terrestrial sources (Gaebel
et al. 2019; Galaudage et al. 2020; Roulet et al. 2020).
However, see Smith et al. (2020) for a method that avoids
thresholds entirely.

The integral over d in Equation (1) requires that we understand
the sensitivity of gravitational-wave searches throughout the
observing history. In practice, there are currently two widely used
methods to compute this integral: inject simulated signals into the
data and see how many of them are recovered by the search
pipelines; or use a semi-analytic approximation based on the
power spectral density of the interferometers, e.g., Finn &
Chernoft (1993).

The former method gives the most faithful representation of the
search sensitivity. However, the latter has several computational
advantages. Because of the large parameter space that must be
covered, the injection and recovery procedure gives us only the
parameter values of the found/missed signals, whereas the semi-
analytic approach can efficiently generate a numerical value for
Pdee marginalized over specific nuisance parameters. Thus, the
semi-analytic approach can also be performed much more
computationally cheaply due to the cost of performing and
recovering injections. Previous methods to improve the reliability
of semi-analytic estimates include calibration of semi-analytic

 The specific choice of threshold is irrelevant so long as it is robustly defined.
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estimates with the output of injection campaigns (Wysocki &
O’Shaughnessy 2018) and phenomenological fits, e.g., Fishbach
et al. (2018) and Veske et al. (2021).

There have been several recent methods to leverage supervised
machine-learning methods to estimate p,., (Gerosa et al. 2020;
Wong et al. 2020b). Gerosa et al. (2020) use a neural-network
classifier to give a binary outcome of “detectable” or “not
detectable” for a given set of binary parameters; this method
requires retraining when the threshold is changed. In Wong et al.
(2020b), the authors train a neural-network regressor to estimate
the signal-to-noise ratio (a commonly used detection threshold),
allowing for the threshold to be changed trivially. However, both
of these methods require specifying all of the binary parameters in
order to evaluate p,.,. In this work, we use density estimation on
the set of found injections to provide a continuous, generative
model for py,, in arbitrary subsets of the binary parameters.

The integral over 6 in Equation (2) marginalizes over all of
the parameters describing the source—15 parameters to
completely characterize a quasi-circular binary black hole
merger—in addition to any parameters describing the state of
the instruments. In practice, many of the parameters are not
modeled in current population analyses; the most complex
models considered currently fit for the distribution of seven of
these parameters, the two component masses, spin magnitudes,
spin-tilt angles, and redshift, requiring the evaluation of a
seven-dimensional integral within each likelihood evaluation.
The other parameters are assumed to be well described by the
prior distributions used during sampling. These are mostly
geometric parameters describing the position and orientation of
the binary, although it is possible that some of these parameters
may deviate from isotropy. For example, we could search for
deviations from isotropy over the sky position, e.g., Payne et al.
(2020) and Stiskalek et al. (2021), or features in the distribution
of the azimuthal spin parameters due be influenced by spin—
orbit resonances (Schnittman 2004; Gerosa et al. 2018; Varma
et al. 2022). This integral is, therefore, recast as a Monte Carlo
integral over the set of found injections (Tiwari 2018;
Farr 2019)

RER WY

Pii(A) = .
() Nuj i1 p(0ilAo)

3)

Here, p(6|Ao) is the distribution of the injected signals that will
depend on the specific analysis, Ni,; is the total number of
injected signals, and Ngy,n,q 1S the number of injections
surpassing the threshold. The sum in Equation (3) is over
samples drawn from the distribution of found injections

0; ~ Paer (0T (Bi] Ao). 4

To ensure sufficient convergence of the Monte Carlo integral,
we must have an effective sample size of at least four times the
number of observed events (Farr 2019). This means that to fit
tightly peaked distributions, we need a large number of samples
for the distribution of found injections or a continuous
representation of p,.. Performing more injections to increase
the number of recovered injections quickly becomes compu-
tationally prohibitive. In this work, we resolve this issue by
performing density estimation using the set of found injections.
Using these density estimates, we can directly evaluate p,.,
and/or generate additional samples from the distribution of
found injections.
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3. Population Inference
3.1. Models

For demonstrative purposes, we consider two simple
population models from within the gravitational-wave litera-
ture. Following Abbott et al. (2021a) and Talbot & Thrane
(2018), we model the binary black hole mass distribution as a
power law in the larger mass, m;, between the minimum and
maximum mass along with a normally distributed component
and a power law in the mass ratio, g = m,/m,,

1 —aym®
p(my|ae, Muyin, Mpax) = (1 — /\)%
max — Mmin
_ 2
+ exp _(ml :um) (5)
2702, 207,
(1 + Bq”

p(‘]lml’ ﬁ’ mmin) = (6)

1 — M min 1+6
m

This is the POWER-LAW + PEAK model in Abbott et al. (2021a)
without the low-mass smoothing. We assume that both comp-
onent spins are drawn from the same distribution. We model the
spin magnitudes as following a Beta distribution (Wysocki et al.
2019)

a1 = apn!
B(Oéx, /6)()

We model the distribution of spin orientations as a combination
of a truncated half-normal and a uniform distribution (Talbot &
Thrane 2017)

P(ailOéX, ﬂ)() = @)

2
20}

p(cosOlor) = (12;5) + £N(os)exp(—w). ®)

The factor N ensures that the distribution is properly normal-
ized. This is the DEFAULT model in Abbott et al. (2021a).

The reference distribution using the LIGO/Virgo/Kagra
collaborations’ most recent injection campaign (LIGO Scien-
tific Collaboration et al. 2021a) is the product of these
distributions with population hyper-parameters o = 2.35,
Mmin = 2, Mmax = 100, A=0, 8=1, a,=1, §,=1, and
&€=0. These define p(d|Ao) for our application.

3.2. Likelihood

The standard likelihood used in population inference for
gravitational-wave sources in the presence of selection biases is
(e.g., Mandel et al. 2019; Thrane & Talbot 2019; Vitale et al.
2020),

1 N
a1y = ——— T1 [ Le@iopp @in).
L{di}|A) Rlet(A)NU L(dil0)p (i) ©)
Where the product over i runs over the N observed events with
data d;. The integral over 6, is typically performed by
importance sampling from the single-event posterior distribu-
tion for p(6;|d;) as is done to calculate Py.. We take the publicly
available samples from the single-event posterior distributions
from Abbott et al. (2019a, 2021b) and The LIGO Scientific
Collaboration et al. (2021a). Since the likelihood explicitly
depends on Py, calculating this quantity is the main target of
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this work. This likelihood is then used to explore the posterior
distribution for the population parameters given all of the
observed data, e.g., in Section 6.3.

4. Density Estimation

Reconstructing a function or probability density from a finite
set of samples from the distribution is a widespread problem in
data analysis. For example, injection campaigns to determine
the sensitivity of gravitational-wave detectors do not give us a
continuous description of the sensitivity, but rather a discrete
set of samples from the distribution of found injections.

Density estimation methods can be loosely divided into
parametric and nonparametric methods.” Parametric density
estimation involves fitting a parameterized phenomenological
model to the data. An example of this is the method used to
reconstruct the population distribution of binary black holes in
this work. To estimate the gravitational-wave selection
function, we will rely on nonparametric density estimation.

Many methods for nonparametric density estimation are
commonly used; however, most traditional methods such as
binning or kernel density estimation scale poorly as the
dimensionality of the problem increases. More sophisticated
density estimation techniques involving the optimization of
many parameters, such as Gaussian mixture models or flow-
based inference, have proved successful at approximating
complex functions in large dimensional spaces; see, e.g.,
Powell et al. (2019), Gabbard et al. (2022), Green et al. (2020),
Green & Gair (2021), and Wong et al. (2020a, 2020b, 2021) for
applications in gravitational-wave inference. These models also
provide natural ways to generate additional samples from the
underlying densities at minimal cost and are therefore some-
times referred to as generative models.

In this work, we approximate p,,(f) using a Gaussian
mixture model. A Gaussian mixture model is an unsupervised
density estimator that approximates the distribution as a set of
multivariate Gaussian distributions each with a unique mean
and covariance. The model assumes that the target distribution
can be well modeled by a finite sum of multivariate Gaussian
distributions

K
1

DO = > —NO'; 1y i) (10)
k=1 Wk

Here K is the number of components in the mixture and can be
manually tuned, w; is the weight associated with the kth
component, and i and ¥, are the mean vector and covariance
matrix for that component, respectively. The values of wy, iy,
and Y, are optimized using the expectation-maximization
algorithm (Webb 1999) to maximize the value of

N

(InD) = InD(0";) (11)
1

1
NZ

over the training data.

The nonparametric methods discussed above are all
examples of unsupervised learning techniques as they do not
require estimates of the target density as inputs. There are also

7 ‘ P . .
We note that the word “nonparametric” is something of a misnomer, as

often these models involve large numbers of unphysical parameters to perform
the fit. An alternative delineation is between models where the parameters are
either physically motivated (parametric) or not physically motivated
(nonparametric).
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supervised nonparametric density estimation methods that
require the target function to be evaluated at the training
points. For example, Gaussian process regression and neural-
network regression have also been applied widely in gravita-
tional-wave data analysis; see, e.g., Graff et al. (2012), Veitch
et al. (2015), Moore et al. (2016), Doctor et al. (2017), Lange
et al. (2018), Landry & Essick (2019), Williams et al. (2020),
Gerosa et al. (2020), and D’Emilio et al. (2021).

5. Sensitivity to Binaries

In this section, we develop methods to evaluate Equations (2)
and (1) and generate new samples from the distribution of found
injections. We begin by training a function to estimate
Paet P (B]Ap) using a set of ~ 8 x 10* found injections. We
use the same sensitivity data products used in The LIGO Scientific
Collaboration et al. (2021b). Specifically, we take the found
injections from Advanced LIGO/Virgo’s third observing run with
a threshold of false-alarm rate <Iyr~' in any of the search
pipelines employed by the LIGO/Virgo collaboration (LIGO
Scientific Collaboration et al. 2021a; The LIGO Scientific
Collaboration et al. 2021a, 2021b). See the relevant publications
and data releases for more details.

5.1. Pre-processing

Gravitational-wave parameters are typically only defined
over finite domains and many have significant support at the
edges, e.g., spin magnitudes are contained in the unit interval
and the majority of observed black holes are consistent with
being non-spinning. However, the algorithms we use for
density estimation work best over an infinite domain without
sharp boundaries. Our aim is to transform the found injections
such that the transformed samples are drawn from a unit
multivariate normal distribution. Therefore, we begin by
performing the following mapping to the found injections:

1. Transform the injections from the original distribution to
the unit interval. We denote generic transformations as U
and discuss specific suitable transformations below.

2. Map the samples from the unit interval to a unit normal
distribution using the probit function &' (Bliss 1934).

Mathematically the full transformation is
0= o LU ) 12)
and the Jacobian is

do’ dU/do
0 = —_— = 1
J6) do NO; p=0,0=1) (13)

where N is the normal distribution. We consider the four
following scaling methods.

Naive. The simplest mapping onto the unit interval is a
simple shift and scale from the original domain to the unit
interval

U = m (14)

emax - gmin

The mapping is attractive as it can be trivially applied to any
parameter and has been used in other applications, e.g.,
D’Emilio et al. (2021). The Jacobian of this transformation is a
constant
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w1
do emax - emin

CDF. For some parameters, the original distribution may be
more complex; however, we may know an analytic form for

that distribution. In this case, we perform the mapping using
the cumulative distribution function (CDF) of the injected

15)

population
0 o
U0 = f dp(@IAy). (16)
In this case the Jacobian is
du
— = p(0|Ay). 17
70 p(0|Ao) (17

This transformation is appealing as the form of the Jacobian
means that evaluating p,., is trivial; however, as we will see for
parameters that strongly influence the detectability, this mapping
does a poor job approximating a unit uniform distribution.
Approximate. In cases where p,. is a strong function of ¢
with a known (or approximately known) functional form, we
may choose to map onto the unit interval using an approximate
expression for the observed cumulative distribution

6
J, d0'p(@'|A0)pye, (")

emax ~ :
7 d8'p(8/1A0) pgey (9)

U = (18)

Here p;.(0) is our analytic approximation to the selection
function and the Jacobian

du PO Mo)Pyer (0')
- Omax 2] .
do f@ d0'p(0'1Ao) Pyey (07

min

19)

In our case, we use Py (0) cc m**¢> so we have

D (0|Ao) Py, (8) =~ const. We note that the naive and approx-
imate methods give the same transformation for primary mass
and aligned spin components. There is a difference in the
transformation of the mass ratio. While we only account for
the dependence of py, on the primary mass, we could employ
a more complex expression, e.g., as discussed in Veske et al.
(2021).

Empirical. Finally, we use an approximation to the one-
dimensional target distribution. We construct a Gaussian kernel
density estimate

P0) = p(0]Ao)pyer () (20)
Nfound
= L SN p=0.0=0) @
Nfound 0;

from the found injections. The standard deviation is chosen
using Scott’s rule (Scott 1992). In order to account for
parameters that have significant support at the edges, we apply
a reflecting boundary condition to the estimate

p(O) = p(0) + p20min — 0) + p(20max — 0). (22)
Using this estimate, we then compute an empirical CDF

U0 = fa i

min

do'p (o). (23)
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Figure 1. Two-dimensional density plots of the distribution of found injections before (top) and after (lower) applying the transformations described in Section 5.1.
Our aim is to transform the data to approximate a unit multivariate normal distribution. In descending order, these transformations are naive, CDF, approximate, and
empirical (see the main text for definitions). We note that the empirical scaling maps the data most closely onto a unit multivariate normal distribution.

The Jacobian for this transformation is

au
E =p) (24

and can be trivially evaluated from our kernel density estimate.

In Figure 1 we show the set of found injections in the
original (f) space and each of the transformed spaces. In
descending order, the rows are the original data, naive scaling,
CDF scaling, approximate scaling, and empirical scaling,
respectively. Each of the transformations has removed the
railing against the boundaries in all of the parameters.
However, there are visible features remaining, especially in
the mass parameters. We note that the empirical scaling most
closely transforms the data to an uncorrelated multivariate unit
normal. We will use the empirical scaling going forward unless
otherwise specified.

5.2. Density Estimation

Our aim is to take the regularized samples {6’;} and estimate
the density D using a Gaussian mixture model. Training is
performed by maximizing the mean natural log-density of the
test samples as implemented in SCIKIT-LEARN (Pedregosa et al.
2011). Adding more components will improve the quality of
the fit. However, by using too many components, we risk over-
fitting statistical fluctuations in the training set. To avoid this,
we split the samples into a training (80%) and a test (20%) set.
The fluctuations in the test set should be independent of those
in the training set and therefore we will choose the number of
components when the quality of the fit in the test set stops
improving when adding more components.

In Figure 2, we show the average log-density over the
training and test sample sets for the trained Gaussian mixture
models with varying numbers of components. The offset
between the two sets of points is simply due to random
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Figure 2. The average log-likelihood over the test and training data of the
trained Gaussian mixture model as a function of the number of Gaussian
components. We note that the performance on the test data set flattens out after
~10 components, while the performance on the training data continues to
improve.

fluctuations in the train/test split. Other realizations can lead to
a smaller mean log-density for the test data set. We note that
the performance on the test data set flattens out after ~10
components, while the performance on the training data
continues to improve. We, therefore, use 10 components in
the remainder of this work to avoid over-fitting. In the
subsequent Sections, we use a 10-component Gaussian mixture
model density estimate D trained using all of the found
injections {6;}.

5.3. Evaluation

After training the Gaussian mixture model, we can trivially
generate new samples from the target distribution by drawing
samples 6" from the Gaussian mixture model and applying the
inverse of Equation (12). Alternatively, since these are density
estimates, we can also directly evaluate the estimated density

D) = Pae D)p (01A0) 25)
J©0)
In practice, we want to evaluate the selection function
JO)D®")
Pae(0) = S22 (26)
o )

Here J is the Jacobian from Equation (13) and p(f|Ao) is the
original distribution of injections. We use Equation (26) as an
alternate means of computing Equation (2) with an equivalent
Monte Carlo integral over samples from the population distribu-
tion

Pt (N) = (Paer (00)0,~p(o1 ) 27

With the empirical mapping described in Section 5.1 we have
Do’ p(6

Paa(0) = ) 2o (8)

MO w=0,0=1) pBlAg)

This can be very efficiently evaluated as required.

We note that this method requires an efficient method of
generating samples from the population distribution. This can
be trivially performed using inverse-transform sampling if the
population model has an analytically invertible CDF, or is a
sum of such distributions. For other population models (for
example, those using the low-mass smoothing introduced in
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Talbot & Thrane 2018 or the redshift distribution introduced in
Fishbach et al. 2018 and used in many population analyses,
e.g., Abbott et al. 2019b, 2021a), another method is required.
The simplest alternative approach is numerically estimating the
inverse CDF; this can be implemented for all models at an
increased, and perhaps prohibitive, computational cost. In
Wong et al. (2020a), the authors train a deep flow-based
generative network capable of very efficiently generating
samples from the mass model in Talbot & Thrane (2018).
Additionally, one could relegate the generation of samples from
the population model to an offline pre-processing step by
training a deep neural network to estimate Fj directly.

In practice, we find that this method requires far fewer
samples in the Monte Carlo integral than when resampling the
found injections, 5000-10,000 samples from the population
model versus ~80,000 found injections with the same number
of effective samples for each method. The number of effective
samples is defined slightly differently for the two Monte Carlo
methods considered here. For Equation (27), we adopt the
usual definition (Elvira et al. 2018)

S o 6))
New = % 29)
Zi: lpdet (9,)

However, for Equation (3), a correction is required to account
for the initial injections with p,., = 0 (Farr 2019). Following
Farr (2019), for both of these methods, we only allow for
samples with Negr > 4Neyenis and marginalize over the statistical
uncertainty in R in the likelihood.

6. Results

To demonstrate the efficacy of our new method, we consider
the accuracy and precision of three different methods to
compute the population selection function. We evaluate P
three times for each set of samples:

1. Using Equation (3) with the original found injection set;

2. Using Equation (3) with samples generated using our
Gaussian mixture model; and

3. Using Equation (27) with 10,000 samples from the
population model.

We compare our estimators using 5000 samples drawn from
the prior distribution for our population parameters specified in
Table 1. These are the parameters describing the models
presented in Section 3.1. We note that the prior is specified on
the mean and variance of the Beta distribution

Ay
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We highlight one specific limiting case that will most clearly
demonstrate the differences between the methods. We note that
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Table 1
Prior Distribution for Population Parameters Used in the Analysis
Presented Here

Parameter Distribution
« U-2, 8)
I U-2, 8)
Miin Uz, 10
Mimax U(50, 100)
A UuQo, 1)
Lom U0, 50)
O Uu(o, 10)
Hy uo, 1)
a3 U, 0.25)
3 Uuo, 1)
o UQo, 4)

Note. U(a, b) indicates a uniform distribution in [a, b]. We note that the Beta
distribution is parameterized in terms of the mean (u,) and variance (af().
Additional cuts are imposed such that a,, 3, > 0.

a,, — 0 indicates a spin distribution that peaks very sharply at
zero black hole spin. If o, <1, the distribution is singular at
a =0; due to Monte Carlo convergence issues, these singular
configurations have not been used in many previous analyses
(e.g., Abbott et al. 2019b, 2021a; The LIGO Scientific
Collaboration et al. 2021b).

6.1. Computing Py,

While the mean log-density is a suitable metric for training
our estimators, we can perform a stronger test by considering
how well the population-averaged P (A) compares across a
range of A values using our Gaussian mixture model.

In Figure 3, we show the distribution Ry for these three
methods (in order blue, orange, and green). In the top and
bottom panels, we show samples for non-singular (v, 3, > 1)
and singular spin magnitude distributions, respectively. We
note that all of the methods agree well for the non-singular
distributions. For singular spin distributions, both methods that
resample a fiducial set of sample (blue and orange) methods
differ significantly from our new method. These distributions
are very sharply peaked and hence are the natural failure mode
of importance sampling. The fact that the blue and orange
results agree closely demonstrates that this effect is due to the
difference in the construction of the Monte Carlo integral and
not due to inaccuracy in the Gaussian mixture model estimate.

In Figure 4, we show the population-averaged sensitivity
marginalized overall population parameters except for the
logarithm of the Beta distribution « parameter. The color
scheme is the same as in Figure 3. The fiducial sample re-
weighting methods underestimate the sensitivity to singular
spin distributions compared to methods that directly evaluate
Dier- We find that all of the methods agree well for the
parameters describing the black hole mass distribution.

6.2. Monte Carlo Convergence

As described in Farr (2019), in order to have a reliable
estimate of Py, we need a sufficient number of effective
samples in our Monte Carlo integral. When re-weighting a
fixed set of recovered injections, this amounts to certain parts
of the parameter space being inaccessible to our analyses. By
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Figure 3. The distribution of the logarithm of the population-averaged
sensitivity Pye; over the prior used for our training data (see Table 1). In the top
panel, we show samples for non-singular spin magnitude distributions (cx,,
By > 1). In the bottom panel, we use samples for singular spin distributions. In
blue and orange, we calculate Py using Equation (3) as in previous analyses
using the recovered simulated injections from the LIGO/Virgo collaboration
(blue) and samples drawn from our Gaussian mixture model fit to p,, (orange).
In green, we calculate Py using Equation (27) using 10,000 samples from the
population model. We note that the methods agree well for the non-singular
distributions; however, the old method breaks down for singular spin
distributions leading to the difference in calculated Py
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Figure 4. The population-averaged sensitivity marginalized over all population
parameters except the logarithm of the Beta distribution «v parameter for spin
magnitudes. In blue and orange, we calculate Py using Equation (3) as in
previous analyses using the recovered simulated injections from the LIGO/
Virgo collaboration (blue) and samples drawn from our Gaussian mixture
model fit to p,;., (orange). In green, we calculate Py, using Equation (27) using
10,000 samples from the population model. The computed values of Py agree
for non-singular spin distributions log,c, > 0 but the sample re-weighting
method underestimates the sensitivity for singular spin configurations.
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Figure 5. Number of effective samples in the calculation of Py as a function of
two population parameters describing the distribution of merging black holes.
(Top) One of the parameters describing the black hole spin distribution o,.
(Bottom) The fraction of primary black holes whose mass falls in the Gaussian
component of a two-component power-law and Gaussian mixture model. In
blue, we show N, calculated by re-weighting injections directly. In orange, we
draw a new fixed set of samples using our Gaussian mixture model density
estimate and re-weight them. In green, we draw samples from the population
model and directly evaluate py. (0) using our Gaussian mixture model density
estimate. The dashed black line shows the threshold for sufficient convergence
of the Monte Carlo integral. We note that the old method is systematically
biased away from small o, (distributions that assign small spins to most black
holes) and is unable to probe the region with o, < 0.5. In total, ~40% of the
prior volume is inaccessible with the old method, compared to <1% with our
new method.

contrast, we can draw arbitrary numbers of samples from our
density estimates of p,, in order to achieve sufficient
convergence.

To demonstrate this, we compute the number of effective
samples for each of the population samples used in the rest of
this section using Equations (2) and (27). For the former, we
use the ~80,000 found injections during O3 (LIGO Scientific
Collaboration et al. 2021a). Throughout, we use Neyenis =
69. (binary black hole events confidently identified in O3.) For
the latter, we draw 10* samples from the population model. In
Figure 5 we show the number of effective samples for the old
fiducial sample re-weighting method (blue with real injections
and orange with samples drawn from our density estimate)
and our new method (green) for two population parameters. In
the top and bottom panels, we show the parameters that
demonstrate the most obvious trend for the old and new
methods, respectively (o, and ), — the fraction of primary
masses in the Gaussian component). Once again, we note that
the blue and orange results agree closely, indicating the
robustness of the Gaussian mixture model fit.
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The spread in N for the old method is over four orders of
magnitude, while for the new method, it is only two orders of
magnitude. This means that if using a fixed number of samples
at each iteration, that fixed number can be smaller for the new
method leading to increased computational efficiency. As
expected, we see that the efficiency of the fiducial sample re-
weighting drops significantly for o, < 1. In contrast, our new
method only weakly depends on the parameters of the spin
magnitude distribution. We find that when re-weighting the
found injections, we reject ~10% of the non-singular samples
and ~50% of the singular samples compared to <1% of
samples using our new method. The new method has more
effective samples (smaller uncertainty in >80% of the space).

6.3. Population Inference

We now consider the impact of our different Py, evaluation
methods on population inference. We analyze the 69 binary
black hole mergers with false-alarm rate <1 yr ' identified in
GWTC-3 (The LIGO Scientific Collaboration et al. 2021a). We
perform population inference three times, once with each of our
Fie; estimation methods using the BILBY-MCMC sampler
(Ashton & Talbot 2021).

In Figure 6, we show the inferred astrophysical population of
binary black holes when using our two methods to evaluate the
selection function By. In blue, we evaluate Equation (3) using the
original simulated injections. In orange, we evaluate Equation (3)
using samples from our Gaussian mixture model. In green, we
evaluate Equation (27) using our Gaussian mixture model. The
solid curves show the mean inferred distribution, while the shaded
regions indicate the 90% credible intervals. We find no significant
difference between the inferred population using these methods,
although we note a slight shift away from singular spin
configurations when using our new method. This is exactly the
region in which the old method underestimates the sensitivity,
leading to an overestimated likelihood.

7. Discussion

Malmgquist biases are ubiquitous in astronomical surveys, and
methods of understanding and mitigating these biases are vital to
performing astrophysical inference. Calculating and mitigating
this bias is typically done by performing large simulations where
synthetic signals are injected into the data and counting the
number of recovered signals. While this method gives an optimal
estimate of the performance of searches for signals in real data,
they can be difficult to work with and extend to generic
population models. In this work, we use these recovered signals to
train a density estimate that can be reused to more efficiently
compute the sensitivity to arbitrary populations.

To improve the accuracy of this density estimate, we
introduce a pre-processing step that improves the convergence.
Using this density estimate, we tested three methods to
compute the population-level selection function. We found
that our new density estimation method matches the previous
injection resampling method for population models where the
Monte Carlo integrals are well converged. We further
demonstrated that our method is able to probe sharply peaked
black hole spin distributions far more precisely than the
existing method. This method can be more computationally
expensive, especially for complex population models; however,
deep-learning surrogate models present a solution to this
problem (Wong et al. 2020a).
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Figure 6. The inferred distribution of primary mass (top) and cosine spin tilt
(bottom) when analyzing the binary black hole mergers identified in GWTC-3
using three different methods for estimating the population-averaged
sensitivity, Py: (blue) using the original found injections, (orange) new
samples generated using a Gaussian mixture model fit to the found injections,
and (green) evaluating p,. using samples from the population models. The
results in blue and green do not include the dependence of Py on the spin
distribution. We note that this leads to a slight change in the inferred
distribution of spin orientations: when including spin dependence in the
selection function, there is slightly more preference for isotropic spins,
although this is well below statistical uncertainties. The solid curves show the
posterior predictive distribution, and the shaded regions show the symmetric
90% credible region.

Using our method, it is trivial to compute the fraction of
sources that are observed Fy; by marginalizing over parameters
other than those parameterized in the population model, e.g.,
evaluate Py, using the parameters that most directly affect the
sensitivity (chirp mass, mass ratio, and effective aligned/
precessing spin) and model the population in terms of parameters
with the most intuitive physical meaning (component masses, spin
magnitudes, and orientations). We leave a detailed analysis of the
best combination of parameters to use for the density estimation to
future work. Our results are consistent with the results presented in
The LIGO Scientific Collaboration et al. (2021b); however, the
uncertainty on the measured selection function is less in >80% of
the space when using our new method. As the catalog of observed
compact binary coalescences grows, it will be vital to understand
the systematic error in our estimation of the selection function.

Machine-learning methods for density estimation are rapidly
gaining popularity in the gravitational-wave data analysis
community, e.g., Powell et al. (2019), Gabbard et al. (2022),
Green et al. (2020), Green & Gair (2021), Wong et al. (2020a,
2020b, 2021), and Cuoco et al. (2020). Most of these methods
require the use of complex neural-network-based density
estimators, which require tuning many more free parameters
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and thus extremely large training data sets. The pre-processing
method introduced here removes sharp spectral features, e.g., at
prior boundaries, and thus enables high-precision estimation of
the target distribution using Gaussian mixture models, rather
than having to employ deep-learning density estimators.
Combining this pre-processing in other density estimation
problems may have a similarly simplifying effect.

One limitation of the current method is that the Gaussian
mixture model employed in this work provides only a best-fit
model and does not provide an indication of uncertainty in the
fit over the parameter space. We leave the exploration of
density estimation techniques that model this uncertainty, e.g.,
Bayesian Gaussian mixture models, to a future study.
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