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Computational ghost imaging generally requires a large number of patterns to obtain a high-quality result.
It has been shown that both premodulated orthogonal patterns and postprocessing orthonormalization improve
imaging quality and reduce the required pattern number. In this work, we propose and experimentally demon-
strate a sub-Nyquist computational ghost imaging technique using the orthonormal spectrum-encoded speckle
patterns. Our method enables the reconstruction of grayscale images at very low sampling ratios. Additionally,
we show that this technique can be combined with compressive sensing to enhance image quality further.
Reconstructed images are analyzed using quality indicators such as mean-square error, signal-to-noise ratio,
correlation coefficient, and mean-square error of the detected edge. With our method, high-quality images can
be obtained at a sampling ratio significantly lower than conventional methods.
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I. INTRODUCTION

Computational ghost imaging (CGI) [1,2], an ameliorated
scheme on traditional ghost imaging (GI) [3-5], owns the
ability to reconstruct the object via a single-pixel detector.
CGI grants advantages in an expanding range of noncon-
ventional applications such as wide spectrum imaging [6,7]
and depth mapping [8,9]. It also finds application to various
fields, such as temporal imaging [10], x-ray imaging [11], and
remote sensing [12]. However, it usually requires the number
of speckle patterns used in CGI to be much greater than the
total number of pixels in the speckle pattern in order for good
quality imaging to be obtained, which is time-consuming and
resource intensive. Furthermore, it produces limitations such
as only being suitable for static object reconstruction.

The problem has been addressed by a number of meth-
ods. Compressing sensing (CS) is a well-known technique
for reducing the required sampling ratio by exploring sparsity
properties [13,14]. Nevertheless, it is strictly limited by the
sparsity of the image. Deep learning has also demonstrated
its ability to achieve sub-Nyquist ghost imaging [15-17]. One
limitation is that most of the networks are trained by exper-
imental CGI results, and therefore numerous measurements
have to be done in advance. Also, the training inputs and
the training environment for image reconstruction should be
almost identical to the experiment to make the system effec-
tive. Furthermore, only simple objects can be imaged with
deep learning based ghost imaging techniques, which restricts
its application. The use of CGI with an orthonormal pattern,
such as the Hadamard pattern or Fourier basis pattern, can
also reduce sampling ratios [18-20]. In particular, Luo et al.
introduced a data postprocessing algorithm to improve the
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reconstruction process in a GI system with pseudothermal
light [21]. The required number of speckle patterns is reduced
by applying the Gram-Schmidt process to the speckle patterns
and the intensity sequence collected by the bucket detector.
However, such a method is sensitive to noise, and the im-
age quality is not comparable with standard CGI when the
sampling ratio is high, due to the information loss during the
postprocessing. Gaussian white-noise patterns are typically
used for GI. These speckle patterns have a flat spectrum over
the range of spatial frequencies. Our recent development in-
volves customizing the power spectrum distribution of speckle
patterns to realize superresolution and noise robustness in
an imaging system [22,23]. In contrast to white noise, these
speckle patterns generally have unique spectrum distributions
and nonzero cross-correlations between adjacent pixels.

In this work, we present a method on generating or-
thonormal spectrum-encoded speckle patterns, which can
significantly reduce the CGI experiment sampling ratio. In
addition, the CS algorithm is used in combination with
the speckle patterns to enhance imaging quality further. We
also compare the orthonormal spectrum-encoded pattern GI
(OSG@I), sequential Hadamard pattern GI (SHGI), orthonor-
mal white-noise pattern GI (OWGI), traditional white-noise
pattern GI (WGI), and their corresponding CS-combined
methods OSGI-CS, SHGI-CS, OWGI-CS, and WGI-CS. The
results are tested using the quality indicators such as the mean-
square error (MSE), signal to noise ratio (SNR), correlation
coefficient (CC), and MSE of the detected edge [21,24,25].
The first three indicators evaluate the overall quality of the
images, and edge detection is to find the boundaries of objects
within images, which is particularly useful in extracting the
feature of the images. Our results show that OSGI always
performs well in the non-CS amelioration CGI system and
OSGI-CS further maximizes its quality, at very low sampling
ratios. As a matter of fact, the sampling ratio may be reduced
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one order lower, while the image quality is still better as
compared to the standard CGI. Additionally, it suggests an op-
timal choice of different orthonormal methods with different
sampling ratios when noise is present.

II. ORTHONORMAL SPECTRUM-ENCODED
SPECKLE PATTERNS

Most natural images are apparently different in the spatial
distribution, but share a common feature in the frequency
domain, i.e., their spatial frequencies tend to be concentrated
on the low-frequency parts [26,27]. Therefore, it is natural
to seek speckle patterns that emphasize the low-frequency
components, especially when the sampling ratio is low. Mean-
while, these patterns are better on an orthogonal basis in the
spatial frequency domain to cover the entire frequency range
efficiently. Here we present a general generation method for
this type of speckle pattern. Firstly, a group of low-frequency
dominated speckle patterns should be generated by filtering
random white noise in the Fourier spectrum. For example,
the initial speckle patterns are generated by applying a w™!
filter (or any low-pass filter) on the @® white-noise patterns
in the Fourier domain. Then, the inverse Fourier transforma-
tion upon the filtered spectrum will deliver a group of the
low-frequency dominated speckle patterns with random-phase
matrices assigned to each pattern. The Gram-Schmidt pro-
cess is then performed to orthonormalize the patterns. The
initial patterns are represented by matrices Py, P, Ps, . .., Px,
and the orthonormal patterns are represented by matrices

P, P, P3, ..., Py, all of which contain 64 x 128 elements.
We define the projection coefficient as ¢y, = %‘L}?)— where

(, )rF denotes Frobenius inner product operation. The or-
thonormal patterns can be generated by

Zcmn n- (1)

Then, we renormalize the higogLamNOf P1, 1:2, P3, e, 13N to
[0, 255], which we define as P[, P;, P;, ..., P{. According to
the number of orthogonal vector space, we generate 8192 pat-
terns for each kind, which is equal to the number of total pixels
in a single pattern. We thus have a complete set of orthonormal
patterns. After the orthonormalization, the spatial frequency
distribution of the speckle patterns tends to shift from their
initial low frequency to high frequency. The later the speckle
patterns in the orthonormalization process, the greater the
frequency shift, as shown in Fig. 1. We also perform the
orthonormalization process to the white-noise patterns for
OWGI measurements as a comparison. These patterns still
exhibit the white-noise characteristic, i.e., each pattern is still
uniformly distributed over the frequency range. Alternatively,
each of the orthonormal spectrum-encoded patterns has its
own spatial frequency distribution. All the distributions of
a complete set result in a uniform distribution in the spa-
tial frequency. We note here that, unlike the postprocessing
method shown in [21], we directly generate these orthonormal
patterns but with heterogeneous spatial frequency distribution
and apply them to the digital micromirror device (DMD).
Therefore, the orthonormalization coefficients and patterns
are made at once. Besides, we do not have any intensity losses
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FIG. 1. The orthonormal spectrum-encoded speckle patterns:
(a) the Ist pattern, (b) the 1000th pattern, and (c) the last pattern
(8192nd). The x- and y-axis are coordinates of the pixel numbers; (d),
(e), and (f) are normalized spatial frequency distributions of the 1st
pattern, the 1000th pattern, and the 8192nd pattern, respectively. The
x- and y-axis are coordinates of the normalized spatial frequencies.

during the orthonormalization process. In our scheme, the
intensity is measured as §; = (T, P,)p, where T represents the
spatial transmission coefficient matrix of the object and [‘:’ is
the ith orthonormal pattern. The image is then retrieved by
calculating the correlation pattern I'®), a matrix that maintains
the same dimensions and size as the patterns, between patterns
and collected light intensity sequence as

N

F(2)=11V211E’—m21127’ (2)

i=1 i=1 i=1

where N is the number of speckle patterns. The sampling ratio
is then defined as B = N/Npixel-

We investigate the spatial frequency, autocorrelation, and
cross-correlation properties of the orthonormal spectrum-
encoded speckle pattern. As shown in Fig. 1, the frequency
peak moves to the higher end when the pattern number
increases. Under orthonormalization, the pattern gradually
transits from low- to high-frequency dominated distribution.
This is apparent since the orthonormalization protocol nat-
urally involves the spatial frequency domain. Consequently,
these types of speckle patterns keep the low frequency in dom-
ination when 8 is small. Their corresponding high and broad
cross-correlation gives a great advantage in noise suppres-
sion and signal boost. Later, they can enhance the resolution
continuously as S increases. Indeed, both OSGI and SHGI
own the OWGTI’s feature when § approaches 1, as shown in
Fig. 2. A random pixel p(x, y) is chosen and its autocorrela-
tion and cross-correlation with all other pixels are calculated.
The cross-autocorrelation ratio R, is defined as
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The pink line in Fig. 2 shows that the cross-autocorrelation
ratio is gradually dwindling. The cross-correlation starts from
nearly 1 when 8 is small. It then gradually decreases to 0 when
B =1, the same as the white-noise speckle pattern. From the
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FIG. 2. The ratio of the cross-correlation and autocorrelation R,
as a function of the sampling ratio §. Inset pictures: 2D plotted auto-
and cross-correlation of 5%, 10%, 20%, 30%, 50%, and 100% total
pattern number over full patterns, respectively.

spatial frequency distribution of an arbitrary pattern, we can
precisely predict the change of result during the image re-
trieving process with the spatial correlation. It is also expected
that the OSGI, SHGI, and OWGI measurements will converge
to the same results when S approaches 1, as shown in the
following.

III. SIMULATION RESULTS

To test the feasibility of the OSGI method, we firstly
perform simulation with part of a sample image “girl” as
the object with total pixels of 64 x 128. The simulation is
done in the ideal condition without any noise. As shown
in Fig. 3, OSGI gives an image result when the sampling
ratio is only 5%, and a clear image at 20%. On the other
hand, we see SHGI can give clear results around 20%, and
become comparable with OSGI at 50%. OWGI only give a

50%

OSGI-CS | |
SHGI-CS
OWGI-CS

WGI-CS

FIG. 3. Reconstructed images with sampling ratios from 5% to
50%. The simulation is done with various speckle patterns (OSGI,
SHGI, OWGI, and WGI), and the corresponding results processed
with compressive sensing algorithms. The total pixel in the image is
64 x 128.

blurred image at 50% with a noisy background. Traditional
WGI cannot retrieve the image even at the sampling ratio of
50%. A direct comparison between OSGI and OWGI suggests
that the orthonormal process in the spatial frequency domain
is essential for this method. By implementing the CS algo-
rithm, we notice that the image quality is in general improved
for all the methods. The image quality of SHGI-CS is also
slightly improved as compared to SHGI. We also notice that
the CS technique will improve the imaging quality of WGI
and OWGI by giving a blurred image at 50%, which is not
at all comparable to OSGI and OSGI-CS. The simulation
results thus suggest that OSGI and OSGI-CS have the best
performances in the sub-Nyquist sampling region.

To better judge the performance of various methods, we
utilize four evaluating indicators of image quality, i.e., MSE,
SNR, CC, and edge MSE, which are defined as

Npixel

D (R -G, )

pixel =1

SNR = 101 (—Z"R" > (5)
TR\ R =Gl
Cc— Cov(R, G) ©)
-~ J/VarR)Var(G)’

MSE =

and

Nedge

1 /
MSEcqe = o— D (R; = G))’. ™)
Nedge =1

Here R represents the imaging result, G represents the
ground truth. Var(-) is the variance of its arguments, and
Cov(-) is the covariance of its arguments. R/j is the extracted
edge of the imaging result, and G’; is the extracted edge of
the ground truth. Here, we use the Sobel edge detection, a
sophisticated built-in function in MATLAB [28].

As shown in Fig. 4, OSGI-CS and OSGI are better than
other methods while g is below 40%. While the quality of
OSGI increases with the increase of §, the image quality of
OSGI-CS has a peak around 8 = 30%, then starts to decrease.
This is mainly due to the saturation of the image quality at
such a low sampling ratio. The imaging result will then be
overfitted by CS. We note here that SHGI performs better
than WGI and OWGI, but worse than OSGI especially at
low sampling ratio. When the sampling ratio approaches 1,
these two methods are almost identical since they are both
orthonormal patterns. SHGI-CS outperforms other methods as
B reaches 50%, but it also has an overfitting problem. It is ob-
vious that OWGI and WGI perform poorly with all sampling
ratios. In the ideal condition, the orthonormalization process
on the low-frequency dominated speckle patterns ultimately
maximizes the information encoding-decoding efficiency, ei-
ther in low sampling ratio with OSGI, OSGI-CS or in high
sampling ratio with SHGI, SHGI-CS.

IV. EXPERIMENTAL RESULTS

We then experimentally test our scheme. The experimental
setup is shown in Fig. 5. This is a typical CGI setup: A CW
laser illuminates the DMD, where the speckle patterns with
designed distributions are loaded. The pattern generated by
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FIG. 4. Evaluation on simulation results based on the OSGI,
SHGI, OWGI, WGI, OSGI-CS, SHGI-CS, OWGI-CS, and WGI-CS
methods. Image qualities via different sampling ratio are given by
(a) MSE, (b) SNR, (c) CC, and (d) Edge MSE.

the DMD is then projected onto the object plane. A bucket
detector [simulated with a complementary metal-oxide semi-
conductor (CMOS) camera MQ022CG-CM by adding all the
pixel values of the active area] is put right after the object
to record the transmitted light intensity. The DMD contains
micromirrors, each of which is 16 um x 16 um in size. Each
speckle pattern has Nyixet = N, x N, independent pixels in the
experiment, and each independent pixel consists of 10 x 10
micromirrors.

P, #2==25"
P, Z

P.N /,“?

a 7L0rthonormalization
D/
it .
P, e »| Correlation

I = [11, 12, ""IN]

’,,'{]\'Bucket Detector

Object

DMD

Laser

FIG. 5. Schematic of the setup. The digital micromirror device
(DMD) is illuminated by a CW laser. Orthonormal patterns are
loaded on the DMD and then imaged onto the object plane. Corre-
lation measurement is made between the patterns and the intensities
recorded by the bucket detector.
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FIG. 6. Experimental results of “Cameraman” (partial) with
sampling ratios from 5% to 50%. The measurement is done with
various speckle patterns (OSGI, SHGI, OWGI, and WGI) and the
corresponding results processed with compressive sensing algo-
rithms. The total pixels in the image is 64 x 128.

In the experiment, we measure the “cameraman” (partial)
with the presence of environmental noise and the thermal
noise of the detector. The noise level is measured to be ~2%
by blocking the laser light. The exposure time of the CMOS is
set to be 30 us. Npixel = 64 x 128 is used in the experiment.
The main results are shown in Fig. 6. Again, OSGI already
retrieves an image when f§ is only 5% while other methods
fail. OSGI-CS improves OSGI results further by suppressing
the environmental noise. SHGI and SHGI-CS can present
clear images only when S reaches to 20%. It can be seen from
Fig. 6 that the OSGI and OSGI-CS results have better reso-
lution as compared to SHGI, and SHGI-CS. However, SHGI
and SHGI-CS outperform in noise robustness, i.e., smoother
background. This is particularly because of the binary pat-
tern feature, which contributes a large fluctuation correlation
against noise interference in the second-order measurement.
We also note here that, since the SHGI uses differential pat-
terns in real measurement [29], the number of patterns used
for the measurement is actually doubled. With the presence of
noise, doubled pattern numbers can also improve image qual-
ity. On the other hand, WGI and OWGTI both give cognitive
but very low visibility images at 8 ~ 50%, and the image
obtained with OWGI is clearer than WGI. OWGI-CS and
WGI-CS improve the results to a visible level at 8 ~ 50%,
which is comparable to OSGI, but much worse than OSGI-CS,
SHGI, and SHGI-CS. In a word, we can select OSGI-CS
and SHGI-CS based on B to achieve the recognizable and
even clear images in the sub-Nyquist sampling region. The
qualities of the reconstructed images by different methods are
shown in Fig. 7. As suggested by the indicator values, the
experimental results with all methods are more or less affected
by the experimental noise. The OSGI and OSGI-CS results
are still much better in the low sampling ratio region than
other methods. In particular, OSGI and OSGI-CS are better
at constructing recognizable images than SHGI and SHGI-CS
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FIG. 7. Evaluation on experimental results based on the OSGI,
SHGI, OWGI, WGI, OSGI-CS, SHGI-CS, OWGI-CS, and WGI-CS
methods. Image qualities via different sampling ratio are given by
(a) MSE, (b) SNR, (c) CC, and (d) Edge MSE.

at low sampling ratios (8 < 30%). This is mainly because
Hadamard patterns have larger individual speckles (larger
than 1 x 1) at low $, and the orthonormal spectrum-encoded
speckle patterns maintain the 1 x 1 individual speckle reso-
lution. When B increases, SHGI and SHGI-CS are evaluated
better than OSGI and OSGI-CS because of the extremely low
noise fluctuation, as well as the doubled speckle pattern num-
ber used in the measurements. Different from the ideal case,
the evaluators show that OSGI and OWGI-CS work less well
at high sampling ratios. This is mainly due to the deviation
from orthogonality induced by noise accumulation [21]. Some
of the indicators suggest SHGI-CS gives the best result when
B ~ 50%, similar as in the simulation case. However, here
OSGI-CS has the best result at 8 ~ 20%. This is mainly due
to the competition between the sampling ratio and the effect

of the noises. The optimal sampling ratio will move to the
higher end when the noise decreases. We note here that the
quality of the SHGI-CS result at 8 = 50% and OSGI-CS re-
sult at B = 20% cannot be surpassed at a nearly full sampling
ratio using other conventional methods with uniformly spatial
frequency distributed speckle patterns. It is also interesting to
notice that the evaluators MSE and SNR, as a perception based
model, are more consistent with the human vision judgment
of Fig. 6, i.e., OSGI-CS has an advantage at a sampling ratio
below 30%.

V. CONCLUSION AND DISCUSSION

To conclude, we developed a generally applicable or-
thonormal spectrum-encoded speckle pattern based on the
CGI system to improve image reconstruction for low sampling
ratios. Since most of the natural images are concentrated in the
low spatial frequencies, the orthonormal spectrum-encoded
speckle pattern is favorable in the low sampling ratio. The
most significant advantage of this scheme is the continuous
change of cross-correlation and the distribution in the fre-
quency domain. This effectively reduces the sampling ratio
while maintaining high image quality. We give a general way
to generate this type of speckle pattern. Image quality can
be improved further using the CS algorithm. It also suggests
an optimal sampling ratio for the measurement when noise is
present.

In addition, this method is quite analogous to the orthog-
onal wavelets, which also have the relationship between the
spatial frequency distribution and orthogonality (orthogonal
wavelets scan the frequency domain with finite bandwidth).
Consequently, it can also guide ultrafast spectroscopy experi-
ments by designing the pulse shape to acquire the spectra with
the highest efficiency.
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