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Abstract
The use of quantum optical/laser physics techniques yields interesting insights into
Bose—Einstein condensation and Unruh—Hawking radiation.

Keywords Quantum theory of the laser - Atom laser - BEC - HBAR radiation

1 Introduction

It is a pleasure to dedicate this article to professors David Lee and John Reppy. Both
David and John derive from the excellent Yale low-temperature physics group of C.
T. Lane. David focused on the superfluid properties of “He and 3He, and won the
Nobel prize for demonstrating the superfluidity of *He below 0.01 K due to pairing
of 3He atoms. John is famous, among other things, for his studies of rotating liquid
helium. Professors Lee and Reppy are masters of thermodynamics—both classical
and quantum. For example, the discovery of a superfluid phase of 3He was found by
Lee et al. by investigating the pressure-temperature diagram of *He, as it went from
liquid to solid phases. Reppy and his group observed the first Bose—Einstein conden-
sation (BEC) by studying the thermodynamic properties of “He atoms in the porous
vycor glass which are “coated” by superfluid helium [1-3].

We are indebted to professors Lee and Reppy for their impact on our work.
For example, from insightful discussions with David, we became interested in
the entropy of black holes (BHs). John’s BEC studies stimulated us in choosing a
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canonical ensemble model for our investigations of time dependence and fluctua-
tions of ground-state occupation number of ideal and interacting Bose gases.

In this article, we shall sketch how the quantum master equations of laser phys-
ics and quantum optics are useful in such diverse fields as BEC on the one hand and
BH radiation on the other—two topics we have been stimulated to study by Reppy
and Lee. In the next few pages, we apply the laser/quantum optical master equation
to John Reppy’s BEC (atom laser) and to the problem David Lee posed: why is BH
entropy proportional to the surface area rather than the volume of the BH?

2 Quantum (Photon) Theory of the Laser

Laser operation is, for most purposes, well described by using a classical (Maxwell)
picture for the laser light and a quantum (Schrodinger) treatment of the atoms. The
fully quantized (photon) picture of the laser is a more difficult problem, to wit the
1964 Glauber [4] quote:

The only reliable method we have of constructing density operators, in gen-
eral, is to devise theoretical models of the system under study and to integrate
[the] corresponding Schrodinger equation, or equivalently to solve the equa-
tion of motion for the density operator. These assignments are formidable ones
for the case of the laser oscillator and have not been carried out to date in
quantum mechanical terms.

Taking up the Glauber challenge, we found [5, 6] the evolution equation for the field
density matrix for a single-mode laser not too far above threshold

Puw(@® =—[C,y(n+ 1)+ Cn/,n(n' + Dlp,w
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where C,, ,, = a/2 - (B/8)(n+ 3n’ +4), and the parameters «, 8, and y are given by
the equations
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which are written in terms of the excitation density N (average number of excited
atoms in the cavity), and atomic decay rate y. The model system consists of a single-
mode cavity of frequency v and a finite quality factor Q into which excited two-
level (a and b) atoms are injected sequentially (see Fig. 1). The laser a — b transition
has the dipole matrix element g and is assumed to be in resonance with the cavity
mode. Levels a and b can also decay with emission of nonlaser radiation to other
states at a rate y.
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Fig. 1 Laser model. Excited atoms are sequentially injected into a single-mode cavity and emit photons
into the cavity (laser) mode. In addition, atoms undergo spontaneous decay with emission of nonlaser
radiation (Color figure online)

An important point is that only terms of the density matrix p, ,, of equal degree of
“off-diagonality” (i.e., of equal k = n — n’) in Eq. (1) are coupled. Especially inter-
esting are the diagonal equations implied by Eq. (1)

Pun = —la =P+ DIn+ Dp,,, + [a = pnlnp,_, ,_,

.

g

pumping 3
3)
- y[npn,n - (I’l + l)pn+1,n+1] .
. ~ _
damping

The terms have been grouped to make the physical interpretation obvious. Equation
(3) may be interpreted physically as a flow of probability between the nth level of
the radiation oscillator and the (n — 1)th and the (n + 1)th levels, due to stimulated
emission and finite cavity Q.

The steady-state solution of Eq. (3) yields the following probability distribu-
tion for finding n protons in the laser cavity

o oa— Pk
o =N ] =55 @
=0 ¥

where A is a normalization factor. This distribution has a peak at n,=(@-y) /B.
For a sufficiently peaked distribution the average number of photons in the cavity
obtained from Eq. (4) is (n) = n,,. It is found that the photon statistics for the He-Ne
laser in its normal operation region, which is only around 10 % above threshold, is
much broader that the Poisson distribution characterizing coherent light.
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Fig.2 Ideal Bose gas of N atoms in a harmonic trap interacting with a reservoir of harmonic oscillators
(phonons in the walls). Interaction between the atoms and the walls is described by the Hamiltonian V()
(Color figure online)

The quantum theory of the laser has been applied in many different quantum
optics problems over the years, to wit the recent paper of the Franco Nori’s group
[7] entitled: “Scully-Lamb quantum laser model for parity-time-symmetric whis-
pering-gallery microcavities: Gain saturation effects and nonreciprocity”.

In the next sections we sketch the quantum theory of the laser in connection with the
BEC and with the BH radiation.

3 The BEC—The Atom Laser

Early BEC experiments were carried out by Reppy et al. in 1983 [1]. In these experi-
ments, Helium II was placed in porous Vycor glass which keeps the atoms well sepa-
rated. These experiments are characterized by a dilute gas of N atoms at temperature 7.
Thus, when BEC was observed in ultracold dilute alkali-metal gases, it was natural to
use the simpler Reppy model to study the extent to which the BEC, “atom laser,” was
really “like” a laser. For example, one naturally asks “what is the atomic number distri-
bution function for the ground-state atoms? Is there any similarity between the photon
statistics for an ordinary laser and the “atom statistics” for an atom “laser”?

To answer this question, one naturally seeks to understand the connection between
BEC of an ideal Bose gas, and the quantum theory of the laser, etc. In the latter con-
text, we recall that the saturation nonlinearity in the radiation matter interaction (para-
metrized by f in Eq. 3) is essential for laser coherence. Is the corresponding nonlin-
earity in BEC due solely to atom—atom scattering, or is there a coherence generating
nonlinearity even in an ideal Bose gas?

With this in mind, we extend our previous laser-phase transition analogy [8] to the
problem of N ideal bosons in a 3D harmonic potential coupled to a thermal reservoir
(see Fig. 2). The N particle constraint introduces the essential nonlinearity. To see this
we derive a nonequilibrium master equation for the ground state of an ideal Bose gas in
a 3D harmonic trap coupled to a thermal reservoir. Writing only the diagonal elements,
we find for 7 <« T, [9]
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where |n,) is the eigenstate of n, bosons in the ground state,  is a rate constant, N is
the total number of bosons, T is the temperature of the heat bath, and T, is the BEC
transition temperature.

At this point, it is useful to summarize the photon and atom laser equation of
motion by writing the general quantum master equation for both

pp,=-[A=Bmn+Dln+Dp,+@A@—-Bmnp,_; — Clnp, —(n+ Up,1].  (6)

where p,, is the probability to find n atoms in the condensate, or n photons in the
cavity. Parameters A, B, and C for the case of the laser and BEC at T < T, are sum-
marized in the Table.

Laser Bose gasatT < T,
Linear gain A a K(N+1)
Saturation B p K
Loss 3

ss C Y K N( I )
TL

Prob. Dist. Pn = Pun Puy = Prgn,y

n photons in cavity ng atoms in ground state

The steady-state photon/atom statistical distribution is given by

YT A - Bk
p=N"=
k=0

Noting that for the laser the energy in the cavity goes as Av(A — C)/B and therefore
the maximum energy occurs when there is no cavity loss, i.e., when C = 0. Thus, we
may call A/B = M the maximum “photon number,” and write the photon distribu-
tion as

]

4

@)
M—n)’

Pun =N
while the atomic distribution we may write as
[N< T )3] N-n,
VS L. (8)
Prom = N —ng)!

In writing Egs. (7) and (8) in this form, we are emphasizing the fact that the average
number of photons in the cavity goes as
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while the average number of atoms in the condensate

3
A_I‘;C —>N[1 - (T1> ]
The clear message of our previous work is that BEC is very analogous to the laser
[9]. In particular, we have obtained the probability distribution for finding n, atoms
in the ground state to be identical with the probability of finding n photons in the
laser cavity.
Results of [9] are valid at T < T. They have been extended for all temperatures in

[10]. In [10], the model interaction Hamiltonian describing statistical dynamics of the
condensate was taken to be

_ R -
V= ; 8k dy by &y + adj., 9)

where @, is the atom annihilation operator which satisfies the particle number con-
servation constraint, while Bk is operator for quasiparticle (phonons in the thermal
bath) which number is not conserved, & is the condensate annihilation operator and
8 1s the corresponding coupling strength for the collision of a ground-state atom
and an atom having momentum k scattering into the BEC. Hamiltonian (9) describes
processes which add (remove) atoms from the condensate with the annihilation (cre-
ation) of an excited atom and the emission (absorption) of a quasiparticle. Quasipar-
ticles by are treated as a thermal reservoir which is traced over to obtain the density
matrix equation for the ground state. Such approach yields the following equation of
motion for the probability to find n particles in the condensate p,, , =P, [10]

, = K, (g + DP, + K, _noP, _ —H, noP, +H, (ng+1DP, ;.

n ny—1

Lp
K
(10)
In this equation, the K, and K, _, terms describe cooling of the gas which increases
the condensate number, while the heating terms H, and H, ., decrease it. The con-
stant x is an uninteresting overall rate factor. The cooling and heating coefficients

are given by

K,y = Xm0, (1+ (BB ) ), (11)

k#0

i, =Y (B (1+ 0, ). (12)

k#0

where (n, >"0 = <&£&k> is the thermal average taken under the condition that there
o

are n, atoms in the condensate. In quasithermal approximation, we write the condi-
tional thermal average as
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i
(M), = (N = np)g——, (13)
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where the usual atomic thermal average is given by
= (14)

p =1/kgT and E, is the energy of an atom with momentum k. Such approxima-
tion guarantees satisfaction of the particle number constraint in average, that is

Zk;eo(”k)no =N —ny
Introducing notations

il
M= Y neandy = =202 (15)
k#0
one can rewrite the K, and H, coefficients as
K., =N — ny)(1 +n), (16)
H, =H+ (N —nyn. (17)

The steady-state solution of the master Eq. (10) yields the following recursion rela-
tion for the condensate distribution function

Pn[)+l = H - Pno (18)

ng+1

which can be solved analytically in a closed form

1 (N=ng+H/n=1)1 7/ 5 \N ™
"O_Z_N(H/n—l)!(N—nO)!<l+n> '

19)

Knowing P, one can also find central moments analytically [10, 11]. Results for
the condensate particle number and its fluctuations, obtained by the master equa-
tion approach of Ref. [10] (CNB2), are in excellent agreement with exact numerical
simulations in the canonical ensemble for the ideal gas [12], as indicated in Fig. 3.
Results of the recent experiment on observation of atom number fluctuations in BEC
[13] are shown in Fig. 3c.

4 On Black Hole Radiation

Thermodynamics is a powerful tool in the hands of the low-temperature physicist.
No better example of this than David Lee, whose beautiful experiments demon-
strating the superfluidity of helium-3 won him, Richardson, and Osheroff the Nobel
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Fig. 3 Mean number of condensate particles (a), and variance of the BEC atom number (b) as a function
of temperature for N = 200 noninteracting particles in a harmonic trap calculated in the CNB2 approach
[10]. Large dots are the exact numerical results obtained in the canonical ensemble for the ideal Bose
gas [12]. ¢ Experimental variance of BEC atom number as a function of temperature (blue points). The
dashed line is a fit, where the blue band represents the uncertainty of the fit. The gray area indicates the
offset due to technical fluctuations. The solid black line is exact canonical ensemble calculations for a
noninteracting gas [12]. The results are plotted as a function of the temperature rescaled with the tem-
perature at peak fluctuations. Adopted from [13] (Color figure online)

Prize. They were studying thermodynamic phase transitions in liquid helium-3 when
they discovered superfluidity.

It is natural, therefore, that many of our group sessions involved *He and ther-
modynamics in exotic systems. Indeed, during one such discussion, David remarked
that it would be nice to have a simple “back of the envelope" demonstration that
Bekenstein—Hawking BH entropy goes as the area (not the volume) of the BH. Little
did we know that our simple calculations on the subject would “stir up the prover-
bial hornet’s nest”!

Since we have had so much fun with this BH problem, we would like to dedicate
this essay section to our studies and the reaction(s) of our friends in quantum optics
and general relativity. A simple argument runs as follows. First recall that a two-
level atom undergoing uniform acceleration a will emit Unruh radiation of tempera-
ture T, = ha/kgc. This result can be obtained from a textbook quantum optics cal-
culation and does not require general relativity. From simple Newtonian mechanics,
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it follows that particles held at the BH event horizon r, ~ MG /c?* experience an
acceleration a, = c*/MG. In general relativity, the acceleration is infinite, if held at
the horizon, but is just the Newtonian value if looked at from infinity, because of the
redshift factor between the horizon and infinity. Now suppose the atom falls into the
BH. While GR says such a freely falling atom has no acceleration, as seen from far
away, the particle looks as though it is accelerating into the BH. One might ask if it
is emitting radiation because of that apparent acceleration. According to most rela-
tivists, since it is not accelerating, it should not be emitting radiation. However, this
result depends on the state of the radiation field. If one chooses the background field
state so that an observer or a detector far away sees no radiation either coming into
the BH or going out of the BH (the Boulware state for BHs, or the Rindler vacuum
for accelerating observes in flat spacetime), then that freely falling atom does emit
radiation. In the case of a BH, this radiation at radiation frequencies higher than the
BH Hawking temperature has a thermal spectrum (if one measures the number of
photons at a certain frequency) with a temperature of the Hawking radiation. Note
that this behavior is very different from that for the normal Hawking process. There
an atom or a detector at a fixed radius will find itself excited as though immersed in
a thermal bath. Here, the atom radiates outgoing photons with a thermal spectrum
in the number representation, but the state is actually a pure state. The number rep-
resentation amplitudes are coherent across the frequencies, not incoherent as a true
thermal state would have them. However, if many atoms fall in, at times which are
random and incoherent with each other, the outgoing state would look thermal, since
the coherence of each single atom’s radiation would be canceled by the incoherence
between the atoms.

Some of us showed the above argument to some of our general relativity
friends and received pushbacks like:

(1) This is not Hawking entropy—he had no atoms in his calculations;
(2) For atoms in free fall, the 4—acceleration is zero;
(3) This discussion is for one atom, you need to consider a cloud of atoms.

To answer these (and other) issues we wrote a paper together with our critics and
friends, the paper’s abstract reads [14]:

“We show that atoms falling into a BH emit acceleration radiation which,
under appropriate initial conditions, looks to a distant observer much like (but is
different from) Hawking BH radiation. In particular, we find the entropy of the
acceleration radiation via a simple laser-like analysis. We call this entropy hori-
zon brightened acceleration radiation (HBAR) entropy to distinguish it from the
BH entropy of Bekenstein and Hawking. This analysis also provides insight into
the Einstein principle of equivalence between acceleration and gravity.”

In the paper, we consider a BH bombarded by a beam of two-level atoms with
transition frequency @ which fall into the event horizon at a rate x (see Fig. 4).
A cavity mirror held at the event horizon shields infalling atoms from the Hawk-
ing radiation. The equivalence principle tells us that an atom falling in a gravita-
tional field does not “feel” the effect of gravity, namely its 4—acceleration is equal
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Fig.4 A BH is bombarded by a pencil-like cloud of two-level atoms falling radially from infinity. A cav-
ity is held at the event horizon which shields infalling atoms from the Hawking radiation and the mode
selector picks one cavity mode (or a few modes) counterpropagating relative to the atoms that are in
the relevant frequency range for significant excitation probabilities. The relative acceleration between the
atoms and the field yields generation of acceleration radiation. The physics of the acceleration radiation
process corresponds to the excitation of the atom together with the emission of the photon (Color figure
online)

to zero. However, there is relative acceleration between the atoms and the field
modes. This leads to the generation of acceleration radiation.

In the classic works [15-22], the atom (or other Unruh-DeWitt detector) was
accelerated through flat spacetime. Our work differs in that the atom is in free fall
and the cavity is accelerated (or supported in a gravitational field) and contains
a Boulware-like ground state of the quantized field. Qualitatively, the principle
of equivalence suggests that the results should be analogous to those in [15-23],
but the notion that an atom in free fall should emit radiation is surprising to many
people.

The above calculations were done for the state of the field being the universal
Boulware vacuum. Of course for a real BH formed by collapse, Hawking taught us
that it will contain a flux of particles out of the horizon, which would give entirely
different results to the above (the freely falling detector would not emit thermal radi-
ation, nor would it see its surroundings as thermal). However, some of us believe
that one could model the Boulware state by creating a stationary cavity, whose walls
are impermeable (e.g., as if they were perfect mirrors) to the field. Either by cool-
ing the inside of the cavity, or by adiabatically growing it from a tiny cavity that
stretched from just outside the horizon, to far away from the BH, one could create a
state inside the cavity that is suitable approximation to the Boulware vacuum. The
walls are assumed to be penetrable to the atoms, but not the field of interest. Drop-
ping the atoms through the cavity would, under this argument, also result in an out-
going flux of radiation from the freely falling atoms, just as for the pure Boulware
vacuum. Another issue is the edge effect—radiation created as the atoms go through
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the walls which are impenetrable by the field, which could produce excess radiation.
This problem is thus still one of research interest.

Assuming that the intuition of the first group is correct, we obtain an evolution
equation for the density matrix of the radiation in the cavity (see Fig. 4) following
the approach used in the quantum theory of the laser and find rate of change of the
radiation field density matrix to be

1dpyn kg% _
E I = —?e 5[(” + l)pn’n - l’lpn_l’n_l]

Kg? (20)
- Eeé [npnn —(n+ l)pn+l,n+l]’

where g is the atom-field coupling constant, & = 2zvr,/c, R = £/ sinh(§), and v is
the photon frequency far from the BH. Using S = —kj Tr[4 In p], we find that the von
Neumann entropy generation rate of the HBAR to be given by

kS
§ = B¢

14 = 4hG P’ (21)

Here Ap is the rate of change of the BH area due to photon emission which we are
interested in.

The quantum master equation from the HBAR radiation answered the objections,
of the original critics and led to further work. For example, conformal quantum the-
ory techniques were applied by Ordéfiez—Camblong school who say in the abstract
to their paper [24]:

“A two-level atom freely falling toward a Schwarzschild BH was recently shown
to detect radiation in the Boulware vacuum in an insightful paper [14]. In this paper,
we show that this acceleration radiation is driven by the near-horizon physics of the
BH. We additionally highlight the conformal aspects of the radiation that is given by
a Planck distribution with the Hawking temperature.”

What is clear is that, as so often happens in physics, taking a question seriously
often results in finding answers which are not only surprising to the questioners, but
also to anyone in the field who thought that they thoroughly understood the field
itself.
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