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Upper Limit on the QCD Axion Mass from Isolated Neutron Star Cooling
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The quantum chromodynamics (QCD) axion may modify the cooling rates of neutron stars (NSs). The
axions are produced within the NS cores from nucleon bremsstrahlung and, when the nucleons are in
superfluid states, Cooper pair breaking and formation processes. We show that four of the nearby isolated
magnificent seven NSs along with PSR J0659 are prime candidates for axion cooling studies because they
are coeval, with ages of a few hundred thousand years known from kinematic considerations, and they have
well-measured surface luminosities. We compare these data to dedicated NS cooling simulations
incorporating axions, profiling over uncertainties related to the equation of state, NS masses, surface
compositions, and superfluidity. Our calculations of the axion and neutrino emissivities include high-
density suppression factors that also affect SN 1987A and previous NS cooling limits on axions. We find no
evidence for axions in the isolated NS data, and within the context of the Kim-Shifman-Vainshtein-
Zakharov QCD axion model, we constrain m, < 16 meV at 95% confidence level. An improved
understanding of NS cooling and nucleon superfluidity could further improve these limits or lead to
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the discovery of the axion at weaker couplings.
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The quantum chromodynamics (QCD) axion is a well-
motivated beyond-the-standard-model particle candidate
that may explain the absence of the neutron electric dipole
moment [1-4] and the dark matter (DM) in our Universe
[5-7]. However, the axion remains remarkably uncon-
strained experimentally and observationally, despite nearly
45 years of effort dedicated to axion searches (see Ref. [8]
for a review). The QCD axion is primarily characterized by
its decay constant f,, which sets both its mass [9] m, =
5.7 ueV (10'> GeV/f,)and its interaction strengths with
matter. Requiring f, below the Planck scale implies
m, = 10712 eV. The axion mass is currently bounded from
above by supernova (SN) and stellar cooling constraints at
the level of tens of meV, subject to model dependence and
astrophysical uncertainties that are discussed further below.

The neutron star (NS) axion constraints presented in this
Letter are part of a broader effort to probe the QCD axion
over its full possible mass range. Black hole superradiance
disfavors QCD axion masses m, < 2 x 107!! eV [10-12],
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while the ADMX experiment has reached sensitivity to
Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [13,14] QCD
axion DM over the narrow mass range m, ~ 2.7-4.2 yeV
by using the axion-photon coupling [15-17]. Apart from
these constraints, and additional narrow-band constraints
from the ADMX [18] and HAYSTAC [19] experiments at
the level of the more strongly coupled Kim-Shifman-
Vainshtein-Zakharov (KSVZ) [20,21] axion, there is nearly
a decade of orders of magnitude of parameter space open
for the axion mass that is unprobed at present. On the other
hand, near-term plans exist to experimentally cover most of
the remaining parameter space for QCD axion DM, inclu-
ding ABRACADABRA [22-24], DM-Radio [25], and
CASPEr [26-28] at axion masses m, < ueV, ADMX
and HAYSTAC at axion masses m, ~ 1-100 ueV, and
MADMAX and plasma haloscopes at masses ~40—
400 ueV [29,30]. However, astrophysical searches such
as that presented in this Letter play an important role in
constraining higher axion masses near and above the meV
scale. Axions with m, 2 meV are difficult to probe in the
laboratory, even under the nontrivial assumption that the
axion is DM (but see Ref. [31-36] for proposals). While it
was previously thought that the QCD axion cannot explain
the entirety of DM at masses at and above ~meV masses,
this assumption has been challenged, recently (see, e.g.,
Ref. [37,38]), further motivating the search for meV-scale
axions.
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The luminosity and age data for each of the NSs considered in this Letter (see Table I). We show the best-fit cooling curves

computed in this Letter for each of these NSs under the null hypothesis and with the axion mass fixed to m, = 16 meV, which is our
95% upper limit on the QCD axion mass in the context of the KSVZ model.

The fundamental idea behind how axions may modify
NS cooling is that these particles, just like neutrinos [39],
may be produced in thermal scattering processes within the
NS cores and escape the stars due to their weak interactions
[40,41]. Most previous studies of axion-induced NS cool-
ing have focused on either proto-NSs, like that from SN
1987A [42-46], that are seconds old or young NSs like Cas
A [47-52], which has an age ~300 years. In this Letter, we
show that robust and competitive constraints on m, may be
found from analyses of older NS cooling, focusing on NSs
with ages ~10° — 10° years (see Ref. [53,54] for related
studies of older NSs). This is important when considering
the possible issues that affect the SN 1987A and Cas A
constraints, such as the lack of fully self-consistent 3D
simulations [43] for SN 1987A and uncertainties related to
the formation of the proto-NS [55] (but see Ref. [56]).
Axion constraints from Cas A arise by using the observed
temperature drop of the young NS over the past ~two
decades by the Chandra telescope, but it was realized,
recently, that this drop may be due to a systematic evolution
of the energy calibration of the detector over time [57].
Moreover, the Cas A constraints are typically derived under
the assumptions of specific superfluidity and equation of
state (EOS) models, which are themselves uncertain. It is
clear that additional, independent probes are needed to
robustly disfavor or detect the QCD axion at masses above
a few meV.

Isolated NS data and modeling.—In this Letter, we use
luminosity and kinematic age data from four of the seven
magnificent seven (M7) NSs, which are those where
kinematic age data is available (see Table I and Fig. 1
for their relevant data). We add to this list PSR J0659,
identified with the Monogem ring, as it also has an age
above 10° years known from kinematic considerations
[58,59] and a thermal luminosity measurement. The NSs
with ages ~103 years live at a unique era, as illustrated in
Fig. 2, where cooling from axion bremsstrahlung emission
is maximally important; at lower ages neutrino emission
plays a more important role since the neutrino (axion)
emissivity scales as « 7% (T°) with temperature 7, while at
older ages the thermal surface emission dominates the
energy loss. We discuss NSs with ages less than 10° years,

including Cas A, in the Supplemental Material (SM) [60].
The age data have been determined by tracing the NSs back
to their birthplaces. A measured NS orbit is run backwards
in the Galactic potential and a parent stellar cluster is
identified in each case. J1856 and J1308 are found to
originate in the Upper Scorpius OB association [102,103].
JO720 was likely born in the Trumpler association [104].
J1605 can be associated with a runaway former binary
companion, which was disrupted in a supernova [105].

The thermal luminosity data for these NSs are measured
from spectral fitting of NS surface models to the x-ray
spectra. The strong magnetic fields create localized temper-
ature inhomogeneities on the surfaces, so the total thermal
luminosity is a more robust observable for our purposes,
since it is less affected by the temperature inhomogeneities
than direct temperature measurements. For this reason, we
use the luminosity data in this Letter rather than surface
temperature measurements [106]. Typically, a NS atmos-
phere model or a double-blackbody model is fit to the x-ray
spectral data. For J1856, a thin partially ionized hydrogen
atmosphere model suggests our lower luminosity bound
~5x 103! erg/s [107] while a double blackbody model
suggests the upper bound ~8 x 103! erg/s [108]. For
J1308, the same models suggest (3.3 +0.5) x 10> erg/s
and 2.6 x 10% erg/s, respectively [109]. For J0720, both
types of models give similar luminosities ~2 x 10°? erg/s
[104]. A double blackbody fit yields the luminosity (4 +
1) x 1032 erg/s for J1605, which we adopt in our analysis
[110]. The JO659 luminosity was determined with a double
blackbody model including a power law, since it emits
nonthermally in hard x rays as it is a pulsar [111]. We
assume Gaussian priors on the NS luminosities and ages
that include all measurements at 1¢. Note that the M7 have
previously been the subject of searches for axion-induced
hard x-ray emission [112,113].

In this Letter, we build off of the one-dimensional NS
cooling code NSCOOL [114] to simulate NS cooling curves
with axion energy losses. NSCOOL solves the energy
balance and transport equations in full general relativity
in the core and crust of the NS. An envelope model 7'(7';,)
that relates the interior and surface temperatures, 7', and 7'y,
respectively, is glued to the exterior of the crust. After
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FIG. 2. The luminosity production from neutrinos, axions, and
surface radiation for an example NS with the KSVZ axion at
m, = 16 meV. The NS parameters have been chosen to be those
found in the profile likelihood procedure for J1605 with this
axion mass: the BSk22 EOS, SBF-0-O superfluidity model,
Mys = 1.0 Mg, and AM/Mg = 10712,

thermal relaxation, so that the NS has a uniform core
temperature, integrating the energy balance equation over
the interior of the NS leads to the cooling equation

dTS
L‘;°:—Cd—tb—L,‘j°—L§°+H, (1)

where L = 4zR2 . (T%)* is the photon luminosity, and ¢
is time. (Throughout this Letter, the infinity superscript will
indicate that the value is taken to be that as measured by a
distant observer.) The heat capacity of the NS is C, L is
the neutrino luminosity, L® is the axion luminosity, and H
accounts for possible heating sources, such as from
magnetic field decay (see Fig. 2 for an illustration).
Note that we include important corrections to the neutrino
emissivities relative to those in NscooL [114], which we
discuss shortly, and we also assume that H = 0, since
magnetic field induced heating likely plays a subdominant
role in constraining LS (see the SM [60]). The solution of
this equation yields the NS cooling curve L{°(t, @), where 6
parametrizes the particular choices of axion and NS
properties. The axion is parametrized by its mass m,
and coupling constants to nucleons, while for the NS,
we need to know (i) the NS mass Myg, (ii) the EOS, (iii) the
superfluidity model A(T,), and (iv) the envelope model
parametrized by the mass of light elements AM.

The axion energy losses from nucleon scattering proc-
esses are determined by the axion-neutron and axion-
proton dimensionless coupling constants C, and C,,
respectively, in addition to f,; the axion-nucleon inter-
actions are of the form £ D (Cy/2f,)Wnr"yswn0,a with
N = p, n, yy the nucleon fields, and a the axion field. In
the KSVZ axion model, C, =-0.47+0.03 and C, =
—0.02 £ 0.03 [9], while in the DFSZ model C), and C,, are
functions of tanf, which is the ratio of the vacuum
expectation values of the up- to down-type Higgs doublets

in that theory: C,=(—0.160+0.025)+0.414sin’p, C,=
(=0.182 £ 0.025) — 0.435sin> # [9]. Additional axion
models are also possible [115], for which it is useful to
define the dimensionless coupling constants g,yy =
Cymy/fq with my the nucleon mass. Note that the
uncertainties on the KSVZ and DFSZ axion couplings
arise from lattice QCD [9]; to make contact with previous
literature, we assume the central values.

When computing the axion luminosities, we account for
axion bremsstrahlung [40,41] from nucleons and axion
production from Cooper pair breaking and formation
(PBF). If the NS core temperature is below the superfluid
critical temperature, nucleons form Cooper pairs and
condense into a superfluid phase. These Cooper pairs
can liberate energy in the form of neutrinos [116,117] or
axions [53,118] when breaking and forming. The PBF
processes may dominate the axion luminosity at temper-
atures near the superfluid transition temperature, while the
bremsstrahlung processes are exponentially suppressed at
lower temperatures. To evaluate the axion and neutrino
emission rates, for both PBF and bremsstrahlung produc-
tion, we account for the medium-dependent axion-nucleon
and pion-nucleon couplings [119,120], which have not
been included in earlier work on axion emission from
compact stars or supernovae. See the SM [60] for details.

We make one additional modification to NSCOOL to help
quantify the effects of astrophysical uncertainties. The
addition of light elements (hydrogen, helium, and carbon)
in the NS envelope changes the expected relation between
the surface and core temperatures, which, in turn, affects
the observed surface luminosity even for the same internal
state. We incorporate the analytic formulae in Ref. [121]
into NSCOOL in order to cool a NS with a mass AM of light
elements layered on top of the default iron surface. Values
for AM can span from 0 M, such that the NS has a pure
iron surface, to ~10~7 M o, which is the mass of the entire
envelope. In practice, we modify the equation 7'((T},) to
account for the addition of light elements, which can
change the photon luminosity of the NS by up to a factor
~5 before the photon cooling stage and 2100 after. Since
each AM value requires a dedicated NSCOOL simulation, we
use a discrete number eight of equally log-spaced values for
AM /Mg ranging from 1072° M to 107% M. Similarly,
we discretize the NS mass range with six equally spaced
masses between 1 Mg and 2 M.

We simulate NSs for five distinct EOSs: APR [122],
BSk22, BSk24, BSk25, and BSk26 [123]. The APR EOS is
constructed using variational methods to model the two-
nucleon interaction incorporating the effects of many-body
interactions and with the input of nucleon-nucleon scatter-
ing data. The BSk family of EOSs are generated by fitting
the Skyrme effective interaction to atomic mass data. The
distinct BSk EOSs are constructed with different assumed
values of the Skyrme symmetry energy. These EOSs
phenomenologically characterize the range of possible
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stiffnesses of the EOSs. Recently, data from the NICER
telescope has allowed for the simultaneous measurements
of the mass and radius of two NSs, PSR J0030 [124] and
PSR J0740 [125], which can be used in conjunction
with gravitational wave observations of NS mergers to
constrain the EOS [125]. As we show in SM [60] Fig. S3,
only the BSk22, BSk24, and BSk25 EOSs are consistent
with the mass-radius data to within 1 —2¢ significance.
Thus, we restrict ourselves to this set of EOSs in the main
Letter.

We consider three distinct superfluidity models, denoted
in NscooL and here as 0-0-0, SFB-0-0, and SFB-0-T73.
The first model assumes no superfluidity by setting the
gaps to zero. The second model turns on the 'S, neutron
pairing gap from [126], and the third model additionally
turns on the 'S, proton pairing gap from [127]. Neutron
3P,-3F, pairing may also be possible (we will refer to this
as 3P, for brevity), but the estimate of this gap is more
complicated, in part, because it appears at higher density
where many-body interactions are more important (see,
e.g., Ref. [128]).

Data analysis and results.—Given the set of cooling
curves, we can compare them to the observed data in
Table I. For a given QCD axion model, under the
assumption of a particular NS EOS and superfluidity
model A(T},), let us label the present-day luminosity of
a NS by L(m,,0). The luminosity of NS i is, then, jointly
determined by the axion mass m, and the nuisance
parameters 6 = {M{y, AM', '} that characterize the NS.
Now, we can write the likelihood for a single NS i as

Li(di|m,.0") = N (L(m,.0") - Lj.01)
x N(t' = 1. 1), (2)

where we have introduced the NS data set d; =
{Li, 0%, 15,061}, where L} is the measured luminosity of
the NS with uncertainty ;. Similarly, 7 is the measured
age of the NS with uncertainty o!. The probability of
observing a value x under the zero-mean Gaussian dis-
tribution with standard deviation ¢ is denoted by N (x, 5).
The joint likelihood L(d|m,,@) over all five NSs is
constructed by taking the product of (2) over the NSs.
Note that the total list of model parameters is denoted by
0 = {6'}_,. The best-fit axion mass 7, and nuisance

parameters 0 can be determined for a given choice of EOS
and superfluidity model by maximizing the joint like-
lihood. To test for systematic mismodeling, we allow
m, < 0, with the axion luminosity multiplied by sign(m,,).

Additionally, given the large number of nuisance param-
eters, many of which have nontrivial degeneracy with the
signal parameter m,, we determine the 95% upper limit on
my,, defined by m>, by the Neyman construction of the
95% confidence interval for m, through a Monte Carlo
(MC) procedure rather than by invoking Wilks’ theorem.

TABLE 1. The properties of the NSs considered in this Letter—
RX J1856.6 — 3754, RX J1308.6 + 2127, RX J0720.4 — 3125,
RX J1605.3 + 3249, PSR J0659 + 1414—which we abbreviate
throughout this Letter. We include all known NSs with ages
above 10° years and robust age and luminosity measurements
(see, e.g., Ref. [58]). Younger NSs are discussed in the SM [60].

Name L% (10% erg/s) Age (Myr) References
J1856 0.065 £0.015 0.424+0.08 [102,107,108]
J1308 0.32 £0.06 0.55+0.25 [103,109]
J0720 022+£0.11 0.85+£0.15 [104,129]
J1605 04+0.1 0.44 +£0.07 [105,110]
J0659 0.28 £0.14 0.35 +£0.044 [59.111]

Similarly, we determine the significance of the axion model
over the null hypothesis through MC simulations of the null
hypothesis, instead of relying on Wilks’ theorem. (See the
SM [60] for details.)

We choose the 95% upper limit over the ensemble of
nine EOS and superfluidity combinations that gives the
most conservative limit. For the KSVZ axion model, we
find that m,> ~ 16 meV with the BSk22 EOS model and
the SFB-0-0 superfluidity model; the strongest constraint
over all combinations is m;° ~ 6 meV with the BSk25 EOS
and the SFB-0-T73 model. With that said, the SFB-0-T73
model is the worst fit to the data, with the best-fit axion
mass being negative at ~1.60 significance. The best-fitting
model is that with the BSk22 EOS and no superfluidity, for
which the limit is m)° ~ 14 meV and the best-fit axion
mass being negative at ~0.360. From these results, we
conclude that the NS cooling data show no evidence for the
KSVZ axion.

For the DFSZ axion, the results depend on the value of
tan 3. In Fig. 3, we show m?> as a function of tan 3, with the
shaded band showing the range of limits found over all
EOS and superfluidity combinations. The weakest limit
(bold) is achieved for all tanf for the no superfluidity
model with the BSk22 EOS. We compare these upper limits
to those from horizontal branch (HB) [130,131], red giant
branch (RGB) [132,133], and SN 1987A [45] cooling.
Note, however, that the SN 1987A limit is approximate,
since, e.g., it arises from the rough requirement Ly < L;°
for the proto-NS, and also, it does not account for the
density-dependent couplings for axions and neutrinos,
which we estimate should weaken the SN 1987A limit
by a factor ~1.3-1.6, depending on the EOS. We also
show the projected discovery reach for the future IAXO
experiment [33]; our results leave open a narrow mass
range ~10 meV where TAXO may discover the QCD
axion. In the axion model with only an axion-neutron
(axion-proton) coupling, we constrain |g,,,| < 1.3 x 107
(|gapp| < 1.5 x107°) at 95% confidence.
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FIG. 3. Upper limit from this Letter on the DFSZ axion mass

m, as a function of tan #, which controls the relative coupling of
the axion to neutrons and protons. The width of the shaded red
band reflects the uncertainty on the upper limit by varying
over superfluidity and EOS models. We compare our upper
limits to existing constraints and the projected IAXO discovery
sensitivity.

Discussion.—In this Letter, we present a search for the
QCD axion from NS cooling, comparing NS cooling
simulations with axions to luminosity and kinematically
determined age data from five NSs. The NSs that are most
important for our analysis are J0720, J1605, and J1308, as
further highlighted in the SM [60].

Our upper limits disfavor at 95% QCD axions with
masses m, 2 10-30 meV, depending on the axion model,
which constrains the axion interpretation of the previously
observed stellar cooling anomalies [134,135]. The limits
may be stronger if *P, superfluidity is active in the NS
cores, as we discuss in the SM [60], though large *P, gaps
appear disfavored by the isolated NS data. Many-body
nuclear techniques should provide improved estimates of
the energy gaps of the 'S, (neutron), 'S, (proton), and 3P,
(neutron) pairings in the future [128]. On the other hand,
more work should be done to rigorously assess the possible
impact of heating mechanisms such as magnetic field decay
on the axion limits, for example, using fully self-consistent
simulations along the lines of those in Ref. [136,137].
Axions may also be produced from more exotic forms of
matter, such as hyperon superfluids and pionic and kaonic
Bose Einstein condensates, and these channels should be
investigated as the NS EOS and composition becomes
better understood.
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