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We study the role of the Standard Model Higgs condensate, formed during cosmological inflation, in the

epoch of reheating that follows. We focus on the scenario where the inflaton decays slowly and

perturbatively, so that there is a long period between the end of inflation and the beginning of radiation

domination. The Higgs condensate decays nonperturbatively during this period, and we show that it heats

the primordial plasma to much higher temperatures than would result from the slowly decaying inflaton

alone. We discuss the effect of this hot plasma on the thermalization of the inflaton’s decay products, and

study its phenomenological implications for the formation of cosmological relics like dark matter, with

associated isocurvature fluctuations, and the restoration of the electroweak and Peccei-Quinn symmetries.
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I. INTRODUCTION

The discovery of the Higgs boson in 2012 not only

provided the final piece of the Standard Model of particle

physics, but also stimulated the realization that the Higgs is

of fundamental significance to cosmology. Its deep con-

nections to cosmic inflation, and in particular its dynamics

during inflation, have attracted special attention [1–7].

If the Higgs is a light spectator field during inflation [8],

then its quantum fluctuations accumulate on superhorizon

scales and locally displace the field away from the mini-

mum of its potential [9–12]. A Higgs condensate is formed,

which does not survive in the universe today but rather is

destroyed during the epoch of reheating, when the Higgs

and inflaton transferred their condensate energy to a

thermal bath of Standard Model particles.

In this paper, we present a new physical prediction for

how reheating of the Standard Model proceeds when the

inflaton field ϕ decays slowly, meaning that its decay rate

Γϕ is small enough that

Γ̃≡
Γϕ

m3

ϕ

M2

Pl ≪ 1: ð1Þ

Heremϕ is the inflaton’s mass, andMPl ¼ ð8πGÞ−1=2 is the
reduced Planck mass. If the inflaton decays, for example,

through a dimension-5 Planck-suppressed operator

L ¼ ðϕ=MPlÞO4, then the decay rate is parametrically Γϕ ∼

m3

ϕ=M
2

Pl and Γ̃ ∼ 1. Models with Γ̃ ≪ 1 then occur when

the coupling that mediates the decay of the inflaton to

matter is weaker than gravity [13].

A tiny coupling is technically natural, and couplings of

gravitational strength or weaker for the inflaton are in

general desirable on theoretical grounds to avoid spoiling

the flatness of the inflaton’s potential [13,14], and on

phenomenological grounds to avoid overproducing grav-

itinos during reheating [15].

In this regime, the decay of the inflaton is a perturbative

process which can be understood analytically. As the

inflaton decays to relativistic particles during reheating,

it sources the primordial plasma with an energy density ρr
evolving according to

dρr

dN
þ 4ρr ¼ 3Γ̃m3

ϕH ð2Þ

until reheating is completed. We use the e-folds N ≡ ln a
counted from the end of inflation as our time coordinate

throughout thiswork, andH¼HðNÞ is theHubble parameter.

Under the assumption that the inflaton’s potential is

quadratic near its minimum, the inflaton condensate’s

coherent oscillations drive an effectively matter-dominated

cosmological expansion with H ∝ e−3N=2. The radiated

energy density then has the asymptotic solution
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ρr ¼
6

5
Γ̃m3

ϕH: ð3Þ

As the Hubble rate drops, this radiation loses energy in

absolute terms but gains energy relative to the inflaton

condensate itself.

Reheating is generally taken to complete when Γϕ ∼H,

at a time

NRH ∼
2

3
ln

�

Hend

m3

ϕ

M2

Pl

Γ̃

�

; ð4Þ

where Hend denotes the Hubble rate at the end of inflation.

The plasma temperature at this time, i.e., the reheating

temperature, is taken by convention as [16,17]

TRH ¼
�

90

π2g�

�

1=4

ffiffiffiffiffiffiffiffiffi

Γ̃m3

ϕ

MPl

s

; ð5Þ

where g� is the effective number of relativistic degrees of

freedom of the plasma.

Since the radiation energy density decreases throughout

the reheating epoch, the maximum temperature of the

thermal component of the plasma can be much larger than

TRH [16,17]. If the Higgs condensate is neglected, the

maximum temperature during reheating is achieved when a

majority of the radiation produced by the inflaton has

thermalized, giving the relation [18]

Tϕ-max ≃

�

30ρr

π2g�

��

�

�

�

1=4

Nϕ-therm

; ð6Þ

where the thermalization time Nϕ-therm can be computed as

a function of Γ̃ [19]. Since the radiation energy density

evolves as ρr ∝ H ∝ e−3N=2 during matter domination,

the maximum plasma temperature scales as Tϕ-max ∝

e−3Nϕ-therm=8. We mark Nϕ-therm and Tϕ-max with ϕ’s to denote

they are associated with the decay of the inflaton.

In this work, we show that Tϕ-max is not necessarily the

maximum temperature of the primordial plasma during

reheating. The decay of the Higgs condensate formed

during inflation can lead to a higher temperature.

After inflation the Higgs condensate oscillates around

the minimum of its potential. We assume that the amplitude

of the Higgs condensate is not so large as to probe the

classically unstable part of its potential. Avoiding this

instability requires either that the energy scale of inflation

is below Hunstable ∼ 1010 GeV or that the Higgs potential is

stabilized at high energies [3,20,21]. As the Higgs con-

densate oscillates in its approximately quartic potential, its

energy density redshifts like radiation. Therefore, well after

the end of inflation, the Higgs’ energy density can be

simply parametrized as

ρh

H4

end

¼ ρ̃he
−4N ; ð7Þ

where ρ̃h is a constant, dimensionless parameter which

encodes all the details of how the Higgs condensate was

formed and how it began to oscillate. We will show that it is

generally of order unity or larger. The Hubble rate at the

end of inflation, Hend, will mainly scale all of our results

together rather than affect the relative importance of the

various processes.

After a few oscillations, the Higgs condensate decays

by parametric resonance in a completely Standard Model

process [22,23]. This produces an effectively thermal

plasmas at some time Nh-therm not long after the end of

inflation, with temperature

Th-max ≃

�

30ρh

π2g�

��

�

�

�

1=4

Nh-therm

: ð8Þ

Comparing the maximum temperature of the Higgs

condensate’s contribution to the plasma (8) to the maxi-

mum temperature of the inflaton condensate’s contribution

(6), we see that even though the radiation from the inflaton

will eventually dominate the energy density of our uni-

verse, the radiation from the Higgs controls the maximum

temperature of our universe if

Th-max

Tϕ-max

∼

�

ρ̃h

Γ̃

�

Hend

mϕ

�

3
�

1=4

e3Nϕ-therm=8−Nh-therm ð9Þ

exceeds unity. We denote parametric relations with ∼ here

and throughout. With ρ̃h generically of order unity or

larger, and mϕ ∼Hend as is typical for relatively large field

inflation
1
we see that the Higgs contribution dominates

over the inflaton condensate contribution so long as it

sources a thermal population sufficiently before the inflaton

does and Γ̃ is small. Decreasing Γ̃ both suppresses the

energy density of the inflaton decay products and delays

their thermalization time Nϕ-therm. Technical naturalness

allows it to be very small, and empirically it is constrained

only by ensuring that reheating completes before big bang

nucleosynthesis around 1 MeV [24–26], yielding a lower

bound,

Γ̃≳ 10−17

�

TRH

1 MeV

�

2
�

1010 GeV

mϕ

�

3
�

g�
100

�

1=2

: ð10Þ

We will therefore be able to show that for much of the

allowed parameter space, the maximum temperature of our

universe is provided by the decay of the Higgs condensate

after reheating, with our results joining a growing body of

work highlighting the importance of the Standard Model

Higgs in a wide variety of reheating scenarios: when the

inflaton decays quickly [27,28]; when the inflaton decays

to a hidden sector [29] or has a stiff postinflationary

1
One would generally expect that if inflation ended on a

quadratic potential Hend=mϕ ∼ ϕend=MPl.
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equation of state [30]; and when the condensate relaxation

contributes to leptogenesis [31,32].

This article is organized as follows. Table I follows this

introduction and summarizes the main parameters of this

work and gives the equations in which they are defined.

In Sec. II, we track the Higgs condensate from its

formation during inflation, through its oscillations during

reheating, to its resonant decay to effectively thermal

Standard Model radiation. We estimate the parameters ρ̃h
andNh-therm which control the maximum temperature of the

Higgs contribution to the primordial plasma.

In Sec. III, we review how the inflaton condensate

decays to a population of underoccupied hard particles,

slowing down thermalization, to relate the inflaton-decay

product thermalization time Nϕ-therm to the inflaton decay

rate Γ̃. We compute for the first time the effect of the Higgs

decay products on the thermalization of the inflation decay

products.

In Sec. IV we compare the Higgs and inflaton contribu-

tions to the plasma and show that for much of the parameter

space themaximum temperature of our universe is controlled

by the Higgs. We show that this temperature will generally

have inhomogeneities on large scales uncorrelated with the

adiabatic fluctuations sourced by the inflaton.

In Sec. V, we discuss the theoretical and observational

implications of having a maximum temperature controlled

by the Higgs, which include the enhancement of the

production of relic particles and the restoration of sponta-

neously broken symmetries. We conclude in Sec. VI.

II. RADIATION FROM THE HIGGS

In this section, we discuss the formation of the Higgs

condensate during inflation, its dynamics at the end of

inflation, and its decay to effectively thermal radiation via

parametric resonance after inflation.

A. Condensate formation

In their pioneering work, the authors of Ref. [12] studied

the equilibrium state of a self-interacting scalar field in a

de Sitter background. This is done by treating the field

amplitude, coarse-grained on a fixed physical scale larger

than the Hubble scale ∼1=H, as a random variable. Its

evolution is governed by a competition between determin-

istic rolling and stochastic fluctuations of amplitude

∼H=2π per e-fold as the exponentially expanding vacuum

fluctuations cross the averaging scale [33].

The probability distribution over field amplitudes can

be calculated by finding the stationary solutions of a

Fokker-Planck equation. For example in the case of four

real scalar fields with an SO(4) symmetry in their quartic

self-interaction λφ⃗4=4, the equilibrium distribution in de

Sitter space with Hubble parameter HdS has moments

hφ⃗i ¼ 0 and [21]

ffiffiffiffiffiffiffiffiffi

hh2i
q

¼
�

3

8π

�

1=4HdS

λ1=4
; ð11Þ

where h≡ jφ⃗j. We say then that h forms a scalar

condensate.

This discussion carries over to the SU(2)-doublet

Higgs field during inflation. Assuming that the inflationary

Hubble scale is much larger than the electroweak scale

v ≃ 246 GeV, the Higgs field will develop a scalar con-

densate. The typical condensate amplitude can be estimated

in de Sitter using Eq. (11) upon identifying λwith the Higgs

self coupling [3,34]. For simplicity, we neglect any running

of λ and in numerical estimates take λ ¼ 0.01. We assume

throughout that the Higgs is minimally coupled to gravity

and not directly coupled to the inflaton.

The cosmological inflationary epoch is only quasi-de

Sitter, and the Hubble parameter decreases as inflation

proceeds. Near the end of inflation in particular, the Hubble

rate can evolve quickly enough that a condensate estab-

lished stochastically early during inflation can further

evolve and the de Sitter result (11) becomes an inaccurate

estimate of the typical condensate amplitude [35,36]. This

evolution can be tracked directly by solving the Fokker-

Planck equation, but it can also be estimated by noting that

it is dominated by deterministic rolling rather than stochas-

tic fluctuations.

The local behavior of the condensate amplitude away

from the origin, where we can ignore the effective angular

momentum barrier associated with nonradial fluctuations,

can then be understood from the Klein-Gordon equation of

motion

d2h

dN2
þ 3

2
ð1 − wÞ dh

dN
þ V ;h

H2
¼ 0; ð12Þ

where w is the background equation of state; w ≃ −1 during

inflation and w ¼ −1=3 when inflation ends.

TABLE I. The parameters and outputs of the slow reheating

scenario in the Standard Model.

Symbol Gloss Eq.

Inflaton control parameters

Hend Hubble rate at the end of inflation (7)

Γ̃ Inflaton decay rate (1) (10)

mϕ Inflaton mass (1) (9)

Higgs control parameters

ρ̃h Dimensionless asymptotic Higgs energy (7) (18)

Nh-therm Higgs effective thermalization time (8) (30)

Auxiliary derived parameters

TRH Reheating temperature (5)

Nϕ-therm Inflaton decay products therm. time (6) (55)

Maximum temperatures

Tϕ-max Maximum T from inflaton decay (6) (64)

Th-max Maximum T from Higgs decay (8) (36)
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When the Hubble drag conditions jdw=dNj ≪ 1 and

jd lnV ;h=dNj ≪ 1 are satisfied, the Klein-Gordon equation

admits slow-roll solutions satisfying [37]

dh

dN
≃

−2

3ð3þ wÞ
V ;h

H2
; ð13Þ

but the drag conditions break down if the condensate

amplitude is larger than

h ∼
H
ffiffiffi

λ
p ; ð14Þ

which corresponds to the point where the Higgs field’s

effective mass ∼
ffiffiffi

λ
p

h is comparable to the Hubble scale H.

Therefore when the Hubble rate drops significantly near

the end of inflation, the condensate can be released from

Hubble drag if h≳H=
ffiffiffi

λ
p

. The condensate then rolls down

the potential until it is again halted by Hubble drag when

h=Hend ∼ λ−1=2, and the Higgs displacement at the end of

inflation is then independent of the Hubble rate earlier in

inflation.

When this occurs the Higgs at the end of inflation

will have a smaller displacement than the equilibrium

distribution in the earlier phase of inflation would suggest,

but a larger displacement than the equilibrium distribution

with HdS ¼ Hend would imply. This is consistent with the

results of Refs. [35,36] which solved the Fokker-Planck

equation for a spectator field in a variety of inflationary

backgrounds.

We show this effect in Fig. 1 by solving the equation of

motion (12) with various initial conditions near the end of

m2

ϕϕ
2 inflation. In this inflationary model the Hubble rate

at the end of inflation has decreased by an order of

magnitude from the Hubble rate when CMB scales crossed

the horizon, i.e.,Hend=H−60 ≃ 1=12 andmϕ=Hend ≃ 2. Due

to the dynamics discussed above, the condensate’s ampli-

tude at the end of inflation is roughly hend ∼Hend=
ffiffiffi

λ
p

, even

if the initial displacement was much larger.

Therefore though the Higgs field amplitude at the end of

inflation hend=Hend is a stochastic variable, it should be

within an order unity factor of the typical values

hend

Hend

∼min

�

HdS

Hend

λ−1=4; λ−1=2
�

; ð15Þ

where the first argument corresponds to the case where the

Hubble rate does not decrease significantly near the end

of inflation, and the second argument is the case where it

does. HdS is now identified with the Hubble rate when

the Higgs departed from the equilibrium solution. Since

HdS=Hend > 1 in any inflationary model, this window of

typical expectations is fairly narrow in practice, at most a

factor of ∼λ−1=4 ≃ 3 for λ ∼ 10−2.

After the end of inflation atN ¼ 0, the Hubble rate drops

and the condensate will eventually be released from Hubble

drag and oscillate in its quartic potential. As seen in Fig. 1,

in this regime the condensate energy density redshifts on

the cycle average like radiation [38],

ρh

H4

end

¼ ρ̃he
−4N ; ð16Þ

which defines ρ̃h as the dimensionless, time-independent

asymptotic energy of the condensate. We calibrate ρ̃h
directly as a function of hend=Hend by solving the equation

of motion (12) numerically starting from the end of

inflation with Hubble-dragged initial velocity and assum-

ing that the inflaton potential is quadratic near the end of

inflation and thereafter, V ¼ m2

ϕϕ
2=2. From solutions in

the range hend=Hend ∈ ½0; λ−1=2�, we infer an empirical

fitting function for the asymptotic Higgs energy

ρ̃h ∼
1

4
λ

�

hend

Hend

�

4

×

�

Hend
ffiffiffi

λ
p

hend

�

8=3

× 1.3

≃ 0.33λ−1=3
�

hend

Hend

�

4=3

: ð17Þ

The first factor of the first line accounts for the energy

density carried by the Higgs field at the end of inflation, the

second factor accounts for the Hubble drag phase untilH ∼
ffiffiffi

λ
p

hend during which the energy density is approximately

constant rather than redshifting like e−4N , and the final

numerical factor 1.3 is calibrated from the numeric sol-

utions. This fitting function agrees parametrically with the

FIG. 1. The evolution of Higgs fluctuations through the end of

m2

ϕϕ
2 inflation. No matter how large fluctuations are early in

inflation (purple), they roll down as the Hubble rate decreases and

end up bounded by the drag value (14) at the end of inflation

(yellow). This is larger than the equilibrium value for fluctuations

in de Sitter with Hubble set byHend (red). The asymptotic energy

density after inflation (dashed) depends only on h
4=3
end rather than

h4end because small fluctuations remain frozen for a longer period

after inflation.
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fitting functions provided for a wide range of post-

inflationary backgrounds by Ref. [23].

For the typical Higgs displacements at the end of

inflation given in (15), we therefore have

ρ̃h ∼min

�

λ−2=3
�

HdS

Hend

�

4=3

; λ−1
�

: ð18Þ

In our examples and to normalize scaling relations we take

ρ̃h ¼ 10 reflecting HdS ∼Hend and λ ∼ 10−2. Similarly the

asymptotic Hubble rate after inflation ends and the inflaton

oscillates on a quadratic potential can be approximated as

H

Hend

≃ 0.8e−3N=2; ð19Þ

where the coefficient is a fit to numerical results.

The solution with ρ̃h ¼ 10 is shown in the first several

e-folds after the end of inflation in Fig. 2. We compare this

Higgs condensate energy density to the energy density of

the inflaton and its decay products (3) for an inflaton decay

rate with Γ̃ ¼ 10−7. While the Higgs condensate’s energy

density is much smaller than that of the inflaton, it can be

large in comparison to the inflaton’s decay products.

B. Condensate decay

After inflation, we assume that the Higgs condensate

is on a purely radial trajectory, which we have checked is a

good approximation due to Hubble friction. Rather than

jφ⃗j, h now represents a field that oscillates around zero and

its equation of motion asymptotically approaches the

simple form [38]

ḧþ λh3 ¼ 0; ð20Þ

where h≡ eNh is the conformally rescaled field and

overdots denote derivatives with respect to the conformal

time η ¼
R

dt=eN . This asymptotic equation of motion has

a solution in terms of an elliptic cosine function [38]

h ≃ hosccn

�

ffiffiffi

λ
p

hoscðη − ηoscÞ;
1

2

�

; ð21Þ

which is periodic in zðηÞ≡
ffiffiffi

λ
p

hoscη, with period Δz≡

Γð1=4Þ2= ffiffiffi

π
p

≃ 7.4 where ΓðxÞ is the Euler gamma

function. hosc is the amplitude of the conformally con-

served oscillations, and ηosc is an arbitrary turning point
_hðηoscÞ ¼ 0. Matching this solution to the asymptotic

energy density (7) relates hosc to ρ̃h as

hosc

Hend

¼
�

4ρ̃h

λ

�

1=4

: ð22Þ

The Higgs condensate oscillates with this amplitude until

it decays into Standard Model particles [22,23,39–41] via

parametric resonance [38,42,43]. The most efficient decay

channel is to weak gauge bosons [23], since they have a

large coupling to the Higgs field and they do not experience

Pauli blocking [44]. Following Refs. [23,40], the Higgs

decay to one such field A ∈ fZ;W�g can be modeled using

a set of 3 scalar fields χi, one for each helicity, and a

corresponding scalar-Higgs interaction Lint ¼ −g2Aχ⃗
2h2=8

which is familiar from studies of inflationary prehea-

ting [38,42,43,45]. This modeling provides an qualitative

FIG. 2. After inflation, the Higgs condensate’s energy density (red, ρ̃h ¼ 10) is negligible compared to the inflaton’s (purple), but it

can be larger than the energy of the inflaton’s decay products (blue, Γ̃ ¼ 10−7). The Higgs condensate (dashed) thermalizes (solid) some

Nh-therm ∼ 6 e-foldings after inflation, which can be well before the inflaton condensate’s decay products thermalize at Nϕ-therm. The

Higgs condensate thermalization time is associated with the condensate’s decay at Nh-decay (boxed region, shown in right panel), which

takes some N h-decay ∼ 4 Higgs amplitude oscillations. We have assumed here that inflation ends in a m2

ϕϕ
2 potential with

mϕ ¼ 1010 GeV, and we have not explicitly modeled the decay of the Higgs condensate here so ρr;h continues to oscillate after Nh-decay.
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understanding of the Higgs decay by parametric resonance

analytically.

The equation of motion for the mode functions χ;k in the

oscillatory regime is [38]

χ
k
00 þ

��

k
ffiffiffi

λ
p

hosc

�

2

þ q

�

h

hosc

�

2
�

χ
k
¼ 0; ð23Þ

where the conformal mode function χ
k
≡ eNχk, the reso-

nance parameter q≡ g2A=ð4λÞ, and 0 denotes a derivative

with respect to z. For a given energy scale, the Higgs self

coupling λ and the various gauge couplings can be

computed in the Standard Model, with typical values

λ ∼ 10−2 and g2Z ∼ 0.6, g2W ∼ 0.3 yielding q ∼ 10.

At early times the Higgs condensate’s energy loss from

decay can be neglected, h follows the analytic solution (21),
and the mode equation (23) describes a Lamé equation

which exhibits resonant behavior and exponentially-

growing solutions for certain ranges of k=ð
ffiffiffi

λ
p

hoscÞ and

q. When nðnþ 1Þ=2 < q < ðnþ 1Þðnþ 2Þ=2 for an

odd integer n, the first resonance band extends from 0 to

k� ∼ ð
ffiffiffi

λ
p

hoscÞðq=ð2π2ÞÞ1=4 [38].

Modes in the resonance band grow exponentially in z
and yield an exponentially increasing occupation number

of particles

fðk; zÞ ¼ 1

2
ðe2μkðz−zoscÞ − 1Þ; ð24Þ

with zosc ≡ zðηoscÞ and with the Floquet exponent μk a

nonmonotonic function of k and q bounded by 2 ln ð1þ
ffiffiffi

2
p

Þ=Δz ≃ 0.24. It can be approximated as a top hat

μk ∼ jμjΘð1 − k=k�Þ; ð25Þ

with jμj ∼ 0.2 [23]. The boson A is now identified with

the weak gauge boson which yields the largest Floquet

exponent, since it will dominate the condensate decay. Its

exponentially increasing number density then yields an

energy density

ρA ≃
h4oscq

5=4λ2

213=4π7=2
e−4ðN−NoscÞðe2jμjðz−zoscÞ − 1Þ: ð26Þ

where in the per-particle energy we have accounted for the

effective mass g2hh2i=4 ≃ g2hosc=8 from the condensate

displacement. A key timescale is zh-decay when the con-

densate has transferred anOð1Þ fraction of its energy to the
gauge boson, ρA ¼ ρh. This time is conveniently expressed

in terms of a number of Higgs field oscillations,

N h-decay ≡ ðzh-decay − zoscÞ=Δz

¼ 1

2jμj
1

Δz
ln

�

1þ 25=4π7=2

q5=4λ

�

: ð27Þ

Using the fiducial values provided above, we estimate

that the Higgs condensate decays after N h-decay ∼ 2 field

oscillations. This number depends only logarithmically on

all of the parameters in the problem except the Floquet

exponent jμj, and is independent of the energy in the

Higgs condensate.
2

This simple analytic estimate that the Higgs decays in

just a few oscillations is well supported by the lattice

simulations performed by Refs. [22,23], which incorporate

respectively Abelian and non-Abelian gauge structures for

the Higgs. They find that the condensate decays most of its

energy after N h-decay ¼ 3 ∼ 4 oscillations.

To absorb the theoretical uncertainty in this number, we

treat the number of Higgs field oscillations until decay

N h-decay as free parameter in our reheating study, with the

expectation that it lies in the above range.

Keeping N h-decay a free parameter also allows us to

absorb the scenario where none of the Standard Model

weak gauge bosons exhibit a k → 0 resonance. In this case,

while there will always be a resonance band at some k and

in the large q limit the resonance parameter μk in that band

will still approach the maximum possible value ≃0.24, in

general the Floquet exponent μk in a higher resonance band

will be smaller and imply a correspondingly longer decay

time N h-decay. Refs. [22,23] find that backreaction can take

up to ∼4 times more oscillations than in the usual case.

Finally, we need the number of cosmological e-folds that
elapse between the end of inflation and the time of Higgs

condensate decay. In the oscillatory regime the number of

e-folds ΔN in an interval of ΔN oscillations is

ΔN ≃ 2 ln ðΔNΔz=2þ 1Þ: ð28Þ

To get the absolute number of e-folds N in terms of the

absolute number of oscillations N , we calibrate the

mapping empirically by numerical solution of the con-

densate equation of motion. Identifying N as half the

number of zero-crossings of the field, the number of e-folds

to reach N h-decay for a condensate exiting inflation with

dimensionless displacement hend=Hend is

Nh-decay ∼ 2 ln

�

N h-decayΔz

2

�

−
2

3
ln

�

ffiffiffi

λ
p

hend

Hend

�

− 0.4; ð29Þ

where the first term accounts for the e-folds from the

beginning of oscillations until decay (28), the second for

the e-folds between the end of inflation and the beginning

2
One might wonder whether a resonance analysis is valid for

such a small number of oscillations—just 4 zero crossings—but
numerical solutions validate it within an intrinsic uncertainty of 1
zero crossing [38,46].
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of the Higgs oscillations, and the final numerical term is

calibrated from the numeric solutions. ForN h-decay ¼ 4, the

typical decay time is

Nh-decay ∼ ln

�

140
ffiffiffiffiffiffiffi

λρ̃h
p

�

∼ 6; ð30Þ

where we have evaluated with ρ̃h ∼ 10 and λ ∼ 0.01.

C. Effective temperature and thermalization

We have seen that in just a few oscillations of the Higgs

field, most of the Higgs condensate’s energy is transferred

to weak gauge bosons. This radiation is very abundant in

the sense that the mode occupancy per helicity is much

larger than one. Specifically, combining Eqs. (24) and (27)

yields an estimate of the gauge boson spectrum when the

condensate decays. The occupation number is

f� ≡ fðp;N h-decayÞ ∼
21=4π7=2

q5=4λ
¼ Oð100Þ ð31Þ

in a resonance band that extends up to a physical

momentum

p� ∼

�

q

2π2

�

1=4
ffiffiffi

λ
p

hosce
−Nh-decay : ð32Þ

The number density n� ∼ f�p
3
� and energy density ρ� ∼

f�p
4
� of produced particles is dominated by momenta

p ∼ p�. This momentum is larger than the Hubble rate,

HðNh-decayÞ ∼
p�

N h-decayq
1=4

; ð33Þ

which confirms that a particle description is valid.

The weak boson radiation is already near thermal at the

time of production. If the energy of the decay products were

redistributed into a thermal spectrum with g� relativistic

species, then the typical energy per particle would be set by

the temperature T ∼ ðρh;�=g�Þ1=4. With hEi denoting the

population average energy, comparing this expression to

the per-particle energy of the produced particles yields

hEih-decay
hEiT

∼
p�

f
1=4
� p�g

−1=4
�

∼
g
1=4
�

f
1=4
�

∼ 1; ð34Þ

and reveals that most of the energy is carried by particles

with momenta p� ∼ T comparable to the eventual temper-

ature of the thermalized system.

With particles of similar number density and energy to

those of a thermal distribution, the weak boson spectrum

that results from parametric resonance is therefore effec-

tively thermal. This observation motivates us to identify the

effective thermalization time Nh-therm with the Higgs decay

time Nh-decay, i.e.,

Nh-therm ≃ Nh-decay: ð35Þ

At this time the effective temperature of the Higgs’ decay

products follows by energy conservation,

Th-max

Hend

¼
�

30ρ̃h

π2g�

�

1=4

e−Nh-therm

∼ 10−3

�

ρ̃h

10

�

1=4

e−ðNh-therm−6Þ; ð36Þ

where we have used g� ∼ 100 and scaled the result to

typical values for ρ̃h and Nh-therm from Eqs. (18), (30),

and (35).

As we will see in Sec. III, this is in sharp contrast with

the situation for the inflaton condensate, which decays by

producing less abundant particles but with much larger

energy than that of a thermal distribution of the same

energy density.

The subsequent evolution and complete thermaliza-

tion of the effectively thermal plasma of Higgs decay

products then depends on processes adjusting the number

of particles and their momentum distribution. An important

process while the Higgs is decaying is the nonlinear

interaction of the resonantly produced particles [47,48].

The non-Abelian interactions of the Higgs’ decay products

are especially efficient at extending the overoccupied

particles at p� to higher momenta with order unity

occupancy, which is even closer to thermal [22]. At low

momentum, scattering and absorption/emission processes

likewise bring the distribution closer to thermal [49].

III. RADIATION FROM THE INFLATON

We now discuss the decay of the inflaton and the

thermalization of its decay products. In contrast to the

Higgs condensate’s rapid decay via parametric resonance,

which produces an abundance of effectively thermal

particles, the inflaton’s decay is perturbative, and its decay

products first take the form of a severely underoccupied

distribution of hard primaries. These slowly transfer their

energy to a thermal soft population via in-medium splitting,

delaying thermalization of the full energy released by the

inflaton and lowering the maximum temperature of the

inflaton’s decay products.

Our calculations are based on the extensive literature on

thermalization of non-Abelian plasmas [50–52], applied to

the cosmological context of reheating [18,19,49,53,54]. We

provide the first calculation of how this thermalization

process proceeds in the presence of the decay products of

the Higgs condensate.

A. Inflaton condensate and decay

After inflation, the energy density of the universe

is dominated by the coherent oscillations of the infla-

ton condensate. Radiation domination begins once the
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condensate fully decays. Well before that time, the con-

densate’s energy loss is negligible, and it can be treated as

a free field oscillating in a quadratic potential VðϕÞ ¼
m2

ϕϕ
2=2 with a mass parameter mϕ corresponding to the

mass of an inflaton particle. On the cycle average the

inflaton’s energy density ρϕ ∝ e−3N corresponds to a

matter-dominated universe H ∝ e−3N=2 as in Eq. (19).

Each inflaton particle in the cold condensate carries an

energy of ∼mϕ and their number density is

nϕ ≃ ρϕ=mϕ ≃ 3M2

PlH
2=mϕ: ð37Þ

If the inflaton decays at a rate Γϕ ¼ m3

ϕΓ̃=M
2

Pl into

relativistic particles, then the energy density ρr of the

emitted radiation obeys

dρr

dN
þ 4ρr ¼

Γϕ

H
ρϕ ≃ 3Γ̃m3

ϕH: ð38Þ

The asymptotic solution is

ρr ≃
6

5
Γ̃m3

ϕH: ð39Þ

B. Hard primaries

We assume that the inflaton decays to pairs of relativistic

Standard Model particles, each with energy ∼mϕ=2. The

energy of each hard primary produced by the inflaton

redshifts as e−N . The number density of hard primaries

obeys

dnhard

dN
þ 3nhard ¼ 2Γϕ

nϕ

H
; ð40Þ

where the factor of 2 accounts for the pair of hard primaries

produced by each inflaton particle decay. After some time

their accumulated phase space distribution function is then

[55,56] (also [18,19])

fhardðp;NÞ ¼ 3 · 27=2π2

ghard
Γ̃

�

p

mϕ

�

−3=2 H

mϕ

for mϕe
−N=2≲ p≲mϕ=2; ð41Þ

where ghard counts the decay products’ redundant internal

degrees of freedom (e.g., color and spin). The numerical

coefficients ensure that the energy density of hard particles

is just ρhard ¼ ρr from Eq. (39), while the number density

evaluates to

nhard ¼ 4Γ̃m2

ϕH: ð42Þ

In these calculations, the momentum integration is domi-

nated by the UV cutoff p ¼ mϕ=2, and we drop terms

suppressed by H=Hend that are negligible after the end of

inflation.

Though the hard particles are sourced continuously, the

energy and number density of the hard particle population

is always dominated by those produced in the most recent

Hubble time. The per-particle energy ∼mϕ is then much

larger than it would be in a thermal bath of the same energy

T ∼ ðρr=g�Þ1=4; explicitly,

hEihard
hEiT

∼

mϕ

ðg−1� Γ̃m3

ϕHÞ1=4 ≫ 1: ð43Þ

This quantity is large because the total decay product

energy is suppressed by Γ̃ ≪ 1 and decreases with time,

while the energy of each particle is ∼mϕ which we assume

is comparable to or larger than Hend. Equivalently, the

number density of particles in the hard population is much

smaller than those in a thermal distribution of the same

energy density.

The hard primaries are therefore very far from thermal.

In order to thermalize, they must transfer their energy to an

abundant population of soft particles.

C. Energy cascade toward thermal bath

The hard primaries emit lowermomentum soft particles by

collinear splitting in a medium comprised of the hard

primaries themselves and the products of the previous

splittings. This splitting leads to a cascade of energy from

an underoccupied hard distribution to an abundant soft popu-

lation. The total energy density of the radiation (hardþ soft)

obeys Eq. (39) until backreaction on the condensate occurs

and reheating completes. For pedagogy and to connect to the

existing literature, we neglect here the influence of the decay

products of the Higgs. Their impact can change the thermal

history of the plasma, as we discuss in Sec. III E.

The abundantly populated soft particles rapidly thermal-

ize at a temperature Tsoft that is much less than the hard

particle energy mϕ=2. Most of the energy ρsoft and particle

number nsoft in the soft population is carried by particles

with momentum p ∼ Tsoft. Tsoft itself is determined by the

energy the hard particles have lost through in-medium

splitting. This transfer from hard to soft is a bottleneck

that prevents immediate thermalization of the full energy

released as the inflaton decays.

To write down the in-medium splitting rate, we must

specify the nature of the hard particles and their inter-

actions. For concreteness we consider a non-Abelian

plasma [50], and suppose that the hard primaries are

gluons. Then ghard ¼ 16 and the strong coupling is then

denoted by α ¼ g2s=4π ∼ 0.1.

By emitting soft radiation, a gluon of momentum pin can

split and form a gluon of momentum pout ≲ pin. The rate at

which this splitting occurs in the medium is estimated as

[54,57]
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ΓsplitðN; pin; poutÞ ∼ αΓelmin

"

1;

ffiffiffiffiffiffiffiffiffiffiffi

pLPM

pout

r

#

for pout ≲ pin; ð44Þ

where Γel is the rate for elastic gluon scattering. Γsplit only

depends on the incident gluon’s momentum pin through the

kinematic restriction pout ≲ pin, and Γsplit is suppressed for

high-momentum daughters pout > pLPM by the Landau-

Pomeranchuk-Migdal (LPM) effect [58,59]. The LPM

effect is the destructive interference of radiation produced

from nearby scattering sites when the formation time for the

radiation is long compared to the typical time between

scatterings. In QCD this occurs for daughter particles with

momentum pout above [60,61] (see also Refs. [51,62,63])

pLPM ∼
m2

Γel

; ð45Þ

where m is the gluon’s screening mass in the medium. We

estimate

m2
∼ α

X

QCD

Z

f

p
d3p

∼ α
nhard

mϕ

þ α
gQCD

g�

nsoft

Tsoft

; ð46Þ

which has contributions from the hard particles and from

the thermal soft population, containing gQCD ∼ 88 quark

and gluon degrees of freedom. The screening mass also acts

as an infrared regulator for the elastic scattering rate

Γel ∼

Z

d2q
α2

q2ðq2 þm2Þ
X

QCD

Z

d3pfðpÞð1� fðpÞÞ

∼
α2

m2

�

nhard þ
gQCD

g�
nsoft

�

: ð47Þ

At this point we remind the reader that all expressions

containing the coupling α should be viewed parametrically.

For example we neglect numerical factors like the quadratic

Casimir, and we neglect logarithmic factors that appear

when solving the exact system of Boltzmann equations

describing collinear splitting in a non-Abelian plasma.

Energy transfer between the hard primaries and the soft

population relies on efficiently producing low-momentum

particles by splitting. This splitting is efficient if Γsplit ≳H.

Particles with large momenta pout are more difficult to

produce due to the LPM suppression, and their production

is inefficient above a momentum scale psplit where

ΓsplitðpsplitðNÞ; NÞ≡HðNÞ; ð48Þ

which implies

psplit ¼ phard
split þ psoft

split

∼ α4
�

nhard

H2
þ gQCD

g�

nsoft

H2

�

: ð49Þ

Note that psplit receives contributions from collisions with

both the hard and soft particles, and in Sec. III E we will

include the contribution from collisions with the decay

products of the Higgs.

Since the splitting rate (44) does not significantly depend

on the incident momentum pin, any secondaries produced

with pout < psplit can themselves radiate efficiently. When

they do so they lose an order unity fraction of their energy,

and in this way the energy cascades from the hard particles

to the thermal bath.

D. Asymptotic temperature of the bath

The energy cascading down from the hard particles

accumulates in the thermal bath of soft particles, such that

the energy density of the bath obeys

dρsoft
dN

þ 4ρsoft ¼
Z

psplitðNÞ

0

dp
Γsplitðp;NÞ

H
nhardðNÞ: ð50Þ

The integral is dominated by the UV modes with p ∼ psplit,

dρsoft

dN
þ 4ρsoft ∼ psplitnhard: ð51Þ

Asymptotically psplit is dominated by the contribution from

the soft particles themselves, and substituting psoft
split (49)

and nhard (42) yields

dρsoft

dN
þ 4ρsoft ∼ Amϕρ

3=4
softe

3N=2: ð52Þ

Here we have used that ðnsoft=g�Þ1=3 ∼ ðρsoft=g�Þ1=4 for a

thermal population, and we have defined a dimensionless

constant

A ∼ α4
gQCD

g
3=4
�

mϕ

Hend

Γ̃; ð53Þ

which is much less than unity for the parameters of interest.

The asymptotic solution of Eq. (52) is

ρsoft ∼
A4m4

ϕ

10000
e6N : ð54Þ

Despite the cosmological redshifting, the thermal popula-

tion’s energy density increases with time. This growth

continues until psplit reaches the hard particle energy mϕ=2

and ρsoft ∼ ρhard; this occurs
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Nϕ-therm ∼
2

15
ln

�

1

α16Γ̃3

g3�
g4QCD

�

Hend

mϕ

�

5
�

ð55Þ

e-folds after the end of inflation. At this point, the inflaton’s
decay products (hardþ soft) fully thermalize. The sub-

sequent temperature is then set by conservation of energy,

TϕðN > Nϕ-thermÞ ¼
�

30ρr

π2g�

�

1=4

; ð56Þ

and the plasma’s maximum temperature is reached at the

beginning of this fully thermal phase [18]

Tϕ-max ¼ TϕðNϕ-thermÞ ∼
α4=5Γ̃2=5mϕg

1=5
QCD

g
2=5
�

: ð57Þ

This is the maximum temperature of the inflaton decay

products during reheating in the slow decay regime,

neglecting the presence and influence of the hot plasma

produced by the Higgs. In Fig. 3, which we discuss further

in the next subsection, it corresponds to the maximum of

the purple line.

E. Effect of Higgs decay products

The Higgs condensate’s decay products contribute to the

medium in which the hard primaries split, amplifying the

hard particles’ splitting rate and changing their thermal-

ization history. Previous studies of thermalization during

reheating, upon which Secs. III C–III D are based, have

neglected this Standard Model process.

As a simplifying assumption, we suppose that the decay

of the Higgs condensate to an effectively thermal popula-

tion of relativistic particles occurs abruptly at Nh-therm.

These decay products then provide scattering targets for the

hard primaries, and the energy density of the soft radiation

emitted by in-medium splitting ρsoft evolves subject to an

extension of Eq. (51) where the splitting scale psplit is now

psplit ¼ phard
split þ psoft

split þ p
higgs
split : ð58Þ

The first two terms appear in Eq. (49), and the new

contribution from the effectively thermal decay products

of the Higgs is obtained by including their contribution to

the elastic scattering rate (47) in the definition of the

splitting scale (44), yielding

p
higgs
split

Hend

∼ α4
gQCD

g
3=4
�

ρ̃
3=4
h ; ð59Þ

which is time independent.

Since the soft particles will themselves interact and

thermalize with the Higgs’ decay products, ρsoft solved

from Eq. (51) should now be viewed as the energy

transferred from the inflaton to the thermal plasma with

total energy ρsoft þ ρh. We show the solution for ρsoft for a

typical parameter set in Fig. 3. We take an inflaton decay

rate Γ̃ ¼ 10−12 and an inflaton mass mϕ ¼ Hend. We

assume a Higgs energy ρ̃h ¼ 10 and a Higgs decay time

Nh-therm ¼ 6, which are typical values as seen in (18) and

(30). We use a coupling strength α ¼ 0.1.

At early times, the contribution to the total plasma

energy from the Higgs’ decay products dominates over

the contribution from all the inflation decay products. The

splitting scale (58) is therefore dominated by p
higgs
split and so

the solution of Eq. (51) is

ρsoft ∼min ½phiggs
split ; mϕ� nhard; ð60Þ

where the minimum in this expression limits splitting to

occur below the energy of hard particles themselves. Due to

the α4 factor in (59), p
higgs
split is smaller than mϕ unless

Hend ≫ mϕ or ρ̃h is much larger than unity.
3

Despite being enhanced by scatterings off the Higgs’

decay products, ρsoft is initially a subdominant component

of the thermal plasma relative to the Higgs contribution ρh.

The solution (60) is valid until ρsoft overtakes ρh at time

FIG. 3. The total energy of inflaton decay products after

inflation (dashed blue, Γ̃ ¼ 10−12) can only thermalize after hard

primaries transfer their energy to a soft distribution by in-medium

splitting. The Higgs (ρ̃h ¼ 10) decays and produces an effectively

thermal plasma early (red, Nh-therm ¼ 6), which adds additional

scatterers into the medium and enables a soft population of

inflaton decay products to form early (blue). By the time this soft

population dominates over the Higgs (Nswitch ∼ 14), it will always

have a lower energy density than it does once all the hard

radiation thermalizes (Nϕ-therm ∼ 16), which is the same as if there

were no Higgs condensate at all (purple). See Sec. III E for further

discussion.

3
While this can in principle be the case if λ is very small [see

Eq. (18)], in the very small λ regime the decay of the Higgs
condensate by parametric resonance may be disrupted if the weak
gauge bosons decay to fermions on the condensate oscillation
timescale [46,64].
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Nswitch ∼
2

5
log

�

ρ̃h

Γ̃

Hend

min ½phiggs
split ; mϕ�

H2

end

m2

ϕ

�

; ð61Þ

which is the intersection time of the red and blue lines in

Fig. 3. Nswitch is an important time. Observables which

depend on the temperature of the plasma during reheating,

such as the dark matter relic abundance we will discuss in

Sec. V, inherit the fluctuations of the thermal plasma at the

time they were produced. If they are produced before

Nswitch, the Higgs contribution to the thermal plasma

dominates and observables will inherit the Higgs’ fluctua-

tions. If they are produced after Nswitch, they inherit the

inflaton’s. We are therefore interested in the maximum

temperature of the plasma before and after Nswitch.

Before Nswitch, the Higgs contribution dominates the

thermal plasma and the maximum temperature is Th-max (8).

At Nswitch, we write ρ̃h in terms of p
higgs
split to compare the

energy of the thermal plasma to the maximum energy it has

when it thermalizes without the Higgs ρrðNϕ-thermÞ. We find

ρswitch

ρrðNϕ-thermÞ
∼

�

min ½phiggs
split ; mϕ�2

p
higgs
split mϕ

�4=5

≲ 1; ð62Þ

and thus regardless of whether p
higgs
split is greater or less than

mϕ, by the time the inflaton contribution to the thermal

plasma dominates over the Higgs contribution, the plasma

is inevitably at a lower temperature than its maximum

without the Higgs, Tϕ-max.

After Nswitch, the energy ρsoft transferred from the inflaton

hard primaries dominates the energy density of the thermal

plasma and therefore provides the dominant contribution to

the splitting rate. If p
higgs
split was less than the hard particle

energy mϕ, as we expect and as shown in Fig. 3, then psoft
split

begins to grow as described in §III D and approaches the

asymptotic solution (54). Once ρsoft reaches the hard particle

energy ρhard the plasma thermalizes completely. At this point

it reaches the maximum temperature Tϕ-max computed with-

out the effect of the Higgs in Eq. (57).

We therefore see that while the Higgs can increase the

hard primary splitting rate to enhance the inflaton con-

tribution to the thermal plasma, Tϕ-max still represents the

maximum temperature of the plasma after Nswitch as long

as p
higgs
split ≲mϕ.

If, however, p
higgs
split ≳mϕ, then the inflaton contribution to

the thermal plasma only comes to dominate the Higgs one

after the thermalization timeNϕ-therm (55) which defined the

maximum temperature Tϕ-max of the plasma neglecting the

Higgs. Explicitly,

Nswitch − Nϕ-therm ∼
2

15
log

�

p4

split

min ½phiggs
split ; mϕ�3

1

mϕ

�

: ð63Þ

When Nswitch > Nϕ-therm, the maximum temperature of

the plasma after the inflaton contribution dominates at

Nswitch is in fact determined by the energy at Nswitch itself

∼ρrðNswitchÞ, lower than it was without the Higgs. We will

not focus on this regime in the following.

IV. MAXIMUM TEMPERATURE DURING

REHEATING

We have seen that the thermal plasma during reheating

receives contributions from the decay of the Higgs and

inflaton condensates, and that it can be much hotter than the

ultimate reheating temperature at the onset of radiation

domination. The inflaton decay products provide a maxi-

mum temperature (57)

Tϕ-max

Hend

∼ 0.4

�

mϕ

Hend

�

3=4

Γ̃1=4e−3Nϕ-therm=8

∼ 10−3

�

mϕ

Hend

��

Γ̃

10−4

�

2=5
�

α

0.1

�

4=5

; ð64Þ

which is controlled by the inflaton parametersmϕ=Hend and

Γ̃ and by the Standard Model parameters of which we have

retained here only α.

The decay of the Higgs condensate provides a maximum

temperature (36),

Th-max

Hend

∼ 10−3

�

ρ̃h

10

�

1=4

e−ðNh-therm−6Þ; ð65Þ

which is controlled by the Higgs density parameter ρ̃h and

by the Higgs effective thermalization time Nh-therm. Both of

these temperature scales can be much larger than the

reheating temperature (5)

TRH

Hend

∼ 10−7

�

Hend

1010 GeV

�

1=2
�

mϕ

Hend

�

3=2
�

Γ̃

10−4

�

1=2

ð66Þ

that characterizes the plasma at the onset of radiation

domination.

We show these temperatures in Fig. 4 as a function of the

inflaton decay rate Γ̃ for the parameter values above. With

these parameter choices the maximum temperature of our

universe is provided not by the decay of the inflaton but by

the decay of the Higgs condensate provided that the

inflaton decay rate is sufficiently small,

Γ̃≲ 10−4

�

Hend

mϕ

�

5=2

; ð67Þ

or equivalently when reheating takes a sufficiently long

time
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NRH ≳ 32 −
4

3
ln

�

Hend

1010 GeV

�

mϕ

Hend

�

1=4
�

: ð68Þ

If the maximum temperature during reheating arises from

the decay of theHiggs condensate, i.e.,Th-max > Tϕ-max, then

the plasma temperature will for some time track the Higgs

condensate’s spatial inhomogeneities. Since these inhomo-

geneities result from the Higgs’ stochastic fluctuations

during inflation, the maximum temperature during reheating

can therefore locally inherit large-scale spatial correlations.

In de Sitter space, correlation functions must be invariant

under the SOð4; 1Þ isometry. Consequently, the Higgs

field’s equal-time spatial correlation function GðRÞ can

be computed from the unequal-time temporal correlation

function GðΔNÞ≡ hhðx⃗; NÞhðx⃗; N þ ΔNÞi. The leading

order nontrivial behavior is [12,21]

GðΔNÞ ∝ e−jΔNj=Nc ; ð69Þ

with the asymptotic correlation time

Nc ≡
H

Λ1

≃ ð110 e-foldsÞ
�

λ

10−2

�

−1=2

; ð70Þ

determined by the smallest nonzero eigenvalue Λ1 of the

Fokker-Planck equation for the Higgs’ one-point proba-

bility distribution function.
4

The equal-time spatial correlation function between

points separated by a physical distance R is then obtained

by the mapping ΔN → 2 lnðRHÞ. For regions probed by

the CMB, which crossed the inflationary horizon some

60e-folds before the end of inflation, the physical distance

is R60 ∼H−1e60, and we estimate the spatial correlation

function to be

GðR60Þ
Gð0Þ ∼ e−2×60=Nc ∼ 0.3 ð71Þ

for λ ¼ 10−2.

These estimates imply that the Higgs condensate during

reheating was only partially correlated on large length

scales that correspond to our present Hubble patch. If the

Higgs condensate sets the maximum temperature of our

universe during reheating, we expect order unity fluctua-

tions in that temperature across the CMB scales.

Note that the evolution of the Hubble rate during infla-

tion can change this expectation. As discussed in Sec. II A,

if the Hubble rate shrinks near the end of inflation then

regions with stochastic Higgs fluctuations set earlier during

inflation are released from Hubble drag and roll down the

potential until their evolution is arrested once again. This

causes regions with different values of the Higgs conden-

sate to converge on the Hubble drag solution (see Fig. 1). In

the HdS=Hend ≫ 1 limit, this attractor behavior enhances

the Higgs’ correlation on large scales relative to Eq. (71),

and can in principle reduce the inhomogeneity of the effects

we will discuss in the next section.

V. IMPLICATIONS FOR LOW-SCALE

REHEATING

A. Dark matter and unwanted relics

It may appear that by increasing the temperature of the

primordial plasma the Higgs can source viable dark matter

candidates when the inflaton alone cannot. This is not so.

Any relic produced while the Higgs’ decay products

dominate the thermal plasma inherits the Higgs’ order

unity correlations on large scales (71), which can be viewed

as an extreme form of matter-radiation isocurvature fluc-

tuations. One should therefore instead be concerned that

scenarios with a low reheating temperature could generi-

cally suffer from the production of catastrophic relics

sourced by the Higgs contribution to the thermal plasma.

Fortunately, we shall see that this can only occur if

Hend ≳ 1011 GeV, a region of parameter space which is

likely excluded by the Higgs instability constraint

Hend ≲Hunstable ∼ 1010 GeV.

Observations of the CMB constrain the amplitude of

matter-radiation isocurvature perturbations Smr to be

≲10−1R where R ≃ 5 × 10−5 is the amplitude of the

adiabatic perturbations [65]. Any stable, weakly coupled

relic χ that was produced by the thermal plasma in the

FIG. 4. The maximum temperature during reheating as a

function of the inflaton decay rate Γ̃. The Higgs decays to an

effectively thermal population at a temperature Th-max [red, (36)],

which dominates over the contribution to the thermal plasma

from the inflaton’s thermal decay products Tϕ-max [blue, (57)]

when Γ̃ ≲ 10−4 for Hend ∼mϕ. For further discussion see Sec. IV.

4
We use here the eigenvalue for a real field with a Z2

symmetry, because only radial steps decohere the condensate.
The variance of the SU(2)-doublet Higgs is slightly larger relative
to the radial steps than the variance of the Z2 field, so the Higgs
should be slightly harder to decohere and the correlation time (70)
is a mild underestimate.
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epoch when it was dominated by the Higgs’ decay products

will carry Oð1Þ energy inhomogeneities δρχ ∼ ρχ . If it is

nonrelativistic at recombination it will behave as a

dark matter component leading to an isocurvature ampli-

tude Smr ∼ δρχ=ρtot comparable to its relic abundance

Ωχ ∼ ρχ=ρtot. Consequently, the CMB isocurvature con-

straint implies an abundance constraint

Ωχh
2 ≲ 10−6: ð72Þ

We now compute the relic abundance of particles

produced during reheating by the thermal plasma. We

separate the produced abundance into the contributions

from the Higgs and inflaton decay products to see under

what circumstances the bound (72) on the Higgs contri-

bution is satisfied.

When the relic is produced during a matter-dominated

reheating phase, its relic abundance can be related to its

production time N� and its number density at production

nχðN�Þ through [17]

Ωχh
2 ¼ π2

270

g�S;0T
3

CMBmχTRH

M4

PlH
2

100

�

nχ

H2

��

�

�

�

N�

; ð73Þ

so long as after reheating the comoving entropy density is

conserved. mχ is the mass of the particle, g�S;0 ≃ 3.91 is

the number of effective entropy degrees of freedom today,

and H100 ¼ 100 km=s=Mpc.

For simplicity we focus on thermal production mecha-

nisms for nχ, though nonthermal production of relics during

perturbative reheating can also generally be important due

to the continual generation of hard primaries with energies

∼mϕ [66–69]. Since the Higgs provides additional scatter-

ing targets for those particles (see Sec. III E), it may play a

role in such processes as well.

The kinetic equation for nχ is [17]

dðe3NnχÞ
dN

¼ −
hσvi
H

e3Nðn2χ − n2χ;eqÞ; ð74Þ

where the thermally averaged annihilation cross section

hσvi can be implicitly time dependent if it is temperature

dependent, and nχ;eq is the equilibrium number density. We

assume bosonic dark matter with one internal degree of

freedom so nχ;eq ¼ T3ζð3Þ=π2.

1. Freeze out

Freeze out occurs when hσvineq ≈ 3H, and if this occurs

whenmχ ≫ T then nχ ≫ nχ;eq and the kinetic equation (74)

yields

e3NnχðNÞ ≃
�
Z

N

NFO

dN
hσvi
H

e−3N
�

−1

; ð75Þ

where NFO is the freeze-out time. So long as the cross

section is not enhanced at low temperatures, the particle

annihilation occurs mainly near NFO and the number

density at N ≫ NFO is simply

nχ ≃
3

2

HFO

hσviFO
e−3ðN−NFOÞ; ð76Þ

where HFO is the Hubble rate when the freeze-out tem-

perature TFO is reached and hσviFO is the cross section

at freeze out. The particular order unity numerical coef-

ficient here assumes a temperature independent cross

section.

First let us consider the well-known case (see, e.g.,

Refs. [17,70]) in which the relic particle is produced by the

inflaton decay products before radiation-domination is

reached; this corresponds to TRH < TFO < Tϕ-max. Under

these assumptions, the relic mass mχ , relic abundance

Ωχh
2, freeze-out temperature TFO ≡mχ=xFO, reheating

temperature TRH, and scattering strength hσvi, are related

through

mχ

TRH

∼
1

β

�

TRH

2 TeV

�

2
�

0.12

Ωχh
2

��

xFO

20

�

7=2

; ð77Þ

where we have parameterized the cross section as

hσviFO ¼ β
4π

m2
χ

ffiffiffiffiffiffiffi

xFO

6

r

; ð78Þ

which defines the dimensionless parameter β. The value

xFO ∼ 20 is familiar from studies of weak-scale freeze out,

and xFO is only logarithmically sensitive to the mass scale

(see, e.g., [70]).

The validity of the underlying assumptions requires that

the cross section be sufficiently high that the particle

reaches equilibrium before freeze out but not so high as

to violate unitary bounds. Unitarity requires β ≲ 1, and

thermal equilibrium requires hσviFOnχ;eq;FO ≳HFO, which

translates to

β ≳

ffiffiffi

6
p

HFOπx
5=2
FO

4mχζð3Þ
: ð79Þ

The upper and lower bounds on β then yield, respectively,

lower and upper bounds on the mχ which can yield a given

relic abundance at a given reheating temperature

�

TRH

2 TeV

�

2
�

0.12

Ωχh
2

��

xFO

20

�

7=2

≲
mχ

TRH

≲ 104

�

TRH

2 TeV

�

1=4
�

0.12

Ωχh
2

�

1=4
�

xFO

20

�

5=4

; ð80Þ
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subject to the condition TRH < TFO < Tϕ-max. Notice that

unitarity provides a lower bound on the mass. This is

because H ∝ T4 before radiation domination; if instead

freeze out occurs after radiation domination when H ∝ T2,

then unitarity leads to the familiar upper bound on

mass [71].

ForΩχh
2
≃ 0.12 such that χ can be all of the dark matter,

the lower bound on the mass is below the upper bound for

all reheating temperatures below ∼400 TeV. The crossing

point determines the maximum mass particle which can

be the dark matter, mχ ∼ 1010 GeV. On the other hand,

in the limiting scenario of reheating right before BBN,

TRH ∼ 1 MeV, the maximum mass for a dark matter

candidate is only mχ ∼ 300 MeV.

Now if instead freeze out occurs at Tϕ-max < TFO <

Th-max, then the Higgs contribution to the plasma deter-

mines the relic abundance and we generically expect order

unity inhomogeneities in its number density on large scales.

In this case the temperature is related to the Hubble rate

as H ∝ T3=2 by Eqs. (7) and (19), and so the abundance

is enhanced for more massive particles. The analog of

Eq. (77) is now

mχ

TRH

∼ β2=3
�

1010 GeV

Hend

�

1=3
�

10

ρ̃h

�

1=4

×

�

107 GeV

TRH

�

5=3
�

Ωχh
2

10−6

�

2=3
�

20

xFO

�

2=3

; ð81Þ

where we have scaledΩχh
2 by the isocurvature bound (72).

The lower and upper bounds on β now provide, respec-

tively, lower and upper bounds on the mass as
5

�

1010 GeV

Hend

��

107 GeV

TRH

�

2

×

�

Ωχh
2

10−6

��

10

ρ̃h

�

3=4

≲
mχ

TRH

≲

�

Ωχh
2

10−6

�

2=3
�

10

ρ̃h

�

1=4

×

�

1010 GeV

Hend

�

1=3
�

107 GeV

TRH

�

5=3
�

20

xFO

�

2=3

; ð82Þ

subject to the condition Tϕ-max < TFO < Th-max. The

allowed region increases for increasing Hend and TRH.

Replacing TRH with Γ̃ and mϕ, then Γ̃ < 10−4 (67) sets a

lower bound on Hend for which a solution for a given relic

abundance exists

Hend ≳ 1011 GeV

�

Ωχh
2

10−6

�

2=7
�

10−4

Γ̃

�

1=7

×

�

10

ρ̃h

�

3=7
�

xFO

20

�

4=7
�

Hend

mϕ

�

3=7

: ð83Þ

This limit sets the Hubble rate at the end of inflation

above which the presence of the Higgs can be dangerous. If

Hend is above 1011 GeV and Γ̃ is suitably small but not

too small (though the dependence is very weak), then the

Higgs condensate can source relics by thermal freeze out in

sufficient abundance to interfere with the CMB. Conversely

if Hend ≪ 1011 GeV then no such relics can form.

Remarkably, this safe region is similar to the Higgs

instability bound, which restricts the inflationary Hubble

rate to be below Hunstable ∼ 1010 GeV. Thus if the Hubble

rate during inflation is low enough that the Higgs was not

sent to its instability, which we implicitly assume in our

calculations, then by this criteria the Higgs is also not able

to source dangerous isocurvature perturbations by thermal

freeze out. The exact bound Hunstable is on the other hand

currently subject to experimental uncertainties in the top

mass, as well as the stochastic history of the Higgs during

inflation, and our results therefore provide an independent

mechanism by which the Higgs may limit the inflationary

energy scale.

2. Freeze in

The lower bound on the cross section (79) is the

condition that the relic was once in equilibrium with the

thermal bath. When relic particles are produced from

the bath at a low enough rate that the process was never

in equilibrium, thermal freeze in occurs instead [72–79].

With nχ ≪ nχ;eq, the kinetic equation (74) yields

e3NnχðNÞ ∼ g2χζð3Þ2
π4

Z

N

0

dN
e3NT6hσvi

H
; ð84Þ

where we assume that mχ ≪ TðNÞ while particle produc-

tion occurs. Freeze-in production is inefficient in the

complementary regime, mχ ≳ TðNÞ, where the rate is

Boltzmann suppressed. The integral may be dominated

by early times or late times, depending on how T, H, and

hσvi vary in time.

With H ∝ T3=2 the Higgs contribution comes from

production at Th-max for all hσvi which do not decrease

with increasing temperature. This UV-dominated freeze in

yields a number density at production [80]

nχðNh-thermÞ ≃
g2χζð3Þ2

π4
T6

h-maxhσvih-max

HðNh-thermÞ
; ð85Þ

where hσvih-max is the production rate at Th-max and

the specific order unity coefficient here assumes a

constant hσvi.

5
If the dark matter particles are relativistic at the time of freeze

out, the resultant scaling would be the same as the lower limit on
mχ shown here.
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With H ∝ T4 the inflaton contribution, on the other

hand, comes from production at the end of reheating for

constant hσvi. This remains true for UV-enhanced cross

sections hσvi ∝ Tn for all n < 6 [81]. Only for n > 6 is

the dominant contribution from Tϕ-max. Regardless, the

relative relic abundance produced by the Higgs and inflaton

depends on the relic mass and the relative values of hσvi at
the respective production times. We focus here on the

regime where hσvi is sufficiently larger at Th-max that the

Higgs decay products provide the dominant contribution to

the abundance.

That abundance is then bounded from above by the

condition that it was not in thermal equilibrium,

hσvih-maxneq;h-max < Hh-max; ð86Þ

which is stronger than the relativistic version of the

unitarity bound on the cross section. As in the freeze-out

case, the bound can be translated into a bound on Hend

given a relic density

Hend ≳ 1011 GeV

�

Ωχh
2

10−6

�

2=7
�

10−4

Γ̃

�

1=7

×

�

Th-max

mχ

�

2=7
�

10

ρ̃h

�

3=7
�

Hend

mϕ

�

3=7

; ð87Þ

where we have scaled mχ by Th-max but note it should

satisfy mχ ≪ Th-max for our approximations to be consis-

tent. The danger zone for potentially producing isocurva-

ture perturbations that are too large is quite similar to the

freeze-out one (83): Hend ≳ 1011 GeV.

B. Symmetry restoration

The maximum temperature of the thermal plasma during

reheating has implications for the restorations of sym-

metries by finite temperature effects. The maximum tem-

perature of the thermal plasma neglecting the presence of

the Higgs condensate (64) can be written in terms of the

reheating temperature as [18,19]

Tϕ-max ∼ 100 GeV

�

1010 GeV

mϕ

�

1=5
�

TRH

1 MeV

�

4=5

: ð88Þ

Note that for a fixed reheating temperature it is inversely

dependent on mϕ. The electroweak symmetry is restored

if the temperature reaches values ≳100 GeV, and we

therefore see that, neglecting the Higgs condensate, for

low reheating temperatures the electroweak symmetry

is not necessarily restored by the thermal plasma if

mϕ ≳ 1010 GeV. This point was discussed in Ref. [19].

The decay of the Higgs condensate, however, provides a

plasma temperature (65)

Th-max ∼ 107

�

Hend

1010 GeV

��

ρ̃h

10

�

1=4

e−ðNh-therm−6Þ; ð89Þ

independent of the reheating temperature. Comparing

the maximum temperature from the Higgs decay to the

maximum temperature from the inflaton decay, we see that if

mϕ ∼Hend then the decay of the Higgs is complementary to

the decay of the inflaton: whenever the electroweak sym-

metry is not restored by the inflaton it is restored by

the Higgs.

Thanks to the decay of the Higgs condensate, the

electroweak symmetry is therefore in fact guaranteed to be

restored in the early universe when reheating is perturbative,

except when the Hubble rate at the end of inflation is low,

Hend < 105 GeV

�

0.01

λ

�

1=2
�

10

ρ̃h

�

3=4

; ð90Þ

and much smaller than the inflaton mass

mϕ

Hend

> 105

�

λ

0.01

�

1=2
�

ρ̃h

10

�

3=4
�

TRH

1 MeV

�

4

: ð91Þ

The Higgs condensate may similarly play a role in the

restoration of symmetries predicted by theories of new

physics. For instance the hypothetical Peccei-Quinn axion

arises as the pseudo-Nambu-Goldstone boson associated

with the spontaneous breaking of a global Uð1ÞPQ sym-

metry [82–85]. If the primordial plasma temperature initially

exceeds the symmetry breaking scale, then as the universe

cools the symmetry is broken in a cosmological phase

transition which can lead to the formation of topological

defects such as axion strings and domain walls. These can

leave distinctive imprints on cosmological observables [86].

The symmetry breaking scale is model-dependent, and some

of the most compelling scenarios have ∼1010–1012 GeV

[87], but even if inflation occurs at a high energy scale the

inflaton decay products may not be hot enough to restore

such symmetries if the inflaton decay is slow [19]. The decay

of the Higgs condensate, on the other hand, leads to a high

temperature plasma irrespective of the reheating tempera-

ture and may facilitate such symmetry restorations and the

accompanying phase transitions and topological defect for-

mation. However, unless the Peccei-Quinn scale is suffi-

ciently low, i.e., ≲Th-max from Eq. (89), even the Higgs

condensate decaywill be insufficient to restore the symmetry.

Note that the large scale inhomogeneity of Th-max does

not directly impact relic defects from symmetry breaking

except in rare regions where Th-max fluctuates to such low

values that the given symmetry is not restored.

VI. CONCLUSION

We have studied the role of the Standard Model

Higgs field during the epoch of reheating after inflation.
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The Higgs forms a condensate during inflation, and we

have focused on its behavior in the scenario where the

inflaton decays slowly, having a small perturbative decay

rate Γϕ ≪ m3

ϕ=M
2

Pl. We have calculated the maximum

temperature achieved by the primordial plasma due to

energy transfer from the Higgs and inflaton condensates,

and the time evolution of this temperature between the end

of inflation and the start of radiation domination.

To do so, we built upon well-established results in the

literature and applied them to the Higgs, including the

formation of a Higgs condensate during inflation from its

quantum fluctuations as a light spectator field, the dynam-

ics of the Higgs condensate after inflation as it oscillates on

its quartic potential, and the parametric resonance in the

electroweak gauge fields that induces an energy transfer

from the Higgs condensate into an effectively thermal

plasma which can be understood qualitatively analytically

and quantitatively by lattice simulations.

We contrasted the resonant decay of the Higgs con-

densate with the inflaton’s perturbative decay into rare hard

particles which thermalize by an in-medium splitting sup-

pressed by the LPM effect, in doing so drawing from the

extensive literature on thermalization in non-Abelian plas-

mas in the effective kinetic theory.

From this synthesis of constituent ideas, we are able to

develop a comprehensive understanding of the Higgs

condensate’s role in reheating. The central conclusions

of our work are

(1) Regardless of the inflationary history, the Higgs

condensate has a typical energy density after in-

flation which lies within a narrow window between

∼λ−2=3H4

ende
−4N and ∼λ−1H4

ende
−4N controlled by

the Hubble rate at the end of inflation.

(2) The Higgs condensate is important to the thermal

history of the universe when the inflaton decay rate

is sufficiently small (67),

Γ̃≡ ΓϕM
2

Pl=m
3

ϕ ≲ 10−4

�

Hend

mϕ

�

5=2

;

or equivalently when reheating takes a sufficiently

long time, see Eq. (68).

(3) The maximum temperature of the primordial plasma

is then obtained at the time of the Higgs conden-

sate’s fragmentation and decay, typically a few

e-folds after the end of inflation, and for typical

parameters in Eq. (89) is

Th-max ∼ 107 GeV

�

Hend

1010 GeV

�

:

In the absence of a Higgs condensate, by contrast,

the maximum temperature could be much lower,

see Eq. (88).

(4) As shown in Fig. 3, the presence of the Higgs’ decay

products changes the thermalization history of the

hard primaries produced as the inflaton decays by

increasing the scattering targets in the plasma. This

enhances the energy transfer from the hard primaries

to the thermal sector, but once the inflaton contri-

bution dominates the thermal energy of the universe

the subsequent maximum temperature is set by the

Higgs-less result above.

(5) The maximum temperature of our universe will

inherit the Higgs’ large scale stochastic fluctuations,

which are uncorrelated with the curvature fluctua-

tions in our universe. If relics are produced in

substantial abundance from the plasma while it is

dominated by the Higgs’ decay products, they will

therefore lead to unacceptable isocurvature fluctua-

tions in the CMB. We show that for production by

either thermal freeze out (83) or freeze in (87) this

cannot occur so long as the inflationary scale is

below

Hend ≲ 1011 GeV:

(6) Even for low reheating temperatures, the electro-

weak symmetry in our universe is restored by the

decay of the Higgs condensate after inflation if

Hend ≳ 105 GeV, which complements symmetry

restoration from the inflaton decay products. Pec-

cei-Quinn axion symmetry may also be restored if its

symmetry breaking scale is below Th-max.
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