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An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation with a
Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random initial times, the
radiation is thermal. The existence of this radiation is due to the acceleration of the vacuum field modes
with respect to the falling atom. Its properties can be traced to the dominant role of conformal quantum
mechanics in the neighborhood of the event horizon. We display this effect for a scalar field, though the
acceleration radiation has a universal conformal behavior that is exhibited by all fields in the background of

generic black holes.
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I. INTRODUCTION

Hawking’s seminal work on black hole radiance through
quantum processes [1,2] has given rise to a research area
that also includes black hole thermodynamics [3.,4]. A
related phenomenon was discovered by Unruh [5], follow-
ing earlier work by Fulling and Davies [6,7], and showing
that an accelerated observer in flat spacetime detects
particles in the Minkowski vacuum. Additional insights
into the Hawking and Unruh effects, and black hole
thermodynamics, are of great interest due to their apparent
universality, and as a litmus test of any candidate theories of
quantum gravity.

In this paper, we probe an aspect of the deep connections
between Hawking and Unruh radiation via a gedanken
experiment where an atom falls freely into a Kerr (rotating)
black hole in a Boulware-like vacuum and emits radiation
with a spectrum similar to black hole radiance. The
existence of such connections for the physical systems
involved in this gedanken experiment is partly suggested by
the equivalence principle; however, naive applications of
this principle are known to be very subtle, as in Ref. [8],
where particular cases are discussed as the “qualitative
equivalence principle.” Thus, it is of significant relevance to
prove the validity of this concept in a fairly general instance
of acceleration radiation by free fall involving rotating
black holes. In addition, showing this correspondence
paves the way for additional connections at the level of
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the thermodynamics for black holes and free-fall accel-
eration radiation, as will be discussed elsewhere. In order to
achieve these goals, we generalize the insightful quantum-
optics setup of Refs. [9,10] (and related work [11,12]), as
well as the conformal derivation of Ref. [13], from the
Schwarzschild to the Kerr metric. The Kerr geometry is the
solution of the 4D vacuum Einstein field equations with a
rotating black hole of mass M and angular momentum J,
given by

A 2
ds? = -5 (dt — asin?0de)? + ”X dr? + pde
p

N sinZ@
P2

[(r* + a*)dp — adt]? (1)

in Boyer-Lindquist coordinates (z,7,0,¢). In Eq. (1),
a =J/M is the Kerr parameter, the auxiliary variables
A=7r"=2Mr+a*> and p? =r>+d’cos’0 (2)
are introduced, and we use geometrized units ¢ =1,
G = 1. This extension is of crucial relevance because such
black holes (i) provide models that closely match astro-
nomical observations of gravitationally collapsed objects
with angular momentum that generate gravitational waves

[14]; (i1) are conceptual laboratories that test the robustness
of extreme-gravity effects that are not artifacts of the
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spherical symmetry of the Schwarzschild solution. The
nontrivial technical subtleties involved in the Kerr geom-
etry make this generalization challenging, including the
notoriously difficult problem of describing geodesic
motion (for the atoms in free fall) in the Kerr geometry.
Thus, completion of this program is a significant test of the
general nature of the proposed properties of the acceler-
ation radiation by free fall.

With this background in mind, we will show that these
radiation processes are driven by conformal symmetry, in
which a part of the system looks identical under arbitrary
magnifications near the outer event horizon [13]. This
conformal invariance has been highlighted in Ref. [15] as
arising from the presence of an unbounded gravitational
blueshift as the event horizon is approached. These forms
of conformal invariance further point to the connections
between black hole thermodynamics and horizon con-
formal symmetries that have been shown to provide a
statistical foundation for the Bekenstein-Hawking entropy
[16-18]. The relation of a 2D conformal field theory (CFT)
with the near-horizon asymptotic symmetries has been
studied for extremal and near-extremal black holes within
the Kerr/CFT correspondence [19-22]. In addition, in
Ref. [15], the two-point functions of 2D CFT are used
to derive the thermal radiance of a nonextremal Kerr black
hole. Another aspect of near-horizon conformal behavior is
conformal quantum mechanics (CQM) [23-28], which is
also analyzed as a (0 4 1)-dimensional CFT [29,30]; here,
near-horizon CQM governs the thermodynamics of a
Schwarzschild black hole through a singular statistical
mode counting that requires renormalization [25,26].
Thus, we will show that (i) the nonextremal Kerr geometry
exhibits an asymptotically exact near-horizon CQM that
extends the scope of Refs. [25,26,31] and (ii) acceleration
radiation is created by free fall into a nonextremal Kerr
black hole in a Boulware-like vacuum, with a dominant
CQM contribution that resembles a thermal spectrum at the
Hawking temperature. This confirms that robustness of the
results of Refs. [9,10,13] and [25,26,31]—beyond spherical
symmetry—and highlights the universality of near-horizon
CQM. The CQM universality is a manifestation of the
conformal symmetry experienced by all fields in the black
hole background. Such property can be also plausibly
expected from the physical near-horizon blueshift [15],
which is revealed in the corotating frame in the near-
horizon region. However, a rigorous derivation of the role
played by CQM and conformal symmetry is critically
important, given the known complexities of the Kerr
geometry.

The remainder of this paper is organized as follows. In
Sec. II, we study the scalar field equations in general, and in
their near-horizon CQM form. In Sec. III, we consider
the interaction between the field and an atom, and the
ensuing probabilities. The near-horizon spacetime trajec-
tories are analyzed in Sec. I'V. Section V deals with the final

expressions for the emission and absorption probabilities
and the thermal radiation properties. The article ends with
the conclusions in Sec. VI, followed by the appendixes:
on the derivation of the near-horizon CQM equations (A)
and the vacuum states (B).

II. KLEIN-GORDON EQUATION IN KERR
GEOMETRY AND NEAR-HORIZON CQM

In the Kerr geometry of Eq. (1), we will consider the
nonextremal case, with M > a, for which A/, = A'(r,) =
r, —r_# 0 (and where the prime denotes radial deriva-
tive). The outer (r,) and inner (r_) horizons of the black
hole are given by the roots of the equation A =0, i.e.,
ry =M £ (M? — a*)'/2. The Kerr geometry is stationary
and axisymmetric as the metric components are indepen-
dent of the coordinates ¢ and ¢ respectively, with associated
Killing vectors &) = 9, and §4) = 0. Equation (1) can be
rewritten in a more illuminating form

A2 2
dﬁ:—§4ﬂ+%whm%¢
22
+ 5 sin0(d — wde? 3)

with
2 = (rF +a%)? — Ad*sin®0  and @ = —g,y/Gpp.  (4)

Equation (3) describes a frame-dragging rotation with
position-dependent angular velocity w relative to the
external reference system [32]. This picture is mandatory
within the ergosphere, which is limited by the largest root
of g, = 0, where §(,) becomes spacelike. As the outer event
horizon is approached, w becomes the angular velocity of
the black hole,

a

(5)

Qy = limw = = .
r—ry 2Mr, % +a?

We will now consider the interaction of a real scalar field
of mass ug with an atom of mass y in the gravitational
background of a Kerr black hole. The scalar field satisfies
the Klein-Gordon equation

1
= 0,(/=00"0,9) = i@ = 0. (6)

[mETALES

ﬁ

In addition, for a metric of the form (1), Eq. (6) reduces to

_2_282(13_4Mra 82CI>+ 1 _a_2 (‘92_CD+2 o®
A 0F A 0tdp  \sin’0 A ) Oop> Or\  Or
1 of. 0P 2 2 —
+ﬁ% <sm9%) —HoP o =0. (7)
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This scalar-field equation is a particular case (for spin
s = 0) of the Teukolsky equation [33]. Due to the structural
form of Eq. (7), the resulting conformal behavior displayed
below is universal, namely, it is exhibited by all fields (with
arbitrary spin) in the background of generic black holes.

Equation (7) can be studied via the separation of
variables

Poin(r.1) = R(r)S(0)e™ e~ (8)

(replacing ® = ¢,,;,,, to specify the mode functions; see
next section), where r = (r, 0, ¢). Specifically, the func-
tions R(r) = R,,;,,(r) and S(6) = S,,;,,(0) satisfy the equa-
tions given in Appendix A. These functions depend on the
frequency w and the quantum numbers [, m. In particular,
Soim(0) are oblate spheroidal wave functions of the first
kind [34]. Moreover, the coordinate change [15],

¢:¢_QHI’ (9)

i=t,
with

Gomm (. 1) =R(r)S(O)e™e=® H=w—-—mQy,  (10)

defines a frame that is corotating with the black hole at the
angular velocity Qp, and with shifted frequency @. The
associated Killing vector &3 = &) + Qpu&(y) is timelike
when sufficiently close to the event horizon. The horizon H
is a null hypersurface with respect to this Killing vector &);
and the associated surface gravity x = —(V,&,)(V#&")/2
(with r = r, ) takes the value
!/
PO (11)

2(rk +a?)’

We will system?g)cally enforce the near-horizon expan-
sion, denoted by ~, in terms of x =r —r, < r,. This
involves the replacements

A P A +ow), AP AL+ o),
A"(r) = A, =2. (12)

Then, the radial near-horizon leading order of Eq. (7) is

462)- @) ez

as derived in Appendix A. The correspondence with
the standard form of CQM can be established with the
Liouville transformation R(x) « x~'/?u(x), whence the
near-horizon reduced radial function u(x) satisfies

d*u(x)
dx?

+%u+amwwza (14)

where

1 ) @
/1—4+®, ®—2K. (15)
The scale invariance of Eq. (14) under a rescaling of x can
be seen from the form of the effective potential V g (x) =
—/x?, such that the 1D Schroédinger Hamiltonian & =
p2/2m + V4 (x) describes the strong coupling regime of
CQM. This operator, along with the dilation operator D and
special conformal operator K (defined using a time param-
eter conjugate to J¢°), produces the noncompact SO(2,1)
algebra. A manifestation of this conformal symmetry is the
disappearance of all characteristic field scales; in particular,
Ha plays no role in the near-horizon physics. As pointed out
in Sec. I, the existence of this form of conformal symmetry
has been emphasized in Ref. [15] as a consequence of a
gravitational blueshift that grows without limit towards the
event horizon, thus asymptotically erasing any other
physical scales. This gravitational frequency shift is
revealed by looking at the time part of the metric, with
corotating coordinate time 7, as shown in Appendix A. The
SO(2,1) algebraic structure, along with the singular near-
horizon effective potential, have been shown to determine
the thermodynamics of a Schwarzschild black hole [25].
The emergence of the CQM Hamiltonian for the Kerr
geometry shows the universality of near-horizon CQM.
A pair of linearly independent solutions to Eq. (14) is
given by u(x) o x!/>*® When combined with their time
dependence from Eq. (10), this yields
(Dj/(;SQM) o RE(CQM) pimp =i T xiie)eim(])e—i&;?’ (16)
which are outgoing/ingoing CQM modes normalized as
asymptotically exact Wentzel-Kramers-Brillouin (WKB)
local waves [26]. The ¢ dependence is kept for consistency
in subsequent calculations of excitation probabilities in the
presence of frame dragging in the near-horizon region.
Incidentally, to leading order in the near-horizon expansion,
(H)

R.(x) ~ e~®(F7-) where the tortoise coordinate r, for the
Kerr metric is defined through the equation dr, = f~'dr,
where f = A/(r? + a?). This equivalence is shown in
Appendix A. In practice, our preferred use of the CQM
modes makes the near-horizon conformal behavior more
explicit. In what follows, we will consider the outgoing
modes to find the excitation probability for an atom falling
freely towards a Kerr black hole in a Boulware-like vacuum
state; as shown in Sec. V, the ingoing modes do not
contribute to the probability amplitude.

The generic Boulware-like vacuum can be defined with
respect to the Boyer-Lindquist coordinates in the rotating
frame (9). Such a choice is similar to the Boulware vacuum
associated with ordinary Schwarzschild coordinates in the
Schwarzschild geometry; however, as the Kerr geometry is
stationary, with significant frame dragging, the relevant
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coordinates (9) are adapted to the black hole rotation. As
discussed in Appendix B, the standard inclusion of the
asymptotic regions, past/future null infinity ZF, implies the
existence of superradiant modes that complicate the ordi-
nary definition of the vacuaum—possible constructions that
circumvent this issue are discussed therein. Alternatively,
the asymptotic regions at Z* can be replaced with bounded-
domain boundary conditions (e.g., Dirichlet) by enclosing
the system within a boundary or mirror M placed inside the
speed-of-light (SOL) surface [35]. The SOL surface is
defined as that outside which an observer can no longer
have the angular velocity Qp and &(; becomes null. Then,
the superradiant modes and the Unruh-Starobinsky effect
would be removed, yielding a unique Boulware vacuum
|B o), as well as a Hartle-Hawking vacuum analog [36]—
these are the natural states adapted to a frame corotating
with angular velocity Q.

III. EXCITATION OF A FREELY FALLING
ATOM INTO THE KERR BLACK HOLE

We consider a two-state atom falling freely into the black
hole. This problem can be tackled with an approach similar
to that of Refs. [9,10,13], with the field in a Boulware-like
vacuum. (See Appendix B for a discussion of modes and
vacuum states.) The atom’s Hamiltonian is given by 57, =
(la){a| — |b){b|)v/2 (with A = 1), where |a) and |b) are
the atom’s excited and ground states respectively, and v is
the atomic transition frequency. The field operator is
expanded with a complete set of orthonormal modes

¢ps(r, 1) as
® = [ayhy(r.1) + Hel. (17)

where ag is the field lowering operator that annihilates the
vacuum, and the field quanta are scalar (spin-0) “photons.”
The symbol H.c. stands for the Hermitian (adjoint) con-
jugate. The atom-field interaction is formally treated as a
weak monopole coupling in the interaction picture (which
is an analog model of a dipole coupling for spin-1 photons
in electromagnetism), with

A

Vi(7) = glasgs(r(). 1(z)) + HeeJ(o_e™" + Hee.).  (18)

where o_ is the atom’s lowering operator, g is the interaction
strength, and 7 is the atom’s proper time. In Eqgs. (17) and
(18), the symbol s stands for the set of “quantum numbers”
that provide complete characterization of the mode: it
includes the frequency @ of the mode and any additional
numbers associated with the geometry and separation of
variables. For the Kerr geometry in 3 spatial dimensions, this
is s = {w,l,m}, where {I/,m} are the spheroidal number
and the “magnetic” quantum number associated with
angular momentum. (When quantization is enforced in a
finite box, the frequencies involve a third discrete number.

Also, for the particular case of the Schwarzschild geometry,
these reduce to the usual numbers associated with spherical
symmetry and angular momentum.)

Equation (18) allows for free-fall virtual processes of the
atom transitioning from the ground state |b) to the excited
state |a), and creating a field-mode quantum (state s), with
an excitation probability [37,38], which is the emission
probability for the field mode s, given by

2
P”—L/mmwMW@m»w\zfvwﬁ (19)

gl is the corresponding probability amplitude (which,
more precisely, is the integral above multiplied by —i). In a
similar way, the absorption probability is given by

2
mf{/wmﬂwwmwﬁzﬁmﬁ,@m

where gl is the absorption probability amplitude.

Equations (19) and (20) can be evaluated with the
interaction potential of Eq. (18) and using the proper-time
parametrized atom’s geodesic (free-fall spacetime trajec-
tory) with given initial conditions. This problem does not
have a closed analytical form, but the near-horizon approxi-
mation gives expressions for the geodesics and the exci-
tation probability. We will show that, the final result,
asymptotically exact in the near-horizon expansion, resem-
bles a Planck distribution.

IV. NEAR-HORIZON SPACETIME TRAJECTORY
OF THE ATOM IN FREE FALL

The free-fall spacetime trajectory of the atom can be
found most efficiently by reducing the geodesic equations
to their first-order form, using the four constants of the
motion: the energy E and the axial component of angular
momentum L, given by

E=-p,=-§;p, L,=py=E&y P (21)

(as follows from the 4-momentum p and the Killing
vectors), in addition to the invariant mass u and the
Carter constant Q [39]. In this work, we will explicitly
use the proper time 7z along the geodesic. (An alternative,
convenient choice, e.g., in Ref. [39], is to use a rescaled
affine parameter 1 = t/u.) Moreover, we will rewrite
these equations with the specific conserved quantities
(normalized by mass)

. ==, (22)

and
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_/%_ (%)2 +cos29[a2(1 —e?)+ <£>2} (23)

The standard procedure yields [39]

P =~ VRO, (24)

p2% — 1/60), (25)

ng = - (ae - siriﬁ) + %7’(1’), (26)
ng = a(aesino- )+ Py @)

In Egs. (24)—(27), the following auxiliary quantities have
been defined:

P(r) = e(r* +a*) — at, (28)
R(r) = [P(r) = Al + (£ —ae)* +ql.  (29)

2

sin%@|’

0(0) = q—cos?0|a*(1 —e*) + (30)

The set of equations (24)—(27) gives dx*(r)/dr, where
x(t) = (t,r,0,¢), in terms of functions of (r, ), inde-
pendently of ¢ and ¢. This coordinate independence is due
to the axisymmetric and stationary nature of the metric. But
the combined dependence with respect to (r, 8) still makes
Egs. (24)-(27) be apparently coupled in the form
dx*(t)/dr = U¥(r,cos@). However, decoupling of this
system is possible by combining the corresponding geo-
desic equations (24) and (25) into the single separable
equation dr/\/R(r) = Fd0//0O(0), where R(r) and
©(0) are given in Egs. (28)—(30). With the substitution
y = cos @ and writing F(y) = 1/1/0(y)(1 — y?), this inte-

grated equation becomes

/\/%::F F(y)dy. (31)

In principle, Eq. (31) gives a formal solution y(r) in terms
of elliptic integrals—the general solutions for all cases are
discussed in Ref. [40]. Therefore, this separation procedure
shows that all the geodesic equations (24)—(27) can be
reparametrized as functions of r; explicitly,

dx*(t)
dr

= Uk(r,y(r)). (32)

The obvious strategy implied by Eq. (32), motivated by the
physics (e.g., here for a freely falling system), is to follow

the motion with respect to the radial variable r (e.g., as the
event horizon is approached). Of course, the geodesics are
parametrized in terms of the proper time 7, but the radial
geodesic (24) provides a relationship between 7z and r
(including the decoupling procedure). Once the inverse
relation 7(r) is formally established, the other geodesic
equations (25)—(27) give the complete set of formal
solutions x*(z) = (¢(r), r,0(r),¢(r)) as functions of r.
In general, this is a difficult problem; however, for our
purposes, we will find explicit and remarkably simple near-
horizon equations, as will be shown next.

The near-horizon limit of the geodesic equations can be
enforced by expanding around r, in terms of the variable
x=r—r,, using the strategy outlined in the previous
paragraph. The near-horizon expansion of the radial geo-
desic (24) becomes

prL— '~ —\/C%—c1x+(9(x2), (33)

where p3 = p3 () = r3 + a*cos?0. The constants
co =P(ry) = (1} +a*)(e = Qu?). (34)
c; =—4er,co+ A\ [rA + (£ —ae)*+q  (35)

are dependent on the conserved quantities of the motion; in
particular, ¢, is proportional to the energy measured in the
frame dragged with the angular velocity Qp, i.e.,

é:—f(;)-p:e—QHL”>O. (36)

At first sight, the strategy of describing the motion in terms
of x [i.e., the task of finding the functional relationship
7 = 7(x)] is complicated by the 6 dependence in the radial
geodesic equation (24) via the quantity p? (6), a problem
that persists in the near-horizon limit (33). But this is the
problem whose formal solution we outlined with Egs. (31)
and (32). In particular, the near-horizon form of Eq. (31)
reduces to

dx (H)
/7_——0(%%1)( ~ qE/F(y)dy, (37)

where the constants are given in Egs. (34) and (35); again,
this is expressible in terms of elliptic integrals of the first
kind [40]. Therefore, this procedure shows that all the
geodesic equations (24)—(27) can be reparametrized with
respect to x, as implied by Eqgs. (32) and (37). An exact
solution for y(x) can be circumvented in the near-horizon
limit as the particle will reach the horizon at a given
value 6, of the polar coordinate. The parameter 6, has a
simple interpretation: it is an effective “initial condition”
for the particle to cross the horizon with #-dependent
coordinate values (due to the axisymmetric geometry).
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This approach involves the leading near-horizon order, so

that G(cos ) T G(cos@,) for any function with non-
vanishing zeroth order. Specifically, this leads to the

replacement p? 2@ pr =r3 + a’cos’d,. In other words,

for the near-horizon radiation problem, the relevant range
of @ can be restricted. Then, the proper-time relation
7 = z(x) follows by integrating Eq. (33),

7= —kx + O(x*) + const, (38)

where k = p3 /cy. Next, to obtain the functional relation-
ships t = #(x) and ¢ = ¢(x) to leading order, we can divide
Egs. (26) and (27) respectively by
removes the f-dependent p? factors; thus, by straightfor-
ward integration, the near-horizon expansions are

my L. »
t e Inx — Cx 4+ O(x?), (39)
&% ax + 00(2). (40)

In Eq. (40), we have evaluated ¢ = ¢ — Q7 (by combining
solutions for ¢ and ¢) because the CQM modes in Eq. (16)
explicitly depend on this corotating azimuthal variable.
Most importantly, even though both ¢ and ¢ have loga-
rithmic terms proportional to Inx, these cancel out when
combined into the locally well-defined coordinate .
Finally, for the sake of completeness, the constants C
and a can be computed by collecting all the O(x) terms
arising from the functions on the right-hand side of
Egs. (24)—(27); a straightforward calculation gives

1 [le 2r+(+QHL”) 1 Q

C= - -— 2y
w22 TR e Wk e @Y
(41)
and
a= QH r+ _ (Cl€S+ f)(QHa - 1/S+> , (42)

kR% R%&

where R% = r2 +a* and s, = sinf,. Remarkably, the
constants C, @, and k, as shown in Sec. V, do not play a
direct role in the radiation formula.

V. NEAR-HORIZON EXCITATION PROBABILITY
AND RADIATION PROPERTIES

We are now ready to use the reparametrization of the
geodesics in terms of the near-horizon coordinate x to
compute the emission probability for the atom in free fall.

Replacing Egs. (16), (38), (39), and ¢(x) in Eq. (19) gives

2

Pe,s = 92k2 (43)

Xr . .
dxx—lo'e—qu
0

where x; is an upper bound of the near-horizon approxi-
mation, k = p?% /¢, and the parameters in the integral are
oc=da/x (for the purely outgoing radiation modes

d>+ cQM) ) and g = C®d + kv + am. The integrand of
Eq. (43) involves two competing oscillatory functions
f1(x) = x71@/k = =@/} Inx and f,(x) = e~ that select
the near-horizon region [13], with v > @&, am, and the
outcome is independent of C and a. Such behavior displays
the dominant physics that is invariant under arbitrary
magnifications. This form of conformal dominance is
due to the CQM modes and the associated logarithmic
dependence of t on x, with the near-horizon wavefronts
piling up in a Russian-doll geometric sequence [13]. Then,
the amplitude integral is given by [/ dxx“e %" x

2r6/(e*™ — 1)e®, where & is a real phase. Thus,
the resulting radiation spectrum is governed by the emis-
sion probability

270G _
Pe.s — ﬂzw (eZIrw/K _
KU

[ (44)

which is the central result of this paper.
Some important remarks are in order. First, the only
nonzero contributions in Eq. (43), leading to Eq. (44), arise

from the purely outgoing CQM component o, (CQM), for

which ¢ = @/k; if, instead, the ingoing CQM component
were used, the logarithmic terms would cancel, yielding
o =0 and a vanishing outcome. For that reason, any
generic Boulware-like state |B) will give a Planck distri-
bution (44). (See Appendix B.)

Second, it is noteworthy that the probability amplitude of
Eq. (44) corresponds to a Planck statistical distribution that
is a function of the variable @ = @ — mQy, with mQy as a
generalized chemical potential that favors the black hole’s
tendency to remove its conserved quantum numbers.
Incidentally, this functional combination corresponds to
the thermodynamic change 6M — Qp6J, which also relates
to the coupling with fields and particles (orbital parameters,
gyroscope precession, and Sagnac effect [41]).

Finally, the appearance of the Planck function in Eq. (44)
shows its apparent equivalence to a thermal distribution
with the Hawking temperature Ty = 5! = k/2x (propor-
tional to the surface gravity «). Interestingly, this arises
from the emission of a pure state by a single atom, with
definite correlations between the modes encoded in the
phase of the integral in Eqgs. (19) and (43). However, the
setup can be extended to a model consisting of an ensemble
of freely falling atoms forming a cloud, as in Refs. [9,10]; if
the initial conditions for their spacetime trajectories are
random, then, the outgoing radiation field would be
effectively thermal. Mathematically, Eqs. (19) and (44)

065006-6



ACCELERATION RADIATION OF AN ATOM FREELY FALLING ...

PHYS. REV. D 104, 065006 (2021)

give the probability of emission of a field quantum;
similarly, Eq. (20) gives the absorption probability P,
(for the transition from field state 1 to Oy) [37,38], which
formally reduces to @ — —@; this yields

P, N
&S — =P, (45)
Pa,s

The interpretation of the ratio (45) as modeling a thermal
distribution with a Boltzmann factor [37,38] has been used
for black hole thermodynamics [42,43]. Furthermore, the
physical origin of this factor can be traced to the CQM
waves, as in Eq. (43). The Boltzmann-factor analysis of the
thermal nature of the radiation can be expanded by
considering the reduced density matrix of the field, as in
Ref. [9], where the radiation field is called horizon
brightened acceleration radiation (HBAR). The corre-
sponding master equation for the diagonal elements p, ,
of a given single mode,

Ibn,n = _Re,s[(n + l)pn,n - npn—l,n—l}
- Ra.s [npn.n - (n + 1)pn+1,n+1]’ (46)

admits a steady-state distribution that is indeed thermal for
random initial injection times of the atomic cloud. Here, the
rate coefficients R.; and R, are proportional to P, and
P,. The implementation of the thermal condition of the
radiation field requires that the Boltzmann factor (45) be
satisfied as above for all field modes. A detailed analysis of
this HBAR density-matrix approach—including nontrivial
generalizations to simultaneous modes, to the Kerr geom-
etry, and with an all-encompassing thermodynamic corre-
spondence—is in progress, and will be reported elsewhere.

VI. DISCUSSION

In this paper, we have shown that the acceleration
radiation of an atom falling freely into a Kerr black hole
in a Boulware-like vacuum is driven by the near-horizon
physics. Specifically, this Unruh (acceleration) radiation
can be traced to the dominance of near-horizon CQM
modes in the excitation probability, which can be physi-
cally motivated by the unbounded gravitational blueshift
experienced as the atoms approach the event horizon [15].
This radiation is due to the acceleration of the reference
frame in which the vacuum field modes are defined with
respect to the freely falling atom (locally inertial frame)
[44]; thus, its existence agrees with the qualitative equiv-
alence principle [8], and generates a spectrum with the
Hawking-Unruh temperature 7 = k/2z. As a result, our
work serves as general proof of the validity of this
qualitative equivalence principle, with an associated cor-
respondence between free-fall acceleration radiation and
Hawking radiation. Furthermore, the HBAR radiation field
of an atomic cloud with random initial times has a thermal

character, as will be further analyzed in a forthcoming
article, where a larger set of thermodynamic correspond-
ences will be shown.

Moreover, our analysis covers all 4D black holes subject
to the no-hair theorem [39]: the Schwarzschild geometry
(a = 0, as in Ref. [13]) and Kerr-Newman black holes with
electric charge Q, obtainable via A — r> — 2Mr + a> + Q?
(in geometrized units, with unit Coulomb constant). This
shows the universality of this form of conformal symmetry
and the robustness of the ensuing acceleration radiation for
all 4D black holes, consistent with the near-horizon
gravitational blueshift.

Finally, our work highlights the simplicity of the near-
horizon framework as a tool to tackle otherwise intractable
problems, and elucidates the connection of the acceleration
radiation with (0 + 1)-dimensional CFT.
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APPENDIX A: SEPARATION OF VARIABLES
AND DERIVATION OF THE NEAR-HORIZON
CQM EQUATION

In this Appendix, we summarize two important topics:
(i) the basics of separation of variables in Boyer-Lindquist
coordinates; and (ii) three derivations of the near-horizon
CQM equation.

1. Separation of variables in Boyer-Lindquist
coordinates

When the separation of variables of Eq. (8) is enforced in
Eq. (7), the radial function R(r) satisfies the equation

d A dR N (r* + a®)*w? — 4Mramw + a*m?
dr dr A

- A — d’0? —,u%brz} R=0, (A1)

where A, is the separation constant extracted from the
angular equation for spheroidal wave functions [33,34]

065006-7



A. AZIZ1 et al.

PHYS. REV. D 104, 065006 (2021)

Ld (. dS
sin0do \*"" q0

2
+ {a%ﬂcoﬁe - si}:zé’ + Ay — a*uzcos’0|S =0

(A2)

(most commonly studied for uq = 0). As Eq. (A2) defines
a Sturm-Liouville problem, the regular solutions form a
complete orthogonal set labeled by a discrete “spheroidal”
number /. Additionally, the separation constant Ay depends
on the other quantization parameters: m and w, as well as
the Kerr parameter a and the field mass pg (both @ and pg
appear in the dimensionless combinations aw and apg).

2. Derivation of the near-horizon CQM equation

A first derivation starts from the full-fledged radial
equation (Al). Implementing the near-horizon expansion
with Eq. (5) selects the dominant terms, which are the first
one (with radial derivatives) and the ratio in the square
brackets. In the latter, it is straightforward to complete
squares using the definition of the angular velocity Qy of
the black hole. This converts the radial equation (A1) into
the leading radial near-horizon equation

1d [/ d (r* +a®)\? 1 (H)
ey p ) IR(x) @,
Lc dx (x dx) i <a) Ay x? ()

which is equivalent to Eq. (13), when Eq. (11) for the
surface gravity is used. As shown in the main text, Eq. (A3)
can be reduced to its normal form with the Liouville
transformation that yields the standard CQM Hamiltonian
of Eq. (14).

A second derivation involves the alternative, equivalent
expression for the Kerr metric given by Eq. (3). While this
equation gives the covariant metric, it can easily be inverted
to get the contravariant components needed for the Klein-
Gordon equation (6). Then, in the near-horizon region,
instead of Eq. (7) or Eq. (A1), one can directly write

(A3)

10
,02 892
(A4)

[ _(P+a®)? 0 10 ([ 0\ 0
[ pPA 0P * p? Or A or ®~0, (AS)

B g4 0 10(,0),
PPAOP  E%6in’00¢>  p*Or \ Or

due to the leading behavior A(r) 7 A’, x, which selects the
radial-time sector of the metric. Equation (AS5) reproduces
again the asymptotically exact equation (13).

A third derivation can be completed by using the
equivalent tortoise coordinate r, for the Kerr metric, which
is defined through the equation

dr 1
= A
dr  f(r)’ (A6)
where
A
= A7
so that
2 2
r*—/" Za dr (A8)

This coordinate choice is made so that the radial-time sector
of the metric appears as near-horizon conformally flat and
pushes the horizon radially to minus infinity. Notice that the
scale factor f(r) plays the same role as the homologous
factor in generalized Schwarzschild coordinates. In the
corotating coordinates (9), the radial function R(r) satisfies
the wave equation

{dz + 6)2]R(r) =0. (A9)

2
drs

Most importantly, Eq. (A9) with the tortoise coordinate is
equivalent to its counterpart with the regular Boyer-
Lindquist radial variable, Eq. (A3) or Eq. (13). The ingoing
and outgoing waves {e~®(+7:) ¢=i®(=")1 in terms of r,
correspond to the conformal ingoing/outgoing modes x¥©
of CQM. This is expected from the fact that we have just
mapped the near-horizon physics from one coordinate
frame to another. A simple proof of this equivalence, at
the level of the differential equations, follows from the
definition (A6) of this coordinate transformation, whose

near-horizon leading form dr,/dr ) dr,/dx 01 /(f!x)
implies that

2
~2 (%) 7 \2 i i m2
dri—'—w =0~ (f4) Ydx (xdx ter=

1d d & 1 (H)
el [ BRI - TER YA
iLw@Q+MW4w 0

where f/. = A', /(r2 + a?), which is identical to Eq. (13).

A final remark is in order. The equivalence of Egs. (13)
and (A9) also implies that they both have associated
conformal symmetry. As discussed in Ref. [15], the
conformal invariance of Eq. (A9) can be viewed as
physically generated by an exponential gravitational blue-
shift near the event horizon. This result can be understood
by looking at the metric components in corotating coor-
dinates, as obtained by direct inspection of Eq. (3), with
the definitions of Eq. (9) [or via the inverse metric for the
corresponding Klein-Gordon equation (A4)]. Thus, the
-time component of the metric is

(A10)
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2 2
PrAm)
Gi=&n &5 =—<1

2 (r +a 2) (A1)

[+ (x)

in the near-horizon region, with f(x) being the near-
horizon approximation of the function f(r) of Eq. (A7).
Comparison of Eq. (Al1) with the g,, component in the
generalized Schwarzschild geometry shows that they are
proportional and have the same near-horizon behavior, but
with the Kerr metric expressed in terms of the corotating
time 7. Specifically, this happens in such a way that the
metric component is —g;; x A « f(x) «cx. The fre-
quency o of a photon with four-wave-vector k, as perceived
by corotating observers with normalized four-velocity U, is
w=-U-k=-§;-k/V, if V is the normalization fac-
tor defined in the conventional way &; = VU, ie.,
V = /=g thus, the frequency shift is governed by the
rule @ o V!, which shows that V is also the frequency
shift factor, and is singular at the event horizon (blueshifted
at the event horizon with respect to asymptotic infinity, and
redshifted for the reverse relationship). When recast in
terms of the logarithmic tortoise coordinate (AS), such
behavior is the exponential gravitational frequency
shift [15].

APPENDIX B: FIELD MODES
AND VACUUM STATES

Kerr field modes and vacuum states have been analyzed
in Refs. [45,46]. A vacuum state |0) is defined via a
complete set of positive-frequency modes @, with annihi-
lation operators @ such that a,|0) = 0. The Kerr-geometry
modes below are denoted @2, where s = {w, [, m} and A
labels in, up, out, and down [47]. With the notation H¥ for
the past/future horizons and Z¥ for past/future null infinity,
the up mode ¢;" (with radial function Ry) initially emerges
from H~ (reflecting back to H™ and transmitting to 7, +
with coefficients Ay and B;); and the in mode ¢}" (w1th
radial function R+) is initially ingoing from Z~ (reflecting
and transmitting to Z* and H™" respectively, with coef-
ficients A and B{). The out and down modes are the
correspondlng time-reversed solutions (i.e., R = R;™* and
RYown — R=*). Moreover, these modes map asymptotically
to the CQM modes (16) in the form

out (1) q);r (CQm)

. (H _
o " ) ;€M

’ s

(B1)

(with the proportionality coefficients defined above; also

H
RS & R*(CQM)) " By contrast, the up and down modes

@9 include both near-horizon components @5 2.

Now, generic Boulware-like vacua are defined via the
positive-frequency modes above with respect to the Killing
vector &,y = 0/01, i.e., in Boyer-Lindquist coordinates. The
past Boulware vacuum |B~) is defined in terms of the basis
{ps*, @™} (with values on the past Cauchy surface
‘H~ U Z7); and similarly for the future Boulware vacuum
|BT) in terms of {q)g’“‘,(psown} (with Cauchy values on
H* B~) and |B") were shown to be
inequivalent due to the superradiant modes needed for a
complete basis—these are the up/down modes (in each basis)
with the frequency range 0 < w < mQy (for corotating
waves, m > (). This problem originates from the mismatch
of frequencies @ and @ associated with the Killing vectors &,

and ;) (naturally adapted to 7 *+ and H* respectively). These
Boulware states and Eq. (B1) can be used to find the
excitation probability of a freely falling atom.

As discussed in Sec. V, any generic Boulware-like state
|B) will give a Planck distribution (44). In particular, for the
basis sets associated with |B*), the purely outgoing compo-
nents that give Eq. (44) are extracted accordingly (" for
|B*) and ¢s" for |B~)); this leaves the interpretation of the
superradiant modes (for —mQy < @ < 0), as an additional
technicality. Moreover, this calculation shows that, for the
future Boulware vacuum |B*), the superradiant modes are
subsumed in the Planck distribution [33]; in addition, from

0”‘( >B+*<I> Qv [including the proportionality coeffi-

01ents in Eq. (B1)], and as 7, = By* is the amplitude
transmission coefficient, the modified Eq. (44) accounts
for the greybody factors I’y = |7|?. If the past Boulware
vacuum |B~) is chosen, the classical superradiant modes also
give rise to the Unruh-Starobinsky radiation (quantum
superradiance) [48] of the vacuum at Z™.

Additionally, for fermion fields, the definition of quan-
tum states is less constrained, and there are other candidate
Boulware states [49].
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