166 |IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021

BayesTuner: Leveraging Bayesian
Optimization For DNN Inference
Configuration Selection

Seyed Morteza Nabavinejad ~ and
Sherief Reda'”, Senior Member, IEEE

Abstract—Deep learning sits at the core of many applications and products
deployed on large-scale infrastructures such as data centers. Since the power
consumption of data centers contributes significantly to operational costs and
carbon footprint, it is essential to improve their power efficiency. To this end, both
the hardware platform and application should be configured properly. However,
identifying the best configuration automatically for a wide range of available
options with affordable search cost is challenging (e.g., DNN batch size, number
of cores, and amount of memory allocated to the application). Employing an
exhaustive approach to test all the possible configurations is unfeasible. To tackle
this challenge, we introduce BayesTuner that employs Bayesian Optimization to
estimate the performance model of deep neural network inference applications
under different configurations with a few test runs. Having these models,

Bayes Tuneris able to differentiate the optimal or near-optimal configurations
from the rest of options. Using a realistic setup with various DNNs, we show

how efficiently BayesTuner can explore the huge state space of possible control
configurations, and minimize the power consumption of the system, while meeting
the throughput constraint of different DNNs.

Index Terms—Deep neural network, power, throughput, Bayesian optimization

e

1 INTRODUCTION

VARIOUS systems are designed and implemented for executing
DNN inference. While these systems are based on different hard-
ware platforms, the deployment of DNN inference applications on
them has the similar structure: placing the pre-trained model on
the system, allocating a specific amount of resources (e.g., CPU,
RAM), and adjusting the DNN-side control knobs such as batch
size, which defines how many inputs should be processed at a time
in the form of a batch.

Finding and selecting the right configuration (e.g., batch size,
number of cores, allocated memory) is essential for improving
performance and power efficiency of the system. Quality of service
and customer satisfaction have a direct relationship with the
performance. Moreover, power consumption has a significant
share in the operational costs of data centers and determines their
carbon footprint [1]. The impact of the configuration is especially
important for recurrent jobs that deploy similar DNN inference
applications periodically on the infrastructure, or the long-running
jobs that process a large input dataset.

We conclude that it is challenging to find the proper configura-
tion for various objectives, e.g., maximizing the throughput or min-
imizing the power consumption, because of the complexity of
building performance models in the presence of various control
knobs. Since the control knobs have complex relationship with

e Seyed Morteza Nabavinejad is with the School of Computer Science, Institute for
Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran.
E-mail: nabavinejad@ipm.ir.

e Sherief Reda is with the School of Engineering, Brown University, Providence, RI
02912 USA. E-mail: sherief_reda@brown.edu.

Manuscript received 25 Sept. 2021; accepted 10 Oct. 2021. Date of publication 11 Nov.
2021; date of current version 1 Dec. 2021.

Sherief Reda work was partially supported by NSF under Grant 1814920 and
DoD ARO under Grant W911NF-19-1-0484.

(Corresponding author: Seyed Morteza Nabavinejad.)

Digital Object Identifier no. 10.1109/LCA.2021.3123695

performance and power, it is hard to use common methods to
accurately model this relationship. Moreover, using an exhaustive
search method to find the right configuration imposes significant
overhead, and hence, is unfeasible. For instance, the size of state
space (all the possible configurations) in this work is 7,168 configu-
rations. In a realistic setup, running test samples to understand the
behavior of application regarding different control knobs is very
expensive, and hence, the number of test samples is very limited.

To address the aforementioned challenges, we present Bayes-
Tuner, a low-overhead adaptive approach for diverse set of recurring
and long-running DNN inference applications that can find the opti-
mal or near-optimal configuration, such that the power consumption
of the hardware platform is minimized, while the throughput of the
application is not less than a predefined constraint. For the CPU-
based hardware platforms, the configuration includes the number of
cores and amount of memory allocated to the job. We also consider
batch size, as batching is widely used in previous works for increas-
ing the throughput of DNN inference [2], [3].

The key idea of BayesTuner is identifying near-optimal configu-
rations. Therefore, it needs a performance model with enough
accuracy that can distinguish the near-optimal configurations from
the rest of configurations. This feature helps BayesTuner to achieve
low overhead as finding the near-optimal configuration needs
fewer sample runs. To build this accurate enough performance
model, BayesTuner leverages Bayesian Optimization (BO). BO is
able to optimize black-box functions, and hence, it does not need
application-specific insights such as the architecture of DNN (num-
ber of layers, type of layer, etc.) or low-level profiling of hardware
platform (cache, memory, etc). It is especially important as there is
a trend toward application-agnostic optimization approaches in
data centers due to security and privacy concerns [1]. We use 8
DNNs from different domains and a CPU-based hardware plat-
form to evaluate the efficacy of BayesTuner. The results indicate
that BayesTuner can yield up to 25% and 39% improvement in
power consumption in the presence of a throughput constraint,
compared with two other approaches that do not leverage BO. It
also can find solutions as close as 1.4% to optimal ones on average,
when compared with Exhaustive Search.

1.1 Motivation

We select three DNNs from different domains (DeepSpeech from
speech recognition, DeePVS from video saliency, and Inception from
image classification) to study the impact of a set of diverse configura-
tions on their power and throughput. We consider the number of cores
allocated to the DNN and the Batch Size (BS) as control knobs. We con-
sider a baseline configuration and change each of the control knobs
separately. When changing the BS, we consider the number of cores a
fixed value (14 cores using cgroups feature of Linux), and when we
change the number of cores, we consider BS as fixed value of 16. The
power consumption and throughput of DNNs is presented in Fig. 1.
The throughput for DeepSpeech is the number of audio files to process
per second, for DeePVS is the number of video frames per second, and
for Inception is the number of images to classify per second.

We observe that a proper configuration can help significantly
reduce the power consumption to achieve a certain throughput.
For example, in Figs. 1c and 1d, both BS = 4 and and BS = 20 can
reach almost the same throughput, 13.8 and 14.2 respectively. But
one with power consumption of 86 W (BS = 4) and the other with
power consumption of 115 W (BS = 20). Therefore, wrong configu-
ration selection can waste 33% power, without achieving higher
throughput. It is espedally important for recurring jobs, where
similar workloads are repeated periodically, or long-running jobs
where a huge amount of data should be processed. Our approach
is suitable for these kind of jobs as the resource and time overhead

1556-6056 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https:/f'www ieee.org/publications/rights/index. html for more information.

https://orcid.org/0000-0002-5123-6318
https://orcid.org/0000-0002-5123-6318
https://orcid.org/0000-0002-5123-6318
https://orcid.org/0000-0002-5123-6318
https://orcid.org/0000-0002-5123-6318
https://orcid.org/0000-0001-8232-4516
https://orcid.org/0000-0001-8232-4516
https://orcid.org/0000-0001-8232-4516
https://orcid.org/0000-0001-8232-4516
https://orcid.org/0000-0001-8232-4516
mailto:nabavinejad@ipm.ir
mailto:sherief_reda@brown.edu

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021 167

(e)

270
260 _.A.—.A.__._‘_,__k""_‘
z i —
o 250
5 — . .
240
+ DeepSpeech Inception
: 230 4+ DeePVS
4 8 12 16 20 24 28 4 8 12 16 20 24 28 32
Mumber of Cores Balch Size
20 (b) (d)
=+ DeepSpesch DeepSpeech
- DeePVS _ 0 : DeePVS
2 15{ Inception F Inception
% S
£ £
= =
10
5

4 8 12 16 20 24 28 4 8
Mumber of Cores

12 16 20 24 28 32
Batch Size

Fig. 1. Impact of number of cores and batch size on the power and throughput of
three selected DNNs.

of searching for the near-optimal configurations can be amortized
over the course of time.

2 BAYESTUNER

Our knowledge of the vast state space of configurations is limited
to a few ones that we can explore in test runs, which are very
costly. Hence, instead of trying to build an accurate performance
model for each DNN to find the best configuration, we aim to
estimate a model that is accurate enough to help us identify the
optimal or near-optimal configurations.

2.1 Problem Statement

For a given DNN and a hardware platform, find the best configura-
tion (i.e., the combination of control knobs provided by DNN and
platform) to minimize the power consumption subject to a perfor-
mance requirement. In this work, we consider the throughput as
the performance metric. The throughput T(BS, core, memory) and
power consumption P(BS, core, memory) depend on the DNN
application and hardware platform control knobs, ie., batch size,
number of cores, and amount of memory. Our ultimate objective is
to find the best configuration that minimizes the power consump-
tion, while having throughput greater than or equal to a predefined
throughput threshold T3,

Minimize

Sit.

P(BS, core, memory)

T(BS, core,memory) > Ti. M

By testing all the configurations, we can have T(BS,core,mem-
ory) and P(BS,core,memory) for all of them and easily solve Equa-
tion (1); but, it is extremely costly. Using BO, BayesTuner can find
an approximate solution for Equation (1) by testing a much smaller
subset of configurations that are selected dynamically, and hence,
significantly decrease the search cost.

2.2 Bayesian Optimization Principals
BO models the unknown function, e.g., P(BS, core, memory), with a
stochastic process (called Prior function) and tries to estimate it by
the help of samples taken at different points of that unknown func-
tion. After taking each sample, the estimated model and the confi-
dence interval that shows the difference between the estimated
model and the actual model are updated by BO. For selecting the
next sample point wisely, BO relies on a pre-defined acquisition
function. The acquisition function determines the sample that can
yield the highest expected improvement of the estimated model,
such that the confidence interval is became narrower. The illustra-
tive example in Fig. 2 shows how BO works.

For the Prior function (i.e., the stochastic process to estimate the
objective function and constraint models based on), we use the

------ Actual Function

Lo Test Sample Mean of Estimation
‘t‘-.-. :
e —— =
W
acquisition min
cquisition function
" Confidence Interval New Test Sample @
-

Confidence Interval
~~ Becoming Narrower After

S

~. — each Test Sample

Fig. 2. lllustrative example to show how BO works (adapted with modification from
[6]). El finds the configuration corresponding as global extremum (minimum in this
sample) and selects that as the next example.

Gaussian process, as it is a common and accepted option for BO
[4]. This choice means that we assume the unknown function(s) is
a sample from Gaussian process. The Gaussian process estimates
the actual function f with a surrogate model f". In f, for each input
(ie., configuration) the output is defined by a random variable,
instead of an actual value. This random variable tells what is the
possible value for function f (i.e., power consumption and through-
put in our work) for a certain input configuration. At the begin-
ning, the degree of uncertainty is high, which mean the estimated
output for a certain input has a wide confidence interval. As more
samples are taken, the uncertainty is decreased and confidence
interval becomes tighter, means that the estimated output of input
configurations is more accurate. Flexibility of this non-parametric
process allows to come close to the actual function by taking
enough samples. The number of samples need to be taken to reach
to the actual function depends on the similarity of that function
with Gaussian process. Closer functions need fewer numbers of
samples to be accurately estimated. It is possible to find better prior
functions than Gaussian process for specific DNNs by having
knowledge about them. However, it renders the generality of that
prior function for broader range of DNNs low [5].

For the acquisition function, which determines the next sample
point to take, we use Expected Improvement (EI) which selects the
sample point that might maximize the expected improvement over
the current best result. The EI method is the most popular option
over the other possible options and does not require self-tuning [4].
The EI takes into account the estimated model (f) yielded by the
Gaussian process up to this point. It also considers the best (lowest
in our work) value obtained for objective function until now from
the actual samples taken. Then, it examines the remaining configu-
rations in the state space by the estimated model and obtains the
objective value for each of them. Then it selects the one that can
improve the objective function the most compared with the best
value identified until now. This new configuration is selected as the
next test sample and is executed to find the real value of objective
function for it. Then, this new test sample and its objective value is
fed to Gaussian process, along with the previous test samples and
their values, to update the estimated model. This loop is repeated
until we reach the maximum number of test samples.

2.3 Methodology

The overall flow of BayesTuner is shown in Fig. 3. It consists of
two modules which we discuss in the following: Configuration
Controller and Monitor and BO Framework.

168 |IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021

o]
o]
3
d

l'-I D000
o O

Metrics of interest
(e.g., power, throughput)

Hardware Platform

Control knobs
(e.g., batch size, #cores, memory)

| Configuration Controller and Monitor |

3

Sample Point Objective + Constraint(s)

BO Framework

| Prior Function | | Acquisition Function |

BayesTuner

Fig. 3. Overall flow of BayesTuner.

Configuration Controller and Monitor. This module interacts with
BO framework, hardware platform, and the application, and
orchestrates the entire process of setting the values of control knobs
of hardware platform and application, launching test runs for
sample points determined by BO framework, as well as monitoring
the objective function and constraints for sample points and send-
ing them to the BO framework. The user supplies this module with
the DNN model of the inference application, and the desired objec-
tive and constraints (e.g., power consumption, throughput, execu-
tion time, etc.). For the DNN inference application, this module
sets the batch size based on the value received from BO framework.
For adjusting the control knobs of hardware platform (e.g., number
of cores and amount of memory), it uses control groups (cgroups)
feature of Linux. For other hardware platforms with specific
features, other parameters and control knobs can be adjusted by
this module.

BO Framework. For Bayesian Optimization framework, we lever-
age Spearmint [7] which is implemented in Python and supports
both the Gaussian process for prior function and EI approach for
the acquisition function. For taking a sample, BO submits the
specifications of the selected configuration to the Configuration
Controller and Monitor module. After completion of test run, BO
receives the desired metrics for objective function (power) and
constraint (throughput) from the same module.

3 EVALUATION

3.1 Experimental Setup

Hardware Platform. We run our experiments on a dual-socket Xeon
server where each of the E5-2680 v4 Xeon chips has 14 cores run-
ning at 2.4 GHz. The server has 128 GB of DDR4 memory. Ubuntu
16.04 with kernel 4.4 is installed on the server with the python 2.7,
CUDA 11.0, and TensorFlow 1.15.

DNN Jobs. To show the adaptive nature of our approach, we use
DNNs from different domains. The selected DNNs cover a wide
range of applications, as well as DNN types: from CNNs to RNNS,
to LSTMs. The jobs used in the experiments are shown in Table 1

Objective and Constraint. The objective function is defined as
minimizing the power consumption of the DNN inference applica-
tion under a throughput constraint. By default, we consider a loss
throughput constraint for each DNN, so there is more room to
explore the state space.

Systems Compared. We compare BayesTuner with three strategies:
1) Exhaustive Search, that tests all the possible configurations to find
the best one. 2) BatchSizer [2], that uses the DNN control knob

TABLE 1

Specifications of Jobs Used in the Experiments
DNN Dataset Domain Throughput Constraint
DeepSpeech [8] Sentiment140 [9] Speech Recognition 6 audio/sec
DeePVS [10] LEDOV [10] Video Saliency 4 frame/ sec
TextAnalysis [11] LibriSpeech [12] NLP 5000 sentence sec
PNASNet [13] Imagenet [14] Image Classification 4 image//sec
MNASNet [15] Imagenet Image Classification 3 image/sec
InceptionV3 [16] Imagenet Image Classification 20image/sec
ResNetV2 [17] Imagenet Image Classification 10image/sec
MobileNet [18] Imagenet Image Classification 50image/sec

(batch size) to manage the power consumption and throughput. It
does not consider the hardware platform control knobs, and hence,
uses the entire system resources. 3) Simulated Annealing (SA) is a
meta-heuristic approach that approximates the global optimum of
problems with large state space. It explores the state space by prob-
abilistically deciding to move to a neighbor configuration. SA does
not estimate a performance model for objective and constraint and
hence, generally converge slower than BO.

State Space. The hardware platform, as mentioned, has 28 cores.
While the available memory of this server is 128 GBs, our observa-
tions show that none of the DNNs consume more than 8 GBs of
RAM. Hence, to moderate the size of state space, we consider 8
GBs of RAM, which can be changed by steps of 1 GBs. We use
cgroups feature of Linux to manage amount of memory. Consider-
ing the batch size for DNNs as a number between 1 to 32, the total
number of possible configurations that we can select from is 28 x
8 x 32 = T168. For comparing BayesTuner against SA and Batch-
Sizer, we consider this state space. But, for comparing BayesTuner
against Exhaustive Search approach, we consider a smaller version
of state space where the number of cores and batch size can be set
with steps of 4 (e.g, 4, 8, 12) and the amount of memory can be set
with steps of 2 (e.g, 2, 4, 6). In this way, the number of all possible
configurations would be 7 x 4 x 8 = 224. The internal controller of
the CPUs control Dynamic Voltage Frequency Scaling (DVFS) and
we do not apply any changes on it, nor using any control approach.

3.2 Results

BayesTuner can Find Near Optimal Solutions With Less Search
Cost. BayesTuner can find solutions similar to the optimal one.
In Fig. 4, the power consumption of optimal solution (achieved by
Exhaustive Search) and BayesTuner is depicted for all the DNNs.
The average difference between optimal solution and BayesTuner is
1.4%. It clearly shows the success of BayesTuner at finding optimal
and near-optimal solutions with test cost remarkably lower than
that of Exhaustive Search. BayesTuner only selects 20 test samples

[BayesTuner [_] Exhaustive Search

2.5%

0.8% - 3-5%

0.9% 1.38%

N SR N 1

Fig. 4. Comparing the results of BayesTuner against optimal solution for power
consumption. The red numbers on top of the bars indicate the difference between
BayesTuner and optimal solution. The number of test samples for BayesTuner is
20 and for Exhaustive search is 224.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021 169

TABLE 2
Sampling Time (seconds) of Different Approaches
Small State Space Large State Space
BayesTuner Exhaustive BayesTuner Exhaustive (Estimated)
DeepSpeech 1,137 8,521 3,936 272,659
DeePVS 203 6,181 663 197,778
TextAnalysis 398 4,968 861 158,966
PNASNet 807 5,520 1,147 176,636
NASNet 758 5,249 1,234 167,972
InceptionV3 664 4,327 1,026 138475
ResNetV2 404 3,036 642 97,150
MobileNet 355 2,565 546 82,076

from the state space (9% of the configurations), while Exhaustive
Search tests all the 224 configurations. The total search time of
BayesTuner and Exhaustive Search is shown in Table 2. BayesTuner
can dramatically reduce search time (up to 96% and 88% on aver-
age) compared with Exhaustive Search. These results can empha-
size the efficacy of using BO to reduce the search cost, while
achieving optimal or near-optimal solutions. Furthermore, we
have estimated the sampling time of Exhaustive Search for the
original state space with 7,168 configurations (multiplying the sam-
pling time of each job in small state space by Z&). Comparing them
with sampling time of BayesTuner dearly shows how using BO
becomes more prominent as the state space expands.

BayesTuner can Significantly Improve the Objective Function With
the Same Search Budget as SA. The power consumption results of
BayesTuner, SA, and BatchSizer for the same number of test
samples (20) is depicted in Fig. 5. BayesTuner improves the power
consumption by up to 25% (7% on average) compared with SA. It
emphasizes the power of BayesTuner in selecting the sample points
wisely, in contrast to SA that can be trapped in local minimums.
The acquisition function of our BO framework can successfully
guide the sampling process to the right direction, in order to select
better sample points and build a more accurate performance model
for the application. The slower convergence problem of SA shows
itself in the form of higher power consumption in the results, as it
needs more test samples to approach the optimal solution.

BayesTuner Leverages all the Control Knobs of Both Hardware
Platform and the Application, and Hence, Achieves Better Solutions
Than the Approach That Only Leverage the Application-Side Control
Knob. The BatchSizer only tunes batch size to find a solution. There-
fore, it misses the opportunity to explore the entire state space, and
hence, its ability to find optimal or near-optimal solutions is seri-
ously degraded. The strength of our approach, however, is that it
can leverage the cross-stack control knobs to better navigate the
state space and find better solutions. The maximum power con-
sumption improvement of BayesTuner over BatchSizer is around
39% and the average improvement is 26%.

B BayesTuner [J] BatchSizer [| Simulated Annealing

300

—

E. 250

.

E 200

150

0 ; R
oeage@gn oeﬁ?\r: \{;i ‘\@\"“B‘ ‘;?\5“&\‘\039“00 & 65‘;&‘1 @w‘.\a"

Fig. 5. Comparing the results of BayesTuner against Random Search and Batch-
Sizer with the same number of test samples.

3.3 Detailed Analysis of BayesTuner
In this section, we explore the behavior of BayesTuner in more
details. In Table 3, the 20 sample points selected by BayesTuner for
MobilenetV2 DNN is listed and in Fig. 6, the power and through-
put of those points is depicted. The horizontal line in Fig. 6 indi-
cates the throughput constraint of this DNN. BayesTuner can find a
solution that meets the throughput at test sample 2. However,
it tries to find another valid solution, but with less power consump-
tion in the following. In its exploration, it aims to identify the con-
trol knob that has more effect on power and throughput, and
hence, it tests different values for number of cores, amount of
memory, and batch size. at the first few samples, it explores the
edges of the state space. Eventually, the sample points selected by
BayesTuner are closer to the throughput constraint, because it real-
izes that to minimize the power consumption, the throughput
should be close to the constraint. It stops after reaching the maxi-
mum number of samples (20) is reached.

Earlier in Section 1.1, we mentioned that in addition to recur-
rent jobs, the long-running jobs can also benefit from choosing
right configuration. Considering the sampling time of BayesTuner

TABLE 3
The Specifications of 20 Test Samples Selected by BayesTuner for
MobilenetV2 DNN (BS: Batch Size)

Test & Mem Test & Mem
Sample Core (GB) Sample Core (GB)
1 1 1 1 11 6 8 29
2 14 4 16 12 19 2 1
3 1 8 32 13 18 1 1
4 28 1 4 14 12 1 1
5 9 8 1 15 19 8 1
6 4 1 32 16 5 1 9
7 27 8 1 17 4 1 3
8 28 7 1 18 4 2 1
9 3 2 1 19 22 5 1
10 23 8 32 20 19 8 1
| Throughput :
Constraint 4 10
280 | 1}
|
= |
5 240 i 2
¢ TR
180 ¢°
200 3 2 . BayesTuner
.1 Q I Solution
1

50 100
Throughput (Image/Second)

Fig. 6. Detailed behavior of BayesTuner for MobilenetV2 DNN.

Authonized licensed use limited to: Brown University. Downloaded on August 12,2022 at 19:30:47 UTC from IEEE Xplore. Restrictions apply.

170 |IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021

shown in Table 2, even jobs that do not belong to the aforemen-
tioned categories, but are long enough compared to sampling
time, can also benefit from results of BayesTuner . The size of sam-
ple input directly affects the sampling time. Therefore, choosing
small inputs that are able to capture the characteristics of jobs
(e.g., power, throughput), can help to reduce the sampling time,
and hence, employ BayesTuner for a wider range of jobs with
shorter runtime. In this case, BayesTuner can be even used for sce-
narios where the QoS (e.g., throughput constraint) of jobs changes
dynamically during runtime. The new configuration with respect
to new QoS can be found by the help of BO, provided that the job
can tolerate the QoS violation for a certain period, until finding
the new configuration.

4 RELATED WORK

Improving throughput and power-efficiency of DL systems via
fine-tuning application/framework-side control knobs has been
studied in previous works. A large body of research uses batch
size as a control knob to increase the throughput or improve the
power-efficiency, while meeting a certain latency constraint. These
works use mechanisms such as binary search [2] or additive-
increase-multiplicative-decrease (AIMD) [19] to find the proper
batch size. auto-tuning framework parameters (e.g., number of
operators to execute in parallel) is the focus of another group of
previous works [20], [21]. These works do not consider tuning the
hardware platform control knobs, simultaneously with application
and framework parameters, to manage throughput/power con-
sumption. Reagen et al. [22] also employ BO for designing a hard-
ware accelerator for training phase of DNNs, in contrast to our
work that uses BO for inference phase on CPU-based hardware
platform. Bayesian Optimization (BO) has been leveraged to find
the proper virtual machine (VM) configuration for big data jobs in
Cherrypick [5]. CLITE [23] also employs BO to find the proper con-
figuration for co-locating several latency-critical jobs with back-
ground jobs. RAMBO [24] also uses BO to find the Pareto-front of
microservices by solving a multi-objective problem. All these
approaches only consider the hardware platform control knobs
(e.g., number of CPUs, memory bandwidth, etc.) and ignore appli-
cation-side control knobs. Unlike the prior approaches discussed in
this section, BayesTuner incorporates both hardware and applica-
tion control knobs in BO to achieve better results. Simultaneous
coordination of both application and hardware control knobs lead
to a larger configuration space with more number of configurations,
and consequently, cause BO to spend more time exploring it for
finding suitable test samples. However, it provides this opportunity
to find optimal or near optimal solutions that otherwise would not
be possible to obtain due to non inclusion some control knobs.

5 CONCLUSION

We presented BayesTuner, an automated configuration selection
framework for DNN inference applications leveraging Bayesian
Optimization. Using a real-world setup with several DNNs and a
high-end hardware platform, we showed that BayesTuner can effi-
ciently explore the state space of configurations and find optimal or
near optimal solutions that minimize the power consumption, while
meeting the throughput constraint. BayesTuner can be extended to
cover various types of hardware platforms, such as GPU clusters, in
addition to the CPU-based platform used in this paper.

REFERENCES

[1] K. Kaffes, D. Sbirlea, Y. Lin, D. Lo, and C. Kozyrakis, “Leveraging applica-
tion classes to save power in highly-utilized data centers,” in Proc. 11th
ACM Symp. Cloud Comput., 2020, pp. 134-149.

[2] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “BatchSizer: Power-perfor-
mance trade-off for DNN inference,” in Proc. 26th Asia South Pacific Des.
Autom. Conf., 2021, pp. 819-824.

[3] A.Ali, R Pinciroli, F. Yan, and E. Smimi, “BATCH: Machine learning infer-
ence serving on serverless platforms with adaptive batching,” in Proc. Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2020, pp. 972-986.

[4] J.Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization
of machine learning algorithms,” Advances Neural Inf. Process. Syst., vol. 25,
202,

[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang,
“Cherrypick: Adaptively unearthing the best cdloud configurations for big
data analytics,” in Proc. 14th USENIX Conf. Netw. Syst. Des. Implementation,
2017, pp. 469-482.

[6] L. L. Grado, M. D. Johnson, and T. I. Netoff, “Bayesian adaptive dual
control of deep brain stimulation in a computational model of parkinson’s
disease,” PLoS One Comput. Biol., vol. 14, no. 12, 2018, Art. no. e1006606.

[7]1 Spearmint. Accessed: Nov. 9, 2021. [Online]. Available: hitps://github.com/
HIPS/Spearmint

[8] D.Amodeiet al., “Deep speech 2: End-to-end speech recognition in English
and mandarin,” in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 173-182.

[9] Sentimentl140. Accessed: Nov. 9, 2021. [Online]. Available: http://help.
sentiment140.com/

[10] L. Jiang, M. Xu, T. Liu, M. Qiao, and Z. Wang, “DeepVS: A deep leaming
based video saliency prediction approach,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 602-617.

[11] ¥. Kim, “Convolutional neural networks for sentence classification,” CoRR,
2014. [Online]. Available: http:/ /arxiv.org/abs/1408.5882

[12] V.Panayotov, G. Chen, D.Povey, and S. Khudanpur, “Librispeech: An ASR
corpus based on public domain audio books,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2015, pp. 5206-5210.

[13] C. Liu ef al., “Progressive neural architecture search,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 19-34.

[14]]. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei , “ImageNet: A
large-scale hierarchical image database,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2009, pp. 248-255.

[15] B. Zoph, V. Vasudevan,]. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 8697-8710.

[16] C.Szegedy, V. Vanhoucke, S. loffe,]. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 2818-2826.

[17]1 K. He ef al., “Identity mappings in deep residual networks,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 630-645.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE/
CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510-4520.

[19] D.Crankshaw, X. Wang, G. Zhou, M.]. Franklin,]. E. Gonzalez, and 1. Sto-
ica, “Clipper: A low-latency online prediction serving system,” in Proc.
14th USENIX Conf. Netw. Syst. Des. Implementation, 2017, pp. 613-627.

[20] N. Hasabnis, “Auto-tuning TensorFlow threading model for CPU back-
end,” in Proc. IEEEJACM Mach. Learn. HPC Environ., 2018, pp. 14-25.

[21] Y. E. Wang, C.-]. Wu, X. Wang, K. Hazelwood, and D. Brooks, “Exploiting
parallelism opportunities with deep learning frameworks,” ACM Trans.
Archit. Code Optim., vol. 18, no. 1, pp. 1-23, 2020.

[22] B. Reagen et al., “A case for efficient accelerator design space exploration
via Bayesian optimization,” in Proc. IEEE{ACM Int. Symp. Low Power Elec-
tron. Des., 2017, pp. 1-6.

[23] T.Patel and D. Tiwari, “CLITE: Efficient and QoS-aware co-location of mul-
tiple latency-critical jobs for warehouse scale computers,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit., 2020, pp. 193-206.

[24] Q.Liet al., "RAMBO: Resource allocation for microservices using Bayesian
optimization,” IEEE Comput. Archit. Lett., vol. 20, no. 1, pp. 4649, Jan—Jun.
2021.

= For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint
http://help.sentiment140.com/
http://help.sentiment140.com/
http://arxiv.org/abs/1408.5882

