

1 **Short title:** Isoprene, cytokinins, leaf and plant senescence

2 **Authors for contact details:** Kaidala Ganesha Srikanta Dani, Francesco Loreto

3 **Article title**

4 **Isoprene enhances leaf cytokinin metabolism, accelerates growth
5 and induces early-senescence in *Arabidopsis* and *Populus***

6 **Kaidala Ganesha Srikanta Dani^{1,6*}, Susanna Pollastri¹, Sara Pinosio², Michael Reichelt³, Thomas D Sharkey⁴,
7 Jorg-Peter Schnitzler⁵, Francesco Loreto^{6*}**

8 ¹ Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto
9 Fiorentino 50019, Florence, Italy

10 ² Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto
11 Fiorentino 50019, and Institute for Applied Genomics, Udine, Italy

12 ³ Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, D-07745 Jena, Germany

13 ⁴ MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East
14 Lansing, MI 48824, USA

15 ⁵ Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German
16 Research Center for Environmental Health, 85764, Neuherberg, Germany

17 ⁶ Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185
18 Rome, Italy

19 *Corresponding authors

20

21 **One sentence summary**

22 Isoprene emission enhances leaf cytokinin abundance, hastens leaf senescence and shortens plant
23 generation time.

24

25 **List of author contributions**

26 KGSD conceived the hypothesis, designed, led, and conducted the study with inputs from FL. TDS and JPS
27 provided the transgenic *Arabidopsis* and poplar lines respectively. SPO helped raising the *Arabidopsis* seed stock
28 and with logistics. MR extracted and quantified cytokinins. SPI assembled the RNA-seq raw reads and the
29 transcript abundance data. KGSD monitored leaves from emergence to their full senescence course, quantified
30 leaf photosynthesis, chloroplast energy status, leaf and plant phenotype, analysed hormonal and differential gene
31 expression data. KGSD wrote and revised the manuscript with inputs from all authors.

32

33 **Funding information**

34 This work was fully supported by the EU Horizon2020 programme via the Marie Curie fellowship to KGSD under
35 the grant Leaf-of-Life (2016, 746821) to FL.

36

37 Email addresses for contact:

38 srikantadani@yahoo.co.uk; francesco.loreto@cnr.it

39

40

41 **Isoprene enhances leaf cytokinin metabolism, accelerates growth and**
42 **induces early-senescence in *Arabidopsis* and *Populus***

43

44 **Abstract**

45 Isoprene, a volatile hemiterpene, and cytokinins (CKs), a major class of hormones, are
46 synthesized from dimethylallyl diphosphate via the methylerythritol phosphate pathway in the
47 chloroplast. Isoprene can impart photosynthetic stability under transient abiotic stresses but
48 isoprene's constitutive function remains contested. We hypothesized that isoprene affects CK
49 synthesis and potentially also influences developmental processes, gene expression, leaf and
50 plant phenotype and senescence, all of which are critically regulated by CK-mediated
51 signalling and transcriptional regulation. We found that naturally isoprene-emitting poplars
52 (*Populus x canescens*) and transgenic *Arabidopsis thaliana* engineered to emit isoprene grew
53 at a significantly greater rate compared to poplars where isoprene synthesis was suppressed by
54 RNAi and naturally non-emitting *Arabidopsis*. Isoprene-emitting *Arabidopsis* developed
55 bigger, fewer and significantly early senescing leaves, flowered significantly sooner and
56 showed a shorter lifecycle duration than non-emitting controls. Isoprene-emitting poplar leaves
57 showed higher net photosynthesis, invested significantly less photochemical energy in
58 **photorespiration**, and again had shorter lifespan compared to isoprene-supressed leaves.
59 Isoprene emission significantly enriched leaf CK-ribosides and active CK-freebases in healthy
60 mature leaves of both *Arabidopsis* and poplar. RNA-seq identified significant enrichment of
61 transcripts coding for *LOG* genes (*LONELEY GUY*, CK synthesis and activation), *CKX* genes
62 (cytokinin dehydrogenases involved in CK degradation), and genes coding for response
63 regulators involved in CK-signal transduction, all indicating greater CK activity and turnover
64 in presence of isoprene. Transcripts of *CONSTANS-LIKE 9* (*COL9*) and *EARLY FLOWERING*
65 (*ELF3/4*), both known to be key negative regulators of flowering time, were significantly
66 depleted in isoprene-emitting *Arabidopsis* and poplar. Acceleration of plant growth and leaf
67 senescence, bigger leaf phenotype, stronger apical dominance (poplar), early flowering and
68 faster completion of lifecycle (*Arabidopsis*) due to isoprene emission reveals a significant new
69 role for isoprene in shaping plant life-history strategy mainly through isoprene-led
70 enhancement of cytokinin availability, activity, and turnover in leaves and potentially in other
71 plant parts.

72

73

74

75 **Key words**

76 isoprene, cytokinins, apical dominance, *LOG*, *CKX*, *ELF3*, flowering time, chloroplast energy status,
77 methylerythritol phosphate pathway, leaf senescence, photosynthesis, reproduction, leaf senescence

78

79

80 **Introduction**

81 Isoprene is the most abundant biogenic volatile hydrocarbon in the atmosphere. More than 500 Tg of
82 carbon is emitted in the form of isoprene annually by forest trees, with important consequences for
83 global climate (Guenther et al. 2006; McFiggans et al. 2019). Foliar isoprene emission is shown to
84 enhance photosynthetic stability in leaves under transient abiotic stresses such as heat (Behnke et al.
85 2007, Velikova et al. 2011; Pollastri et al. 2014), oxidative stress (Loreto et al. 2001; Vickers et al.
86 2009; Behnke et al. 2010), and drought (Dani et al. 2014a; Velikova et al. 2016). Isoprene is also viewed
87 as a metabolic outlet for excess carbon from photosynthates, adding to the pool of photoprotective
88 molecules (e.g. Penuelas and Munné-Bosch, 2005). The described benefits of isoprene are often
89 apparent in plants only when they are under stressful, sub-optimal conditions. The ecological and
90 functional relevance of isoprene emission in unstressed plants is unknown. Even the link with
91 photosynthesis, a presumed *sine qua non*, appears tenuous in unicellular heterotrophic eukaryotes that
92 can emit appreciable levels of isoprene in complete darkness (Dani et al. *under review*). Finally, the
93 evolutionary history of constitutive isoprene emission across the tree of life has remained unresolved
94 (Monson et al. 2013; Dani et al. 2015a).

95

96 The plastid-localised methylerythritol phosphate (MEP) pathway not only makes isoprene but also acts
97 as a source of vital plant hormones including cytokinins (CKs) (such as isopentenyladenine and zeatin),
98 abscisic acid, and accessory photosynthetic and photoprotective pigments such as β -carotene and
99 xanthophylls, all of which directly regulate and influence leaf senescence (Dani et al. 2016). CKs are
100 critically required for leaf development and expansion (e.g. Werner et al. 2001), and for the modulation
101 of expression of transcription factors in regulating abiotic stress response, prevention of chlorophyll
102 decay and maintenance of chloroplast integrity (Zavaleta-Mancera et al. 2007, Nishiyama et al. 2011;
103 Cortleven and Schmülling, 2015; Raines et al. 2016). In the MEP pathway, dimethylallyl diphosphate
104 (DMADP) is combined with adenosine triphosphate (ATP) to give iP-type CKs by isopentenyl
105 transferase (IPT, Kasahara et al. 2004; Sakakibara et al. 2006), whereas DMADP is converted to
106 isoprene by isoprene synthase (Sharkey and Yeh, 2001). Overexpression of *IPT* by a promoter of

107 senescence-associated genes is an established way of delaying leaf senescence (Guo and Gan, 2014).
108 Overexpression of isoprene synthase and even exogenous isoprene has been shown to modulate gene
109 expression in unstressed plants (Harvey and Sharkey, 2016; Zuo et al. 2019), although any influence of
110 isoprene on the process of leaf and plant senescence remain untested. Isoprene emission capacity has
111 evolved frequently in fast-growing perennial tree genera that are generally hydrophytic and highly
112 speciose (Dani et al. 2014b; Loreto et al. 2014), potentially via neofunctionalization of monoterpene
113 synthases (Dani et al. 2014b; Li et al. 2017). In this context, we had proposed that the entire MEP
114 pathway in the chloroplast, along with isoprene, is under selection to regulate leaf senescence (Dani et
115 al. 2016). We premised that leaf senescence sets a limit to isoprene emission, and that isoprene acts
116 along with cytokinins and other isoprenoid hormones to regulate leaf senescence.

117

118 Naturally isoprene-emitting poplar trees (*Populus* spp.) have served as the model system for isoprene-
119 related research for a couple of decades (e.g. Schnitzler et al. 2005; Behnke et al. 2007; Monson et al.
120 2020). Some insights have also come from transgenic isoprene-emitting *Arabidopsis thaliana* (e.g.
121 Sasaki et al. 2007; Loivamäki et al. 2007; Vickers et al. 2011; Zuo et al. 2019). By model systems of
122 *Arabidopsis* lines transformed with a eucalypt isoprene synthase to emit isoprene, and grey poplar
123 (*Populus x canescens*) lines genetically modified (by RNA-interference) to suppress isoprene synthase
124 activity and isoprene emission, we comprehensively quantified the impact of isoprene emission on
125 developmental plant phenotype, growth rate, and leaf senescence trajectories. We also modelled
126 photosynthetic energy status of individual leaves from emergence until abscission, detected and
127 quantified the changes in the abundance of leaf CKs in presence and absence of isoprene, and examined
128 the genome-wide impact on poplar and *Arabidopsis* transcriptome by RNA-seq. Our results highlight
129 novel functional possibilities for isoprene in shaping leaf phenotype and lifespan, revealing new
130 evolutionary and adaptive significance of isoprene emission.

131

132 **Materials and Methods**

133 **Plant material**

134 *Arabidopsis*: Isoprene-emitting transgenic *Arabidopsis* lines were generated at the plant transformation

135 facility in Michigan State University (Zuo et al. 2019). The cloning construct included the complete
136 CDS of isoprene synthase (ISPS) from *Eucalyptus globulus* downstream to the *Arabidopsis* Rubisco
137 SSU promoter *rbcS-1A*. Another construct lacking ISPS was used as the empty vector control.
138 *Arabidopsis* Col-0 were transformed using *Agrobacterium* via the floral dip method. Seven independent
139 transgenic lines were obtained (selected on kanamycin) until F3 transgenic seeds were obtained and
140 verified by PCR. We selected two transformants and one empty vector line for this intensive study,
141 based on preliminary observations (now given in Zuo et al. 2019). Seeds of *Arabidopsis thaliana*
142 wildtype control (ecotype Col-0), empty vector control (line EV-B3), and two isoprene-emitting lines
143 (ISPS-B2 and ISPS-C4) were deposited at the *Arabidopsis* Biological Resource Center in Ohio State
144 University, USA and formally obtained in Italy. Seeds were surface sterilized in 70% ethanol,
145 transferred to petri plates containing Murashige and Skoog's agar medium, and vernalized at 4 °C for
146 48 h. Plates were then transferred to a growth cabinet and allowed to germinate at 18 ± 2 °C, long days
147 (16 h day: 8 h night), light intensity of 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$ from white fluorescent tubes, and 40% relative
148 humidity. Seedlings were individually transplanted to soil-substrate containers placed in plastic trays
149 and watered regularly. Inflorescence and pods were allowed to dry naturally while attached to the plants,
150 and seeds were harvested. An independent set of plants of the four lines were grown under a light
151 intensity of 200 $\mu\text{mol m}^{-2} \text{s}^{-1}$, constituting high-light treatment (all other conditions remaining identical
152 to those used during seed germination).

153 *Poplar*: Isoprene-emitting wildtype Grey poplars (*Populus x canescens*) along with two transgenic lines
154 in which expression of isoprene synthase (*PcISPS*) was suppressed by RNA-interference were used.
155 Transgenics were generated and micropropagated at the Institute of Biochemical Plant Pathology,
156 Helmholtz Centre in Munich (Germany). RNAi-mediated post transcriptional silencing of isoprene
157 synthase in poplars was enabled by the introduction of sense and antisense hairpin sequences (160 bp,
158 highly specific to isoprene synthase) in a binary vector via *Agrobacterium* mediated transformation
159 (35S:PcISPS-RNAi; Behnke et al. 2007). Rooted 3-month-old cuttings (15 individuals each of wild
160 type (WT), Empty Vector (EV), RA1 and RA2 isoprene-suppressed lines) were brought to the National
161 Research Council (CNR) research area in Florence (Italy). The saplings were initially grown in 2 L pots
162 containing soil substrate (25%), silica sand (25%), perlite (50% v/v) and slow release fertilizer. Young

163 saplings were soon transplanted to 7 L pots (for 2 months) and later transplanted to 18 L pots with the
164 same soil substrate. Poplars were watered regularly and acclimated to natural seasonal variation in sun
165 light intensity, photoperiod, temperature, and humidity in a CNR experimental facility for genetically
166 modified organisms. After the first season (from April 2018 until December 2018), the main stems were
167 pruned to get stubs (1.5 m) without any leaves or branches. These rooted-stem cuttings from year 1
168 were transferred to 40 L pots in February of year 2. Budbreak commenced in March, and the second
169 seasonal monitoring of leaf development and senescence went on until December 2019. The
170 microclimate data in the experimental site for the two years of the experiment was gathered from the
171 weather monitoring and modelling centre maintained by Consorzio LaMMA of CNR.

172

173 **Plant developmental phenotyping**

174 *Arabidopsis*: The day *Arabidopsis* seeds germinated was noted day 0. Leaf samples were collected at
175 six time points during the plant's lifecycle, classified on the basis of days after germination (DAG) and
176 flowering. Leaves were numbered according to their order of emergence from base to apex, excluding
177 cotyledon leaves. Leaves in position 7, 8, 9, and 10 from the base (the biggest leaves) were marked. A
178 first batch of plants was grown under the same light intensity at which plants germinated (100 μmol
179 photons $\text{m}^{-2} \text{s}^{-1}$). For this batch, leaves were sampled at 28 DAG (youngest stage sampled), 36 DAG
180 (leaves 7 and 8 fully expanded), 48 DAG (fully mature plant body, prior to bolting), 56 DAG (early-
181 senescence phase, inflorescence seen in all four lines), 64 DAG (mid-senescence phase), and finally at
182 76 DAG (late-senescence phase, near-end of lifecycle). Inflorescence was cut and weighed at 56, 64
183 and 76 DAG. A second batch of *Arabidopsis* plants were grown under 200 μmol photons $\text{m}^{-2} \text{s}^{-1}$, and
184 leaves in positions 7, 8, 9, and 10 were sampled at 24, 28, 36, and 48 DAG respectively.

185 *Poplar*: Poplar leaves were tagged at the time of emergence. Leaves were grouped into three categories.
186 (1) Spring leaves (emerging in May and later constituting the lower leaves of the main stem) (2) Summer
187 leaves (emerging July and representing the intermediate leaves of the stem), and (3) Autumn leaves
188 (emerging in September and representing the apical leaves of the stem, at the end of the season). Leaf
189 area was measured using a LI-3000 portable area meter (LI-COR Biosciences Inc., USA). Apical
190 extension was measured once every fortnight to once a month, and sub-seasonal trends in apical growth

191 rate were calculated. At the end of growing season, branching pattern was quantified by marking the
192 branches (from base to apex) and by measuring their length and fresh weight post-harvest.

193

194 **Measurements of gas exchange and calculation of energy status and kinetic parameters**

195 *Arabidopsis*: Net photosynthesis (P_n), stomatal conductance (g_s), transpiration rate (T_r), and intercellular
196 CO_2 concentration (C_i) were measured on fully expanded leaves in positions 8 to 12 ($N=5$ individual
197 plants) before flowering (40 to 48 DAG) and after flowering (64 to 72 DAG). Measurements were made
198 between 11 am and 3 pm, using a LICOR 6400 infrared gas analyser (LI-COR Biosciences Inc., USA).
199 Leaves clamped in the circular leaf cuvette (area: 2 cm^2) were maintained at 20°C , light intensity was
200 set to $150 \mu\text{mol m}^{-2} \text{ s}^{-1}$ for low-light acclimated plants and $250 \mu\text{mol m}^{-2} \text{ s}^{-1}$ for high-light acclimated
201 plants, volatile-free clean air was humidified to achieve $\sim 40\%$ RH (leaf to air vapour pressure deficit
202 was 0.9 to 1.2 kPa) and CO_2 concentration was $400 \mu\text{mol mol}^{-1}$.

203 *Poplar*. In poplar leaves, all gas exchange measurements were carried out using a LI-COR 6400XT
204 between 10 am and 3 pm, on bright sunny days, and on individual leaves at three to four stages of a leaf
205 lifecycle (see above). Leaf temperature was $24 \pm 1^\circ\text{C}$ in April, $28 \pm 1^\circ\text{C}$ in June/July, $24 \pm 1^\circ\text{C}$ in
206 September/October, and $20 \pm 1^\circ\text{C}$ in November/December. In all measurements the relative humidity
207 was maintained between 40 and 65%, and the light intensity was set to $1500 \mu\text{mol m}^{-2} \text{ s}^{-1}$ (except for
208 leaves senescing in Nov/Dec, when light intensity was set to $1000 \mu\text{mol m}^{-2} \text{ s}^{-1}$).

209 Photosynthesis response to increases and decreases in CO_2 concentration was recorded in poplar leaves
210 throughout their lifecycle. V_{cmax} (maximum carboxylation rate of Rubisco) and J (instantaneous electron
211 transport rate) were estimated by fitting net assimilation rate (P_n) vs. C_i curves using excel based curve-
212 fitting tools (e.g. Sharkey. 2016; Bellasio et al. 2016). The chloroplast energy status of the leaves was
213 quantified using the following equations:

214
$$R_l = \frac{1}{12} [J - 4 (P_n + R_d)] \quad (1)$$

215
$$J_c = \frac{1}{3} [J + 8 (P_n + R_d)] \quad (2)$$

216
$$J_o = \frac{2}{3} [J - 4 (P_n + R_d)] \quad (3)$$

217
$$V_o = \frac{1}{6} [J - \frac{2}{3} (P_n + R_d)] \quad (4)$$

218
$$V_c = (P_n + R_d) + \frac{1}{2}V_o \quad (5)$$

Term	Description
P_n	Net rate of CO_2 uptake per unit of projected leaf area ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
C_i	Intercellular CO_2 concentration ($\mu\text{mol mol}^{-1}$)
J	Instantaneous electron transport rate ($\mu\text{mol e}^{-} \text{m}^{-2} \text{s}^{-1}$)
J_c	Proportion of J utilised for carboxylation of RuBP by Rubisco
J_o	Proportion of J utilised for oxygenation of RuBP by Rubisco (photorespiration)
K_m	Effective Michaelis-Menten coefficient for carboxylation by Rubisco (at 25 °C)
R_d	Day mitochondrial respiration rate ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
R_l	Photorespiration rate ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
$V_{c\max}$	Maximum rate of RuBP carboxylation by Rubisco ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
V_c	Rate of carboxylation by Rubisco
V_o	Rate of oxygenation by Rubisco

219

220 **Measurements of imaging chlorophyll fluorescence**

221 The maximal quantum yield of chlorophyll fluorescence (F_v/F_m) and the electron transport rate were
 222 estimated by chlorophyll fluorescence imaging using a Walz Imaging PAM (Heinz Walz, Germany).
 223 For *Arabidopsis* grown in low light ($100 \mu\text{mol m}^{-2} \text{s}^{-1}$) whole plants (<28 DAG) and leaves cut from
 224 fully mature plants (>42 DAG, except WT line) were used during imaging. In poplars, individual cut
 225 leaves were sampled at 30, 60, 90, 120, and 180 days after emergence (DAE) and used for fluorescence
 226 measurements. All leaves were dark-adapted for 30 min before imaging.

227

228 **Isoprene sampling and quantification**

229 Isoprene sampling was done from fully expanded leaves in position 9, 10, 11, and 12 (between stage 2
 230 and 3) for *Arabidopsis*, and fully mature spring, summer, and autumn leaves of poplars. A portion (300
 231 mL min^{-1}) of the LI-COR cuvette outflow was diverted using a mass flow pump (AC Buck Inc. FL,
 232 USA) onto a cartridge filled with absorbents (30 mg each of Carbosieve X and Carbosieve B, Supelco,
 233 USA). Isoprene from emitting lines was quantified using thermal desorption gas chromatography-mass
 234 spectrometry (after Dani et al. under review). Briefly, an Agilent 5975 gas chromatograph-mass
 235 spectrometer (GC-MS) system was fitted with an HP-INNOWax (50 m length, 0.2 mm ID, 0.4 μm film)
 236 column. Thermal desorption was executed by a Twister® multipurpose autosampler and TD unit
 237 (Gerstel Technologies, Germany) fitted with an e-Trap cryofocussing system (Chromtech, Germany).
 238 The GC separation programme was 40 °C for 1 min, reaching 110 °C at 5 °C min^{-1} , held for 10 min, and

239 then increased to 260 °C at 30 °C min⁻¹ and held for 2 min. Isoprene standards were prepared in 2 L
240 Tedlar bags (Sigma-Aldrich, USA) containing nitrogen, and analysed as above. Samples collected from
241 the cuvette headspace containing control lines were treated as zero-isoprene controls.

242

243 **Extraction and quantification of cytokinins**

244 Cytokinins (CKs) were extracted from leaves harvested in positions 7 to 10 (sampled at 28, 36 and 48
245 DAG) in *Arabidopsis*, and from spring, summer and autumn leaves of poplars at different stages of leaf
246 lifecycle (soon after emergence, 60 and 90 days after emergence, and during late phases of senescence).
247 CKs were extracted in acidified aqueous methanol, purified by two solid-phase extraction (SPE) steps
248 and subsequently measured with LC-MS/MS (after Schäfer et.al. 2014). Briefly, 30 to 400 mg ground
249 plant tissue was extracted twice with 800 µL MeOH:H₂O:HCOOH (15:4:1) at -20 °C. Deuterated
250 internal CK standards in the form of 0.2 ng [²H₆] IPR, 0.2 ng [²H₅] tZR, and 1 ng [²H₅] tZ were
251 supplemented in the first extraction step (standards from OlChemIm s.r.o., Czech Republic). Extraction
252 and SPE were performed in 96 Well BioTubes (Arctic White LLC) and 96-Well Deep Well Plates
253 (Thermo Scientific). The first SPE step was performed on a Multi 96 HR-X column (Macherey-Nagel,
254 www.mn-net.com/us/chromatography/) conditioned with extraction buffer. The flow through was
255 collected and the MeOH was evaporated at 42 °C under constant nitrogen flow. Then, 850 µL of 1 M
256 HCOOH was added to the samples and loaded on a Multi 96 HR-XC column (Macherey-Nagel) pre-
257 conditioned with 1 M HCOOH. Sequentially 1 mL each of 1 M HCOOH, MeOH, 0.35 M NH₄OH were
258 added and eluted. Finally, CKs were eluted with 1 mL 0.35 M NH₄OH in 60% MeOH. The second SPE
259 was performed using a Chromabond Multi 96 vacuum chamber. After evaporation, samples were
260 reconstituted in 50 µL 0.1% acetic acid (after Zhang et.al. 2016). CKs were chromatographically
261 separated on a Zorbax Eclipse XDB-C18 column (50×4.6 mm, 1.8 µm) at 25 °C fitted to an Agilent
262 1200 HPLC system (Agilent Tech, USA). Solvent A (water, 0.05% HCOOH) and solvent B
263 (acetonitrile) mixture was supplied at 1.1 mL min⁻¹ [0 to 0.5 min, 95% A; 0.5 to 5 min, 5 to 31.5% B in
264 A; 5 to 6.5 min, 100% B; and 6.5 to 9 min 95% A]. The LC was coupled to an API 6500 tandem mass
265 spectrometer (AB Sciex, Germany) equipped with a Turbospray ion source and quadrupole mass

266 analyser. The MS was in positive ionization mode (MRM modus) to monitor analyte parent to product
267 ion conversion (Table S1). Data was acquired and processed using Analyst 1.6.3 software (AB Sciex).

268

269 **RNA extraction, library preparation, RNA-seq and differential gene expression analysis**

270 Fully-expanded *Arabidopsis* leaves in position 8, 9, 10 (from the base) were sampled from 8 individuals
271 per each line before flowering i.e., 36 to 40 days after germination (DAG) under low-light treatment,
272 and 28 to 36 DAG under high-light treatment. Summer leaves from poplars were sampled from four
273 individuals (per line) at 60 and 90 days after emergence (DAE). Leaves were frozen in liquid nitrogen
274 and stored at -80 °C. *Arabidopsis* leaves were pooled (2 to 3 individuals forming one biological
275 replicate) to get sufficient starting material for RNA extraction. Leaves from two *Arabidopsis* lines
276 (non-emitting EV-B3 control and isoprene-emitting ISPS-C4) and two poplar lines (emitting WT
277 control and isoprene-suppressed RA1) were selected for RNA-seq. Sampled leaves were ground in
278 liquid nitrogen and total RNA was extracted from approximately 100 mg of ground leaf material (three
279 biological replicates per genotype, per leaf life-stage) using the mirPremier Isolation Kit (Sigma-
280 Aldrich) following the manufacturer's instructions. Ribosomal RNA depleted strand-specific RNA
281 libraries were generated (in triplicate) using the Illumina TruSeq Stranded Total RNA library
282 preparation kit with Ribo-Zero Plant (Illumina Inc., San Diego, CA, USA). Libraries were quantified
283 using Agilent 2100 Bioanalyzer RNA assay (Agilent Technologies, Santa Clara, CA), pooled in
284 equimolar amount and sequenced on a single lane on the Illumina NovaSeq 6000 sequencer to get 150
285 bp paired-end reads (2×15 million total reads). Images from the instruments were processed following
286 the manufacturer's software pipeline to generate FASTQ sequence files.

287 Adaptor sequences and low quality 3' ends were removed from short reads using respectively
288 CUTADAPT (Martin, 2011) and ERNE-FILTER (Del Fabbro et al. 2013). After trimming, only pairs
289 with both reads longer than 50 bp were retained. Trimmed reads were aligned against the *Populus*
290 *tremula* v2.2 reference genome (ftp://plantgenie.org/Data/PopGenIE/Populus_tremula/v2.2) and the *A.*
291 *thaliana* (TAIR10) reference genome (<http://www.arabidopsis.org>) using STAR v2.7.2b (Dobin et al.
292 2013) with default parameters. The htseq-count python utility (Anders et al., 2015) was used to calculate
293 gene-based read count values considering only uniquely mapping reads. The HTSeq count data were

294 used as the input to measure differential gene expression using the Bioconductor package DESeq2
295 v1.14.1 (Love et al. 2014) implemented in R. The raw counts of each gene were normalized to adjust
296 for different sequencing depths across samples.

297

298 **Statistical analysis**

299 Normality of observed values (within lines) was tested using the Kolmogorov-Smirnov test. Differences
300 in means among lines for net photosynthesis, electron transport rate, stomatal conductance, above
301 ground biomass, and inflorescence weight (only *Arabidopsis*) were tested by one-way analysis of
302 variance (ANOVA) followed by a post-hoc Tukey's multiple comparison test ($N \geq 10$ biological
303 replicates per line, $\alpha=0.05$). Differences in poplar photosynthesis and chloroplast energy status were
304 tested using data collected from >5 leaves per individual at each sampled leaf age ($N \geq 6$ biological
305 replicates per line). Differences in isoprene emission rate and cytokinin abundance was verified by
306 either Kruskal-Wallis H test for comparing medians ($N \geq 4$; $\alpha=0.05$) or by Games-Howell test for
307 comparing means when variances were unequal ($N \geq 4$; $\alpha=0.05$, for F stats from ANOVA see Tables
308 S2 to S4). Differentially expressed genes (from DESeq) were identified using pairwise comparisons at
309 an adjusted p -value (FDR) threshold of ≤ 0.01 for determining significance. Transcripts with $\log_2[\text{fold}$
310 $\text{change}] > +1.5$ and <-1.5 at $p_{\text{adj}} < 0.001$ were considered biologically significant, truly sensitive to
311 presence or absence of isoprene, and shortlisted for functional interpretation. The foldchange heatmap
312 was generated using the open source Morpheus (<https://software.broadinstitute.org/morpheus>) matrix
313 visualization application. All other statistical tests were carried out using Minitab 18.1 statistical
314 package (Minitab Inc, USA).

315

316 **Results**

317 ***Leaf and plant developmental phenotype***

318 *Arabidopsis*: The above-ground biomass increased at a significantly greater rate during early
319 developmental stages in isoprene-emitting *Arabidopsis* lines than in the non-emitting controls under
320 both light regimes (Fig. 1A, 1D, see Table S2 for F statistics). Both ISPS-B2 and C4 lines started to
321 bear flowers significantly sooner than non-emitting controls, and completed inflorescence growth by

322 64 DAG, while the non-emitting controls showed inflorescence growth until 76 DAG (Fig. 1C).
323 Advancing and faster completion of flowering and inflorescence growth in isoprene-emitting lines was
324 more pronounced under the high-light regime (Fig. 1F).
325 Non-emitting controls continued to grow at later stages (>48 DAG) and both ISPS-B2 and C4 lines had
326 significantly lower body mass at the end of 76 DAG compared to non-emitting controls (Fig. S1C). The
327 early-emerging leaves (positions 7 to 12 from the rosette base excluding cotyledons) were significantly
328 bigger in the isoprene-emitting lines than in non-emitting controls. In contrast, the late-emerging leaves
329 (towards the rosette apex) were bigger in control lines than in isoprene-emitting lines (Fig. S1D).

330
331 *Poplar*: Apical growth rate in isoprene-emitting (WT and EV) lines was significantly greater than the
332 RANi isoprene-suppressed (RA1 and RA2) lines during summer (July-September 2018), but the
333 difference became less prominent during early-autumn (October 2018, Fig. 2A). The difference in
334 apical growth rate was most pronounced during mid-summer (July 1 to Aug 15), when the average day
335 temperature was 36 ± 2 °C between 11 am and 4 pm (Fig. 2A). When averaged for the whole growing
336 season the apical growth rate remained significantly higher in isoprene-emitting lines. These trends
337 were conserved during the following summer. The leaf area of isoprene-emitting poplars was bigger
338 than in RA1 and RA2 only in some leaves emerging in mid-summer (Fig. 2B), whereas all other leaves
339 showed similar phenotypes. Bigger leaves of isoprene-emitting poplar lines showed significantly lower
340 fresh weight to dry weight ratio (4.4 ± 0.18), hence lower tissue density compared to isoprene-
341 suppressed lines (4.1 ± 0.09). The isoprene-suppressed poplars showed a distinct plant architecture at
342 the end of the growing season, with lower apical stems, longer lower branches and a bushier appearance
343 compared to isoprene-emitting controls (Fig. 2C).

344
345 **Photosynthesis and leaf energy status**
346 *Arabidopsis*: Isoprene-emitting ISPS-B2 and ISPS-C4 *Arabidopsis* lines showed lower P_n compared to
347 non-emitting controls under low-light regime (Fig. 3A; measured only on fully expanded leaves before
348 and after flowering). However, electron transport rate and stomatal conductance were not different in
349 isoprene-emitting and non-emitting lines (Fig. S2A, S2B, S2C). All lines showed equivalent

350 photosynthetic rates under high-light except ISPS-C4 leaves that showed the highest P_n at 28 DAG
351 (before flowering). After flowering, P_n declined significantly in all lines. The decline was steeper and
352 more significant in isoprene-emitting lines in both low-light and high-light regimes (Fig. 3A, 3B).
353 Chlorophyll fluorescence maximal quantum yield decreased significantly more in older (76 DAG)
354 rosette leaves of the isoprene-emitting ISPS-C4 line (Fig. 3C).

355

356 *Poplar*: Net photosynthetic rate of summer leaves was not significantly different among lines at 30 and
357 60 DAE (Fig. 4A). Both spring- and summer-emerging leaves of RA1 and RA2 isoprene-suppressed
358 lines showed a significantly higher P_n than WT and EV isoprene-emitting leaves at older leaf age (≥ 90
359 DAE, Fig. 4A, S3). V_{cmax} was higher in non-emitting RA1 summer leaves at 60 DAE and it remained
360 significantly higher in older (≥ 90 DAE) leaves of both RA1 and RA2 (Fig. 4B).

361 Measurements of chlorophyll fluorescence further showed that age-dependent decline of photosynthetic
362 electron transport rate (ETR) and maximum quantum yield of photosystem II occurred earlier in
363 isoprene-emitting than in non-emitting leaves (≥ 90 DAE, Fig. 4C, 4D). Emitting and non-emitting
364 leaves showed no significant difference in their maximum carboxylation rate by Rubisco (V_{cmax}) when
365 young (30 DAE). Photorespiration rate was significantly greater in RA1 and RA2 summer leaves at 30
366 and 60 DAE compared to isoprene-emitting controls (Fig. 5A), although the difference became less
367 prominent in older leaves. While there was no difference in ETR among healthy emitting and non-
368 emitting poplar leaves (< 60 DAE; not shown), the relative strength of energy sinks differed
369 significantly among poplar leaves. The proportion of electrons allocated to photosynthetic carbon
370 reduction (J_c) was comparable in isoprene-emitting and non-emitting lines (Fig. 5C) while those
371 allocated to oxygenation (J_o) was significantly higher in non-emitting younger leaves (30 and 60 DAE;
372 Fig. 5D). In contrast, J_c in older isoprene-emitting leaves (> 90 DAE) was significantly lower than that
373 in non-emitting leaves, which corresponded to declining V_{cmax} (Fig. 4B, S3), and increasing ratio of
374 oxygenation to carboxylation by Rubisco in older emitting leaves (120 DAE; Fig. 5B).

375

376 ***Isoprene emission and cytokinin abundance***

377 *Arabidopsis*: Isoprene-emitting ISPS-C4 *Arabidopsis* line emitted isoprene at a higher rate than ISPS-
378 B2 line. No isoprene was detected from non-emitting controls (Fig. 6A). Isoprene-emitting *Arabidopsis*
379 (sampled at 36 DAG and 48 DAG) showed significantly greater abundance of iPR (isopentenyladenine
380 riboside) and iP (isopentenyladenine) compared to non-emitting lines (Fig. 6 B-E). Even tZR (Fig. S5A,
381 S5B) and cZR (Fig. S5E, S5F) were enriched in isoprene-emitting *Arabidopsis* than in non-emitting
382 lines under low-light regime (not in high-light regime). In *Arabidopsis*, the total CK-riboside level was
383 higher in ISPS-C4, which emitted isoprene at a higher rate, showed faster growth, flowered earliest,
384 and completed lifecycle sooner than the other isoprene-emitting line ISPS-B2.

385 *Poplar*: Both WT and EV summer leaves emitted >50 nmol isoprene $m^{-2} s^{-1}$, while RA1 and RA2 leaves
386 emitted very little (but detectable) amount of isoprene (Fig. 7A). Mature WT and EV poplar leaves (60
387 DAE) showed significantly greater abundance of iPR and iP (7B, 7C). Abundance of tZR was not
388 always associated with higher levels of active tZ, although abundance of tZOG was proportional to tZ
389 and higher in isoprene emitting-leaves (Fig. 7D, 7E).

390

391 ***Differential gene expression inferred from RNA-seq***

392 *Arabidopsis*: Isoprene-emitting leaves (line ISPS-C4) showed differential expression of 60 genes under
393 low-light, and 684 genes ($\log_2[\text{fold change}] > [+1.5, <-1.5]$; $p_{\text{adj}} < 0.001$) under high-light acclimation
394 compared to non-emitting leaves (line EV-B3) of the corresponding light-acclimation group (Fig. 8).
395 Cytokinin oxidase/dehydrogenase were overexpressed in high-light acclimated isoprene-emitting
396 leaves (Fig. 8; Gene IDs: AT2G41510, *CKX1*; AT3G63440, *CKX6*; $\log_2[\text{foldchange}] > 1.5$; $p_{\text{adj}} = 0.008$
397 and <0.0001 respectively). Genes coding for chloroplast-specific SIGMA factors and those indicating
398 plastid division were upregulated in isoprene-emitting *Arabidopsis* both under low-light and high-light.
399 Several senescence-associated NAC transcription factors were greater in abundance in isoprene-
400 emitting leaves under low-light and more significantly under high-light regimes. Transcripts coding for
401 *Arabidopsis CONSTANS-like 9 (COL9*; Gene ID: AT3G07650.1, Seq. ID: NM_001125127.2, $\log_2[\text{fold}$
402 $\text{change}] <-4.7$; $p_{\text{adj}} < 0.0001$) and *EARLY FLOWERING4 (ELF4*; Gene ID: AT2G40080, Seq. ID:

403 NM_129566.2; $\log_2[\text{fold change}] < -2.9$, $p_{\text{adj}} < 0.0001$), were significantly depleted in isoprene-emitting
404 *Arabidopsis* leaves (high-light regime, Fig. 8).

405 *Poplar*: Suppression of isoprene emission in poplar (line RA1) caused highly significant change
406 ($p_{\text{adj}} < 0.001$) in the expression level of 1430 genes in mature fully-expanded leaves (60 DAE) and 5392
407 genes in older senescing leaves (90 DAE), relative to isoprene-emitting leaves (line WT) of same age.
408 The most prominent $\log_2[\text{fold change}] > [+1.5, <-1.5]$ was observed for 266 genes at 60 DAE, and 934
409 genes at 90 DAE. Genes involved in cytokinin metabolism viz. *LOG1* and *LOG3* (*LONELEY GUY*
410 family) both coding for cytokinin riboside 5'-monophosphate phosphoribohydrolase that converts
411 inactive CKs to active free bases, and two genes coding for CK oxidase/dehydrogenase (*CKX5* and
412 *CKX7*) that breaks down CKs were significantly down-regulated in isoprene-suppressed RA1 at 60
413 DAE ($\log_2[\text{fold change}] < -1.5$; $p_{\text{adj}} < 0.00001$). Poplar SIGMA factors were downregulated in isoprene-
414 suppressed leaves (60 DAE, Fig. 9). Poplar orthologs of *Arabidopsis* *COL9* and *ELF3* were enriched in
415 isoprene-suppressed leaves (*ELF3*, $\log_2[\text{fold change}] = 3.5$; and *COL9*, $\log_2[\text{fold change}] = 2.3$;
416 $p_{\text{adj}} < 0.0001$, Fig. 9). Transcripts from heat shock proteins (33 genes coding for various HSP20, HSP70
417 and HSP90 class proteins) were without exception significantly fewer in isoprene-suppressed poplar
418 leaves. Abundance of many transcripts declined significantly in early-senescing isoprene-emitting WT
419 leaves at 90 DAE, while non-emitting RA1 leaves at 90 DAE remained comparable to their younger
420 versions at 60 DAE. Pairwise comparison between summer WT leaves sampled at 60 DAE and 90 DAE
421 (marking their senescence course), showed that NAC transcription factors (senescence-associated) were
422 significantly upregulated (Fig. S6), while Rubisco-SSU, carbonic anhydrase, and heat shock proteins
423 (HSPs) were downregulated in senescing (90 DAE) isoprene-emitting leaves.

424

425 **Discussion**

426 *Isoprene accelerates plant growth rate, strengthens apical dominance, and induces early leaf and plant*
427 *senescence*

428 We had hypothesized that isoprene emission may directly affect leaf hormonal status, particularly of
429 isoprenoid-type cytokinins synthesised by the MEP pathway. Significantly high levels of

430 isopentenyladenine riboside (iPR) and its free base derivative isopentenyladenine (iP) in the leaves of
431 both isoprene-emitting *Arabidopsis* (an annual herb) and poplar (a perennial tree) show that indeed
432 isoprene emission has a direct positive impact on the plastid-localised synthesis of isoprenoid-type CKs
433 via the MEP pathway. We found consistent phenotypic patterns in both model systems, as isoprene-
434 emitting *Arabidopsis* and poplar showed faster growth (Figs. 1A, 1D, 2A), early leaf senescence (Fig.
435 4A, 5A), and a whole plant phenotype that was distinct from non-emitting lines (Figs. 1B, 1E, 2C).
436 Isoprene has long been shown to stabilise the photosynthetic apparatus under heat and photooxidative
437 stresses (e.g. Sharkey and Singsaas, 1995; Velikova et al. 2011; Pollastri et al. 2019). However, going
438 beyond known physico-mechanical effects of isoprene, we show (in the remaining discussion) a more
439 fundamental and nuanced life-defining role for leaf isoprene emission by its influence on cytokinin
440 synthesis, abundance, hormone-mediated gene regulation, and in shaping plant growth strategies. Our
441 hypothesis and the supporting evidence satisfactorily explain many of the observed metabolic and
442 phenotypic differences between isoprene-emitting and non-emitting plants.

443

444 In some ways, it is paradoxical that high CK-riboside abundance led to faster leaf senescence in
445 isoprene-emitting *Arabidopsis* and poplar. A host of two-component signal transduction / response
446 regulators were upregulated in isoprene-emitting leaves (both *Arabidopsis* and poplar, Figs 8, 9), which
447 is consistent with the expected higher activity of CKs. However, we also observed an equivalent and
448 significant overexpression of genes coding for cytokinin oxidase/deoxygenase (CKX) in isoprene-
449 emitting leaves (both *Arabidopsis* and poplar, Figs 8, 9). This suggested greater degradation and
450 recycling of isoprenoid-CKs, explained faster development and early senescence in presence of
451 isoprene. Enrichment of transcripts coding for senescence associated NAC transcription factors in both
452 *Arabidopsis* and poplar was also consistent with their early-senescence phenotypes.

453

454 Greater apical growth rate and less branching in isoprene-emitting poplars (Fig. 2A, 2C) was another
455 distinct phenotypical change, which suggests strengthening of apical dominance (especially during the
456 early phases of growth) in presence of isoprene, potentially driven by a shift in auxin to CK ratio and
457 hormonal signal transduction throughout the plant body. As iPR is transported in the phloem from

458 leaves to other plant parts (e.g. Hirose et al. 2008), it is possible that excess CKs in isoprene-emitting
459 leaves is transported from the leaves to all meristems, leading to greater CK activity and faster tissue
460 differentiation and expansion. This gives the early growth advantage (and stronger apical dominance)
461 to isoprene-emitting plants described above. The *LOG* genes, coding for CK-riboside monophosphate
462 phosphoribohydrolases involved in activation of CKs and regulation of shoot apical meristematic
463 growth (Kurakawa et al. 2007; Kuroha et al. 2009), were significantly overexpressed in apically
464 dominant isoprene-emitting WT poplars (60 DAE, Fig. 9). Thus, isoprene emission or its absence in
465 leaves appears to affect CK availability throughout the plant body and one of the consequences is likely
466 an altered ratio between auxin and CKs in apical meristems. A recent study reported comparable total
467 biomass accumulation in field-grown (older) isoprene-emitting and suppressed poplar trees (Monson et
468 al. 2020). While we observed a different within plant distribution of biomass (stem to branch ratio) in
469 isoprene-emitting and non-emitting lines, the total biomass among poplar lines was comparable even in
470 our study.

471

472 Isoprene emission also enhanced the abundance of leaf tZR (trans-zeatin riboside, Fig. S4A) which is
473 synthesized mostly in the roots and transported via xylem sap to shoots and leaves (Sakakibara 2006),
474 and also the less active cZR (cis-zeatin riboside, Fig. S4E) originating mostly in the cytosol via
475 prenylation of select tRNAs (Schäfer et al. 2015). High abundance of tZR (*Arabidopsis*) and tZOG
476 (poplar) in isoprene-emitting leaves (synthesised mostly in the roots and also via the foliar MEP
477 pathway; Kasahara et al. 2004), suggests that (a) translocation of these CK-conjugates from roots to
478 leaves is enhanced in presence of isoprene and/or (b) synthesis of all zeatins is locally upregulated in
479 isoprene-emitting leaves. Bigger and thinner leaves of isoprene-emitting *Arabidopsis* and in some
480 isoprene-emitting poplar leaves (depending on the season of emergence) could be driven by the
481 changing ratio of CK-riboside to CK-free bases since both tZR and tZ are implicated in leaf size
482 determination (Osugi et al. 2017). Knowing which CK-species are active in what tissues, and when
483 during leaf development was beyond the scope of this study. We do not know if substrate outflow from
484 the chloroplast to cytosolic mevalonate pathway played a role in enhancing cZR abundance in presence
485 of isoprene. Since several cytokinin response regulators were differentially expressed in presence of

486 isoprene in both *Arabidopsis* and poplar, we speculate that active CKs such as iP and tZ behave
487 differently and are discriminated by typical two-component response regulators involved in CK-signal
488 transduction in isoprene-emitting leaves.

489

490 *Isoprene does not influence photosynthesis in young leaves but reduction of photosynthesis marks early*
491 *senescence in mature leaves*

492 Net photosynthetic rate (P_n) in isoprene-emitting poplar leaves (<60 DAE) was generally greater than
493 in isoprene-suppressed lines, although this was not always significant (Fig. 4A, Fig. S3A). However, leaf
494 position and time of emergence (i.e. the age of leaves when they experienced the hottest period of
495 summer) had an impact on how P_n of individual leaves responded to seasonal changes in temperature
496 and when they underwent senescence (Fig. 4A, Fig. S3A). As there was no difference in maximum
497 photochemical yield of PSII and instantaneous photosynthetic electron transport rate among poplar lines
498 (at <60 DAE), isoprene emission likely has limited impact on light reactions of photosynthesis at least
499 in young healthy leaves. As in poplars, electron transport rate and the effective quantum yield of
500 photosystem II in isoprene-emitting lines was equal to that of non-emitting *Arabidopsis* (Fig. S1A) and
501 presumably photosynthesis during early-development (not measurable due to the tiny size of leaves)
502 was similar among all *Arabidopsis* lines under low-light. It is likely that faster expansion of isoprene-
503 emitting *Arabidopsis* leaves might have increased their specific leaf area (thin and less heavy)
504 contributing to lower P_n under low-light (Fig. 3A). However, isoprene-emitting ISPS-C4 *Arabidopsis*
505 showed the highest P_n of all leaves (Fig. 3B), and genes coding for LHCs in photosystems I and II were
506 significantly less suppressed by high-light in ISPS-C4 (Fig. S5), suggesting isoprene-mediated
507 attenuation of high-light suppression of light reactions of photosynthesis. This effect was not evident in
508 poplars likely because they were acclimated to full sun light and hot weather. However, both P_n and
509 F_v/F_m (dark-adapted) declined sooner in older senescent leaves of isoprene-emitting *Arabidopsis* under
510 both low-light and high-light (Figs. 3A-C) and also in older summer-leaves of isoprene emitting poplars
511 (>90 DAE; Figs. 4A, 4C). Both confirming early decline of photosynthesis and faster age-specific
512 downregulation of photosystem II in presence of isoprene. Whilst isoprene-suppression did not always

513 negatively affect P_n in younger leaves, the abundance of transcripts coding for Rubisco SSU, GAPDH,
514 carbonic anhydrase, and chloroplast RNA-polymerase facilitating SIGMA factors were significantly
515 fewer in isoprene-suppressed poplar leaves compared to emitting leaves (60 DAE, Fig. 9), suggesting
516 overall downregulation of chloroplast metabolism in isoprene-suppressed leaves. In contrast, SIGMA
517 factors and other transcription factors indicative of chloroplast replication were significantly more
518 abundant in isoprene-emitting *Arabidopsis* leaves (Fig. 8), suggesting acceleration of chloroplast
519 division and metabolism in presence of isoprene.

520

521 There were significant differences in the relative strengths of energy sinks and their leaf age-specific
522 changes in emitting and non-emitting poplar leaves during leaf senescence (not measured in
523 *Arabidopsis*). Isoprene-suppression was associated with an increased rate of photorespiratory carbon
524 loss at 30 and 60 DAE (Fig. 5A) supporting the broader view that isoprene synthesis (via the MEP
525 pathway) and photorespiration are among several co-localised processes in the chloroplast that maintain
526 the energy source-sink equilibrium while photosynthetic carbon reduction acts as the primary energy
527 sink (Jones and Rasmussen 1975; Dani et al. 2014a). While both carboxylation and oxygenation
528 capacities will be low due to breakdown of Rubisco during senescence in cooler (late-autumn) leaves,
529 oxygenation may take precedence as a means of photoprotection (e.g. Kozaki and Takeba, 1996; Heber
530 et al. 1996) in older senescing leaves where low C_i may favour more photorespiration. This may partly
531 contribute to comparable photorespiration rate and J_o in older leaves among all lines (Fig. 5A, 5D),
532 while V_{cmax} , J_c decreased and v_o/v_c increased more significantly and sooner in older isoprene-emitting
533 summer leaves compared to non-emitting leaves (Fig. 4B, 5B, 5C).

534

535 *Isoprene induces stress and defense response genes with limited benefits under stress-free conditions*
536 Our poplars were grown under typical Mediterranean summer temperatures (daily max. > 35 °C).
537 Differential expression of a large group of WRKY factors and ethylene response factors (Figs. S7)
538 involved in abiotic stress responses and a sweeping downregulation of many genes coding for heat
539 shock proteins (HSPs) in isoprene-suppressed poplar leaves (60 DAE), show that isoprene emission
540 directly affects stress-response pathways, and this finding broadly agrees with past empirical proofs

541 showing greater tolerance of isoprene-emitting poplars to intermittent heat (e.g. Behnke et al. 2007),
542 ozone (e.g. Loreto and Velikova 2001) and drought stresses (unpublished). However, the visible
543 downregulation of stress response pathways in RNAi poplars had limited physiological consequence in
544 the study period, which suggested that the conditions were not extreme even for non-emitting poplars.
545 *Arabidopsis* HSPs were reported to be activated during exogenous fumigation with isoprene (Harvey
546 and Sharkey, 2016), but not in our experiments with *Arabidopsis* that made and emitted endogenous
547 isoprene. It is unlikely that isoprene played a thermo and photoprotective role in *Arabidopsis* that were
548 grown at optimal temperature (18 ± 2 °C) and under low light. However, we do not rule out a role for
549 isoprene in priming stress-inducible defense pathways also in *Arabidopsis*. Strikingly, ISPS-C4 also
550 showed the highest isoprene emission rate and CK-riboside levels under both low-light and high-light
551 regimes (Fig. 6A, 6B). We propose that the general stimulation of isoprene emission by transient abiotic
552 stresses (e.g. Sharkey and Loreto 1993; Loreto et al. 2006), likely prevents stress-induced premature
553 leaf senescence potentially also by enrichment of isoprenoid-type CKs in presence of isoprene. While
554 CKs themselves can impart photoprotective benefits (Cortleven and Schmülling, 2015), it is notable
555 that stress induced leaf senescence is characterised by a drop in endogenous CK levels (Pospíšilová et
556 al. 2000) and CK-overexpressing plants can accumulate CK-conjugates, which not only help keep
557 leaves green but also induce photorespiration to prevent photoinhibition under drought (Rivero et al.
558 2007; 2009). Since isoprene-suppressed young leaves (30 to 60 DAE) had an inherently higher
559 photorespiration potential (despite being CK-poor), isoprene-led CK enrichment is expected to be
560 beneficial in older senescing leaves under stressful conditions. However, faster early growth advantage
561 in isoprene-emitting perennials like poplar can also lead to acute transpiration demand and low stomatal
562 conductance under severe heat and drought (pers. Obs.) and high activity of CKs can negatively impact
563 plant survival under prolonged stresses (Nishiyama et al. 2011). Although not verified in our study, the
564 survival probability of isoprene-emitting poplars is predicted to be lower than non-emitting poplars if
565 the abiotic stress is severe and prolonged (see e.g. Taylor et al. 2018). Therefore, high isoprene emission
566 rate and its positive impact on leaf CK reserves likely become disadvantageous when abiotic stresses
567 become prolonged and severe, unless isoprene synthesis is totally suppressed throughout the stress event
568 (e.g. in resurrection plants, Beckett et al. 2012).

569

570 *Isoprene induces early flowering, shortens plant generation time, and potentially accelerates*
571 *diversification of isoprene-emitting lineages*

572 The early flowering in isoprene-emitting *Arabidopsis* lines in both low-light and high-light conditions
573 (Fig. 1C, 1F; also observed by Zuo et al. 2019) is consistent with promotion of flowering by isoprene
574 fumigation in other plants (Terry et al. 1995). It is notable that exogenous CKs (like isoprene) and high
575 endogenous CKs can also promote flowering (Choudhury et al. 1993; Mok, 1994) while CK depletion
576 can delay flowering in annuals (Werner et al. 2003). CK-ribosides and free bases can be enriched when
577 flowering is induced through photoperiodic intervention in annuals (e.g. Bernier et al. 1993; Corbesier
578 et al. 2003). In our experiments, the levels of iPR, iP, and cZR were higher in isoprene-emitting leaves
579 (relative to controls) much before flowering (36 DAG; Fig. S4) and flowering occurred naturally under
580 long-days. Therefore, the high abundance of iPR and cZR in isoprene-emitting leaves sampled before
581 bolting (not observed in non-emitting controls before they flowered relatively later; d.n.s.), supports a
582 role for CKs in inducing early-flowering in presence of isoprene. Overexpression of *CKX* genes in
583 isoprene-emitting leaves and the resulting faster turnover of CKs likely also contributed to advancing
584 of floral induction (e.g. Yang et al. 2003). Significant downregulation of *COL9* and *ELF4*, both negative
585 regulators of flowering time (Covington et al. 2001; Doyle et al. 2002; Cheng and Wang, 2005; Kim et
586 al. 2005), in both isoprene-emitting *Arabidopsis* under high-light may partly account for longer
587 hypocotyls and early flowering in emitting lines (Zuo et al. 2019, also in this study). The *ELF* genes are
588 key regulators of circadian clock and are sensitive to photoperiod also in poplars (Keller et al. 2012)
589 and both *COL9* and *ELF3* were depleted in isoprene-emitting poplar leaves (60 DAE) like in isoprene-
590 emitting *Arabidopsis* (Figs. 8, 9). Faster reproductive maturation and shorter leaf and plant lifespan in
591 isoprene emitting plants are thus linked to potential interaction between isoprene and CK-mediated
592 changes in the circadian and photoperiodic signalling pathways.

593

594 Faster growth and early flowering in isoprene-emitting *Arabidopsis* played a role in preventing the
595 expansion of late-emerging isoprene-emitting leaves (positions 16 and above), which remained smaller
596 while those early-emerging leaves were heavier than their counterparts in non-emitting controls (Fig.

597 S1D). Redistribution of leaf biomass and small apical leaves was partly responsible for low vegetative
598 body mass in emitting lines (particularly ISPS-C4) than non-emitting control lines. Accelerated rate of
599 development in isoprene-emitting *Arabidopsis* not only led to early leaf senescence and early flowering,
600 but also hastened body size maturation and body shrinkage during senescence. Since body size
601 maturation can potentially determine when and how whole-plant senescence proceeds in perennial
602 plants (Dani and Kodandaramaiah, 2019), we hypothesise that the early-riser advantage and the apically
603 dominant (light-competitive) phenotype in naturally isoprene-emitting trees can lead to quicker
604 attainment of body size maturity than in non-emitting taxa. As a result, isoprene-emitting perennial
605 species generally may have shorter generation time (as observed in *Arabidopsis*) and shorter life
606 expectancy than slow growing non-emitting species. Isoprene emission capacity is prevalent among
607 speciose deciduous trees bearing short-lived leaves that are shed seasonally (Dani et al. 2014b). The
608 evidence presented shows how isoprene emission had a role in shortening leaf lifespan and potentially
609 also in faster speciation and diversification of emitting taxa.

610

611 **Conclusion**

612 Isoprene emission in leaves increased cytokinin abundance, accelerated plant growth, and induced early
613 leaf senescence in both poplar and *Arabidopsis*, and in the latter isoprene also induced early flowering
614 and shortened plant lifespan. Faster leaf senescence and shorter lifecycle (shorter lifespan) in isoprene
615 emitting plants suggests that whenever isoprene emission capacity was acquired in a plant lineage, it
616 potentially contributed to their faster growth and diversification by reducing their generation time. As
617 established by numerous experiments, isoprene may impart photosynthetic stability via membrane
618 interactions and antioxidant activity under transient stressful conditions. Our results add credence to a
619 novel primary role for foliar isoprene emission in altering leaf and organismal development and
620 lifespan, potentially via isoprene-led and/or -mediated enrichment of leaf cytokinins (potentially greater
621 activity and recycling of cytokinins) and cytokinin sensitive transcriptional regulation. The
622 presupposition that there are common selection factors governing leaf senescence, organismal lifespan,
623 isoprene emission and CK metabolism in fast-growing plants is empirically supported.

624

625 **Acknowledgements**

626 KGSD and FL thank Jonathan Gershenzon (MPICE, Jena), Michele Morgante (IGA, Udine), Maurizio
627 Capuana and Marco Michelozzi (IBBR-CNR, Florence), and Camilla Pandolfi (UNIFI, Florence) for
628 their support. MR acknowledges the support of the Max Planck Society. This work was fully supported
629 by the EU Horizon2020 programme via the Marie Curie fellowship to KGSD under the grant Leaf-Of-
630 Life (2016, 746821) to FL.

631

632 **References**

633 Anders S, Pyl PT, Huber W (2015). HTSeq - a Python framework to work with high-throughput
634 sequencing data. *Bioinformatics* 31, Issue 2, 166-169. doi:10.1093/bioinformatics/btu638

635 Behnke, K., Ehlting, B., Teuber, M., Bauerfeind, M., Louis, S., Hänsch, R., ... & Schnitzler, J. P. (2007).
636 Transgenic, non-isoprene emitting poplars don't like it hot. *The Plant Journal*, 51, 485-499.

637 Behnke, K., Loivamäki, M., Zimmer, I., Rennenberg, H., Schnitzler, J. P., & Louis, S. (2010). Isoprene
638 emission protects photosynthesis in sunfleck exposed Grey poplar. *Photosynthesis Research*, 104,
639 5-17.

640 Bernier, G., Havelange, A., Houssa, C., Petitjean, A., & Lejeune, P. (1993). Physiological signals that
641 induce flowering. *The Plant Cell*, 5, 1147-1155.

642 Chaudhury, A. M., Letham, S., Craig, S., & Dennis, E. S. (1993). amp1-a mutant with high cytokinin
643 levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis
644 and precocious flowering. *The Plant Journal*, 4, 907-916.

645 Cinege, G., Louis, S., Hänsch, R., & Schnitzler, J. P. (2009). Regulation of isoprene synthase promoter
646 by environmental and internal factors. *Plant Molecular Biology*, 69, 593-604.

647 Corbesier, L., Prinsen, E., Jacqmard, A., Lejeune, P., Van Onckelen, H., Périlleux, C., & Bernier, G.
648 (2003). Cytokinin levels in leaves, leaf exudate and shoot apical meristem of *Arabidopsis thaliana*
649 during floral transition. *Journal of Experimental Botany*, 54, 2511-2517.

650 Cortleven, A., & Schmülling, T. (2015). Regulation of chloroplast development and function by
651 cytokinin. *Journal of Experimental Botany*, 66, 4999-5013.

652 Covington, M. F., Panda, S., Liu, X. L., Strayer, C. A., Wagner, D. R., & Kay, S. A. (2001). ELF3
653 modulates resetting of the circadian clock in *Arabidopsis*. *The Plant Cell*, 13, 1305-1316.

654 Cheng, X. F., & Wang, Z. Y. (2005). Overexpression of *COL9*, a CONSTANS-LIKE gene, delays
655 flowering by reducing expression of *CO* and *FT* in *Arabidopsis thaliana*. *The Plant Journal*, 43,
656 758-768.

657 Doyle, M. R., Davis, S. J., Bastow, R. M., McWatters, H. G., Kozma-Bognár, L., Nagy, F., ... &
658 Amasino, R. M. (2002). The ELF4 gene controls circadian rhythms and flowering time in
659 *Arabidopsis thaliana*. *Nature*, 419, 74-77.

660 Dani, K.G.S., Jamie, I.M., Prentice, I.C. & Atwell, B.J., (2014a). Increased ratio of electron transport
661 to net assimilation rate supports elevated isoprenoid emission rate in eucalypts under drought. *Plant*
662 *Physiology*, 166, 1059-1072.

663 Dani, K.G.S., Jamie, I. M., Prentice, I. C., & Atwell, B. J. (2014b). Evolution of isoprene emission
664 capacity in plants. *Trends in Plant Science*, 19, 439-446.

665 Dani, K.G.S., Fineschi, S., & Loreto, F (2015a). Biogenic volatile isoprenoid emission and levels of
666 natural selection. *Journal of the Indian Institute of Science*, 95, 1-14.

667 Dani, K.G.S., Jamie, I.M., Prentice, I.C., & Atwell, B.J. (2015b). Species-specific photorespiratory rate,
668 drought tolerance and isoprene emission rate in plants. *Plant Signaling & Behavior*, 10, e990830.

669 Dani, K.G.S., Fineschi, S., Michelozzi, M., & Loreto, F. (2016). Do cytokinins, volatile isoprenoids
670 and carotenoids synergically delay leaf senescence? *Plant, Cell and Environment* 39, 1103-1111.

671 Dani, K.G.S., Kodandaramaiah, U. (2019) Ageing in trees, Role of body size optimization in
672 demographic senescence, *Perspectives in Plant Ecology, Evolution, and Systematics*, 36, (page
673 number yet to be assigned, in press).

674 Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM (2013). An Extensive Evaluation of Read
675 Trimming Effects on Illumina NGS Data Analysis. *PLoS One* 8, e85024.
676 <https://doi.org/10.1371/journal.pone.0085024>

677 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR
678 (2013). STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21.

679 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of
680 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols
681 from Nature). *Atmospheric Chemistry and Physics*, 6, 3181-3210.

682 Guo, Y., & Gan, S. S. (2014). Translational researches on leaf senescence for enhancing plant
683 productivity and quality. *Journal of Experimental Botany*, 65, 3901-3913.

684 Harvey, C. M., & Sharkey, T. D. (2016). Exogenous isoprene modulates gene expression in unstressed
685 *Arabidopsis thaliana* plants. *Plant, Cell & Environment*, 39, 1251-1263.

686 Heber, U., Bligny, R., Streb, P., & Douce, R. (1996). Photorespiration is essential for the protection of
687 the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. *Plant Biology*,
688 109: 307-315.

689 Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H., & Sakakibara, H. (2007).
690 Regulation of cytokinin biosynthesis, compartmentalization and translocation. *Journal of*
691 *Experimental Botany*, 59, 75-83.

692 Kasahara, H., Takei, K., Ueda, N., Hishiyama, S., Yamaya, T., Kamiya, Y., ... & Sakakibara, H. (2004).
693 Distinct isoprenoid origins of cis-and trans-zeatin biosyntheses in *Arabidopsis*. *Journal of*
694 *Biological Chemistry*, 279, 14049-14054.

695 Keller, S. R., Levsen, N., Olson, M. S., & Tiffin, P. (2012). Local adaptation in the flowering-time gene
696 network of balsam poplar, *Populus balsamifera* L. *Molecular Biology and Evolution*, 29, 3143-
697 3152.

698 Kim, W. Y., Hicks, K. A., & Somers, D. E. (2005). Independent roles for *EARLY FLOWERING 3* and
699 *ZEITLUPE* in the control of circadian timing, hypocotyl length, and flowering time. *Plant*
700 *Physiology*, 139, 1557-1569.

701 Kozaki, A., & Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation. *Nature*,
702 384, 557-560.

703 Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., ... & Kyozuka, J.
704 (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. *Nature*, 445,
705 652-655.

706 Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., ... & Sakakibara, H. (2009).
707 Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the
708 direct activation pathway in Arabidopsis. *The Plant Cell*, 21, 3152-3169.

709 Li, M., Xu, J., Algarra Alarcon, A., Carlin, S., Barbaro, E., Cappellin, L., ... & Varotto, C. (2017). In
710 planta recapitulation of isoprene synthase evolution from Ocimene synthases. *Molecular Biology*
711 and Evolution, 34, 2583-2599.

712 Li, Z & Sharkey, T.D. (2013) Metabolic profiling of the methylerythritol phosphate pathway reveals
713 the source of post-illumination isoprene burst from leaves, *Plant Cell & Environment*. 36, 429-
714 437.

715 Loivamäki, M., Gilmer, F., Fischbach, R. J., Sörgel, C., Bachl, A., Walter, A., & Schnitzler, J. P. (2007).
716 Arabidopsis, a model to study biological functions of isoprene emission? *Plant Physiology*, 144,
717 1066-1078.

718 Loreto, F., & Schnitzler, J. P. (2010). Abiotic stresses and induced BVOCs. *Trends in Plant Science*, 15,
719 154-166.

720 Loreto, F., Bagnoli, F., Calfapietra, C., Cafasso, D., De Lillis, M., Filibeck, G., ... & Ricotta, C. (2014).
721 Isoprenoid emission in hygrophyte and xerophyte European woody flora, ecological and
722 evolutionary implications. *Global Ecology and Biogeography*, 23, 334-345.

723 Loreto, F., Mannozi, M., Maris, C., Nascetti, P., Ferranti, F., & Pasqualini, S. (2001). Ozone quenching
724 properties of isoprene and its antioxidant role in leaves. *Plant Physiology*, 126, 993-1000.

725 Love MI, Huber W and Anders S (2014). Moderated estimation of fold change and dispersion for RNA-
726 seq data with DESeq2. *Genome Biology*, 15, pp. 550. doi: 10.1186/s13059-014-0550-8.

727 Martin M (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
728 *EMBnet.journal*, 17 10-12.

729 McFiggans, G., Mentel, T. F., Wildt, J., Pullinen, I., Kang, S., Kleist, E., ... & Zhao, D. (2019).
730 Secondary organic aerosol reduced by mixture of atmospheric vapours. *Nature*, 565, 587-593.

731 Mok, M. C. (1994). Cytokinins and plant development. In, *Cytokinins, Chemistry, Activity and*
732 *Function*, (Eds, Mok D.W.S. & Mok, M.C.) CRC Press, Inc, Florida, USA, pp 155-166

733 Monson, R. K., Jones, R. T., Rosenstiel, T. N., & Schnitzler, J. P. (2013). Why only some plants emit
734 isoprene? *Plant, Cell & Environment*, 36, 503-516.

735 Mutanda, I., Inafuku, M., Saitoh, S., Iwasaki, H., Fukuta, M., Watanabe, K., & Oku, H. (2016).
736 Temperature controls on the basal emission rate of isoprene in a tropical tree *Ficus septica*,
737 exploring molecular regulatory mechanisms. *Plant, Cell & Environment*, 39, 2260-2275.

738 Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner, T.... & Sakakibara, H. (2011).
739 Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important
740 regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid
741 biosynthesis. *The Plant Cell*, 23, 2169-2183.

742 Osugi, A., Kojima, M., Takebayashi, Y., Ueda, N., Kiba, T., & Sakakibara, H. (2017). Systemic
743 transport of trans-zeatin and its precursor have differing roles in *Arabidopsis* shoots. *Nature Plants*,
744 3, 17112.

745 Peñuelas, J., & Munné-Bosch, S. (2005). Isoprenoids, an evolutionary pool for photoprotection. *Trends*
746 in *Plant Science*, 10, 166-169.

747 Pollastri, S., Tsonev, T., & Loreto, F. (2014). Isoprene improves photochemical efficiency and enhances
748 heat dissipation in plants at physiological temperatures. *Journal of Experimental Botany*, 65, 1565-
749 1570.

750 Pospíšilová, J., Synková, H., & Rulcová, J. (2000). Cytokinins and water stress. *Biologia Plantarum*,
751 43, 321-328.

752 Raines, T., Shanks, C., Cheng, C. Y., McPherson, D., Argueso, C. T., Kim, H. J., ... & Schaller, G. E.
753 (2016). The cytokinin response factors modulate root and shoot growth and promote leaf
754 senescence in *Arabidopsis*. *The Plant Journal*, 85, 134-147.

755 Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., & Blumwald, E.
756 (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant.
757 *Proceedings of the National Academy of Sciences*, 104, 19631-19636.

758 Rivero, R. M., Shulaev, V., & Blumwald, E. (2009). Cytokinin-dependent photorespiration and the
759 protection of photosynthesis during water deficit. *Plant Physiology*, 150: 1530-1540.

760 Sakakibara, H. (2006). Cytokinins, activity, biosynthesis, and translocation. *Annu. Rev. Plant Biol.*, 57,
761 431-449.

762 Schäfer, M., Brütting, C., Meza-Canales, I. D., Großkinsky, D. K., Vankova, R., Baldwin, I. T., &
763 Meldau, S. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating
764 responses to environmental interactions. *Journal of Experimental Botany*, 66, 4873-4884.

765 Schäfer, M., Reichelt, M., Baldwin, I. & Meldau, S. (2014). Cytokinin Analysis, Sample Preparation
766 and Quantification. *Bio-protocol* 4, e1167.

767 Schnitzler, J. P., Zimmer, I., Bachl, A., Arend, M., Fromm, J., & Fischbach, R. J. (2005). Biochemical
768 properties of isoprene synthase in poplar (*Populus × canescens*). *Planta*, 222, 777-786.

769 Sharkey, T. D., & Monson, R. K. (2014). The future of isoprene emission from leaves, canopies and
770 landscapes. *Plant, Cell & Environment*, 37, 1727-1740.

771 Sharkey, T. D., & Singsaas, E. L. (1995). Why plants emit isoprene. *Nature*, 374, 769-769.

772 Sharkey, T. D., & Yeh, S. (2001). Isoprene emission from plants. *Annual Review of Plant Biology*, 52,
773 407-436.

774 Terry, G. M., Stokes, N. J., Hewitt, C. N., & Mansfield, T. A. (1995). Exposure to isoprene promotes
775 flowering in plants. *Journal of Experimental Botany*, 46, 1629-1631.

776 Velikova, V., Brunetti, C., Tattini, M., Doneva, D., Ahrar, M., Tsonev, T., ... & Varotto, C. (2016).
777 Physiological significance of isoprenoids and phenylpropanoids in drought response of
778 Arundinoideae species with contrasting habitats and metabolism. *Plant, Cell & Environment*, 39,
779 2185-2197.

780 Velikova, V., Várkonyi, Z., Szabó, M., Maslenkova, L., Nogues, I., Kovács, L., ... & Loreto, F. (2011).
781 Increased Thermostability of Thylakoid Membranes in Isoprene-Emitting Leaves Probed with
782 Three Biophysical Techniques. *Plant Physiology*, 157, 905-916.

783 Vickers, C. E., Possell, M., Cojocariu, C. I., Velikova, V. B., Laothawornkitkul, J., Ryan, A., ... &
784 Nicholas Hewitt, C. (2009). Isoprene synthesis protects transgenic tobacco plants from oxidative
785 stress. *Plant, Cell & Environment*, 32, 520-531.

786 Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., & Schmülling, T. (2003). Cytokinin-
787 deficient transgenic *Arabidopsis* plants show multiple developmental alterations indicating

788 opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant
789 Cell, 15, 2532-2550.

790 Werner, T., Motyka, V., Strnad, M., & Schmülling, T. (2001). Regulation of plant growth by cytokinin.
791 Proceedings of the National Academy of Sciences, 98, 10487-10492.

792 Yang, S., Yu, H., Xu, Y., & Goh, C. J. (2003). Investigation of cytokinin-deficient phenotypes in
793 Arabidopsis by ectopic expression of orchid DSCKX1. FEBS letters, 555, 291-296.

794 Zavaleta-Mancera, H. A., López-Delgado, H., Loza-Tavera, H., Mora-Herrera, M., Trevilla-García, C.,
795 Vargas-Suárez, M., & Ougham, H. (2007). Cytokinin promotes catalase and ascorbate peroxidase
796 activities and preserves the chloroplast integrity during dark-senescence. Journal of Plant
797 Physiology, 164, 1572-1582

798 Zhang, H., Dugé de Bernonville, T., Body, M., Glevarec, G., Reichelt, M., ... Giron, D. (2016). Leaf-
799 mining by *Phyllonorycter blancardella* reprograms the host-leaf transcriptome to modulate
800 phytohormones associated with nutrient mobilization and plant defense. Journal of Insect
801 Physiology, 84, 114-127.

802 Zuo, Z., Weraduwage, S. M., Lantz, A. T., Sanchez, L. M., Weise, S. E., Wang, J., ... & Sharkey, T. D.
803 (2019). Isoprene acts as a signaling molecule in gene networks important for stress responses and
804 plant growth. Plant Physiology, 180, 124-152.

805

806

807

808

809

810

811

812

813

814

815

816
817 **Figure captions**
818

819 **Figure 1. Growth, vegetative phenotype, and flowering isoprene-emitting and non-emitting *Arabidopsis***
820 **acclimated to** (A, B, C) low-light intensity (100 μmol photons $\text{m}^{-2} \text{s}^{-1}$) and (E, F, G) high-light intensity (200
821 μmol photons $\text{m}^{-2} \text{s}^{-1}$). (A, D) Above ground biomass (sampled at 28 DAG), which was significantly higher in
822 isoprene-emitting lines. (B, E) Photographs showing whole-plant phenotype in WT: Wild Type, EV-B3: Empty
823 Vector control, ISPS-B2 and ISPS-C4: transgenic isoprene emitting lines. ISPS-C4 shows the most distinct
824 phenotype and leaf size distribution under high-light (also see Fig. 2B), (C, F) Early-flowering and faster
825 completion of inflorescence growth in isoprene-emitting lines. The box for each line includes the median (the
826 horizontal line within the box) and the box marks the lower and upper quartiles. The whiskers span the full data
827 range. Means that are significantly different do not share alphabetical letter codes ($N \geq 10$ biological replicates,
828 Tukey's test, $\alpha=0.05$).

829 **Figure 2: Growth, leaf and plant phenotype in isoprene-emitting and non-emitting poplars** (A) sub-seasonal
830 variation in apical growth rate (cm per month), (B) leaf phenotype in spring- and summer-emerging leaves, (C)
831 plant phenotype in 6-month-old (July) and 10-month-old saplings (October). The box for each line includes the
832 mean (a circle with a plus mark), the median (the middle horizontal line) and the box spans lower and upper
833 quartiles. The whiskers span the full data range. ($N \geq 6$ biological replicates, Tukey's test, $\alpha=0.05$).

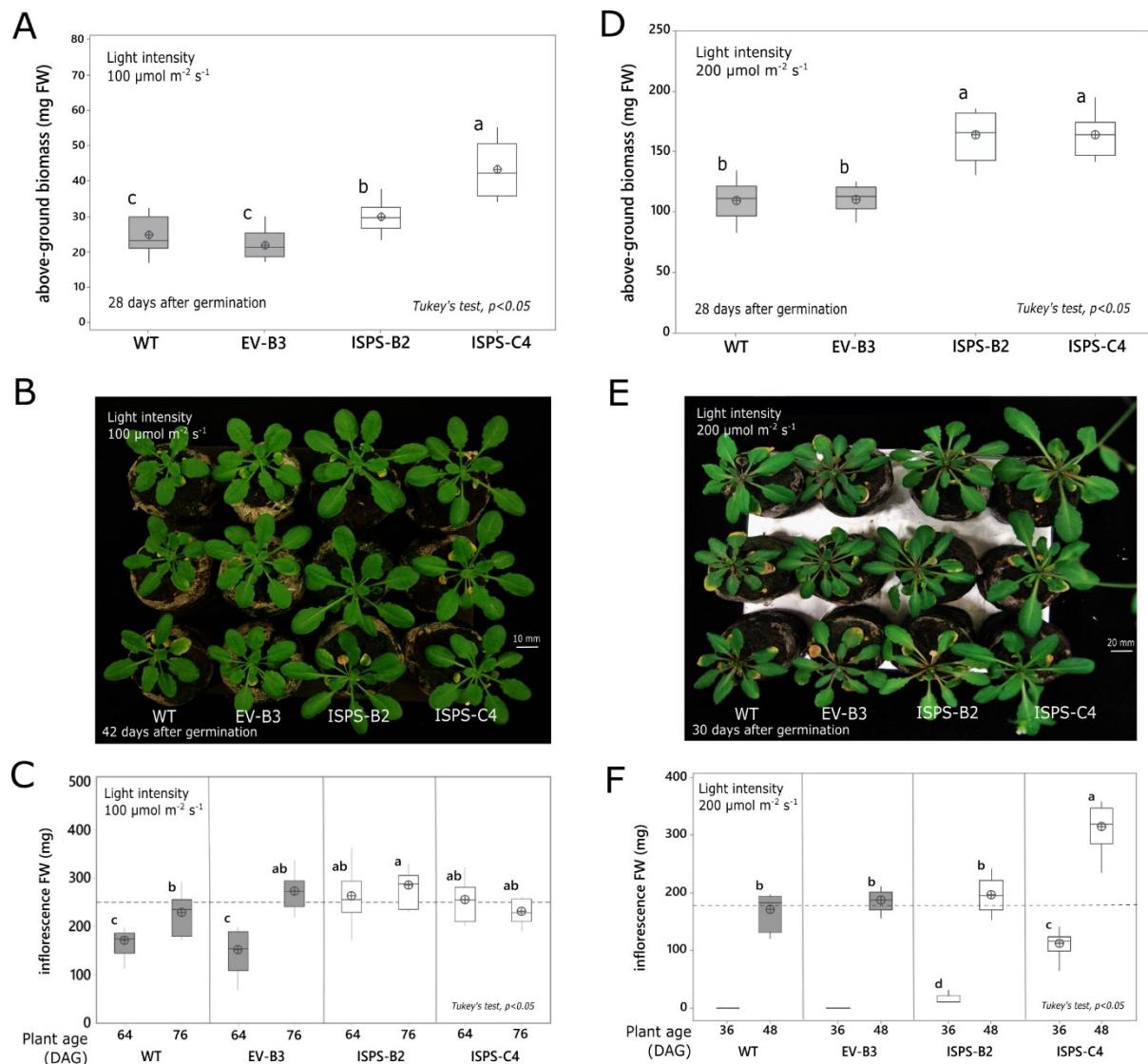
834 **Figure 3. Net photosynthetic rate (P_n) in fully mature *Arabidopsis* leaves** (A) 48 and 64 days after germination
835 under low-light intensity and (B) 28 and 48 days after germination under high-light intensity, WT: Wild Type,
836 EV-B3: Empty Vector control, ISPS-B2 and ISPS-C4: transgenic isoprene emitting lines ($N=6$ individuals each,
837 Tukey's test, $\alpha=0.05$). Means that are significantly different do not share alphabetical letter codes. (C) Chlorophyll
838 fluorescence images showing the quantum yield of photosystem II (Y(II)) and the extent of leaf senescence in
839 basal rosette leaves of *Arabidopsis* (72 days after germination).

840 **Figure 4: Leaf age-specific changes in photosynthesis in summer-leaves of poplar from leaf maturity to late**
841 **stages of senescence.** (A) Net photosynthetic rate (P_n) and (B) Maximum carboxylation rate by RuBisCO (V_{cmax})
842 measured in leaves at 30, 60, 90 and 120 days after leaf emergence. (C) Representative chlorophyll fluorescence
843 images showing the quantum yield of photosystem II (Y(II)) and (D) Fv/Fm estimates showing the extent of leaf
844 senescence at 60 and 90 DAE. The box for each line includes the mean and the box spans lower and upper
845 quartiles. The whiskers span the full data range ($N \geq 10$, Tukey's test, $\alpha=0.05$). Means that are significantly different
846 do not share alphabetical letter codes.

847 **Figure 5: Leaf age-specific changes in chloroplast energy status of summer-leaves of poplar from leaf**
848 **maturity to late-senescence** (A) photorespiration rate, (B) v_o/v_c ratio, (C) electron transport rate invested in
849 photosynthetic carbon reduction (J_c), and (D) electron transport rate available for photorespiration (J_o) measured
850 in leaves at 30, 60, 90 and 120 days after emergence. The box for each line includes the mean and the box spans
851 lower and upper quartiles. The whiskers span the full data range ($N \geq 10$, Tukey's test, $\alpha=0.05$). Means that are
852 significantly different do not share alphabetical letter codes.

853 **Figure 6. Isoprene emission rate and abundance of cytokinins in *Arabidopsis* leaves** (A) Isoprene emission
854 rate measured at 20 °C, low and high-light treatment); (B) and (C) isopentenyladenine riboside (iPR) abundance,
855 (D) and (E) isopentenyladenine (iP) abundance at 36 and 48 days after germination respectively. The box for
856 each line spans the full data range and includes values from 3 to 5 true biological replicates, where each replicate
857 comprised leaves sampled from up to 5 individuals per line (Kruskal-Wallis H test, $\alpha=0.05$). Medians that are
858 significantly different do not share alphabetical letter codes

859 **Figure 7. Isoprene emission rate and abundance of cytokinins in summer-leaves (60 days after emergence)**
860 **in poplar** (A) Isoprene emission rate measured at 25 °C, 1500 μmol photons $\text{m}^{-2} \text{s}^{-1}$; and abundance of cytokinins
861 namely (B) isopentenyladenine riboside, iPR; (C) isopentenyladenine, iP; (D) trans zeatin, tZ; and (E) trans zeatin-
862 o-glucoside. The box for each line spans the full data range and includes the mean and the median ($N \geq 4$ biological
863 replicates, ≥ 3 leaves pooled per sample per individual; Games-Howell test, $\alpha=0.05$). Means that are significantly
864 different do not share alphabetical letter codes.

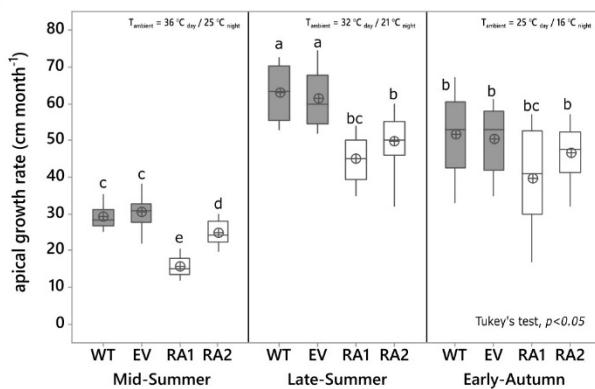

865 **Figure 8. Differential gene expression in transgenic isoprene-emitting *Arabidopsis* compared to non-**
866 **emitting control.** Most significant $\log_2[\text{fold change}]$ in transcript abundance during pairwise comparison between

873 low-light and high-light acclimated vector control leaves (EV-B3) and isoprene-emitting leaves (ISPS-C4) are
874 shown. Likewise, pairwise comparison between non-emitting and isoprene-emitting leaves is also shown under
875 low-light and high-light treatment. The gene IDs correspond to the latest annotation of *Arabidopsis thaliana*
876 genome (TAIR10). Darker the blue, more depleted are the transcripts in isoprene-emitting leaves and similarly
877 brighter the red, more enriched are the transcripts in presence of isoprene. Wherever $\log_2[\text{fold change}]$ is $> +1.5$
878 and < -1.5 , the corresponding p_{adj} is < 0.001 . Wherever the fold change is less prominent but significant p_{adj} is
879 often < 0.05 , and non-significant change is represented by white blanks.
880

881 **Figure 9. Differential gene expression in transgenic isoprene-suppressed poplar summer leaves compared**
882 **to isoprene-emitting wild type leaves.** Most significant $\log_2[\text{fold change}]$ in transcript abundance during pairwise
883 comparison between WT isoprene-emitting leaves and RA1 isoprene-suppressed leaves are shown for leaves at
884 60 and 90 days after emergence (DAE). Darker the blue, more depleted are the transcripts in isoprene-suppressed
885 RA1 leaves while brighter the red, more enriched are the transcripts in RA1 leaves relative to the corresponding
886 isoprene-emitting WT leaves at 60 DAE and 90 DAE. In a third column, changes in gene expression during the
887 natural course of autumn leaf senescence in poplar is represented by a pairwise comparison between WT isoprene-
888 emitting leaves at 90 DAE (relative to WT leaves at 60 DAE). In this third column, brighter red corresponds to
889 the more expression in senescing WT leaves (90 DAE) and darker blue indicate low expression in senescing WT
890 leaves (90 DAE). The gene IDs and chromosomal loci correspond to the latest annotation of *Populus trichocarpa*
891 whole genome available at NCBI. The foldchange statistical interpretation is as in Fig. 8.
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

926
927
928
929
930
931
932
933
934
935
936
937

Figure 1



938
939
940
941
942
943
944
945
946
947

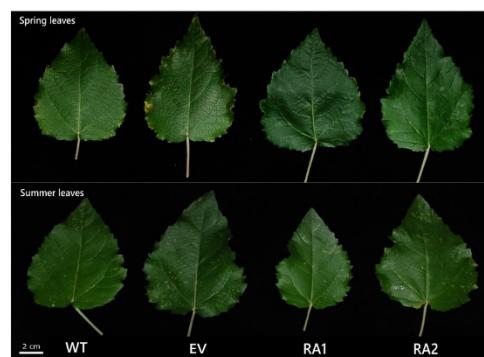
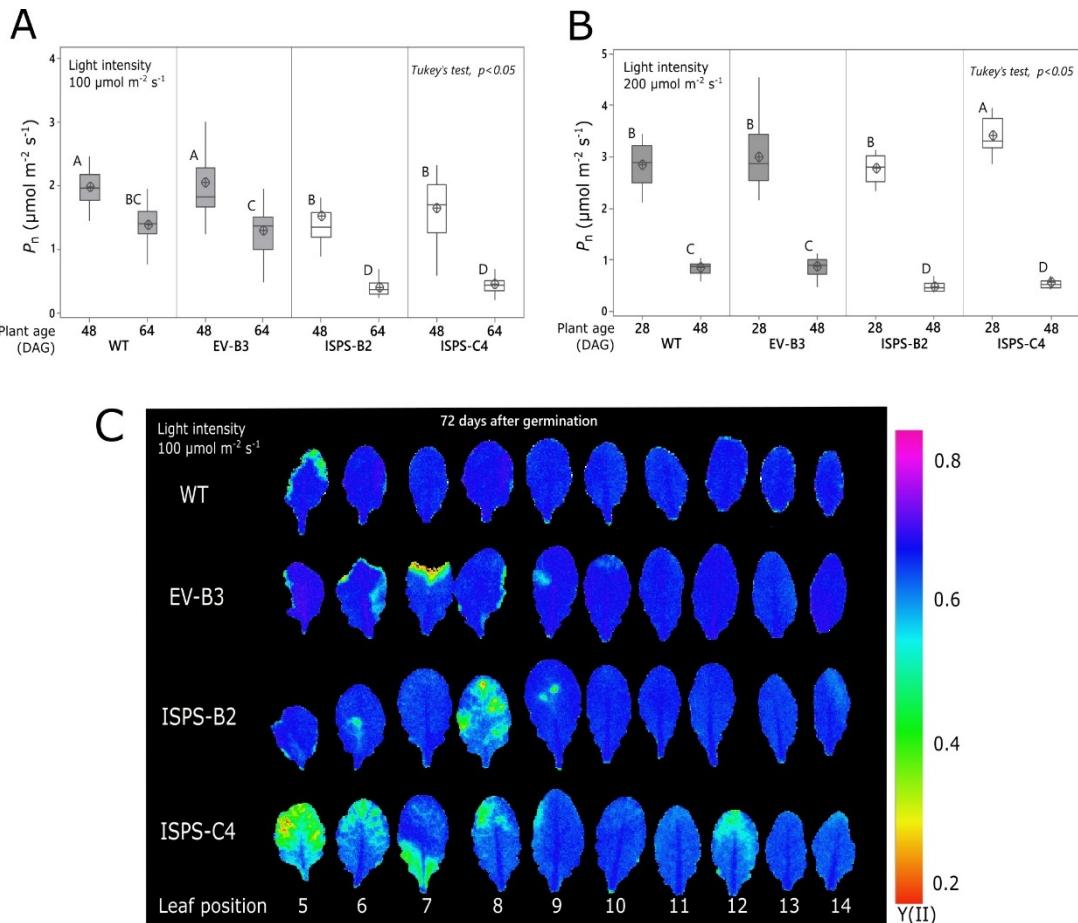

948
949
950
951
952
953
954
955
956
957
958

Figure 2

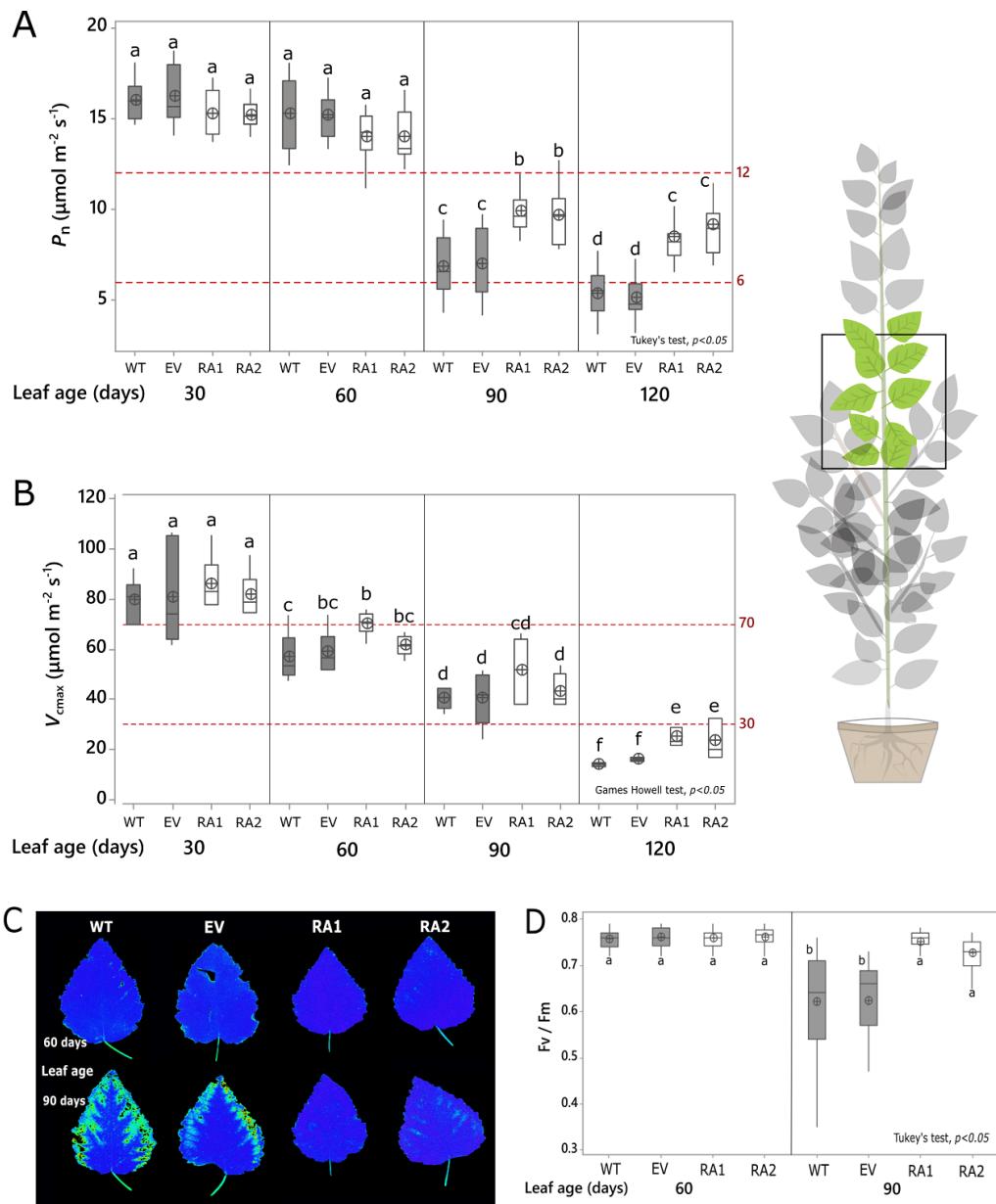
A

B



C

959
960
961
962
963
964
965
966
967
968
969
970
971
972


973
974
975
976
977
978
979
980 **Figure 3**
981
982
983

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

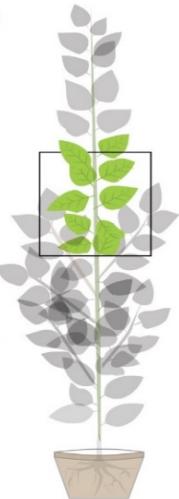
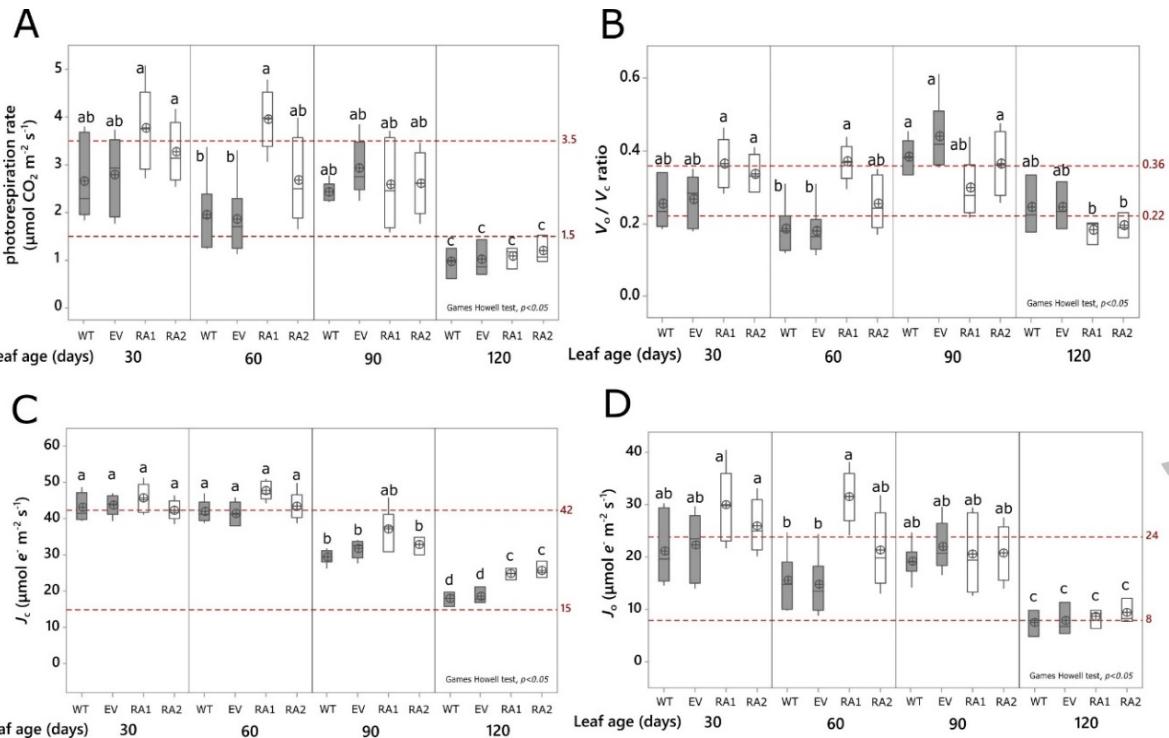
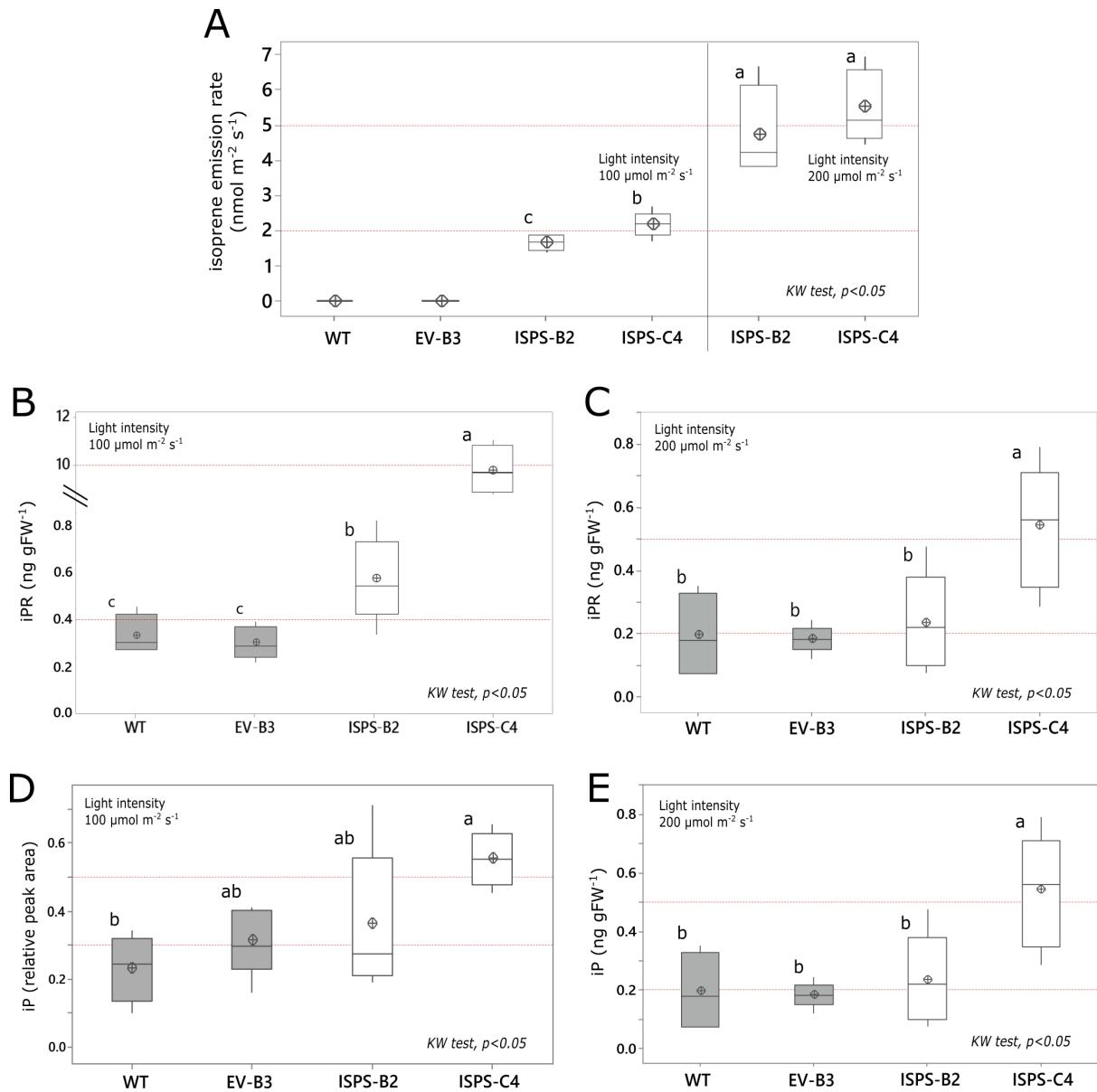


999
1000
1001
1002
1003
1004

Figure 4

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019


1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030 **Figure 5**
1031
1032

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

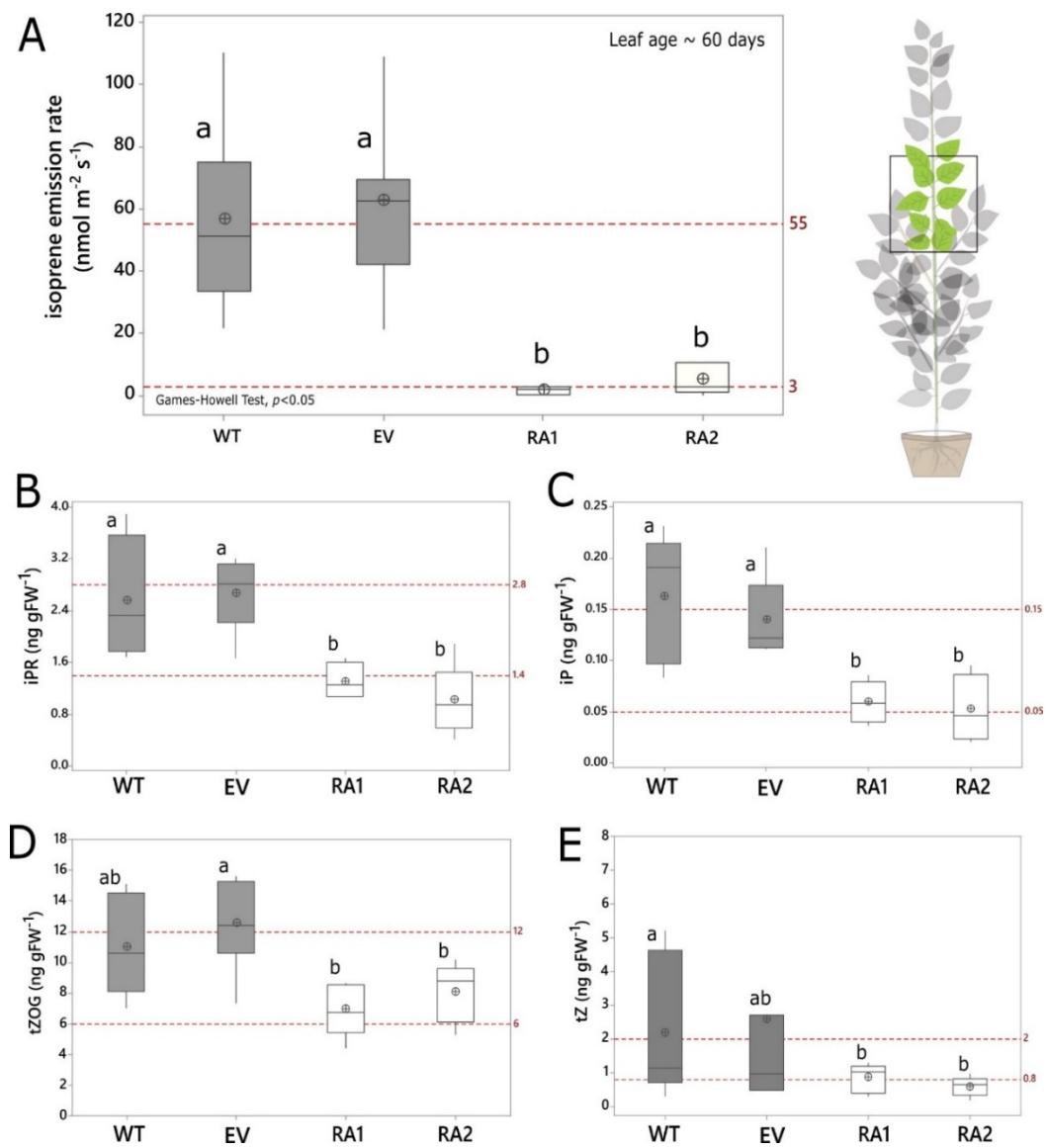
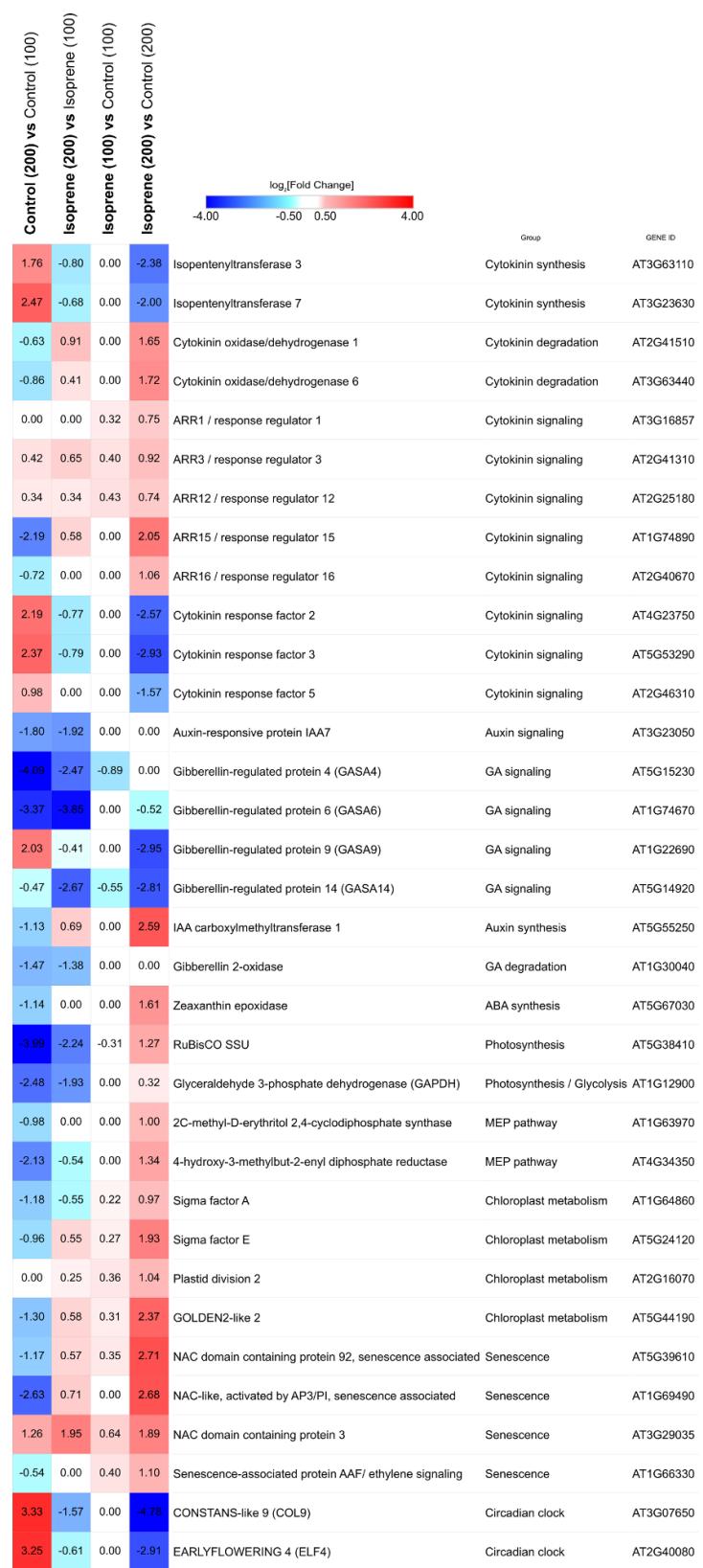

1054
1055
1056
1057
1058
1059
1060

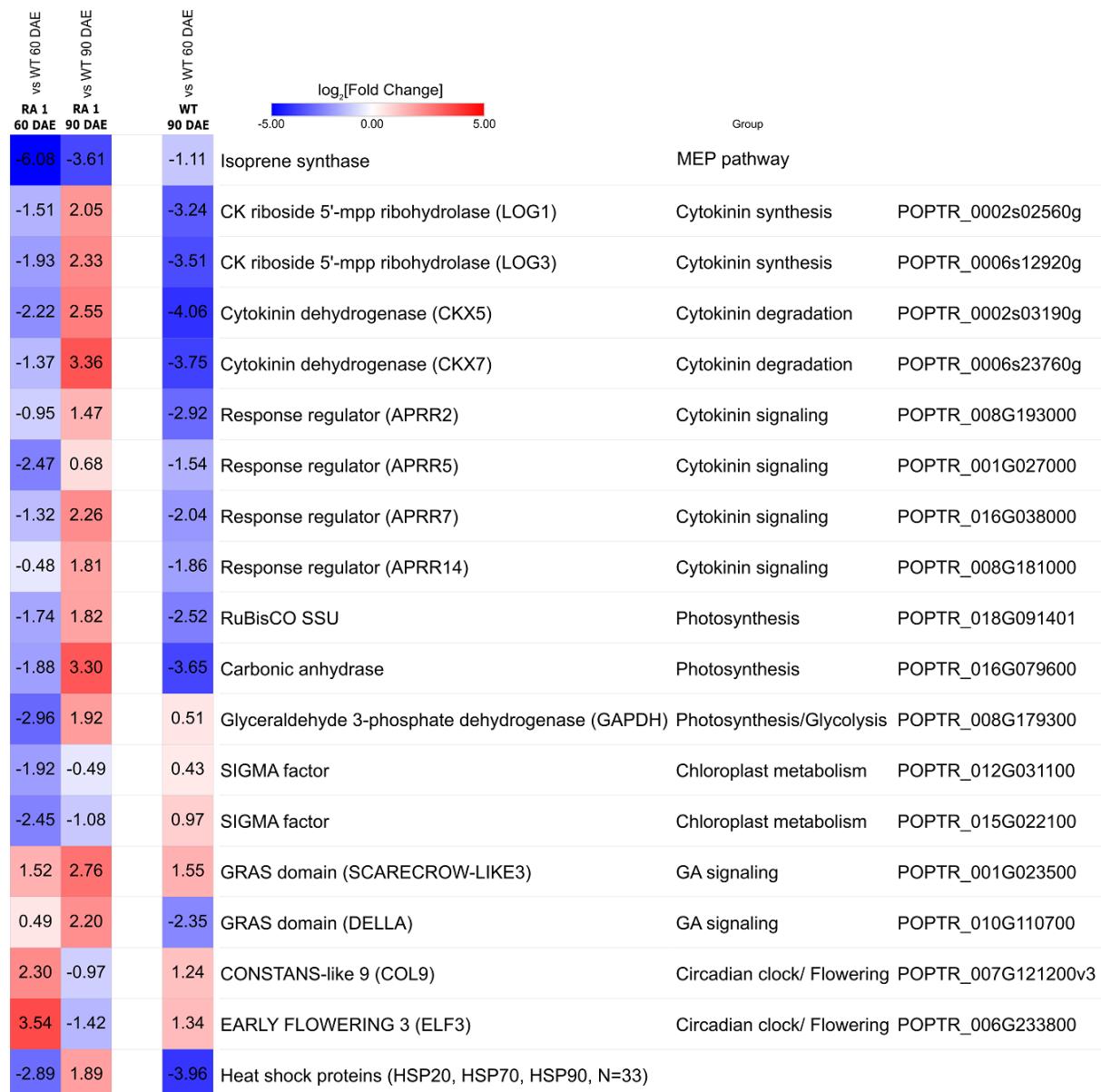
Figure 6

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070


1071
1072
1073
1074
1075
1076
1077 **Figure 7**
1078

1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089


Figure 8

1090
1091
1092
1093

1094
1095
1096
1097
1098
1099
1100

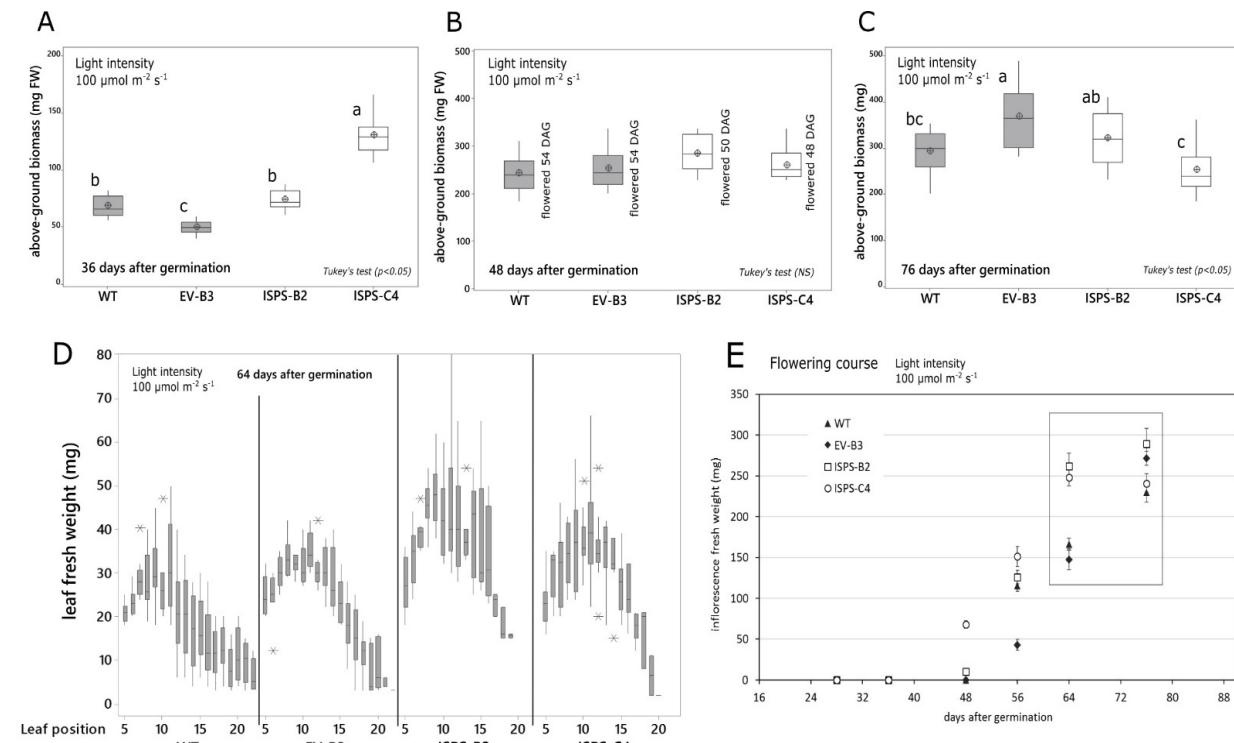
Figure 9

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110

1111 **Supplementary Figures and Tables**

1112 **Isoprene enhances leaf cytokinin metabolism, accelerates growth and induces early-
1113 senescence in *Arabidopsis* and *Populus***

1114 Kaidala Ganesha Srikanta Dani^{1,6*}, Susanna Pollastri¹, Sara Pinosio², Michael Reichelt³, Thomas D Sharkey⁴, Jorg-Peter Schnitzler⁵, Francesco
1115 Loreto^{6*}


Table S1. Parameters of LC-MS/MS analysis of cytokinins in positive mode (see methods for details)							
Compound	Q1 (m/z)	Q3 (m/z)	Retention Time (min)	DP	CE	CXP	Internal standard
trans-zeatin (tZ)	220.2	136.3	2.4	40	25	16	[² H ₅] tZ
tZ-riboside	352.2	220.3	3.4	40	25	30	[² H ₅] tZR
trans-zeatin-O-glucoside (tZOG)	382.1	220.2	2.3	40	29	18	[² H ₅] tZOG
cZ-riboside	352.2	220.3	3.6	40	25	30	[² H ₅] tZR
iPR	336.1	204.3	5.0	40	23	26	[² H ₆] iPR
isopentenyl adenine (iP)	204.1	136.0	4.1	40	23	16	[² H ₆] iP

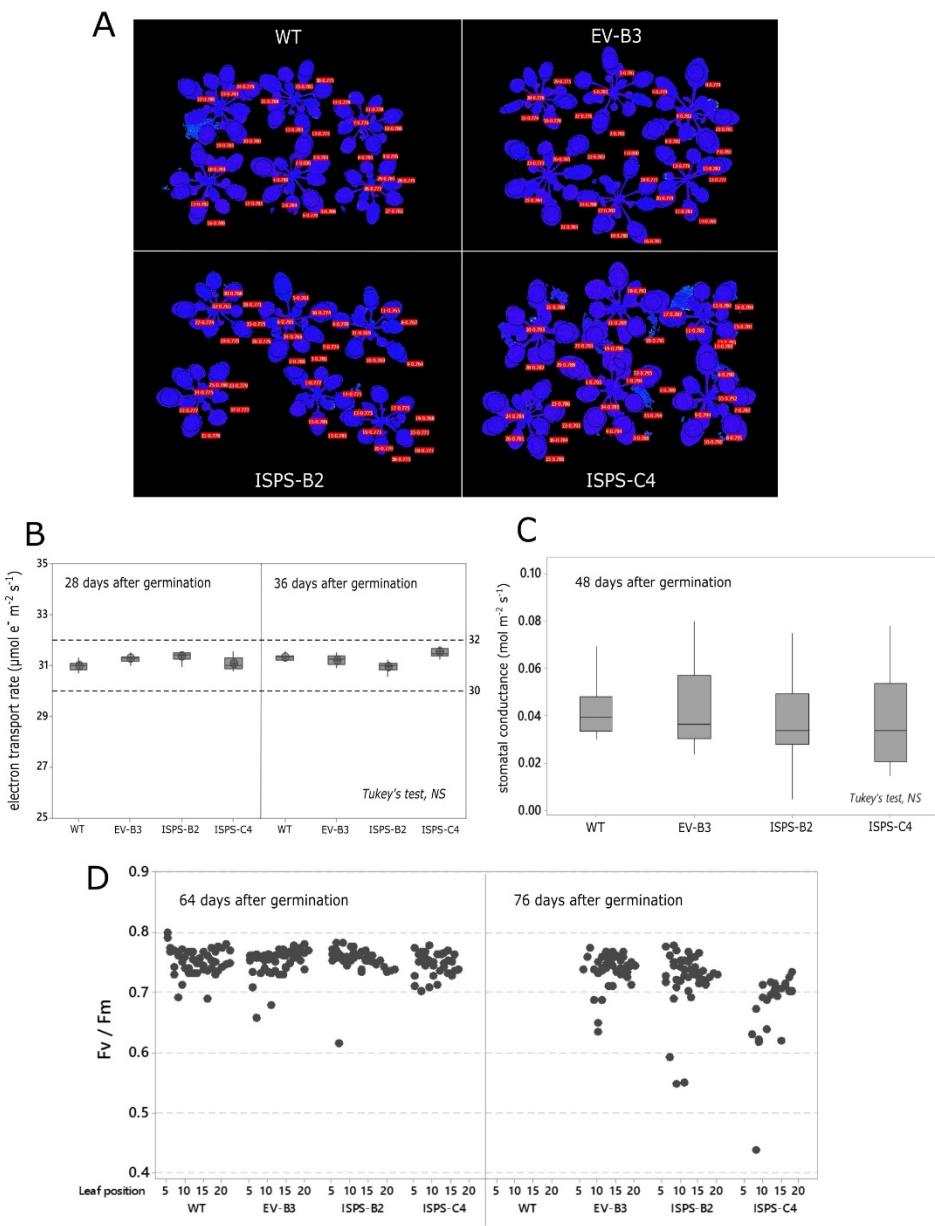
tZ-riboside, trans-zeatin riboside, cZ-riboside, cis-zeatin riboside, iPR, isopentenyladenine riboside, DP, declustering potential, CE, collision energy, CXP, collision cell exit potential

1116

1117

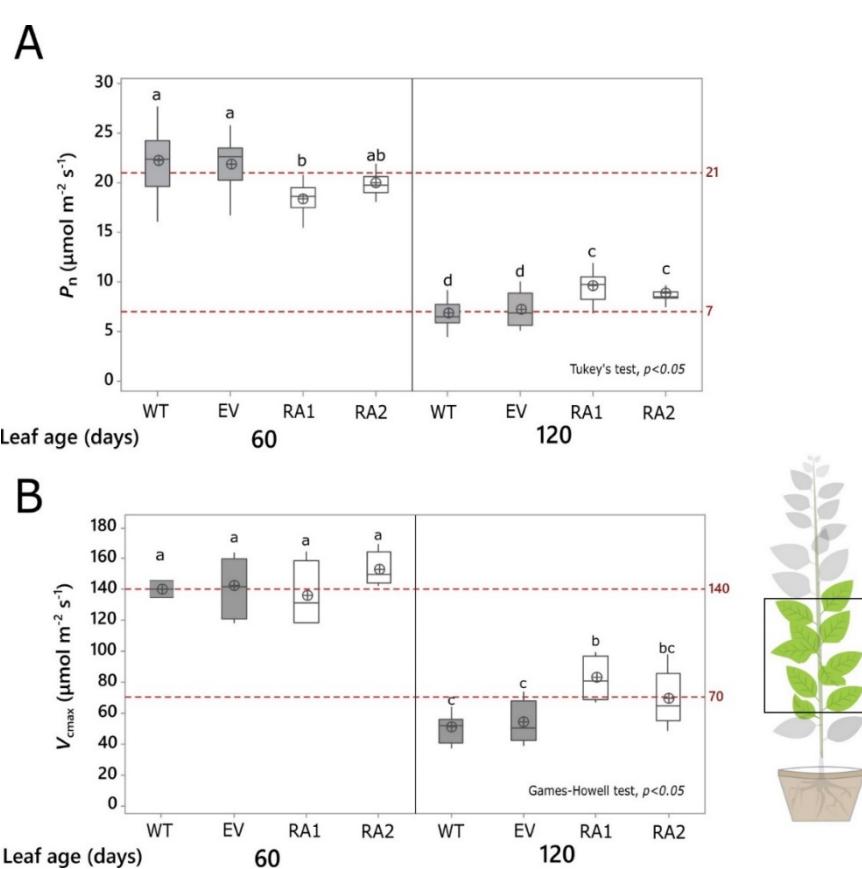
1118 **Figure S1**

1119


1120

1121

1122


1123
1124
1125
1126

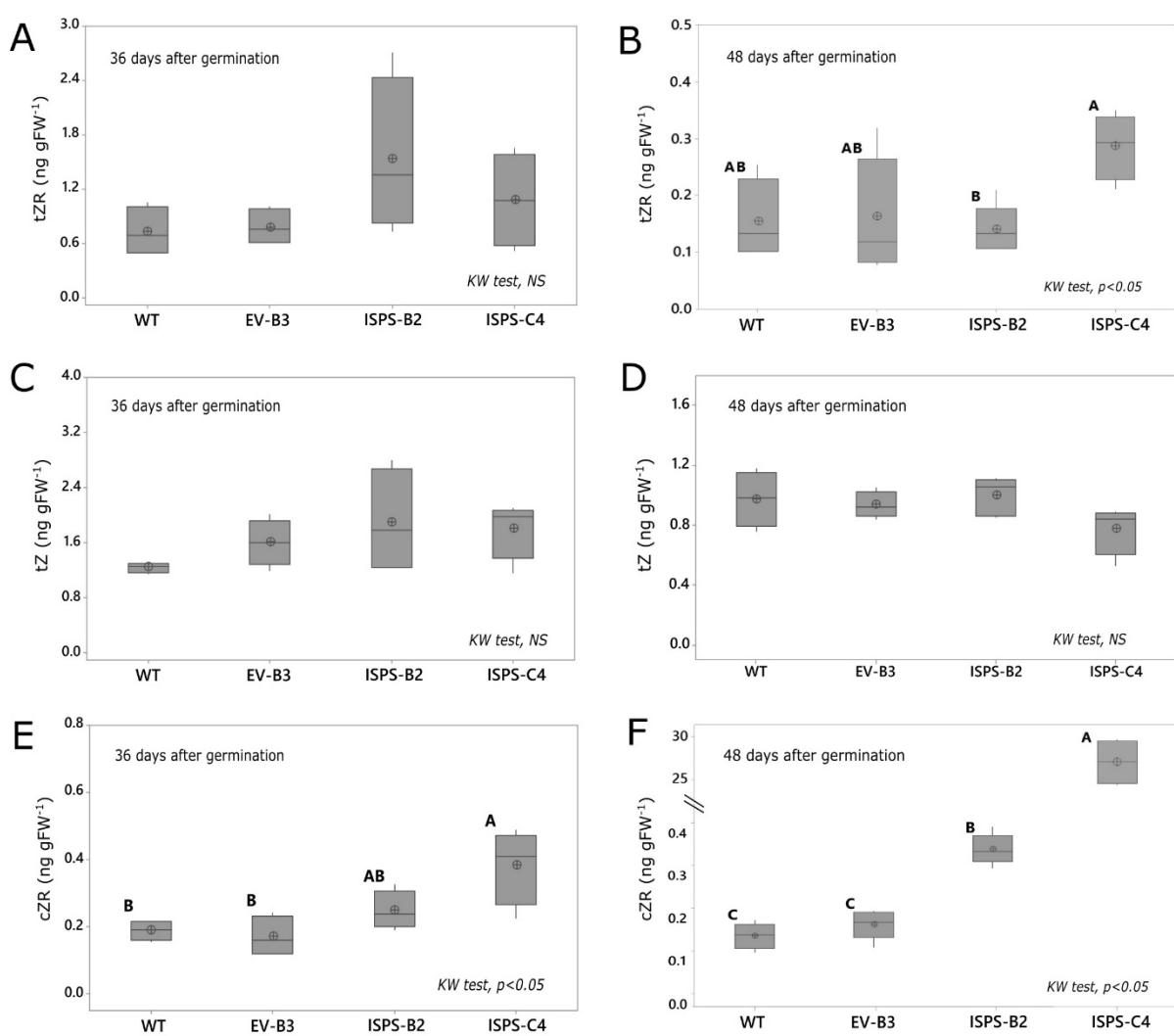
1127 **Figure S2**

1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141 **Figure S3**
1142

1143
1144
1145
1146
1147
1148
1149
1150

1151


1152

1153

1154

1155

1156 **Figure S4 (Arabidopsis)**

1157

1158

1159

1160

1161

1162