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Abstract
Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field 
composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the par-
ticle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray 
signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, 
the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. 
By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to 
the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel 
and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict 
with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the 
central 5 kpc zone. Further comparison shows that the outer Galaxy at > 5 kpc, on the other hand, should be dominated 
by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way.
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1  Introduction

The origin of cosmic rays has been the subject of much 
research since the first detection of cosmic rays in 1912, 
see e.g.  [1] for a review. Baade & Zwicky’s [2] hypothesis 
that supernovae are the most likely energy source of cos-
mic rays has been strengthened, and significant advances 
have been made in understanding particle acceleration 
in supernova remnant environments [1]. Equally impor-
tant is a thorough understanding of cosmic-ray trans-
port and interactions. In this paper, the focus lies on the 
understanding of the cosmic-ray diffusion process, which 
determines the evolution of the density of cosmic rays 

in a spatially limited environment like the Milky Way. In 
general, turbulent mixing of collisionless charged parti-
cles in magnetized plasma offers interesting challenges 
not encountered in hydrodynamic turbulent mixing, and 
thus is highly appropriate to this topical collection. Due 
to the high electrical conductivity of plasma, the mag-
netic field itself is mixed by turbulence, and the field lines 
may become stochastic [3]. To the extent that cosmic rays, 
being electrically charged particles, follow the field lines, 
they are spatially mixed the same way the field lines are. In 
addition, because charged particle orbits are helical, with 
an energy-dependent size, and because cosmic rays are 
scattered by orbit scale magnetic fluctuations, they both 
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cross field lines and reverse the direction of motion along 
them. Moreover, the problem is nonlinear in the sense that 
the cosmic rays modify their environment by heating, pres-
surizing, and transferring momentum to the thermal back-
ground gas, and by feeding back on the rate of scattering 
itself. Because the time scales for all these processes are 
similar to the time scales on which the entire astrophysical 
system evolves, the problem is inherently nonequilibrium. 
Developing a full description of the resulting spatial mix-
ing process is one of the most challenging problems in 
plasma physics, and is necessary not only to understand 
the transport of cosmic rays, but also particle confinement 
in laboratory plasma devices, and thermal conductivity 
and viscosity in both lab and natural plasmas.

Diffusion is usually incorporated through the Parker 
transport equation

Here, � is an advection speed, p is the momentum, n is the 
particle distribution, 𝜅̂ is the spatial diffusion tensor, and 
�pp is the momentum diffusion scalar. In this equation, we 
have assumed isotropy in momentum space. While in the 
Parker transport equation, sources and sinks of cosmic rays 
are included within the term S, all losses due to interac-
tions, such as synchrotron radiation or spallation of nuclei 
on the ambient interstellar medium, are neglected.

Cosmic-ray diffusion is believed to be the dominant 
process for the transport of cosmic rays in many astro-
physical environments [4–7]. However, the components 
of the spatial diffusion tensor are also the most elusive 
parameters in Eq. (1), because they depend on a variety of 
physical processes: Depending on the ratio of the gyrora-
dius to the correlation length lc of the turbulence, certain 
effects dominate in the diffusion process, leading to five 
different transport regimes, see [12]. In Fig. 1, this is shown 
schematically based on the example of a charged particle 
that moves through different magnetic field configura-
tions. Along the trajectory, the magnetic field strength 
between the boxes changes, so that four transport regimes 
(the 5th regime is a transition between two other regimes) 
are illustrated. The diagram illustrates how the motion of 
the particle in the quasi-ballistic regime (QBR) is largely 
unaffected by the specifics of the field lines as a result of 
the large gyroradius. The decrease of the gyroradius results 
in a stronger influence of the magnetic field lines on the 
diffusion properties of the charged particles, because they 
are tied closely to the lines, but also because the effects 
of the cross-field motion become more important up to a 
certain level. The diffusivity of the field line itself adds to 
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the diffusivity of the following particles due to random 
walk. Overall, resonant scattering dominates the diffusion 
process, especially in the RSR. Resonant scattering of parti-
cles with a pitch angle Θ0 at fluctuations of wavelength l is 
present only when the resonant criterion is fulfilled

where � = cosΘ0 is defined as the cosine of the pitch 
angle. To what extent mirror effects towards lower ener-
gies compensate the absence of resonant scattering and 
lead to diffusion remains a subject of active research 
[8–11].

Within a magnetic field �tot , which is composed of a 
coherent component along the x-direction � = B�x and a 
turbulent component � , the diffusion tensor can be writ-
ten in matrix form [1, 16–18]

Transport along the coherent magnetic field is described 
by the parallel diffusion coefficient �∥ ≡ �xx and is com-
plemented by the perpendicular �

⟂
≡ �yy = �zz.

1 The 
antisymmetric diffusion coefficients �A are often negligible 
or absorbed into potential drift terms [19]. The exact form 
of the diffusion tensor 𝜅̂ strongly depends on the exact 
realization of the turbulent magnetic field, including its 
power spectrum G(k) and the turbulence ratio � = b∕B . 
Some of the parameters can be deduced by comparing 
transport model predictions to observational data, such as 
the boron-to-carbon ratio [20], by numerical test particle 
simulations as presented here, and theoretical models [21].

In particular, the so-called leaky box model [22] of the 
Milky Way predicts that the cosmic-ray energy spectrum 
observed at Earth is steepened during propagation: Using 
the transport equation (1) and reducing it to a stationary 
case ( �n∕�t ≈ 0 ) in which diffusion is the dominant pro-
cess, we obtain a simplified equation

Here, we approximate the diffusion process via the time 
scale �dif f = d2∕� , defined via
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1  In general, the two perpendicular directions can be different, 
�yy ≠ �zz . However, within the Galactic magnetic field, they are usu-
ally degenerate, �yy = �zz = �

⟂
 . It should also be noted that per-

pendicular diffusion does not necessarily describe crossing mag-
netic field lines.
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where d is the escape distance and � is the diffusion scalar. 
Thus, the cosmic-ray density is given by the ratio of the 
source spectrum and the diffusion coefficient,

Assuming diffusive shock acceleration, one arrives at a 
power-law spectrum at injection, i.e. S(E) ∝ E−�s . The dif-
fusion coefficient in quasi-linear theory (QLT) with a wave 
spectrum that follows a power law also becomes a power 
law (see e.g. [18]), �i(E) ∝ E�i with i =∥, ⟂ . Thus, in case 
of diffusion-dominance, the energy spectrum of cosmic 
rays after propagation is steepened, i.e. n(E) ∝ E−�s−�i [23]. 
These arguments are based on QLT, in which only linear 

(5)−
n

𝜏dif f
≈ ∇(𝜅̂∇n),

(6)n ∝
S

�
.

terms in the distortions of the electromagnetic fields and 
particle population with respect to the undisturbed fields 
are being considered to simplify the kinetic equations and 
to facilitate their analytical treatment. In particular, if we 
assume isotropic turbulence, we obtain an isotropic wave-
vector spectrum of the form G(k) ∝ E−� , with � = 5∕3 
[24] for Kolmogorov-like turbulence and � = 3∕2 for the 
Kraichnan type [25]. In QLT, this leads to a parallel diffu-
sion coefficient �∥ ∝ E2−� [26]. While both spectral indi-
ces describe the observed solar wind turbulence inertial 
range within the uncertainties [27], we only consider Kol-
mogorov turbulence in the following. Based on this QLT 
prediction, there is an expected difference of about 0.2 
in the index of the energy dependence of the diffusion 
coefficients between the two turbulence models, which 
results in an underlying uncertainty in our results due to 
the uncertainties in the turbulence model.

Fig. 1   Schematic picture of a charged particle traveling through 
different magnetic field strengths. The magnetic field strength 
increases starting from the upper left panel and proceeding clock-
wise, resulting in an accompanying decrease of the particle gyrora-
dius. The ratio of gyroradius and correlation length determines the 
predominant diffusion regime of the particle. The possible regimes 
are the quasi-ballistic regime (QBR), the resonant-scattering regime 
(RSR), the mirror regime (MR), and the non-resonant-scatter regime 
(NRSR) [12]. Equivalently, the different regimes can also be repre-
sented schematically by changing particle energy between the 

boxes at constant magnetic field strengths. In each regime, differ-
ent processes dominate diffusion, such as FLRW [13] and the trans-
port across magnetic field lines [14]. The condition for diffusion 
in QBR follows from [15] and is generalized here for the inclusion 
of background fields. n stands for the number of boxes with side 
length lc . The box and thus the scale that would be necessary to 
allow diffusion exceeds the width of the region shown in the panel, 
as nlc ≳ rg∕lc ≫ rg . The mean-free path is approximately given by 
nlc , for the smallest n which satisfies the condition for diffusion
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Previous numerical simulations of particle transport in a 
combined turbulent field b and homogeneous field B were 
in agreement with this spectral index up to high b∕B ∼ 1 
[16, 28, 29]. Such simulations are typically performed on 
a 3-dimensional Cartesian grid with spacing s and num-
ber of grid points Ngrid , injecting relativistic particles from 
a point source in a homogeneous (� plus turbulent � 
magnetic field in order to derive the diffusion coefficient. 
Radiative losses are not considered, since they are not 
relevant here. Recent studies have, however, pointed out 
that these results need to be interpreted carefully, as the 
energy range in which the simulations are fully diffusive 
is strongly limited [10, 12, 17, 30–32]. Using simulations 
in the fully resonant scattering regime, we quantitatively 
investigate the energy behavior of the diffusion coefficient 
as a function of the turbulence ratio b/B. Finally, we inter-
pret these results in the context of recent measurements 
of the diffuse cosmic-ray flux in the Milky Way.

2 � Simulations of the diffusion coefficients

Our simulations are based on the Taylor-Green-Kubo 
(TGK) formalism [33], see e.g. [15–17, 28–31, 34]. Build-
ing on work that focused on specific parameter points 
and resolutions, we conduct a systematic simulation and 
analysis setup, similar to [12] that reveals key conditions on 
numerical simulation requirements. This method uses the 
fact that the fundamental solution of the diffusion prob-
lem, �iiΔf (xi , t) = �f (xi , t)∕�t , is known to be a Gaussian 
whose width is described by the diffusion coefficient �ii . 
The second moment of the deviation in xi provides an ana-
lytical solution 

⟨
Δx2

i

⟩
= 2 t �ii . The left-hand side of this 

equation can be calculated in simulations of particles that 
are emitted from a point source, which is placed in a field 
composed of a homogeneous component � = B �x and a 
turbulent component � . Here, we use a Kolmogorov-type 
spectrum, i.e., isotropic and without intermittency

with � = 5∕3 , kmin = 2�∕lmax , and kmax = 2�∕lmin , where lmin 
is defined as the smallest numerically resolved wave-
length, and lmax represents the largest wavelength used in 
the simulation. Evaluation of the correlation length in the 
limit lmin∕lmax ≪ 1 yields lc ≈ lmax∕5 [35]. The synthetic iso-
tropic three-dimensional turbulent magnetic field is gen-
erated and stored discretely on a regular, three-dimen-
sional Cartesian grid with N3

grid
 grid points and isotropic 

(7)G(k) ∝

⎧⎪⎨⎪⎩

0 if k < kmin,�
k

kmin

�−𝛼

if kmin ≤ k ≤ kmax,

0 if kmax < k,

spacing sspacing using the inverse Fourier transform of field 
vectors �(�) that are computed on a regular grid in three-
dimensional wavenumber space. Linear interpolation 
yields the magnetic field at an arbitrary trajectory position 
between grid points.

For discrete step sizes sstep = v Δt , the diffusion coef-
ficient can be calculated as

i indicates the three spatial directions. Here, we consider 
parallel diffusion �∥ , as well as perpendicular diffusion 
�
⟂

 . Furthermore, t = nΔt is the time after n time steps. 
We propagate particles on a grid with Ngrid = 1024 , 
s = 0.85  pc, lmin = 1.7  pc, lmax = 82.45  pc, and a step 
size sstep = min(rg∕5, lmax∕20) to ensure that the gyra-
tion motions as well as the fluctuations are sufficiently 
resolved. With the large grid and correspondingly broad 
spectrum, particles always find waves for interactions [36]. 
The comparatively large lgrid = Ngrid ⋅ s ≈ 50lc is chosen in 
order to reduce problems caused by the continuation of 
the turbulence at the grid-box boundaries.

While we adopt inertial range Kolmogorov scaling for 
the turbulence, this is an idealization. Interstellar turbu-
lence is driven on many scales, from as much as 100 pc 
by superbubbles to kinetic scales by cosmic rays them-
selves [37]. Moreover, Alfvénic turbulence, unlike hydro-
dynamic Kolmogorov turbulence is known to be highly 
anisotropic. While compressibility effects can generate an 
isotropic component [37], this mechanism is unlikely to 
result in a simple inertial cascade. Whereas the turbulence-
dependent energy scaling, which will be determined in 
the next section, can be scaled from the large scales con-
sidered here to small scales straightforwardly, the drivers 
of turbulence relevant on every scale considered must be 
taken into account for the normalization of the diffusion 
coefficients.

For Gaussian particle distributions, the running diffu-
sion coefficient �(t) is expected to converge in time to a 
constant value �(t) → � . Simulations are stopped after 
several orders of gyrations once the running diffusion 
coefficients converge, and the final value of the diffusion 
coefficient is taken as the steady-state one. We repeat 
these simulations several times with 2000 particles and 
the same parameters but varying random numbers for tur-
bulence generation. As the low turbulence levels in the 
RSR require more statistics, we use 50 random seeds in 
the RSR for b∕B ≤ 2 and otherwise 20 random seeds. We 
perform this step for different reduced rigidities and fit a 

(8)

�ii(t) =

t∕(Δt)�
n=0
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power law � ∝ �� to the RSR, where particles experience 
resonant scatterings: lmin∕(𝜋 lc(b∕B)) < 𝜌 < lmax∕(2𝜋 lc) . We 
determine the reduced rigidity scaling for a broad range of 
turbulence levels 0.05 ≲ b∕B ≲ 10 , while B = 1�G remains 
constant.

3 � Simulation results

Over the last decades there have been great advances 
in direct numerical calculations of particle transport in 
mean magnetic fields subject to turbulent perturba-
tions with a Kolmogorov-like spectrum accompanied 
by the adaptation of theoretical models to match these 
simulation results. In addition to studies of parallel diffu-
sion coefficients, the perpendicular diffusion coefficients 
and the relationship between the two components have 
been the subject of research [12, 15–17, 28–32, 35, 38–43]. 
Good agreement between analytical models such as QLT 
(in some regimes), nonlinear guiding center theory and 
unified nonlinear theory with test particle simulations 
was found for two-dimensional, slab, or composite (two-
dimensional & slab) turbulence (see e.g. [44] for a review). 
Despite these advances, for isotropic three-dimensional 
turbulence, tension with these theories was found at small 
reduced rigidities [12, 32].

In Fig. 2 we show simulation results of the parallel (solid 
lines) and perpendicular (dotted lines) diffusion coeffi-
cients calculated using 2000 particles in each simulation. 
For each of these ratios, 20 different energies are simu-
lated. The statistical uncertainties of the diffusion coeffi-
cients are calculated by repeating each simulation 20-50 
times with different realizations of the turbulent magnetic 
field. The averaged diffusion coefficients are shown as 
functions of the reduced rigidity � . The statistical uncer-
tainties are too small to be visible.

The classification of the diffusive transport into differ-
ent transport regimes based on the particle energy and 
the turbulence level, and especially the definition of the 
resonant scattering regime (RSR), allows the comparison 
of simulated data with the QLT [12]. This is due to the fact 
that only in the RSR the conditions of QLT for resonant 
scattering over the whole pitch angle range are met in the 
simulations. As the lower RSR boundary � = lmin∕(�lcb∕B) 
utilizes the approximation of small turbulence levels, we 
apply this formula to determine the lower RSR boundary 
of the lowest used turbulence level b∕B = 0.067 . Since 
this lower boundary provides the smallest possible error 
from the underlying approximation for small turbulence 
levels, we also use the corresponding energy E = 7.5 PeV 
for all other turbulence levels as the lower boundary. While 
this approach does not exploit the full width of the RSR, 
as the RSR extends to smaller reduced rigidities as the 

turbulence level increases, the approximation of small 
angles still applies to all fits. The small errors in the fits are 
an indication that our chosen range in reduced rigidity is 
sufficiently large. The upper RSR boundary is � = 5∕(2�) 
for all turbulence levels.

Note that the simulated diffusion coefficients shown in 
Fig. 2 show qualitative similarities with comparable studies 
for isotropic three-dimensional turbulence (see e.g. [17]), 
but also with two-dimensional turbulence for the perpen-
dicular component at large reduced rigidities [45].

In the following, first the parallel and then the perpen-
dicular diffusion coefficients are investigated in the RSR 
and the QBR.

3.1 � Parallel component

Especially for lower turbulence levels, the parallel diffusion 
coefficients are several orders of magnitude larger than 
the perpendicular components, as presented in Fig. 2. 
This is due to the different scaling with the turbulence 
level. While the parallel component scales with (b∕B)−2 , 
the perpendicular component decreases with decreasing 
turbulence level. Analytical theories describe the scaling 
of the turbulence dependence of the diffusion coefficients 
(see e.g.  [26, 33]).

Fig. 2   Parallel and perpendicular diffusion coefficients as functions 
of � and E for different turbulence levels. Only simulation results 
above the lower boundary of the RSR 𝜌 ≳ lmin∕(𝜋(b∕B)lc) , above 
E ≳ 7.5 PeV, and below the upper boundary of the RSR 𝜌 ≲ 5∕(2𝜋) 
are considered for determining the energy scaling of �∥ and �

⟂
 

within RSR. Fits are performed to these simulated diffusion coef-
ficients. The parameters are: lc = 17.8 pc, lmin = 1.7 pc, lmax = 82.45 
pc, s = 0.85 pc, Ngrid = 1024. Each presented data point is the mean 
of 20-50 diffusion coefficients, each simulated with the same 
parameters but with a different turbulent field realization. The 
decreasing range of the RSR for smaller b/B leads to an increasing 
error in the slopes of the fits
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We perform fits in the RSR and QBR to determine the 
energy scaling of the diffusion coefficients for different 
ratios of b/B, as theory predicts a proportionality between 
log � and log � in both regimes. Note that due to the limita-
tions of the fluctuation range of the synthetic turbulence, 
we can perform the fits of the predicted power law in the 
RSR only over a relatively small energy range, however, 
while strictly following our derived boundaries of this 
energy regime.

The calculated power-law indices �∥ of the fits �∥ ∝ ��∥ 
are presented for different turbulence levels in Fig. 3. The 
simulation results for the QBR are shown as red crosses. 
The �∥ values are in agreement with theoretical predictions 
of �∥ = 2 [15, 46].

For the RSR, we compare our results with simulation 
results from [12]. The underlying simulation setups of the 
shown simulation results from [12] and this publication 
differ only in the spacing of the grid points for the genera-
tion of turbulence. While in [12], a grid spacing of lmin∕10 
was chosen, here we use the maximum possible grid 
spacing of lmin∕2 , which is based on the sampling theo-
rem. The grid size has a direct influence on two numerical 
effects: Smaller spacing between grid points improves the 
resolution of small scales and thus reduces the numerical 
errors when interpolating the magnetic field between sur-
rounding grid points. And, a larger grid reduces the need 
to periodically continue the original box when particles 
diffuse spatially across the boundaries. A comparison with 
a gridless method for turbulence generation has provision-
ally shown good agreement with the larger grid spacing 
[47]. The gridless method is based on [16, 36, 48] and 
evaluates at each point in space the sum of pre-generated 

wavemodes while eliminating the need of storing discrete 
field vectors on the grid.

While the results of both setups are slightly shifted 
against each other, they follow the same trend: The QLT 
limit of � = 1∕3 is not yet reached at the 5% turbulence 
level, but is expected at even lower b/B based on the trend. 
At b∕B ≈ 2 , the upper limit for diffusion is reached, consist-
ent with Bohm diffusion �∥ ∝ �.

Here we would like to mention that for the fits at high 
turbulence levels an increasing number of simulated diffu-
sion coefficients at low rigidities are considered, as shown 
in Fig. 2. Towards lower � values and thus smaller scales 
on which the particles gyrate, numerical effects such as 
interpolation errors increase, which is due to the limited 
resolution of the discrete grid on which the turbulence is 
stored, which is why the � values towards high turbulence 
levels may contain an additional systematic error, which 
is not indicated, but may lead to the deviation from the 
expected � ≈ 1.

3.2 � Perpendicular component

Fits based on �
⟂
∝ ��⟂ for the perpendicular components 

are shown in Fig. 4. For comparison, simulated values from 
literature are included. The slopes are quite sensitive to 
the range of � considered as pointed out in [12, 17], which 
is why the fitted slopes vary based on different fit ranges 

Fig. 3   Turbulence-level-dependent spectral index of the paral-
lel diffusion coefficients in the RSR and QBR with statistical uncer-
tainties. The simulated diffusion coefficients are fitted linearly in 
the log-log representation for each ratio of b/B as shown in Fig. 2, 
with the slopes shown in this plot. The simulation parameters are: 
lmin = 1.7 pc, lmax = 82.45 pc, lc = 17.8 pc, s = 0.85 pc, Ngrid = 1024

Fig. 4   Turbulence-level-dependent spectral index of the perpen-
dicular diffusion coefficients in the RSR and QBR with statistical 
uncertainties. The simulated diffusion coefficients are fitted linearly 
in the log-log representation for each ratio of b/B as shown in Fig. 2, 
with the slopes shown in this plot. The simulation parameters are: 
lmin = 1.7 pc, lmax = 82.45 pc, lc = 17.8 pc, s = 0.85 pc, Ngrid = 1024. 
Simulations from the literature [16, 17, 49] and (A. Snodin, personal 
communication, 2020) are also shown for comparison. It should be 
noted that [16] assumes non-relativistic particles
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in different publications. Nevertheless, the same trend 
can be seen across all publications: Increasing turbulence 
levels lead to a coincidence of the parallel and perpen-
dicular components, as �∥ and �

⟂
 converge towards 12. This 

is expected since the directional component of the back-
ground field loses influence with increasing turbulence 
levels and diffusion becomes isotropic. As with parallel dif-
fusion, Bohm diffusion must also occur for perpendicular 
diffusion with regards to the background field for large 
turbulence levels (Fig. 5).

At lower turbulence levels, however, the increase in 
field-line random walk (FLRW) is expected, since the 
diffusion coefficient of the field lines scales proportion-
ally to (b∕B)2 . Since FLRW is only independent of energy 
when particles follow the field lines, there is a transition 
in behavior at roughly the energy at which the field lines 
separate by more than one gyroradius over the distance 
the particles travel in one gyroorbit. The observable 
decrease of the energy dependence of particle diffusion 
with decreasing turbulence levels, which is associated with 
a smaller value of �

⟂
 , can thus be explained by the increas-

ing importance of particles diffusing through FLRW.

4 � Discussion in the astrophysical context

What do our results imply in the context of astrophys-
ics? In general, we can show that the diffusion tensor 
strongly depends on the turbulence level — a fact that is 
typically not taken into account in astrophysical simula-
tions. A prominent example where this b/B-dependence 
can play a role is the high-energy signatures for our own 
Galaxy, where the Fermi satellite has measured gamma-
ray emission at GeV energies [50, 51]. It was possible 
to derive the contribution from hadrons and thereby 
quantify both the cosmic-ray proton number density 
and the index of the cosmic-ray proton spectrum as a 
function of galactocentric radius. These results are pre-
sented in panel a) of Fig. 8. From these data follows what 
is known as the cosmic-ray gradient problem. In particu-
lar, there is a gradient in the proton index, ranging from 
relatively flat spectra in the innermost ∼ 5 pc of the Gal-
axy ( E−2.3 − E−2.5 ) to a steep index of close to E−3.0 at the 
outermost radii. Recent interpretations of this feature 
include phenomenological models of a change in the 
diffusion index based on geometric effects of anisotropic 
diffusion [52], a galactocentric radius dependent diffu-
sion tensor [5, 53–55], and nonlinear cosmic ray trans-
port with scattering and advection off self-generated 
turbulence in combination with galactocentric depend-
ent cosmic ray source distributions [56].

With the turbulence-dependent energy dependence of 
diffusion presented here, we can expand the anisotropic 
diffusion models presented in the literature. To simplify the 
transport model even further we neglect momentum dif-
fusion �pp = 0 and adiabatic effects ∇ ⋅ � = 0 and assume 
a stationary state (see Eq. 1)

As the number of individual sources that contribute to 
S change with the position in the Galaxy, so does S. This 
does, however, not change the spectral index systemati-
cally, as in diffusive shock acceleration, the spectral index 
mainly depends on the strength of the shock. Only the 
intensity of the signal changes as the source density var-
ies with galactocentric radius. The diffusion term can be 
approximated by using the effective escape distance d∥ 
and d

⟂
 in the parallel and perpendicular directions, respec-

tively, as the spatial dependence of the term

Here, the factors have been identified by escape times 
�i ≡ d2

i
∕�i , with i =∥, ⟂ . This is a very rough simplification, 

(9)S + ∇(𝜅̂ ∇n) − � ⋅ ∇n =
𝜕n

𝜕t
≈ 0 .

(10)∇(𝜅̂ ∇n) ≈

(
𝜅∥

d2
∥

+
𝜅
⟂

d2
⟂

)
n = −

(
n

𝜏∥
+

n

𝜏
⟂

)
∼ −

n

𝜏dif f
.

Fig. 5   Spectral index of the perpendicular diffusion coefficient as 
a function of the spectral index of the parallel diffusion coefficient, 
as shown in Figs. 3 and 4. The turbulence levels increase from the 
lower left to the upper right. The black dashed line is a reference 
for the case of equal indices along the perpendicular and parallel 
components. Only for high turbulence levels, the simulation values 
are close to this reference line

2  Equivalently to the parallel diffusion coefficient, the small sys-
tematic deviation from the value of � = 1 can be explained by 
numerical effects due to the limited resolution of the turbulent 
magnetic field and the associated interpolation effects by consider-
ing diffusion coefficients at low reduced rigidities.
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neglecting the full radial dependence of the diffusion ten-
sor. We are doing this as, at this point, we simply want to 
discuss the effect caused by the perpendicular and paral-
lel components and interpret the escape times as radially 
dependent for now. A quantitative model will have to take 
into account the full spatial structure of these terms.

In our model, the central question is: which of these 
two time scales will dominate at what radius? The dif-
fusion time scale is given by the shorter time scale, 
�dif f ∼ min

(
�∥, �⟂

)
.

For the two individual diffusion time scales, these 
dependencies are as follows:

–	 Energy and b / B : As discussed in the earlier sections, 
the energy dependence of the two coefficients is 

 Here, the dependence is (b∕B)±2 with a negative and 
positive turbulence level index for parallel and perpen-
dicular diffusion, respectively. Thus, as the time scales 
behave as �−1

i
 , we have the following dependences for 

the parallel and perpendicular time scales: 

–	 Field direction/galactocentric distance: The escape 
distance for diffusive transport depends on the field 
direction, which changes with galactocentric distance: 

(11)�i ∝

(
b

B

)±2

��i ∝

(
b

B

)±2(
E

Btot

)�i

(12)�∥ ∝

(
b

B

)2

B
�∥

tot E
−�∥ ,

(13)�
⟂
∝

(
b

B

)−2

B
�
⟂

tot E
−�

⟂ .

for parallel transport, the escape direction is along the 
field lines. Figure 6 shows the magnetic field in the 
Galactic center region (central 2 kpc with a height of 
300 pc). The field is a combination of the global field 
first presented by [57], here used in a modified version 
[58], plus a component in the galactic plane presented 
in [59]. This combination of fields is necessary, whereas 
global field models omit the in-plane component in the 
center. It can be seen here that even with the in-plane 
component, the field lines are essentially pointing per-
pendicular to the Galactic plane in the Galactic center 
region. This can also be seen in Fig. 7, where the mean 
angle of the field lines at a given galactocentric radius 
with respect to the plane direction is shown. Up to radii 
around 3 − 5 kpc, the angle is very close to 90◦ , while at 
values larger than rgc ∼ 5 kpc, it becomes significantly 
smaller than 45◦ . This is consistent with the presence 
of a Galactic wind in the inner 3 − 5 kpc [60, 61], which 
can contribute to orient the field lines in the direction 
of the wind speed, which is perpendicular to the plane.

	   In the outer region at rgc > 5 kpc, escape via par-
allel diffusion therefore preferentially occurs along 
the plane. The relevant escape distance for paral-
lel transport is therefore a function of galactocen-
tric radius. As a simplification, the parallel escape 
distance, defined as the length of the escape path 
in parallel along the mean magnetic field, can be 
approximated as the scale height d∥ ≈ H ≈ 300  pc 
in the inner Galaxy, i.e. for rgc ≲ 5 kpc. In the outer 
Galaxy, rgc ≳ 5 kpc, it can be approximated as the in-
plane propagation distance. The latter is significantly 
longer, d∥ > rmax − rgc ≫ 300 pc for rgc > 5 kpc, with 
rmax ∼ 20 kpc, especially when considering that par-
ticles will not diffuse out in straight lines along �r , 
but rather follow the field lines. The perpendicular 
transport shows the opposite behavior: in the inner 
Galaxy, perpendicular to the field lines means in-plane 

Fig. 6   Three-dimensional view on the magnetic field lines in the 
Galactic center, using a combination of the global field [58] and an 
in-plane Galactic center component [59]
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Fig. 7   Mean angle of the field lines with respect to the Galactic 
plane as a function of the galactocentric radius. The blue line shows 
the pure global field [58], the black line shows the combination of 
[58] with the Galactic Center field model of [59]
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propagation and thus d
⟂
> rmax − rgc ≫ 300 pc. In the 

outer Galaxy, perpendicular transport approaches 
an orientation perpendicular to the plane, with 
d
⟂
≈ H ≈ 300 pc. A larger escape distance is accom-

panied by a larger escape time, which leads to the 
fact that in the center, parallel transport results in 
the fastest escape of particles. In the outer Galaxy, 
perpendicular transport is accompanied by shorter 
escape distances until the escape distance along the 
plane in the outermost part of the Galaxy becomes 
comparable to the scale height. Thus, at the outskirts 
of the Galaxy, parallel transport will dominate again.

Combining these two effects, we get the diffusion 
time scale

Here, the notation ⟨...⟩ refers to averaging over all field lines 
at a given galactocentric radius. It should be noted that 
d∥(r) and d

⟂
(r) represent functions at a fixed position in the 

Galaxy and averaging over the scale height z ∈ [−H,+H] 
needs to be performed for detailed results. We refrain from 
doing so at this point because we would like to keep the 
argument simple and these details are not expected to 
change the interpretation.

Note that inhomogeneities in B at the kpc scale are 
apparent in the Galaxy. This implies that drifts will occur 
with characteristic escape time scales on the order of 
�drif t ∼ 1013 ⋅ (E∕100GeV)−1 yr based on drift velocities 
[62] along the z-direction within the setup of our toy 
model. While a complete quantitative picture of cosmic-
ray diffusion must necessarily incorporate such drift 
physics, the conclusions at which the present work has 
arrived can still be expected to apply, given that these 
drifts cause bulk rather than diffusive motion and their 
time scales are many orders larger than those of diffu-
sion and advection derived in the following.

We can now design the following toy model to investi-
gate the dependence on the galactocentric radius: based 
on the parameters that are displayed in Fig. 8, there is a 
change in the physics of the turbulence at r0 ∼ 5 kpc that 
should be reflected in the equations. Here, we use a sim-
ple ansatz based on the turbulence level shown in Fig. 8:

(14)

𝜏dif f (rgc) ≈

⎧
⎪⎪⎪⎨⎪⎪⎪⎩
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�
for rgc ≳ 19 kpc

We can also parametrize the total magnetic field in a simi-
lar way,

(15)
b

B
=

{
rgc

r0
(rgc < r0)

1 (rgc > r0)
.
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Fig. 8   Different properties of the Galaxy as a function of galacto-
centric radius, starting from the top: a cosmic-ray spectral index at 
GeV energies, derived from Fermi measurements [50, 51, 56]; b the 
displayed turbulence level is derived from considering the regular 
component of the model described in [58] and the turbulent com-
ponent from [57]. (Comment R2 1.) We have downscaled the latter 
component by a factor of 10 for more realistic values; c perpendic-
ular and parallel diffusion indices as derived at a fixed level of b/B 
(this work); d total magnetic field strength of the combined regular 
field of [58, 63]
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Here, we roughly approximate the total magnetic field 
behavior with rgc based on the function shown in Fig. 8 
and use � ∼ 0.1 in the inner 5 kpc and � ∼ 1 for rgc > 5 kpc. 
For the diffusion indices, we use constant values, as the 
dependency is rather small for the individual indices,

We approximate the escape distances with the scale 
height for r < 19 kpc, since that is the dominant escape 
direction. For larger radii, d∥ depends on the position in 
the Galaxy.

This result implies a somewhat steeper energy spectrum 
in the inner Galaxy, n ∝ E−�s−�i ∼ E−2.9 , using �s ∼ 2.2 − 2.4 
and �∥ ∼ 0.7 as compared to the outer Galaxy, where 
perpendicular transport dominates ( �

⟂
∼ 0.4 ) and thus 

n ∝ E−2.7±0.1 . needed. Here, we want to emphasize that 
the measurements of diffusive emission in the Galactic 
center (see the two innermost data points in Fig. 8) are 
dominated by contributions from point sources and are 
further confounded by interpolation effects during the 
analysis process [50], which limits the constraints imposed 
by these measurements in the Galactic center. However, as 
the observed change in the spectrum is from a rather flat 
one in the inner Galaxy, n ∝ E−2.3 , to a steeper index in the 
outer region, n ∝ E−2.8±0.1 , other effects need to play a role 
in the inner Galaxy, while the steepening in the outer Gal-
axy could be due to a change to diffusive behavior in gen-
eral. Even a change from perpendicular to parallel escape 
in the outermost part of the Galaxy could be relevant.

In the inner part of the Galaxy, a wind could play an 
important role as already discussed in [5, 60, 61]. We also 
approximate the convective term in terms of a loss time 
scale, via

introducing the convection time scale

(16)Btot ∝

(
rgc

r0

)−�

.

(17)�∥ ∼ 0.7

(18)�
⟂
∼ 0.4.

(19)𝜏dif f (rgc) ∝
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(20)� ⋅ ∇ n ≈
u

dconv
n =

1

�conv
n,

(21)�conv =
dconv

u
.

It was shown in [60, 61] that a wind with speeds around 
500–700 km/s is present in the Galaxy. Using an approxi-
mate value of u ∼ 5 ⋅ 107 cm/s and a scale height for the 
wind of dconv ∼ 300 pc, we obtain a time scale of

independent of the particle energy.
Here, the terminal wind velocity is used, which might be 

overestimating the actual wind velocity below z < 300 pc. 
A dedicated wind model based on a stratified disk instead 
of a flat plane would improve the results.

We can compare this time scale with the diffusive one 
in the inner Galaxy,

Here, we use the scaling with energy from our simula-
tion findings (see Eqs. (17), (18), and surrounding text). 
However, the simulated absolute diffusion coefficients of 
the particles from Fig. 2 would have to be extrapolated 
over several orders of magnitude to apply to our model 
according to the above formula. Note that the exact scal-
ing depends on the cosmic ray energy and the galac-
tocentric dependent magnetic field properties such as 
the field strenght and the correlation length of the tur-
bulence. Due to our uncertainties for � from the fits, the 
errors in the scaling over several orders of magnitude 
would become too large. Therefore, we normalize the 
time scale �dif f (r0 = 5 kpc, E = 10GeV) ∼ 107 yr by using 
�dif f (rEarth = 8.5 kpc, E = 100GeV) ∼ 5 × 106 years as the 
value of the escape time scale as measured at Earth [1]. 
Using � ∼ 0.1 for the inner Galaxy and �∥ ∼ 0.7 , results in 
2 − � �∥ = 1.93 . This way, we get

The Galactic wind dominates as a loss process if 
𝜏conv < 𝜏dif f , which is the case for energies

This equation is fulfilled for cosmic-ray energies 
E ≲ 700 GeV at r0 , and still for energies E ≲ 10 GeV in the 
inner central molecular zone (CMZ), i.e. the inner 200 pc. 
Even by taking the uncertainties of the actual wind 
speed and the normalization of the diffusion time scale 
into account, cosmic-ray transport will be influenced by 
Galactic wind in the CMZ. Therefore, the measured spectral 
index in the energy range measured with Fermi as shown 
in Fig. 8 can be dominated by the wind as well. Thus, a 

(22)�conv ∼ 5 × 105 years,

(23)�dif f ∝

(
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r0

)2−� �∥
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E

E0
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.
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model in which convection dominates in the inner Gal-
axy, changing to diffusive escape along the perpendicu-
lar direction of the field around rgc ∼ 5 kpc, fits the data 
well, with a possible further change to parallel transport 
in the outermost Galaxy. One prediction of this model is 
that the transport in the inner Galaxy should change from 
convection to parallel diffusion for energies larger than 
∼ 100 GeV. This implies a significant change in the energy 
behavior of the diffuse spectrum from E−2.3 to E−3.0 at TeV 
energies. With the emerging Cherenkov Telescope Array 
(CTA) [63] and its use of more than a hundred IACTs in the 
Northern and Southern Hemispheres, the background will 
be reduced and the field of view increased to ≈ 10◦ , while 
improving sensitivity by an order of magnitude compared 
to current observatories consisting of only a few ground-
based Imaging Air Cherenkov Telescopes (IACTs) [64]. 
These enhancements from diffuse measurements of the 
inner Galaxy with CTA, once available, will allow verifica-
tion of our model. Complementary high-sensitivity obser-
vations of Large High Altitude Air Shower Observatory 
(LHASSO) [65] and of the Southern Wide-field Gamma-ray 
Observatory (SWGO) [66] at higher energies will provide 
further insights.

5 � Summary and conclusion

In this paper, we perform simulations of cosmic-ray diffu-
sion for a range of particle energies and turbulence ratios 
b/B. We analyze the simulation results by only using data 
that fully lie in the resonant scattering regime, i.e. where 
diffusion can develop fully. In doing so, we find that a 
power-law fit performs well for the parallel and perpen-
dicular components of the diffusion coefficient, i.e. �i ∝ E�i , 
with i =∥,⟂ . We also find that these spectral indices are 
functions of the turbulence level, �i = �i(b∕B) . In both 
cases, low turbulence levels lead to the lowest indices, 
�∥(b∕B = 0.07) = 0.57 and �

⟂
(b∕B = 0.07) = 0.33 . Both 

indices asymptote to �i = 1 for values b∕B > 1 . This limit 
is consistent with expectations for b∕B → ∞ , as Bohm’s 
theory predicts an index of 1 for purely turbulent fields. 
We show that the limit of QLT, which predicts an index for 
parallel transport of �∥ = 1∕3 , is not reached at turbulence 
levels b∕B ≳ 0.07 . Since the parallel diffusion coefficients 
increase significantly as the turbulence level decreases, 
simulations with even lower turbulence levels require a 
considerable amount of time for the plateaus of the run-
ning diffusion coefficients to develop. Potential numeri-
cal effects could then gain influence, which is why much 
smaller turbulence levels were not considered further 
[12]. The gradient of our result indicates that an index of 
�∥ = 1∕3 will be reached at much lower turbulence lev-
els. There, the influence of field-line random walk on the 

effective perpendicular diffusion process increases. Since 
the FLRW is energy-independent, �

⟂
 also becomes smaller 

for decreasing turbulence levels.
Finally, we apply these results from fundamental plasma 

physics to the Galaxy. Here, measurements indicate a 
steepening of the local cosmic-ray energy spectra along 
the galactocentric radius, with

The Kolmogorov approximation in QLT of a diffusion-
based change in the energy behavior corresponding to 
a steepening by E−1∕3 would certainly be compatible with 
the inner, flat spectra. However, we were able to show here 
that for the turbulence level in the inner Galaxy, diffusion 
would steepen the spectrum significantly more, e.g. by 
E−2∕3 . Our conclusion is therefore that transport in the 
inner Galaxy must be influenced by a Galactic wind that 
does not change the energy spectrum, so that the spec-
trum after transport corresponds to the one at the sources 
for rgc < 5 kpc, i.e. n ∝ S ∝ E−2.35±0.05 . The large uncertain-
ties of gamma-ray emission measurements in the inner 
Galaxy currently provides flexibility in the interpretation 
of these data, as evidenced by the interpretation of [56] 
of a very soft spectrum and of [55] and the current work 
of a hard proton spectrum in the inner part of the Galaxy. 
To resolve this tension, better data of the observationally 
challenging inner Galaxy is needed.

The steepening of the spectral index toward the outer 
Galaxy would then be due to the change in the transport 
process, from convective to diffusive. Here, we show that 
in the next-outer region, diffusive escape is dominated 
by the perpendicular transport component, with the 
perpendicular diffusion coefficient steepening the spec-
trum by E−0.4 , leading to a spectrum after transport of 
n ∝ S �−1

⟂
∝ E−2.7 . A dominating perpendicular transport 

for these galactocentric radii is also suggested by e.g. [52, 
55]. At the outermost radii of the Galaxy, at around 20 kpc, 
diffusive escape will again move toward parallel transport 
and, the spectrum would steepen further. We show in this 
paper that these findings are consistent with observations 
at GeV energies. In contrast to [55], we expect a change in 
the spectrum at around 100 GeV–1 TeV cosmic-ray ener-
gies in the inner Galaxy due to the replacement of con-
vective transport by parallel diffusion as the dominant 
escape process, which should result in a change from 
n ∝ S ∝ E−2.35±0.05 to n ∝ E≈−3 according to our simulation 
results. In the future, more detailed simulations, account-
ing also for adiabatic energy changes that are currently 
neglected, and improved observations of the diffuse 

(26)n ∝

⎧
⎪⎨⎪⎩

E−2.3 − E−2.4 rgc < 5 kpc

E−2.7 5 kpc < rgc < 10 kpc

E−2.9 rgc ∼ 15−20 kpc
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gamma-ray component in the Galaxy with CTA and SWGO 
over a greater energy range can help to test this picture 
and will help to discriminate the three discussed models.
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