10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Noname manuscript No.
(will be inserted by the editor)

Deja Vu: Semantics-Aware Recording and Replay of
High-Speed Eye Tracking and Interaction Data to
Support Cognitive Studies of Software Engineering Tasks
- Methodology and Analyses

Vlas Zyrianov - Cole S. Peterson : Drew
T. Guarnera - Joshua Behler - Praxis
Weston - Bonita Sharif - Jonathan I.
Maletic

Received: date / Accepted: date

Abstract The paper introduces a fundamental technological problem with
collecting high-speed eye tracking data while studying software engineering
tasks in an integrated development environment. The use of eye trackers is
quickly becoming an important means to study software developers and how
they comprehend source code and locate bugs. High quality eye trackers can
record upwards of 120 to 300 gaze points per second. However, it is not al-
ways possible to map each of these points to a line and column position in a
source code file (in the presence of scrolling and file switching) in real time at
data rates over 60 gaze points per second without data loss. Unfortunately,
higher data rates are more desirable as they allow for finer granularity and
more accurate study analyses. To alleviate this technological problem, a novel
method for eye tracking data collection is presented. Instead of performing
gaze analysis in real time, all telemetry (keystrokes, mouse movements, and
eye tracker output) data during a study is recorded as it happens. Sessions
are then replayed at a much slower speed allowing for ample time to map

Vlas Zyrianov
University of Illinois at Urbana-Champaign, E-mail: vlasz2@illinois.edu

Cole S. Peterson
University of Nebraska—Lincoln, E-mail: Cole.Scott.Peterson@huskers.unl.edu

Drew T. Guarnera
College of Wooster, E-mail: dguarnera@wooster.edu

Joshua Behler
Kent State University, E-mail: jbehlerl@kent.edu

Praxis Weston
Kent State University, E-mail: gweston2@kent.edu

Bonita Sharif
University of Nebraska—Lincoln, E-mail: bsharif@Qunl.edu

Jonathan I. Maletic
Kent State University, E-mail: jmaletic@kent.edu

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

gaze point positions to the appropriate file, line, and column to perform addi-
tional analysis. A description of the method and corresponding tool, Deja Vu,
is presented. An evaluation of the method and tool is conducted using three
different eye trackers running at four different speeds (60Hz, 120Hz, 150Hz,
and 300 Hz). This timing evaluation is performed in Visual Studio, Eclipse,
and Atom IDEs. Results show that Deja Vu can playback 100% of the data
recordings, correctly mapping the gaze to corresponding elements, making it a
well-founded and suitable post processing step for future eye tracking studies
in software engineering. Finally, a proof of concept replication analysis of four
tasks from two previous studies is performed. Due to using the Deja Vu ap-
proach, this replication resulted in richer collected data and improved on the
number of distinct syntactic categories that gaze was mapped on in the code.

Keywords eye tracking - high-speed tracking - empirical software engineer-
ing - program comprehension - replication analyses

1 Introduction

Studying how developers read and understand source code is a core research
topic in software engineering. Research on mental models of program com-
prehension dates into the 1980’s (Brooks, 1983; Letovsky, 1987; Rist, 1986;
Soloway and Ehrlich, 1984; Pennington, 1987; Von Mayrhauser and Vans,
1995). Historically, researchers use approaches such as think-aloud and pre/post
surveys to collect data for such studies. Recently, researchers are taking advan-
tage of eye tracking technology to study how people read source code (Obaidel-
lah et al., 2018). In general, eye trackers are a vital research tool in understand-
ing how people observe and in turn comprehend visual stimuli (Rayner, 1978).
Researchers successfully use eye tracking hardware to better understand how
people read natural language prose, understand diagrams, and process visual
landscapes. Computer scientists use eye tracking devices to study how peo-
ple interact with graphical user interfaces and web pages (Goldberg et al.,
2002). The software engineering community is currently using eye tracking
equipment to study how developers read and understand source code (Sharafi
et al., 2015b). There is a recently published practical guide on conducting eye
tracking studies in software engineering (Sharafi et al., 2020) that covers the
technology and best practices to follow when conducting eye tracking studies
in software engineering.

Eye tracking devices come in a wide range of forms and take advantage of a
range of technologies. The devices are made up of hardware, mainly specialized
cameras, along with sophisticated software that computes the focal point of
the eyes using data collected by the cameras. The software is needed to map
each of the eye gazes to locations on a visual stimulus (e.g., computer screen).
Additionally, eye tracking devices differ greatly with regards to accuracy (of
tracking eye movements) and the applications and environments they can be
applied to (Andersson et al., 2010). In particular, studying how people read
and comprehend text or source code requires high precision (and costly) eye

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

tracking hardware and software. While determining general spatial regions
where a person is looking (left, right, up, down) only requires simple and
low cost hardware and software. Low cost systems cannot identify the exact
focus of the eyes, such as the word or letter someone is looking at. They only
work well on larger stimuli such as objects in computer games. A high quality,
accurate, research-grade eye tracking device allows researchers to determine
the exact xy-coordinate on the screen a person is examining. The higher-end
eye trackers, in a controlled setting, can pinpoint down to the letter being
examined. Research on reading prose and source code most often requires
accuracy to the word level at minimum.

Using an eye tracker to study a developer (participant) works by presenting
an image or text (stimuli) on a computer screen and then using the data from
the cameras to determine the location (xy-coordinate) the person is looking.
However, there are a number of limitations to this technology. The subject
must be forward looking at the stimuli, cannot move around the room, and
must be fairly stationary. While these are not serious limitations for conduct-
ing scientific studies, there is one underlying limitation that poses a substantial
road block for studying how programmers understand large, real-world soft-
ware. Accurate research-grade eye trackers only work on fixed stimuli (i.e., an
image or text block) that fits on the computer screen. Changes to the stimuli
(screen), such as scrolling or switching files, present a very complex problem.
Mapping the (x, y) to the correct position in the stimuli (say a 1000 line file)
becomes impractical.

Fortunately, infrastructure to deal with this problem has been recently
constructed, namely iTrace (Sharif et al., 2019; Guarnera et al., 2018; Sharif
and Maletic, 2016a; Sharif et al., 2016b). iTrace (www.i-trace.org) allows a
software engineering researcher to conduct eye tracking studies directly in an
integrated development environment (IDE) such as Visual Studio or Eclipse.
It supports the tracking of eye gazes in the presence of scrolling and context
switching. Thus, researchers can study developers in a real-world environment
using large realistic software systems. iTrace does this by linking the IDE via
a plugin architecture and invoking application and system calls to map the
screen xy-coordinate to a line and column in the file in real time. This is then
used in a post processing phase to determine the source code token being
examined by the study participant.

Unfortunately there are some technical limitations to this approach that
pose a problem for researchers studying developers. Eye trackers sample eye
gazes x-times every second denoted by the frame rate. For example, a 120
Hz eye tracker generates 120 samples per second of raw eye gaze coordinates.
Each gaze needs to be looked up in real time to map to the line, column
within the file. Of course the lookup time is bound to the time it takes for the
system calls to be executed and return. If the response time of this system call
is too long it is not possible to map all (120) gazes coming in accurately to
the correct file location in time. Through use of the iTrace infrastructure we
determined that the maximum frame rate at which this can be done in real
time is approximately 60Hz (for both Visual Studio and Eclipse). This implies

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

that anything above 60Hz will cause the tracker in iTrace to either incorrectly
map data or drop gaze points altogether. While having a faster computer may
help a to some degree, getting to 120Hz, 300Hz or even 1000Hz (at which
reading studies are typically done in psychology) is impossible with real time
mapping.

The research presented here, and previously in Zyrianov et al. (Zyrianov
et al., 2020), addresses this limitation of the current iTrace architecture by
taking all the processing offline. While the IDE API function call response
time is fixed, our technique allows for all input events to be recorded and
replayed back in a post processing step at a slower rate (several options exist
on playback rate). This allows for accurate mapping of gaze data to source code
locations with very high-speed eye trackers. The technique is implemented in
Deja Vu, a novel tool that leverages the iTrace infrastructure and integrates
well with its workflow. The technique and details of the Deja Vu’s approach
are presented.

The main contributions presented in this paper are:

— Formalization. We introduce a fundamental problem in performing eye
tracking studies in practical developer environments with high-speed eye
trackers.

— Technique. We present a novel technique to solve the technological prob-
lem presented using automated recording and semantics-aware replaying of
eye tracking and interaction data to support cognitive studies of software
engineering tasks.

— Tool. The novel technique is realized and implemented in a practical tool,
Deja Vu, that is integrated in to the iTrace eye tracking infrastructure.
iTrace, along with Deja Vu, is available at www.i-Trace.org. An ini-
tial release of Deja Vu is available at https://doi.org/10.5281/zenodo.
3976332. Future releases of Deja Vu will be available on the iTrace website:
http://www.i-trace.org/downloads/

— Evaluation. An evaluation of the fundamental problem of collecting high-
speed eye tracking data with and without Deja Vu is presented in the
context of three integrated development environments (i.e., Eclipse, Visual
Studio, and Atom).

— Replication Analysis. A replication analysis is conducted by collecting proof
of concept data with a small sample of participants using Deja Vu on four
tasks from two prior studies. The data is then compared to prior studies
to show evidence of added syntactic categories mapped using the Deja Vu
approach. This analysis is presented in Section 8.

This paper extends our prior conference paper (Zyrianov et al., 2020) in the
following ways. First, experiments evaluating Deja Vu now include the Atom
IDE and are described in Section 7. The prior paper only included experiments
for Eclipse and Visual Studio. Second, a replication analysis (Section 8) of tasks
in two prior studies (Saddler et al., 2020; Kevic et al., 2015) is done to provide
evidence of the richer syntactic categories that are provided with the Deja Vu
approach. Section 8 is a completely new addition that required the collection

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

of proof of concept data to illustrate the additional useful information the
Deja Vu approach provides. Third, a detailed description and illustration of the
iTrace infrastructure, the delay mechanism in Deja Vu, and the post processing
Toolkit (Section 5) is given including new and updated diagrams as well as
usage scenarios (Section 6.4). Fourth, we integrated Deja Vu directly into the
iTrace-Core (previously it was stand alone), thereby greatly enhancing the
actual use by researchers to support their studies and finally the practicalities
of implementation have been updated to include the addition of supporting
mouse double click events during the reply of Deja Vu sessions and fixing of
race conditions (Section 6.3).

The paper is organized as follows. Section 2 presents related work in in-
teraction monitoring. Section 3 formally presents the problem and motivation
for Deja Vu. Section 4 clearly defines the types of effects that could be studied
with high speed tracking and the need for supporting high speed data collec-
tion. Section 5 discusses details of the Deja Vu architecture, design decisions,
and how Deja Vu integrates with iTrace. Section 6 discusses implementation
details of the recording and replaying stages including the challenges faced
and how they were mitigated or need managed. The section also touches on
usage scenarios for iTrace and Deja Vu. Section 7 provides an evaluation on
the impact of data output rates from eye tracking devices on real-time analy-
sis of eye tracking data on source code with respect to the iTrace framework
(Guarnera et al., 2018; Sharif and Maletic, 2016b). Section 8 presents a repli-
cation analysis on four tasks taken from two prior studies using the Deja Vu
approach. Section 9 summarizes our methodology, analyses, and presents av-
enues of future work.

2 Related Work

This section presents related work in automatically capturing user interactions
that is most relevant to this paper’s scope.

Capturing user interaction data for analysis is a common approach in a
variety of computational research studies. Minelli et al. (Minelli et al., 2015,
2014, 2016) record mouse, keyboard, and IDE interaction data. Fine grain in-
teractions are grouped into broad categories such as comprehension, editing,
navigating, etc. to observe developer behavioral during typical tasks. Findings
about what activities consume the most developer time, the proportion of
development time is dedicated to program comprehension, and the IDE navi-
gational efficiency of developers are presented. The Blackbox project (Brown
et al., 2018) has collected programming interactions within the BlueJ Java
IDE for over five years. This dataset has been aimed at providing raw data
for research analysis towards better understanding software development be-
haviors of novice developers. Mylar (Kersten and Murphy, 2006), now known
as Mylyn for the Eclipse IDE, allows a developer to track IDE usage activity
related to defined tasks. These task contexts can be easily switched in order for
developers to multitask without the need to manually relocate artifacts upon

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

returning to a previous task activity. Deja Vu drastically differs from Mylyn in
that Deja Vu is intended to store interactions along with cognitive information
(eye tracking data) for the purpose of replay and subsequent analysis while
Mylyn is an active development productivity tool.

ActivitySpace (Bao et al., 2015) stores mouse and keyboard events related
to applications used by software developers to accomplish daily tasks. Event
information is logged to a database as an “action record” to create a historical
profile of developer interactions. Action records are grouped by a user de-
fined time window and can be queried to help remind developers of resources
used and actions taken while working on a given task to improve productivity.
Interaction data from ActivitySpace has also been used with machine learn-
ing techniques are compared to classify developer activity into higher level
categories such as coding, debugging, testing, navigation, web browsing, and
documentation (Bao et al., 2018).

In addition to the capture user interactions, running simulated interactions
is a popular solution for software testing research. Sikuli is used in (Sun et al.,
2018) to construct synthetic macro scripts that are application agnostic based
on common keyboard and mouse usage. User interactions are supplemented
with desktop screenshots and image processing to determine the targets of
the actions and automate GUI testing. Specific environments such as websites
(Burg et al., 2013; Nifio et al., 2005) and Android applications (Yan et al.,
2018; Guo et al., 2019) have also been instrumented to record and replay
user interactions for the purpose of testing and evaluating web or GUI based
applications.

Capture and replay approaches also benefit general purpose automation
techniques. The Online Synchronous Education Platform (OSEP) records and
abstracts user interactions with websites allowing for editable interactions
scripts to be run as pre-recorded or synchronous demonstrations to support
educational environments (Sun et al., 2014). Using the same framework, an
system for automating common or lengthy website interactions is also proposed
to improve user productivity (Sun et al., 2015). Recent works by Ramler et
al. (Ramler et al., 2020) and Bernal-Cérdenas et al. take a different approach
to capturing and replaying user interaction (Bernal-Cardenas et al., 2020).
Instead of instrumenting applications or recording interactions at an OS level,
recorded video of an activity is broken down into individual still frames which
are post processed to reverse engineer user interactions shown in the video.
Since we do not have video as input, we did not favor this approach and instead
focus on recording IDE interactions as they occur.

Summary: In order to learn more about eye tracking in program compre-
hension, we direct the reader to a survey of eye tracking (Obaidellah et al.,
2018) and a practical guide (Sharafi et al., 2020) on conducting experiments
in program comprehension. These two works summarize the state of the art
in eye tracking research for software engineering. While Deja Vu makes use
of existing recording and replaying techniques, it differs from the state of the
art by recreating an eye tracking study in its entirety. User interactions with
mouse and keyboard and gaze locations are all replayed to simulate a prior

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

oy e
L &gl 7 P2 Satounts. lor -
65 123 251 4 o
2 124 1 fu2s
82 :
ir

{ =

fonm infs

:I.‘.Uf 2]) ' > - "\ .

OYlea . n L) \f“ '“5:12[.(85 3@(208 237 40 26 | 4738 R zzs“_

) “U‘H,"‘_g» % o7 050 905 24i1]|6-00 = aof "um“‘_us o L LT
oth

}

95

194 . .
puihic gyl @int [#¥:onAtters (S8l ng i {

YasoTl cus8ts mMisw 11180 ;
157

foel (W o -dalls i < _s(®ngdsl); i) {
if (@harag-er.isl®cer t~ 20 rACL)))
, 7%
cour({iz2 [s.ch@aAt (i)W Wy,
}

180
return collts;

Fig. 1: Gaze plot of a developer’s fixations on code. Fixations are represented
as circles. The number in the circle represents the fixation index in time.
Fixations are linked via a scan path shown by lines connecting consecutive
fixations.

eye tracking study while allowing ample time for more detailed analysis that is
not feasible to perform in real-time using high speed eye tracking equipment
due to system call response time limitations. Additionally, Deja Vu affords
researchers an opportunity to replicate a study any number of times while
analyzing the study in different ways each time to greatly increase the value
of participant recording sessions. This is a novel contribution to the current
state of the art and provides the eye tracking software research community
added incentive to use eye tracking equipment in their studies. The additional
advantage of supporting high-speed trackers above 60 Hz (most research grade
trackers are 120 Hz or higher) without data loss enables many different types
of cognitive analyses (outlined in Section 4) that were unable to be done before
because of the engineering problem described.

3 Background and Problem Formalization

There are decades of research, that take advantage of eye tracking technology,
to study how people comprehend visual stimuli (Rayner, 1998). Modern eye
trackers collect a person’s eye gaze data on the visual display (referred to as the
stimulus) in an unobtrusive way while the subject is performing a given task.
This eye movement data provides very valuable insight into comprehension
strategies (Soloway and Ehrlich, 1984) as to how and why people arrive at a
certain solution. Eye movements are essential to cognitive processes because
they focus a subject’s visual attention to the parts of a visual stimulus that
are processed by the brain. Visual attention triggers cognitive processes that
are required to perform such things as comprehension. Eye movement is also
a proxy for cognitive effort (Rayner, 1998) and allows us to determine what
parts of a visual stimuli are difficult to understand.

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

The underlying basis of an eye tracker is to capture various types of eye
movements that occur while humans physically gaze at an object of interest.
Fixations and saccades are the two types of eye movements. A fixation is
the stabilization of eyes on an object of interest for a certain period of time.
Fixations are made up of multiple raw gazes. Saccades are quick movements
that move the eyes from one location to the next (i.e., re-fixates). Dwell time is
defined as the sum of all gazes in a dwell (one visit to an area of interest from
entry to exit) (Holmqvist and Andersson, 2017). An area of interest is defined
by the researcher as any part of the stimulus that is of interest for analysis.
For example, in source code it can be a token, a line, or multiple statements. A
scan path is a directed path formed by saccades between fixations. The general
consensus in the eye tracking research community is that the processing of
visual information occurs during fixations, whereas, no such processing occurs
during saccades (Duchowski, 2007). The visual focus of the eyes on a particular
location triggers certain mental processes in order to solve a given task (Just
and Carpenter, 1980). Modern eye trackers are accurate to 0.5 degrees (0.25
in. diameter) on the screen. In Fig 1, we see eye gazes on source code (some
areas having a much higher density of fixations than others). The fixations
are shown as circles on the diagram. The radius of the circle represents the
duration of the fixation. The bigger the radius, the more time is spent looking
at that particular point. Each fixation has a number displayed in the center
of the circle, which indicates the order in which the fixation occurred.

Not all eye trackers are made equal. Generally, eye trackers range from low-
cost consumer grade to more expensive research-grade tracking equipment.
Research-grade eye trackers are thoroughly tested for accuracy, quality, and
reliability compared to low-cost models. Low-cost eye trackers costing approxi-
mately $200 USD are for consumer use (mainly gaming). Low-cost eye trackers
miss the subtle differences in how humans read and navigate text. Another dif-
ference is the frame rate. Low-cost eye trackers capture gazes at a slower rate
compared to the research-grade ones. More gazes captured per second give
more detailed insight into how people read and analyze software artifacts.

The current generation of eye tracking devices offer a wide range of data
rates (Andersson et al., 2010). Older and entry level devices tend to operate
at 60 Hz meaning that 60 data points are provided within one second. When
performing real-time analysis with received gaze data, analysis tools would be
left with approximately 17 milliseconds (ms) for any analysis before a subse-
quent new data point will be received from a tracker. This window narrows
as modern trackers are capable of supporting anywhere from 120 Hz to over
2000 Hz.

Eye tracking of source code within an integrated development environment
(IDE) is a serious challenge compared to the traditional approach of using
static images or text that fit completely on a single screen. In the case of a
static stimulus, the position of the image or the source text has little to no
variation. The gaze data recorded while the stimulus is visible can easily be
mapped down to the pixel on an image-based representation of the data on
the display. In contrast, while using an IDE, users may manipulate the view

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

of the source code in any number of ways such as scrolling, file switching, or
even editing. These actions require that the gaze data recorded is contextually
informed of state of the IDE with respect to the positioning of the source code
text and interface elements at a specific moment in time. For example, if a
user is scrolling through a source code file looking for a specific identifier, the
user’s eye positioning may remain fixed within a limited region of the display
as the text scrolls past. The issue is that location of the stimulus is changed
drastically due to scrolling and it is no longer possible to easily map the screen
location of a gaze to the stimulus.

In the case of the iTrace infrastructure (Guarnera et al., 2018; Sharif and
Maletic, 2016b) (or other similar gaze analysis infrastructures), IDE plugins
map gaze locations to interface elements and source code text. The high la-
tency of IDE plugin environment API calls significantly limits the feasibility
of deep real-time gaze and textual analysis at the data sampling rate of high-
speed trackers. Currently, solving this problem requires serious tradeoffs. One
option is to drop gaze points received while the plugin is busy performing gaze
mapping operations causing valuable data points to be lost. Another choice is
to buffer all gazes to prevent data loss, but this causes the mapping process to
steadily fall behind as the mapping process is a real-time operation and relies
on the context of the current state of the IDE when the gaze data is received.
This ultimately leads to a desynchronization of the gaze data and the IDE
state and renders the data invalid.

4 The Need to Support High Speed Eye Tracking

Enabling support for high speed trackers allows researchers to collect data
for studying various software engineering tasks and better enable them to
come to conclusions similar to that of cognitive psychology reading studies
that typically use 1000-2000Hz trackers. We now enumerate several benefits of
having support for high speed trackers implemented in Deja Vu by extending
current eye tracking community infrastructure.

Running realistic studies using the community infrastructure such as iTrace
on a tracker greater than 60Hz is now possible as Deja Vu takes full advantage
of the faster frame rate. Most affordable research grade eye trackers are at
least 120Hz. This enables researchers to take advantage of the higher frame
rate available to them. The higher the sampling rate, the greater the precision
of the eye in space, causing less error on dwell time (Holmqvist and Andersson,
2017) at any given point on the stimulus. This relates directly to the accuracy
of the eye tracker. Accuracy is important when drilling down to the specific
token the developer is examining. Tokens are of varying length (e.g., short
variable names, data types (int) or opening and closing braces) and accurate
dwell time is critical for a study. Additionally, with higher precision we can
accurately map the eyes to the parts of the stimuli with more realistically
sized fonts. Currently, to overcome this limitation, researchers use a larger
font, however, this is not very realistic as developers do not normally program

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

in very large fonts. With a 60Hz tracker, the window of error is about 32 ms
- once every 16 ms in either direction (Andersson et al., 2010).

There are known attentional effects such as attentional cuing (Van der
Stigchel and Theeuwes, 2005), inhibition of return (Dodd et al., 2009; Klein
and Maclnnes, 1999; Lupidiez, 2010), distractor inhibition (Stigchel and
Theeuwes, 2006), and flanker effects (Eriksen, 1995), to name a few, that are
highly significant but often quite small and range between 10-15 ms in response
and in dwell time. It is impossible to capture these effects with low-precision
eye trackers. Many of these effects are highly relevant to software engineering
studies. But none of the current studies analyze such effects as there is cur-
rently no support to do this in current infrastructure. Note that this is still
possible to do with high speed trackers if using short code snippets that fit on
the screen, however it has been shown that the results from short snippets do
not necessarily generalize to more realistic tasks (Abid et al., 2019).

Researchers have studied how eye curvature affects a task. These charac-
teristics can only be discerned at a high sampling rate requiring the use of
high-speed tracking. For example, the eye can be attracted to or repelled from
a distractor as a function of temporal relationship between a target and a
distractor (Stigchel and Theeuwes, 2006). We have yet to determine if these
issues impact real world programming behavior. Researchers can generally
extract more information from high precision data such as pupillary activ-
ity (Duchowski et al., 2020a; Rayner, 1998) and velocity measures that can
help with saccade (Stigchel et al., 2010) and microsaccade analysis (Engbert
and Kliegl, 2003; Hafed and Clark, 2002; Lowet et al., 2018). Microsaccades
are miniature eye movements along with tremor and drift that are made dur-
ing a fixation. They are typically found 1-2 times per second and have an
amplitude of between 1’-25’ (arcminute). Microsaccades have regained popu-
larity recently and are being studied by eye tracking researchers to learn about
the cognitive load (Kelleher and Hnin, 2019) and task difficulty (Duchowski
et al., 2020b). However, to correctly conduct microsaccade analysis, a 300Hz
or higher (500Hz recommended) tracker is necessary to be confident in the ve-
locity measures. Typically, oversampling of the data is used as an alternative
but this is not recommended due to the artificial nature of the generated sam-
ples. Finally, with the introduction of multiple data collection streams such
as studies that incorporate fMRI (Floyd et al., 2017), {NIRS (Fakhoury et al.,
2018), EEG, or GSR with eye tracking, it is recommended to have high speed
precision to align timing data.

In summary, we have only begun to start studying developers and cognition
in software engineering using eye trackers. We have yet to learn from cognitive
psychology and one of the ways to do this correctly is to have support for
high-speed trackers in order to start collecting data correctly and making
scientifically sound conclusions using realistic settings.

Another point of discussion is what theories support empirical analysis of
studies run on such eye tracking infrastructure. Note that a detailed analysis
and actually conducting an empirical study was not the scope of this paper.
This paper is producing infrastructure that enables studies to be done. In

10

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

order to show this in a feasibility analysis, we ran a short replication analysis
(see Section 8 by collected data on prior tasks with a few participants and
analyzed the results with Deja Vu and compared it to the syntactic categories
of the original studies without Deja Vu. One can always refer to the mental
models and theories in program comprehension (Storey, 2006), however, this
is best left to when a research study is designed. That was not the scope of
this paper. We could come up with working theories to provide better insight
into cognitive load and comprehension processes. However, this paper is not
about finding cause/effect via an empirical study. It was merely showing that
we can get additional syntactic categories (via a replication analysis) because
now we support high speed tracking. We also want to note that sometimes
theory hinders experiments (especially interdisciplinary ones such as the ones
using eye tracking) as pointed out by Ko and Nelson in their award winning
paper at ICER in 2018 (Nelson and Ko, 2018). Even though their paper is on
CS Education, the same principles still hold for general SE research.

5 The iTrace Infrastructure

Deja Vu leverages, and is now integrated into, the iTrace infrastructure (www.
i-Trace.org) (Guarnera et al., 2018; Sharif and Maletic, 2016b) to capture
mouse and keyboard activity during an eye tracking study. To understand the
role of Deja Vu it is necessary to be familiar with the architecture and workings
of iTrace presented in this section.

5.1 iTrace Architecture

iTrace is eye tracking infrastructure that enables research studies within mul-
tiple types of software development environments. It was designed and built to
support the software engineering community in conducting eye tracking exper-
iments seamlessly within realistic developer environments i.e., IDEs. The in-
frastructure’s design is modular featuring three key components, iTrace Core,
iTrace Plugins (See Fig. 2), and an offline post processing application for gaze
analysis called iTrace Toolkit (see Fig. 3). For a detailed low-level diagram on
how iTrace works, we direct the reader to (Guarnera et al., 2018).

The Core provides a unified interface for managing supported eye tracking
devices. Through this application eye trackers can be set up to calibrate or be-
gin and end eye tracking data recording. All data generated by the eye trackers
is first received by the Core which then makes quick decisions based on validity
indicators whether the data is acceptable for use by other iTrace infrastructure
applications (plugins). The Core also provides socket and websocket servers
to allow for iTrace plugins to connect to the Core and receive gaze data for
additional processing. In addition to gaze data, the socket communication also
coordinates the start and stop of a recording session and subsequent plugin
data processing as well as any output file storage locations for organizational
purposes.

11

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

iTrace K@\Deve"’per

. . Eye
interactions

Tracker

Windows OS
| I IDE |
(MSVS, Eclipse, Atom)
Source Code + iTrace
I iTrace Plugin Core

Plugin Output:
time stamp, file,
line, column,

Core Output:
time stamp, gaze

data

srcML of
Source Code

Fig. 2: iTrace Architecture Diagram. iTrace is composed of two main compo-
nents: the core and an IDE plugin(s). The core interacts with the eye tracker
and sends information to the plugin. Given the screen (x, y) coordinate of a
gaze, the plugin determines the file, line, and column that maps to that gaze.

Plugins for iTrace support applications such as Eclipse, Visual Studio,
Atom, and the Google Chrome web browser to allow study participants to
engage with standard development tools instead of simulated proxies. This
allows for data collection to occur in a natural and realistic development envi-
ronment. Plugins receive the screen coordinate location of a gaze via socket or
websocket communication as well as a unique identifier from the Core. Using
this information, each plugin performs real-time analysis to map a gaze to
contextual information within the IDE or web browsing window. This map-
ping constitutes line and column positions within a visible source code editing
window, IDE interface widgets, or HTML elements (with respect to Google
Chrome) that fall under a participant’s gaze. These contextual mappings are
essential as study participants are free to manipulate the stimulus environ-
ment through scrolling, resizing, switching files or pages, searching, and other
activities. Without any kind of context to associate with a gaze, combined
with the volatile nature of the stimulus environment, it would be impossible
to correctly determine what elements of the stimulus are actually viewed at a
given moment in time.

Note that even eye tracking vendor software does not have support that
iTrace provides. They (at best) cache a page apriori if it extends screen size
and need to know in advance what participants will look at. This is not the

12

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

iTrace Toolkit

Plugin Output:
time stamp, file,
line, column

Core Output:
time stamp, gaze
data

srcML of
Source Code

Support querying
and analysis of
results

iTrace
Toolkit (iTT)

Results
Database

(3

Fig. 3: The iTrace Toolkit fuses all the different data sources together into a
multi-relation database (SQLite). This allows researchers to formulate queries
and conduct analysis on the data. This is done as a post processing phase after
replay. Fixations are computed, line/column positions and syntactic informa-
tion are mapped to source code tokens via srcML.

case with iTrace. iTrace completely revolutionizes the way eye tracking studies
are conducted in realistic settings.

All data collected from each eye tracking recording session is stored in XML
files. The Core stores participant and study metadata, calibration information,
details about the specific tracker used to record the data, and all the raw gaze
data points (valid or invalid) received from the eye tracking device during
the session. Each plugin records valid gaze points received by the Core and
contextual information about the gaze location with the IDE or web browser
environment. When a study is complete, the custom offline post processing
Toolkit provided by the iTrace infrastructure aggregates the data from all
XML files. All study metadata and gaze data is collected into a unified Sqlite
database where raw gaze data and plugin context information is joined using
the aforementioned unique identifiers. Once all of the data is aggregated into
the Sqlite database it can be queried using standard SQL commands or further
analyzed using the post processing application.

13

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

525

5.2 iTrace Toolkit

The iTrace Toolkit (Fig. 3) is a post processing application written in C++
and QML. It performs two key analysis methods on the collected study data.
The Toolkit makes use of the eye-tracking information gathered from iTrace
Core, the contextual information gathered from the iTrace Plugin of choice,
and a srcML archive file of the source code observed (if indeed source code was
one of the artifacts being viewed). For artifacts that are not source code, the
process is a little different and adhoc in nature and needs to be written specific
to that artifact. For e.g., if the artifact is a custom built web application that
uses the iTrace-Chrome plugin, the post processing will be very specific to the
structure of that website. iTrace-Toolkit will need to be extended to support
that specific website’s data collection needs.

First, the Core and plugin data is loaded into the Toolkit. Multiple different
recording sessions can be loaded in at once. Using srcML (Collard et al., 2013)
in conjunction with the line and column information provided by the iTrace
IDE plugins, all textual tokens and the syntactic context of each token within
a source code document can be recovered and stored within the database for
later querying. The related srcML archive file is loaded in, and all of the
raw gaze data from the eye-tracker is matched to the contextual information
to deduce what file, line number, column number, and token the participant
examined. This information is stored in a Sqlite database. The data model for
this database is given in Fig. 4. As additional mapping to tokens is done, that
information is also added to the database. This allows researchers to easily
manage and analyze the data produced in each study.

The Toolkit supports three different fixation detection algorithms — Basic
(Olsson, 2007), I-VT, and I-DT (Salvucci and Goldberg, 2000) — each with
adjustable parameters (Andersson et al., 2017). All fixations identified are
stored within the database and each fixation references the raw gaze collection
that it represents. Other fixation filters can easily be added to the Toolkit as
needed. The Toolkit also provides a way for a participant/researcher to query
the loaded database for specific fixations; i.e., if the researcher wants to look
at all fixations that focused on whitespace and happened before line 300. The
queries’ outputs can be saved in a variety of formats: SQL, TSV, JSON, and
XML. This data can then be imported into the user’s statistical package of
choice for further qualitative and quantitative analysis.

5.3 Software Tasks in Research Studies

iTrace and Deja Vu are eye tracking infrastructure to support researchers in
studying developers (i.e., their eye movements) while trying to understand
software systems. In the context of software development, any program under-
standing task can be studied within a research study including debugging, bug
localization, method summarization, concept location, feature location, trac-
ing, etc. In other words, ¢Trace Deja Vu is task agnostic and supports data

14

HIDALNI ybus| uolssas

1X31] pijuedionred| yd
Juedioned

w3y uonepifen 1ybu
vay A ybu
v3y X b
vy uorelpieA ya||
w3y A ya)
vy X y9)

¥IDILNI piTuiod uoneiqiied| M4

X3l 2dAY:
pavoduwi 1X31|yredTjny
SOl 40 1oen 4A93UNI| PIuoISSas|id
Buidaay Joy| vl
a|qe) [eulau|

a|dwes™ uoneiqied

vad
wv3ay
¥IOILNI
¥IOTLNI

A" uoneiqied
X" uonelqied
pITuoneIqied| M
priuiod”uoneiqied| Md

juioduoneiqied

bE|

ﬁl‘

d|

AX31 P
EERENL] awin” arep|
H3IDILNI pIuoIssas| Y4

[_Y3OILINI| pIuni_uonexy|dd

unJ”uonexi

Y3IOFUNI uoneinp|

YIOIUNI Jareurelp”jidndIyBul

HIDILNI Japwelp idndTYya)

AX3L| yredx|

1X31 KioBayes opoejufs|

IX3l| uaxoy

H3O3LINI 10931} 22.N0s|

YIDILNI aul|” 9|l 221nos|

1x3L 196.e1” Uonexy|

Y3IDIUNI A

H3O3LINI X

YIDILNI| I9QUINUTIBPIO UoNEXY|

HIADILNI|[aWI JUBAS Mels” uonexly|

—< ¥393INI pimuns"uonexy

HIDILNI pI_uonexy|
uonexy

ISERENN] pi_uoneiqies] yd
uoneiqied
AX3L| aweu yjse)|
IO LNI| Hels Buipiodas uaaios|
HIOALNI 8w} UOISSas
HIADILNI aYep” UoISSas
1X3L| lsquinu”[euas Isxoe)|
1X3L adAy Iaxoen)
HIDILNI Wblay~ uaaios
YIOILNI UIpIM~ UD310S
HIDILNI pi uedionred| Y4
HIDILNI pi_uoIssas| Md
uoISsas
ESERENI]] awnTuaAs| M4
¥IOALNI pi_uonexy| M-

azeb~uonexy

vad
EE]
vad
NEL]
vad
£l
vad
£l
BVEE]
\EL]
BLEE]
EL]
AEE]
NEL]
vad
£
HIAOFUINI
HIOALNI
iSERETI]
HIOALNI
HIOAUNI
H3IOILINI

Zybu"Iesn

A ybu1asn
XybuIasn|

Z Ya| Jasn|

A Yo Jesn|

X" Y| Jasn|
uonepien 1ybu
Jepwelp idndTy6u
A bu

XTybu
uonepifen 13|
Jevwelp idnd Y|
£ y9|

Xy3)

A
X
awin~walsAs
awn1axoel
piuedionred
pI_uonelqies
pIuoIsSas|
ENBIEVE]

E]
ME]
E]
Ad

AX31] Bey
1X3l| n
AX31] awreuals

1X3L1| adAy iesmouq
H3IOILNI QWINIUBAS| Mo

1X3)U0D ™ gam

V3
vad
1X31|
1X3L]
A1X31|
vy
\EL]
AEE]
\EL]
ISERETIN]]
HIOALNI
X3l
1X3L]
X3
1X31]
X3
HIOILNI

A

X|

1X3JU09 T ONORIUAS U0} 92INOS|
yredx usx0)” 92.n0S|
adA)"uax30)"921n0s

A eseq aul| Jo)ps|

X" oseq aull_io)pa

wbrayjuoy ioNpa|

b1y aulIoNpa

924N0S|
| 921n0S|
yred |y~ 921n0s
adA 1ebrey azeb|
1oh.rey”azeb|
adAy ap!

dureys s

awI JusAs| M4

azeb

X8)u00”8p!

1 Database Schema.

An overveiw of the iTrace Toolkit Relationa

Fig. 4

15

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

collection in the cases where IDE lookup times are slower than the eye tracker
frequency. At this point in time, Deja Vu and iTrace do not support tasks
that involve editing. The only exception to this is a specialized iTrace-Atom
version with our collaborators that supports limited editing (Fakhoury et al.,
2021) for a specific study that needed to be conducted.

Accurate automatic support for eye tracking in the presence of editing is a
very difficult and currently open problem. However, the iTrace infrastructure
and the way Deja Vu was architected forms a basis for addressing this challenge
to support tracking full editing capabilities in the near future.

6 Realizing Deja Vu

The contextual information that iTrace provides is of great value. However, the
overhead incurred by collecting this information in real time becomes prob-
lematic as the speed at which eye tracking devices are capable of transmitting
data increases. To alleviate this issue and fully support high speed eye track-
ing while still collecting contextual stimulus environment information a new
approach is required.

To address the problem, Deja Vu augments iTrace to allow all gaze analysis
that occurs in real-time to be deferred to an offline post processing phase. We
record all telemetry data (e.g., keyboard, mouse), along with eye tracker data,
and time stamps. This requires Deja Vu to record all user interactions. A
subsequent replay phase is used to synchronize each user action with respect
to recorded gaze data. Hence, we are no longer is constrained by real-time
performance requirements.

One method of implementing this is capturing the entire operating system
after receiving each gaze during an eye tracking study session. After the study,
each operating system state is loaded and all mappings are calculated. This is
entirely accurate, however is not practical. It has very poor performance due
to requiring copying the entirety of RAM to disk and may require introducing
the complexity of a hypervisor.

Deja Vu takes an alternative approach. Only actions that get the envi-
ronment to each state are recorded and stored. Practically, these are mainly
human-computer interaction events — mouse movements and keyboard key
state data. Other vital information includes the operating system state his-
tory, such as the exact position where a window pops up (in Windows, it
depends on where it was previously opened). In these cases, a Deja Vu style
approach needs to take measures to address this and ensure that replays are
deterministic.

In the Deja Vu approach, the execution process is split into two steps.
First, during an eye tracking study, the computer interaction data is collected
in real time. After the eye tracking study session is completed, all the computer
interactions can be replayed at some later time. This involves replaying the
session on the same machine but at a slower frame rate. Since all data is
timestamped this can be done without loss and in an accurate manner. Thus,

16

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Table 1: Example of data collected during the recording phase. Some gazes
omitted for brevity. The events are shown as they happen. In this case we
have shown gaze, KeyDown, KeyUp, and MouseMove events.

gaze 132277258033906585 314,769
KeyDown 132277258035886613 72
gaze 132277258037224389 336,790
gaze 132277258037601928 333,791
KeyDown 132277258037645064 73
gaze 132277258037758814 323,786
gaze 132277258037914237 333,794
gaze 132277258039069772 270,767
KeyUp 132277258039085245 72
KeyUp 132277258039090178 73
gaze 132277258039225920 276,771
gaze 132277258039755087 316,804
MouseMove 132277258055005185 391,823
MouseMove 132277258055085137 388,823

the system/application calls to calculate the line, column in the file can be run
without concern and in-depth analysis (of almost any type) can be performed
during the replay. An overview of the two steps is shown in Fig. 5 and Fig. 6.

6.1 Recording Stage

During the recording phase (see Fig. 5), Deja Vu captures human-computer
interaction data by recording mouse, and keyboard, along with the eye track-
ing gaze data. Mouse and keyboard events are captured using Win32 hooks.
Hooking into operating system events is a feature of the Windows API and is
done through the SetWindowsHookEx function. By using this function to hook
into low level mouse and keyboard events, Deja Vu can capture these events
before they are added into the OS input queue. If a study participant is typing
code in an IDE, Deja Vu captures and saves each keystroke before the IDE
even receives it. This capturing and saving step happens imperceptibly fast.
Performing the capture this way allows for perfect accuracy and replays. Gaze
data is collected by listening for broadcasted event data from iTrace-Core. As
this data is collected, it is saved to disk in a CSV format. A sample of the
recorded data is shown in Table 1. Each row is in the following format: event
type, a 64-bit integer specifying the system time, and any data related to the
event. This format contains all data necessary for replaying the user’s com-
puter interaction. Each recoded event type is shown in Table 2. KeyDown and
KeyUp is used to represent keyboard key state changes. A Windows virtual
key code (which is the size of a byte) can store any keyboard key, including
modifier keys such as shift or control. Each of the mouse buttons are explicitly
stated as an event type. Forward and back refers to the buttons on the left side
of a mouse (generally used for webpage navigation). MouseMove specifies the

17

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

Table 2: Each event type (which can originate from the mouse, keyboard, or
eye tracker during a Deja Vu recording) that appears in the CSV format. Each
of the event types is timestamped. The additional data description includes
the main components of each event type.

Keyboard
KeyDown Virtual Key Code
KeyUp Virtual Key Code
Mouse

LeftMouseDown
LeftMouseUp
RightMouseDown
RightMouseUp
MiddleMouseDown
MiddleMouseUp
ForwardMouseDown
ForwardMouseUp
BackMouseDown
BackMouseUp
MouseMove (x,y) coordinates
MouseWheel Mouse scroll amount (positive for an upward

scroll and negative for a downward)

Eye Tracker

Gaze event_id (used for indexing iTrace Core output)

and averaged gaze coordinates (x,y) for both

eyes

Study Session

session_start The time when study session started
session_end The time when study session ended

new absolute position on screen after the mouse has been moved. MouseWheel
stores any scroll that happens with a value that specifies how much the mouse
is scrolled. This event also collects touchpad scrolling on laptops. The gaze,
session_start, and session_end events are directly retrieved from iTrace
Core. Gaze events store the x and y screen coordinate the participant’s gaze
at that time including validity codes, pupil diameter, and distance to screen.
The session_start and session_end events are used by iTrace to mark the
beginning and end of a study. These are primarily used to synchronize iTrace
Core state with plugins.

6.2 Replaying Stage

During the replaying phase (see Fig. 6), Deja Vu reads in the CSV data pro-
duced during the recording stage and replays each event by creating mouse
and keyboard events using the Windows API. Specifically, the mouse_event
and keyboard_event functions are used to synthesize button presses, mouse
motions, and mouse scrolls. In addition, Deja Vu also replays all gazes and
emulates the communications protocol used by iTrace Core. This allows ex-

18

iTrace + Déja Vu (@\Dm‘“””
. . Eye
(RECO rd) nteractions Tra:ker

Windows 05
Source Code

(MSVs, Eclipse, Atom)

iTrace
Core

+
iTrace Plugin

Déja Vu Record

Core Output:
time stamp, gaze

Déja Vu Output:
eventlog, gaze data

data

srcML of
Source Code

Fig. 5: Overview of the Record Stage. Deja Vu collects all interaction infor-
mation of the developer along with gaze information, all of which is stored in
an event log.

Déja Vu Replay

Source Code | | |

Déja Vu Output:
eventlog, gaze data

Windows OS

-

(MSVS, Eclipse, Atom)
+

iTrace Plugin\

Déja Vu Replay

Plugin Output:
file, line, column,

time stamp

Fig. 6: Overview of the Replay Stage. Deja Vu replay takes the place of both
the user and iTrace core. The event log is replayed back at a slower rate and the
iTrace plugin (re)produces the file, line and column information in the same
manner as iTrace without Deja Vu. This way all gaze points can be mapped
correctly to a line and column.

19

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

mouse key mouse

Recorded gaze | | click press || 83ze move gaze
Data 8ms 4ms | 4ms 12ms 4ms

mouse | | key mouse
Fixed gaze click press || 83z€ move gaze
Pause 20ms 4ms | 4ms 20ms 4ms

mouse key mouse

gaze click press gaze move gaze
Proportional
16ms 8ms 8ms 24ms 8ms
n
Time (ms)

Fig. 7: Nllustration of how the fixed and proportional pause delay mechanisms
work.

isting iTrace plugins to connect to Deja Vu to receive gaze data and perform
analysis during the replay. In essence, Deja Vu works as proxy for iTrace Core.

All events are replayed synchronously. To slow down the replay, Deja Vu
pauses in between events it produces. This pause provides time for connected
plugins to process received gaze data. Therefore, time in between events must
be carefully considered to give ample time for each connected plugin to perform
its analysis. There are multiple possible algorithms for choosing the time to
wait in between replaying each event. Deja Vu implements three such methods
so researchers can choose whichever fits their needs the best. Refer to Fig. 7
and Fig. 8 for a graphical illustration of how the delays work.

6.2.1 Fized Pause Delay

The time waited after each event is a fixed amount of time based on the type
of the event. Plugin processing time for each type of event received will vary
depending on the type of analysis performed. Generally, most processing is
done after gaze events. Other events, such as mouse movements, may not need
any analysis (depending on the researcher’s needs). In these cases, processing-
heavy events (such as gazes) can be set to have a greater pause time than
processing-light events (such as mouse movements).

The primary drawback to this mode is that choosing a good pause length
is difficult. Gaze processing latencies are not necessarily easy to predict and
outliers are possible. However, via some trial runs a suitable duration could
be determined and used. If the experiment is short and fairly simple the fixed
paused approach should work well. A visual illustration of this replay method
is shown in Fig 7.

20

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

mouse key mouse
gaze click press || gaze move gaze

Bidirectional
~21ms 4ms | 4ms ~19ms 4ms

. o f

\ [z e | I ey h

1 I 1 I
. | ! 1 I
iTrace Plugin I \ [finished |
(e.g.iTrace ¥ a
ViSuaI I gaze processing gaze processing I
Studio)

Time (ms)

Fig. 8: Illustration of how bidirectional delay and replay works. In this example,
the same recorded data log file is used as in Fig 7. The pause after each gaze
in bidirectional delay could be a variable length (depending on how long the
plugin takes to do its computation).

6.2.2 Proportional Delay

The time after each event is proportional to what it is during the recording.
For example, Deja Vu can set to replay everything at exactly half the speed of
recording. This mode is useful for visualizations. Screen recordings performed
during the replay stage can easily be sped up by the same factor as the replay
is slowed down. Using this method, the sped-up recording of the replay is
identical to a recording of the session. See Fig 7.

The drawback to this mode is that it is impossible to set a minimum time
between events. If processing is to happen after each keypress, nothing stops
events from being generated during replay at a very high frequency. During
recording, the user can have press several keys on the keyboard, generating key
presses nearly simultaneously. It is possible that one might want to do some
analysis after each keystroke. If the analysis takes 20 ms, it is impossible to set
a minimum pause after each keystroke. Even if slowed down by a factor of 10,
when a user presses two keys within less than 2 ms, there is not have enough
time for analysis. However, this is not an issue for gaze data as eye trackers
typically generate readings quite uniformly, making it possible to reinforce a
minimum pause time in between gaze events.

6.2.3 Bidirectional Delay

In the third method, after gaze events, Deja Vu waits indefinitely for a re-
ply/acknowledgement from each connected plugin. This reply marks that the
plugin is finished doing processing and is ready to process more data. Com-
munication between Deja Vu and plugins happens bidirectionally. Events that

21

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

do not need to be waited on are followed by a short fixed-length pause. From
a technical point of view, this is the best pausing method. The difficulty of
choosing a good fixed-pause length is alleviated. Pauses after gaze events are
always correct. No extra time is wasted as padding for the highest-latency
lookup/processing cases.

The primary drawback to this method is that it requires modification to the
existing components in the iTrace infrastructure. Plugins need to be modified
to reply a ready-signal (over the TCP socket connection between the plugin
and Deja Vu) in response to events that require confirmation. In addition, there
is the potential added overhead due to the additional layer of communication
that needs to take place. A visual illustration of this replay method is shown
in Fig 8.

6.2.4 Theoretical Foundations in Replay Pausing Strategies

In this section, we provide a summary and a theoretical foundation for ana-
lyzing the slowdown between different pausing strategies. Let c. indicate the
number of times the event e is encountered. Let p. be the fixed pause length
(ms) assigned to event e. Let t be the initial recording length (ms), and ¢’ be
the replay length (ms).

Fixed Pause Replay:

t' = > Ce " Pe

ecall_event_types

Proportional Replay: Let s be the scale chosen for the proportional replay.
Then:

t'=t-s

Bidirectional Replay: Let m be the average time it takes each plugin to
finish processing each gaze, and reply to Deja Vu. Then:

/
t:Cgaze'm+ § Ce * Pe
e€(all_event_types—{gaze})

6.3 Practicalities of Implementation

While developing the Deja Vu tool, we ran into several non-obvious problems
and issues, some of which are challenging to completely address. Each can
be addressed in several different ways and we present our solutions to these
below. We believe that these challenges generalize for the implementation of
tools using a similar approach to that of Deja Vu. Hence, these descriptions
may prove useful to other researchers.

22

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

725

6.3.1 Solving Non-Deterministic Window Placements

The initial window position is non-deterministic on MS Windows making it
difficult to start the replay from the exact same position. During a replay,
the position where a window opens up can be different from where it opened
during recording. To address this, Deja Vu forces each window opened during
recording and replay to open in a single predefined location on the screen. In
Deja Vu, this predefined location is the top left corner of the screen. This is
done by frequently iterating over each window handle and checking if any new
handles appear.

In theory, this method is not entirely accurate for every application, since
the application can move its window without human interaction. However, we
have not found an application that does this to date in the use cases Deja Vu
is used for. To maintain integrity of replays, researchers performing studies
need to still consider this issue and avoid using applications in studies that
have this behavior.

6.3.2 Restoring Initial Interface State

A slight change in interface layouts between runs can cause replay to become
out of sync with the events that happen during recording. This can happen in
a butterfly-effect style. To address this, researchers need to be careful choosing
a replicable initial state between runs.

Currently, ensuring that the initial interface state is the same is performed
manually by the researcher. Many IDE’s, such as MS Visual Studio, support
saving and restoring UI layouts (e.g., through a simple hotkey). Saving a layout
before running a study and restoring it before performing a replay is one
method of ensuring initial interface state in an IDE with adjustable element
sizes will remain consistent.

6.5.3 Relative or Absolute Mouse Positioning

The MS Windows API allows for two methods of capturing and moving the
mouse: by the absolute value (directly specifying mouse position with x and y
coordinates) or by relative value (changes the x and y coordinate of the mouse)
(Microsoft, 2018). Deja Vu uses absolute mouse values.

The advantage of absolute values over relative value is that replays are
more robust. Moving the mouse accidentally during a replay using relative
values will cause all subsequent mouse usages to be off. Absolute mouse values
solve this issue by automatically locking the mouse back where it should be
after each mouse move event.

6.3.4 Replaying Mouse Double Clicks

This challenge was discovered after the dataset for our replication analysis
(given in Section 8.4) was collected. If a sequence containing a double-click

23

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

(two mouse clicks in quick succession, with a pause in between) is slowed
down enough, it will result in replaying two separate clicks (and not a double-
click). To address this problem, Deja Vu replay looks ahead into the event log
and replaces any double-clicks (which would become two separate clicks after
slowing the replay down), with a double-click event.

6.3.5 Race Conditions

This was another challenge discovered after the dataset collected for our repli-
cation analysis. Due to multiple input sources (e.g., mouse, keyboard, and
sockets) collecting data concurrently a race condition was possible while writ-
ing to the log. We have identified and fixed this race condition that occasionally
corrupted event log data entries.

6.4 Using Deja Vu with iTrace

As far as we are aware, this is the first attempt at supporting high-speed
trackers for software engineering-based studies that work on complex artifacts
tracked within an IDE. Deja Vu will typically be used in the following manner.

Let’s assume that a researcher is looking to investigate how developers un-
derstand class hierarchies (using a high-speed 1000Hz eye tracker). Before the
study, the researcher chooses a suitable real-world code base and the questions
a study participant is to answer. The code base is imported into a project file
in an IDE that has iTrace plugin support (such as Visual Studio or Eclipse).
The layout is saved. During the study, a participant is put in front of the com-
puter. The eye tracker is calibrated for the participant. The IDE is opened,
and the layout is restored. Eye tracking is started in iTrace-Core with Deja
Vu Recording enabled.

During the study, the participant performs the assigned set of tasks. They
have the freedom to interact with the IDE, OS, and any applications if they so
desire (for example, opening a web browser to access StackOverflow). During
replay, all computer events will be replayed. If the participant highlighted
text and pressed Ctrl+C to copy the text, the same sequence of events would
be replayed during the Replay phase (the same text would be highlighted, the
Ctrl+C keypress would be replayed causing the highlighted text to be copied).
While users can interact with any application, the applications that support
gaze-token lookups will depend on the iTrace plugins that are running. If a
study participant opens Firefox (for which no iTrace Plugin exists yet), gaze
data will still be collected, however the gaze {x,y} coordinates will not be
mapped to specific tokens or areas-of-interest on screen. Once the participant
is finished, the the tracking and recording are stopped. The Recording phase
is complete.

At some point after the study is completed, the researcher begins the replay
phase. Deja Vu Replay is opened in Core. Analysis plugins are enabled in
the IDE and are connected to Core. The IDE layout is restored again. Deja

24

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Vu Replay is started in Core. Everything that happened during the study
is now replayed slowly on the computer. Analysis is being performed in the
background via iTrace. Once it is finished, the researcher can collect the data
from the plugins and analyze it in any statistical package. In this use case,
they can investigate how the developer navigated the class hierarchies and
what they looked at before they completed the task.

6.5 Example Usage Scenario

To perform a study with iTrace Deja Vu, first a code project and associated
IDE (which has an iTrace plugin) is chosen. Next, iTrace Core is started, cali-
brated and setup. The IDE is to be brought into a reproducible initial position
(typically this is the IDE taking up the full screen space i.e., maximized). The
session is setup in Core, and recording with Deja Vu is enabled. The study
participant is then invited to perform the instructed task (e.g., in the case of
the replication study we conduct in section 7, they perform a bug localization
task). As seen in Fig. 5, Deja Vu records computer and gaze interactions of
the study participant.

Once the participant is finished with the task (see Section 5.3), the record-
ing is stopped. We recommend starting and stopping tracking before each task
is performed to have a clean data recording for each task. For example, as a
researcher, if you setup your study to have four tasks per participant, you will
start and stop tracking before each task within iTrace with the Deja Vu option
selected. After all the data collection for all the tasks is complete and after
the participant has left, the researcher can now collect detailed gaze data with
Deja Vu Replay. In order to do this, first, the initial IDE position is restored.
Deja Vu Replay is selected in iTrace Core, and a previously recorded session
can be selected to replay. During this time, detailed Plugin information, such
as file along with line and column gaze information, is collected (as seen in
Fig. 6). Once replaying is finished for all tasks and the detailed plugin data is
collected, further analysis can be performed.

To perform analysis, the project code file is converted into its srcML rep-
resentation. iTrace Toolkit then combines the core and plugin files and along
with srcML information is able to map tokens to gaze coordinates. As shown
in Fig. 3, iTrace Toolkit generates a database which can be queried for eye
tracking data. iTrace Toolkit also supports various fixation event detection
algorithms that are run on the raw gaze data and exported by the researcher
to perform further statistical analysis. Note that iTrace Toolkit is not a sta-
tistical package. iTrace Toolkit is a post processing tool to combine core and
Plugin files, generate fixations, and map the fixations to source code tokens.
In addition, it can filter the data on specific criteria via queries from the user
interface. See Section 5.2 for more details.

It is important to note that iTrace and iTrace Deja Vu are task agnos-
tic. They do not directly support software engineering tasks such as bug lo-
calization or code summarization. The infrastructure provides a method for

25

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

researchers to collect eye tracking data on software engineering tasks. iTrace
has been used in previous eye tracking research studies to better understand
tasks such as code summarization (Abid et al., 2019; Saddler et al., 2020),
code review (Park and Sharif, 2021), program comprehension (Peterson et al.,
2019b,a), software traceability (Sharif et al., 2016a), and bug fixing (Kevic
et al., 2015, 2017). The task to be studied depends on the researcher’s objec-
tive and the research questions they seek to address in their study. iTrace and
iTrace Deja Vu facilitate collection of (high speed) eye tracking data within
the IDE while developers are working on software tasks. More information on
iTrace along with video tutorials are available at https://www.i-trace.org/.

7 Evaluating the Deja Vu Approach

The evaluation of our approach is conducted via two experiments. Experiment
1 evaluates the initial problem by looking at two typical data analysis plugin
implementations (iTrace Visual Studio, iTrace Eclipse, and iTrace Atom) to
show data loss and degradation with high-speed trackers. Experiment 2 evalu-
ates Deja Vu to determine whether it can recreate all gazes that were produced
during the recording phase. This is done in the context of a sample eye tracking
experiment.

Experiment participants are assigned to one of two groups each denoted
by the identifier K and L respectively. Table 3 shows the eye trackers and
data rates used by each group. Each tracker for Group K is connected to a
64-bit MS Windows 10 desktop with a 3.6 GHz Intel i7-7700 CPU, mechanical
hard disk drive, 8 GB of RAM, and two 24-inch LCD displays running at a
1920x1200 resolution. Group L eye trackers ran on two separate machines. The
machine connected to the Tobii TX300 used the tracker’s built-in 23” monitor
running at 1920x1080 resolution on a Windows 10 desktop with 3.5 GHz Intel
i7-7800X, a solid-state drive, and 32 GB of RAM. The Gazepoint GP3-HD was
connected to a 27”7 LCD panel running at 1920x1080 resolution, on a Windows
10 laptop with 2.7 GHz Intel i7-6820HQ CPU, a solid-state drive, and 32 GB
of RAM.

Table 3: Participant groups and the eye tracking devices and data rates used.

Participant Groups Eye Tracker Model Data Rate

K Gazepoint GP3 HD 60Hz
Tobii Pro X3-120 120Hz

L Gazepoint GP3 HD 150Hz
Tobii TX300 300Hz

26

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

7.1 Experiment 1: Data Collection without Deja Vu

This experiment evaluates the initial problem: Does the latency for real time
data collection make it infeasible to map eye gaze to semantic elements at
high-speed tracking frequencies? To determine this, all the IDE plugins that
iTrace currently supports (iTrace Visual Studio, iTrace Eclipse, and iTrace
Atom) are evaluated to determine the impact on data rate limitations when
performing real-time gaze analysis.

7.1.1 Ezxperiment Setup

The plugins are instrumented to collect timings from the functions related
to real-time line, column lookup analysis. The evaluation is run on multiple
hardware configurations (Group K and Group L) to provide a less biased
performance measure. Each plugin environment (Eclipse, Visual Studio, and
Atom) is also stressed with an increasing number of open source-code tabs to
identify potential implementation specific overhead.

7.1.2 Data Collection

A process diagram for the first experiment is shown in Fig. 9. An eye tracking
study is set up in iTrace. The IDE gaze analysis plugins are connected to iTrace
Core. The study participant is instructed to have no files open in the IDE and
gaze at the screen for 5 seconds. Then they are instructed to open a file and
look at it for 5 seconds. This is repeated until 4 files are opened inside the
IDE. Each IDE plugin is modified before the study to collect implementation
and environment API performance data. In the iTrace-VisualStudio plugin,
this is done using the C# Stopwatch API. Elapsed times for each call to the
gaze analysis functionality within the plugin is stored in memory and written
out to a file at the end of a recording session. For the iTrace-Eclipse plugin,
API performance data is collected using the System.nanoTime() API and
calculating the difference between the start and stop time for each call to the
gaze analysis function. This timing data is stored in memory and written out
to a file at the end of a recording session.

7.1.8 Results Showing Loss of Data

The data collection process is repeated for each plugin with 0-4 open tabs
and the results are presented in Fig. 10. iTrace Eclipse provides an optimized
API for translating screen coordinates to the file, line, and column at that
screen coordinate. Each lookup in eclipse takes 0.015 seconds. 0.015 seconds is
equivalent to approximately 66Hz. This means that real time data collection
can only happen for eye trackers operating at 66Hz or less.

Visual Studio does not provide an optimized API for converting screen
coordinates to file, line, and column data. For this reason, the lookup timings
for iTrace Visual Studio plugin implementation scales linearly with respect to

27

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

Start Eye Tracking
Session
Repeat

l ¢_0~4 Tabs_|

Perform Eye Open Additional
Movements Tab
Repeat
For5 l l
Seconds

Calculate Lookup End Eye Tracking
Time For Plugin Session

Fig. 9: Process diagram for data collection in Experiment 1 (Data Collection
without Deja Vu).

the number of tabs open (due to needing to iterate over all open files). When a
single tab is open, the plugin is able to support up to 166hz trackers. However,
typically developers have more than a single tab open and any number of tabs
open above two will not even support 60Hz. However, both eye tracker speeds
estimates are liberal because they do not consider outliers. Fig. 11 shows the
raw timing data in the Visual Studio plugin.

iTrace Atom is implemented as a package for Atom, a text editor that is
built on the Electron framework. Electron allows developing desktop applica-
tions using web technologies by running code using the Chromium rendering
engine. Because of this, iTrace Atom has access to an optimized DOM screen
coordinate to text element API. This allows iTrace Atom to perform lookups
at an average of 0.223ms per lookup, regardless of number of tabs open. Be-
cause the lookup is already very fast, Deja Vu has less potential to be useful,
unless running experiments on weaker hardware or using an eye tracker that
collects data at higher rate than 4500Hz.

In conclusion, real time data collection in IDE’s (with the exception of
iTrace Atom) using the iTrace eye tracking infrastructure is infeasible for high
speed eye trackers (running above 60Hz).

7.2 Experiment 2: Is Deja Vu an Effective Solution?
In this section, we describe a simple experiment on two tasks with the goal

of showing that Deja Vu is able to keep up with high speed eye trackers to
collect and recreate all gazes that occurred during an experiment.

7.2.1 Ezxperiment Setup
The simulated eye tracking experiment consists of two tasks and each task is

repeated twice per participant with variations in the data rate of the eye track-
ing device. The first task requires participants to read out loud each method

28

905

906

907

908

909

910

911

912

913

914

915

916

= IDE Lookup Timings

g 30 P e =

o 25 ”

£ .

£ 20 -~

o Cd

_3 15 @cccccccce osesscsce 3 Ceessess @ seesscsce °

8 10 -

- .

§ 5 _.-"7

8 (VR R R R LR et SRR RN)

= 9 1 2 3 4
Number of Tabs Open

== iTrace Visual Studio-e-iTrace Eclipse=e«iTrace Atom

Fig. 10: IDE screen coordinate to (file, line, column) lookup times in the Visual
Studio, Eclipse, and Atom iTrace Plugins. iTrace Atom took an average of
0.223 ms per lookup.

iTrace Visual Studio Raw Lookup Timings

o O
.

o

Lookup Time (ms)
e LY I N ¥
o o

o

0 1 2 3 4

Number of Editor Tabs Open Over Time

Fig. 11: Raw timing data from Visual Studio. A trendline showing the linear
growth is displayed as the number of tabs open increase.

name and return type from the source code file SvgExporter. java taken from
the JHotDraw8 project. This file contains 1,166 lines of code and 42 methods.
While this task is straight forward, it will require active engagement with
the source code while ensuring a long enough recording duration, minimize
cognitive fatigue, and require scrolling.

The second task requires participants to summarize three methods in the
SvgExporter. java file selected randomly from a collection of the eight largest
methods (in terms of lines of code). Participants perform the summarization
out loud and the selected methods are not repeated by the participant on the
second run of the task when the eye tracker data rate is changed. This task is
designed to engage the participant and represent a more advanced eye tracking
study task.

29

917

918

919

920

921

922

923

924

925

926

927

928

929

|/_\|
Recording Phase \ /

v

Start Eye Tracking
Session <

¥

Read Aloud Each
Method and
Return Type

; Participant Is

‘—"-—f Given Method
Event File Name

ry

Déja Vu Begins

Déja Vu Records |
Gazes

Repeat
'L Three
ici Times
Déja Wu Records | SZ?:;;?SZ;
Gazes Method

¥

Déja Vu Stops |, End Eye Tracking
Listening B Session

¥

Change Eye | Repeat
Tracker And Once
Sample Rate

Fig. 12: Process diagram for data collection in Experiment 2 (Data collection
with Deja Vu).

In this study, Deja Vu was setup to use a fixed-pause delay strategy during
replay as it provided us with enough time to map what we needed. Refer
to Fig. 7 for a graphical illustration of the fixed pause delay mechanism.
If bi-directional delay was used it would just complete in a different total
time (not worse than fixed pause delay, since we chose a time that is longer
than needed to compute the gaze mappings). Proportional would be slower
than bidirectional and fixed-pause because everything would be slowed down
equally (compared to the other two where we can choose to slow down only
the gazes but replay interactions faster)

7.2.2 Data Collection
A process diagram for this experiment is shown in Fig 12. Participant data

captured during the simulated eye tracking study consists of a set of data com-
prised of: 1) an iTrace-Core data file representing all valid data points gener-

30

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

ated by the eye tracking device; 2) an iTrace-Eclipse or iTrace-VisualStudio
plugin data file containing all data received from iTrace-Core and processed
in real-time; and 3) a Deja Vu recording file storing all mouse and keyboard
interactions and gaze positions sent from iTrace-Core. Each participant gen-
erates two sets of data representing tasks recorded using different eye tracking
data rates. Audio recordings of participant activities are also saved via a cellu-
lar phone audio recording application. To determine the effectiveness of Deja
Vu’s data collection, all gaze data present in the plugin and Deja Vu output
files is compared against the valid raw data points stored and transmitted to
each application by iTrace-Core. Gaze data is uniquely identified by an event
id value and is used to determine any data loss (e.g. data transmitted, but not
received by the plugin or Deja Vu).

Table 4: Raw gaze datapoints collected during study. The percent shows the
data loss. The K samples were collected in the Visual Studio plugin. The L
samples (last four) were collected in the Eclipse plugin.

Sample Data Rate Core Data Plugin
K1 60Hz 22629 15817 (30%)
K2 60Hz 21333 19833 (7%)
K3 60Hz 28392 16306 (43%)
K1 120Hz 41999 23424 (44%)
K2 120Hz 48405 26087 (47%)
K3 120Hz 67024 35786 (47%)
L1 150Hz 52506 25047 (52%)
L2 150Hz 48090 15858 (67%)
L1 300Hz 138442 79967 (42%)
L2 300Hz 106674 68852 (35%)

7.2.8 Results

Table 4 shows the data rates of eye tracking devices and the amount of valid
data successfully captured by iTrace-Core, Deja Vu, and the iTrace plugins for
Eclipse and Visual Studio. From the table we see that an eye tracking device
running at 60 Hz, tends to moderately tax the real-time analysis component of
the iTrace plugins. As the data rate increases to 120 Hz, real-time analysis in
the plugins falls behind and nearly half of the data transmitted to the plugins
for analysis is lost as plugins cannot keep up with the faster data generation
rate of the eye trackers. It is interesting to note that in nearly all cases, the
data rate of the eye tracker poses no issue for Deja Vu with nearly 100% of the
data sent from iTrace-Core is also recorded by Deja Vu along with participant
mouse and keyboard interactions. Note that iTrace-Atom was not compared as
the IDE lookup time for the (file, line, column) were much smaller and will be
at least as good and most likely better (see Fig. 10) than iTrace-VisualStudio
and iTrace-Eclipse.

31

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

Note that we cannot claim a link between the data rate and data loss in
terms of percentages. The plugin behaves very undeterministicaly in how it
drops gazes when moving from 150Hz to 300Hz as seen from Table 4. The
main point to note is that Deja Vu takes care of the data loss. That said, we
did use two different machine configurations to collect the 150Hz data and
another machine to collect the 300Hz data. The 150Hz dataset was collected
on a laptop fitted with the GazePoint tracker whereas a dedicated machine for
the TX-300 tracker which comes incorporated into a monitor was used for the
300Hz dataset. It is not straightforward to just move the GazePoint tracker
on the TX-300 machine. We do not believe collected the data on two different
configurations invalidates the fact that there is data loss regardless.

7.2.4 Limitations

We are not implying that the high-speed support for trackers will be needed
for every study. Similarly, not every study needs to be an eye tracking study
(there needs to be a specific reason). Likewise, not every eye tracking study
will need to be done using a high-speed tracker. However, as we pointed out in
Section 3, there are specific use cases for when a high speed tracker is needed.
In those cases, Deja Vu will significantly improve data collection without any
data loss or incorrect mapping. Closer investigation of the instances where Deja
Vu did not manage to capture all data points transmitted from iTrace-Core
revealed a bug in the research prototype. Occasionally, Deja Vu can corrupt
a data entry which we believe to be caused by a race condition on the output
file resource. While this can explain the missing data points given Deja Vu’s
generally consistent performance, we still consider these data points to have
been lost in Table 4 to avoid under-reporting the findings. This issue has since
been fixed.

8 Replication Analysis

We present a replication analysis of four tasks taken from two prior eye tracking
studies. The first two tasks consist of bug fixing tasks from Kevic et al. (Kevic
et al., 2015) where participants need to find the location of a bug and propose
a potential solution. These two bug fixing tasks are both on the JabRef system.
The last two consist of code summarization tasks from Saddler et al. (Saddler
et al., 2020) where participants are asked to provide a summary of one method
and one class. Both summarization tasks are on the Eclipse project.

During the study, participants only have access to the code files present
in the project corresponding to their current task, a text file describing the
current task or bug. Each participant completes the study in the same order
using the same stimuli. Participants’ eye movement data is collected using the
iTrace-Eclipse plugin.

32

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

8.1 Research Questions

The research questions we seek to address in this replication analysis are given
below:

— RQ 1: What additional syntactic categories does Deja Vu provide over prior
work’s results?

— RQ 2: What further analysis can be done with the additional syntactic
categories that Deja Vu provides?

The motivation behind RQ 1 is to show the added insight that Deja Vu pro-
vides by comparing the results of prior work with the current study’s results.
The motivation behind RQ 2 is to provide examples of some further analysis
that can be done with the additional syntactic categories Deja Vu provides.
Note that the goal of Section 8 is not to completely replicate the prior studies
but to show via replication analysis on two different types of tasks that Deja
Vu works in these settings and generates additional, and useful, information
for analysis. The researcher can then take this information and use it towards
some functional goal related to their specific research question.

8.2 Tasks

For the bug fixing tasks, JabRef is selected as the subject system. JabRef is a
desktop application for managing bibliographic databases with many import
and export formats. JabRef version 1.8.1 is used in this study. Only two of the
three original bug fixing tasks are selected due to time constraints labeled in
this study as Task 1 and Task 2. In both of these tasks, the bug descriptions
submitted to the JabRef project are added to the text file describing the
current task. Participants are given a maximum of 20 minutes to fix the bug
to avoid fatigue. This is also done in the original study. Further details of the
tasks can be viewed in the original study (Kevic et al., 2015). In this paper
we name our tasks as follows: Task 1 refers to Bug 2 in the original paper and
Task 2 refers to Bug 4 in the original paper (Kevic et al., 2015).

For the code summarization tasks, Eclipse is selected as the subject system.
Eclipse is an IDE used primarily for Java programming. Eclipse version 4.2
is used in this study. Due to time constraints, only the two summarization
tasks about code elements in Eclipse in the original study are used in this
replication labeled in this study as Task 3 and Task 4. Participants are given
either a method name they needed to summarize or a class name they needed
to summarize. Once they navigated to the code element, read the code, they
provided their summary for their task. Further details of the tasks can be
viewed in the original study (Saddler et al., 2020). In this paper we name our
tasks as follows: Task 3 refers to T1 in the original paper and Task 4 refers to
T2 in the original paper (Saddler et al., 2020). See Table 5 for an overview of
the tasks.

33

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

Table 5: An overview of the tasks used in the replication study analysis.

Task No. Type System Description
Task 1 Bug Fix JabRef No comma added to separate keywords
Task 2 Bug Fix JabRef Failure to import big numbers
Acrobat Launch fails on Win98
Task 3 Summarization Eclipse Summarize Method
core.databinding.binding.dispose
Task 4 Summarization Eclipse Summarize Class
swt.SWTError

8.3 Eye Tracking Apparatus

Two different eye tracking setups are used at the different universities. At
UNL, the study is conducted with a Tobii TX300 set to capture eye gaze data
at 120 Hz with an accuracy of 0.5 degrees. The built-in 23-inch, 1920px by
1080px monitor is used. At KSU, the study is conducted with using the Tobii
X3-120 eye tracker set to capture eye gaze data at 120 Hz with an accuracy
of 0.5 degrees. A laptop with a 15.6”, 1920px by 1080px monitor is used with
this eye tracker. Deja Vu is run with a fixed-pause strategy. See Fig. 7 for a
graphical illustration of the fixed-pause replay strategy.

8.4 Data Collection Process

There are two sets of participants from the two collaborating universities that
participated in this study to collect this proof of concept data and includes
the first four authors of the paper plus two additional members from their
respective research labs. No one from outside the current research team is
used to collect this data. This is important to note because this is not a
typical replication study. It is a proof of concept replication analysis of two
prior studies also done by the some of the authors. In order to do the replication
with Deja Vu, the data needed to be collected with Deja Vu Record. We used
our own research team for this evaluation. However, none of these participants
had done the prior study nor were they familiar with the study tasks apriori.
This was done to simulate a real study environment.

On the day of the study, participants came into the research lab (alone due
to COVID-19 restrictions at the time). Next, participants are asked to find the
location of a described bug and find a solution for two bug fixing tasks. After
they finished proposing a solution, participants rated their confidence of their
solution’s correctness and their perceived difficulty of the task. Next, they
are asked to summarize a method and a class from the Eclipse project. After
they finished summarizing a code element, participants rated their confidence
of their summary and their perceived difficulty of the task. We do not use
the confidence ratings in this paper however we did this to keep the protocol
as similar as possible with what was done in the prior studies. Eye tracker
calibration is done at the start of each of the four tasks to ensure the best eye

34

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

tracking accuracy during the tasks (also done in prior studies). Participants
are also allowed a short break between tasks if needed to reduce fatigue over
the entire study.

The participants had access only to the Eclipse IDE which containes the
code files of the entire subject system of the task, JabRef for the bug fixing
tasks and Eclipse for the summarization tasks, and a text file containing the
task instructions and bug description for bug fixing tasks. The demographics
of the previous studies participants were very similar with the group of partic-
ipants we used in this replication analysis study. None of them were complete
novices and all had similar programming experience and experience in bug
fixing and code summarization tasks.

As stated earlier, we do not use these results for a research study goal. We
do however try to keep the environment and questions the same as done in
the previous two studies.

8.5 Replication Analysis Results

This section presents results of the replication analysis conducted based on
each of the two research questions.

8.5.1 RQ1 Results: Additional syntactic categories Deja Vu provides over
prior work

When comparing the benefits of using the latest version of iTrace (at http:
//www.i-trace.org/) alongside Deja Vu with previous versions of iTrace
(which is still available via an archive site at https://github.com/SERESLab/
iTrace-Archive), we look at the number of unique syntactic categories that
are able to be extracted from the eye tracking data from both the original
dataset and the data collected from this replication. We directly compare these
distinct categories for each task independently, and find that the current ver-
sion of iTrace alongside Deja Vu consistently provides finer grained syntactic
categories.

Table 6: Comparing the number of distinct syntactic categories between the
original studies’ analysis and replication analysis on the same set of tasks.

Task ‘ Task Type ‘ Original Dataset ‘ Replication Dataset
Task 1 Bug Fixing 34 48
Task 2 Bug Fixing 34 41
Task 3 | Summarization 7 23
Task 4 | Summarization 7 24

The overlap between the syntactic categories in these datasets provides
further insight into the type of information that the current version of iTrace
provides. See Table 6 for a list of distinct syntactic categories in each dataset.

35

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

It is clear that Deja Vu provides more syntactic category types compared
to the original set. We do not believe this is due to technical skill bias as the
populations studied were very similar both in terms of programming experience
and experience in bug fixes and summarization.

This is due to three reasons, a) iTrace has been completely rewritten to
make optimal use of srcML which provides extended mapping to all source
tokens b) a higher speed tracker is used which gives more samples per second
and c¢) no gaze data are lost when using a high speed tracker greater than
60Hz. Note that this replication study is done with a 120Hz tracker to show the
practicality of Deja Vu while the prior studies are done with 60 Hz trackers. We
use the number of fixations to determine the counts for the syntactic categories
in Table 6. We direct the reader to additional metrics (Sharafi et al., 2015a)
that can be used in future emipircal studies.

In the summarization tasks, most of the syntactic categories in the repli-
cation dataset do not have a clear one-to-one relationship with the categories
in the original dataset. For example, the argument list category in the repli-
cation dataset can be assigned the categories, Method Use, Method Declare,
or Variable Declare in the original dataset. Vice versa, the Method Use cate-
gory in the original dataset can be assigned to the argument list, parameter
list, name, or specifier categories in the current replication dataset. Another
important detail from the original dataset is that the Outer Class and Inner
Class declarations are differentiated into separate categories while they are not
in the replicated dataset. While at first this appears to be a limitation, these
categories can easily be obtained using the fine-grained categories and syn-
tactic hierarchy provided by srcML to derive the aforementioned higher-level
categories in a post processing step via iTrace Toolkit.

In the bug fixing tasks, most syntactic categories in the datasets are shared.
Syntactic categories relating to keywords and other low level units, e.g., for,
if, or comment, have a one to one relationship between the two datasets.
However, certain categories in the original dataset are at a higher level than the
replicated dataset. Method call, method declaration, and variable declaration
in the original dataset are composed of several unique category types in the
replicated dataset such as argument list, parameter list, or name. Overall,
these two category sets are much more similar to each other but there are still
some high level aggregation that occurs within the original dataset.

While fine-grain syntactic category information is useful, it can be hard to
comprehend and analyze findings with the larger number of categories. The
advantage is that aggregation of these syntactic categories is always possible
to derive categories at higher levels of granularity with the additional syntactic
context srcML provides. The same however is not true in reverse, if only high
level syntactic categories are used as in our original dataset, we are unable to
produce token categories at a finer level of granularity. For sake of an example,
in the original dataset a mapping can be made to a method use, but it is not
possible to discern if the gaze fell on a argument list or the name of the
method. In comparison to the fine-grain syntactic data from the replication
dataset, this ambiguity does not exist. Providing a clear syntactic hierarchy

36

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

down to the lowest level permits researchers to perform analyses at nearly any
granularity to identify the source code content developers view while solving
a task.

8.5.2 RQ2 Results: Further analysis with Deja Vu

One large benefit of the current version of iTrace and Deja Vu is that the
syntactic categories are generated post-hoc allowing syntactic categories to be
constructed at varying levels of specificity. The previous versions generated
these categories on the fly meaning that they are baked into the data at any
given point. Once the session is done, there is no way of going back to a more
specific level.

To address this research question, we provide some examples of further
analysis that can be done with the varying levels of specificity of syntactic
categories available. One example of analysis is to investigate how participants
fixate on more specific structures. We examined the method signatures and
how participants view the method name and the method parameters. In the
previous two studies, these sub-components of the method signature are not
recorded as they are not the focus of the study and as such this analysis cannot
be done with the previous data. While the previous version of iTrace is capable
of collecting data like this, it required the researcher to know this is the use
case before the study is done.

Table 7: List of fixation metrics on the method name and method parameters
in the method signature.

Task 1 Task 2 Task 3 Task 4

Total Fixations 15756 9148 2655 2825

Total Fixations on Method Signature 873 629 318 755

Avg Percentage of Method Signature Fixations | 41.58% 47.57% 29.01% 45.18%
on Method Name

Avg Percentage of Method Signature Fixations 24.52 28.20% 14.25% 37.82%
on Method Parameters

With the current approach, since the lowest mapping is collected, we can
drill up or down the abstract syntax tree to get any level of abstraction we re-
quire using srcML. We can easily find the sub-components described earlier by
using a simple XPath expression (as the srcML format is XML). The method
name can be retrieved with:

— //src:function/src:name
— //src:constructor/src:name

Method parameters can be retrieved with:

— //src:function/src:parameter_list
— //src:constructor/src:parameter_list

37

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

The method signature is retrieved by collecting all fixations inside function
and constructor that are not immediately followed by a block element.

Using this analysis, there are two main observations from the fixation
counts and percentages seen in Table 7. First, more fixation attention in-
side the method signature is spent on the method name than the method
parameters in every task. This indicates that for both bug fixing and code
summarization, the method name is the more important (or at least is given a
lot more attention) to participants than the parameters of a method. Lastly,
we see that the task has a large influence on the distribution of fixations inside
the method signature. The two bug localization and fixing tasks are relatively
similar but are different to the two summarization tasks. In Task 3, a summa-
rization of a single method, the emphasis on the method name and parameters
is reduced along with much fewer total fixations on a method signature. How-
ever, in Task 4, a summarization of a single class, the method parameters
have a higher percentage of fixation attention in the method signature than
any other task. This clearly indicates that the task also plays a big role in how
developers spend time examining different elements. All of these observations
help developers answer very specific questions in eye tracking studies using
Deja Vu.

8.6 Threats to Validity

One threat to validity is the measurement of the unique number of syntactic
categories in the fixation data as a metric for usefulness. If there is added
redundancy in a category, reduction is always possible. The syntactic categories
in the previous studies can be seen as a subset of the larger category set present
in the replicated data which the replicated data’s categories can be reduced
down into. New information cannot be added easily to the smaller number of
distinct categories in the original datasets.

In studies where specificity provided by the updated version of iTrace and
Deja Vu is not needed, the added specificity can be reduced to a more useful
subset of categories for the research goals of any studies.

The small amount of participants used in this replication study was for
demonstration purposes only to show that we are able to provide much finer
grained mapping and not loose any gazes with high speed trackers. With more
participants and more fixations we would have a larger amount of distinct
categories (not less) meaning that the results would only become more pro-
nounced.

9 Conclusions and Future Work

The paper presents a novel solution to a fundamental technological problem
for studying software developers using high-speed, high-quality eye trackers
while working in a natural and familiar development environment on produc-
tion sized software systems. A methodology and tool - Deja Vu - is introduced

38

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247
1248
1249

1250

1251

1252

1253

1254

1255

1256

that captures all relevant user and system interactions for later replay of a
user session within a study. The replay allows for accurate mapping of user
gaze points on the entire stimulus being viewed i.e., the specific elements of
source code or other software artifacts. This overcomes serious real-time lim-
itations posed in mapping screen coordinates to line and column in a given
file. To add to our prior work (Zyrianov et al., 2020), we provide additional
timing experiments in iTrace-Atom and conduct a replication analysis of two
prior studies by collecting data with Deja Vu to provide evidence of the richer
syntactic categories that are provided with the Deja Vu record and replay ap-
proach. iTrace and Deja Vu directly facilitate software engineering researchers
in studying how developers read software during various types of tasks such
as general comprehension, bug fixes, and refactoring to name a few. It also
allows the software engineering research community to apply additional eye
tracking analyses (such as microsaccade analyses) from cognitive psychology
research (that require high-speed tracker output) on text understanding. We
believe this will lead to a much deeper understanding of how developers read
source code and solve problems which is a complex mixture of many factors.

As part of future work, the Deja Vu approach will be extended to support
eye tracking studies in the presence of editing source code. Supporting editing
is a very difficult engineering problem and more research and tests are needed
to support this type of data collection in an accurate manner. Recently, we
released a version of iTrace-Atom that supports editing, however this is re-
stricted to just Atom and is a first attempt at supporting editing (Fakhoury
et al., 2021) in eye tracking studies. Supporting editing in the iTrace infras-
tructure with high speed trackers is a bigger challenge that we plan to work
on in future iTrace releases.

Another avenue for future work includes adding support for other popular
IDEs. We have had many requests for the supporting Atom and so we prior-
itized that first. iTrace is designed in a way that supports ease of extension.
We foresee members of the community contributing support for other plugins
and call on the community to do so.

Acknowledgements The authors would like to thank the anonymous reviewers for their
insightful comments and suggestions. This work has been partly funded by the US NSF
under Grant Numbers CNS 17-30181, CNS 18-55753, and CCF 18-55756

References

Abid NJ, Sharif B, Dragan N, Alrasheed H, Maletic JI (2019) Developer read-
ing behavior while summarizing java methods: size and context matters. In:
Atlee JM, Bultan T, Whittle J (eds) Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, IEEE / ACM, pp 384-395, DOI 10.1109/ICSE.2019.00052,
URL https://doi.org/10.1109/ICSE.2019.00052

39

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

Andersson R, Nystrom M, Holmqvist K (2010) Sampling frequency and eye-
tracking measures: how speed affects durations, latencies, and more. Journal
of Eye Movement Research 3(3), DOI 10.16910/jemr.3.3.6

Andersson R, Larsson L, Holmqvist K, Stridh M, Nystrom M (2017) One
algorithm to rule them all? an evaluation and discussion of ten eye movement
event-detection algorithms. Behavior Research Methods 49:616-637

Bao L, Ye D, Xing Z, Xia X, Wang X (2015) Activityspace: A remembrance
framework to support interapplication information needs. In: Cohen MB,
Grunske L, Whalen M (eds) 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November
9-13, 2015, IEEE Computer Society, pp 864-869, DOI 10.1109/ASE.2015.90,
URL https://doi.org/10.1109/ASE.2015.90

Bao L, Xing Z, Xia X, Lo D, Hassan AE (2018) Inference of development
activities from interaction with uninstrumented applications. Empir Softw
Eng 23(3):1313-1351, DOI 10.1007/s10664-017-9547-8, URL https://doi.
org/10.1007/s10664-017-9547-8

Bernal-Cardenas C, Cooper N, Moran K, Chaparro O, Marcus A, Poshy-
vanyk D (2020) Translating video recordings of mobile app usages into
replayable scenarios. In: Rothermel G, Bae D (eds) ICSE ’20: 42nd Inter-
national Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020, ACM, pp 309-321, DOI 10.1145/3377811.3380328, URL
https://doi.org/10.1145/3377811.3380328

Brooks R (1983) Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies 18(6):543-554,
DOI https://doi.org/10.1016/S0020-7373(83)80031-5, URL https://www.
sciencedirect.com/science/article/pii/S0020737383800315

Brown NCC, AlTadmri A, Sentance S, Kolling M (2018) Blackbox, five years
on: An evaluation of a large-scale programming data collection project.
In: Malmi L, Korhonen A, McCartney R, Petersen A (eds) Proceed-
ings of the 2018 ACM Conference on International Computing Educa-
tion Research, ICER 2018, Espoo, Finland, August 13-15, 2018, ACM, pp
196-204, DOI 10.1145/3230977.3230991, URL https://doi.org/10.1145/
3230977 .3230991

Burg B, Bailey R, Ko AJ, Ernst MD (2013) Interactive record/replay for
web application debugging. In: Izadi S, Quigley AJ, Poupyrev I, Igarashi T
(eds) The 26th Annual ACM Symposium on User Interface Software and
Technology, UIST’13, St. Andrews, United Kingdom, October 8-11, 2013,
ACM, pp 473-484, DOI 10.1145/2501988.2502050, URL https://doi.org/
10.1145/2501988.2502050

Collard ML, Decker MJ, Maletic JI (2013) srcML: An Infrastructure for the
Exploration, Analysis, and Manipulation of Source Code: A Tool Demon-
stration. In: 2013 IEEE International Conference on Software Maintenance,
pp 516-519, DOT 10.1109/ICSM.2013.85

Dodd MD, der Stigchel SV, Hollingworth A (2009) Novelty is not always
the best policy: Inhibition of return and facilitation of return as a func-
tion of visual task. Psychological Science 20(3):333-339, DOI 10.1111/

40

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

§.1467-9280.2009.02294.x, URL https://doi.org/10.1111/j.1467-9280.
2009.02294.x, pMID: 19222812

Duchowski A (2007) Eye Tracking Methodology: Theory and Practice. DOI
10.1007/978-1-84628-609-4

Duchowski A, Krejtz K, Gehrer N, Bafna T, Baekgaard P (2020a) The
low /high index of pupillary activity. In: 2020 CHI Conference on Human
Factors in Computing Systems, pp 1-12, DOT 10.1145/3313831.3376394

Duchowski AT, Krejtz K, Zurawska J, House DH (2020b) Using Microsac-
cades to Estimate Task Difficulty During Visual Search of Layered Surfaces.
IEEE Transactions on Visualization and Computer Graphics 26(9):2904—
2918, DOI 10.1109/TVCG.2019.2901881

Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of
covert attention. Vision Research 43(9):1035-1045, DOI https://doi.org/
10.1016/S0042-6989(03)00084-1, URL https://www.sciencedirect.com/
science/article/pii/S0042698903000841

Eriksen C (1995) The flankers task and response competition: A useful tool for
investigating a variety of cognitive problems. Visual Cognition 2:101-118

Fakhoury S, Ma Y, Arnaoudova V, Adesope O (2018) The effect of poor source
code lexicon and readability on developers’ cognitive load. In: Proceedings
of the 26th Conference on Program Comprehension, ACM, New York, NY,
USA, ICPC 18, pp 286296, DOIT 10.1145/3196321.3196347, URL http:
//doi.acm.org/10.1145/3196321.3196347

Fakhoury S, Roy D, Pines H, Cleveland T, Peterson CS, Arnaoudova V, Sharif
B, Maletic J (2021) gazel: Supporting source code edits in eye-tracking
studies. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pp 69-72, DOI
10.1109/ICSE-Companion52605.2021.00038

Floyd B, Santander T, Weimer W (2017) Decoding the representation of
code in the brain: An fmri study of code review and expertise. In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pp 175-186, DOI 10.1109/ICSE.2017.24

Goldberg JH, Stimson MJ, Lewenstein M, Scott N, Wichansky AM (2002)
Eye tracking in web search tasks: Design implications. In: Proceedings of
the 2002 Symposium on Eye Tracking Research & Applications, ACM, New
York, NY, USA, ETRA ’02, pp 51-58, DOI 10.1145/507072.507082, URL
http://doi.acm.org/10.1145/507072.507082

Guarnera DT, Bryant CA, Mishra A, Maletic JI, Sharif B (2018) itrace: eye
tracking infrastructure for development environments. In: Proceedings of the
2018 ACM Symposium on Eye Tracking Research & Applications, ACM, p
105

Guo J, Li S, Lou J, Yang Z, Liu T (2019) Sara: self-replay augmented
record and replay for android in industrial cases. In: Zhang D, Mgller A
(eds) Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-
19, 2019, ACM, pp 90-100, DOT 10.1145/3293882.3330557, URL https:
//doi.org/10.1145/3293882.3330557

41

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

Hafed ZM, Clark JJ (2002) Microsaccades as an overt measure of covert
attention shifts. Vision Research 42(22):2533-2545, DOI https://doi.org/
10.1016/S0042-6989(02)00263-8, URL https://www.sciencedirect.com/
science/article/pii/S0042698902002638

Holmqvist K, Andersson R (2017) Eye-tracking: A comprehensive guide to
methods, paradigms and measures. Oxford University Press

Just M, Carpenter P (1980) A theory of reading: from eye fixations to com-
prehension. Psychological review 87 4:329-54

Kelleher C, Hnin W (2019) Predicting Cognitive Load in Future Code Puzzles,
Association for Computing Machinery, New York, NY, USA, p 1-12. URL
https://doi.org/10.1145/3290605.3300487

Kersten M, Murphy GC (2006) Using task context to improve programmer
productivity. In: Young M, Devanbu PT (eds) Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006, ACM,
pp 1-11, DOI 10.1145/1181775.1181777, URL https://doi.org/10.1145/
1181775.1181777

Kevic K, Walters BM, Shaffer TR, Sharif B, Fritz T, Shepherd DC (2015) Trac-
ing software developers eyes and interactions for change tasks. Proceedings
of the 10th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering

Kevic K, Walters B, Shaffer T, Sharif B, Shepherd DC, Fritz T (2017) Eye
gaze and interaction contexts for change tasks - observations and potential.
J Syst Softw 128:252-266, DOI 10.1016/j.jss.2016.03.030, URL https://
doi.org/10.1016/j.jss.2016.03.030

Klein RM, MacInnes WJ (1999) Inhibition of return is a foraging facilitator in
visual search. Psychological Science 10(4):346-352, DOI 10.1111/1467-9280.
00166, URL https://doi.org/10.1111/1467-9280.00166

Letovsky S (1987) Cognitive processes in program comprehension. Jour-
nal of Systems and Software 7(4):325-339, DOI https://doi.org/10.1016/
0164-1212(87)90032-X, URL https://www.sciencedirect.com/science/
article/pii/016412128790032X

Lowet E, Gomes B, Srinivasan K, Zhou H, Desimone R (2018) Enhanced neural
processing by covert attention only during microsaccades directed toward
the attended stimulus. Neuron 99:207-214.e3

Lupidnez J (2010) Inhibition of return. Scholarpedia 3:17-34

Microsoft (2018) mouse_event function (winuser.h). URL https:
//docs.microsoft.com/en-us/windows/win32/api/winuser/
nf-winuser-mouse_event

Minelli R, Mocci A, Lanza M, Kobayashi T (2014) Quantifying program com-
prehension with interaction data. In: 2014 14th International Conference on
Quality Software, pp 276-285, DOI 10.1109/QSIC.2014.11

Minelli R, Mocci A, Lanza M (2015) I know what you did last summer -
an investigation of how developers spend their time. In: 2015 IEEE 23rd
International Conference on Program Comprehension, pp 25-35, DOI 10.

42

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1109/1CPC.2015.12

Minelli R, Mocci A, Lanza M (2016) Measuring navigation efficiency in the
ide. p to be published, DOI 10.1109/IWESEP.2016.11

Nelson GL, Ko AJ (2018) On use of theory in computing education re-
search. In: Malmi L, Korhonen A, McCartney R, Petersen A (eds) Pro-
ceedings of the 2018 ACM Conference on International Computing Educa-
tion Research, ICER 2018, Espoo, Finland, August 13-15, 2018, ACM, pp
31-39, DOI 10.1145/3230977.3230992, URL https://doi.org/10.1145/
3230977 .3230992

Nino 1J, de la Ossa B, Gil JA, Sahuquillo J, Pont A (2005) CARENA: a
tool to capture and replay web navigation sessions. In: Al-Shaer E, Pras
A, Owezarski P (eds) Third TEEE/IFIP Workshop on End-to-End Monitor-
ing Techniques and Services, E2EMON 2005, 15th May 2005, Nice, France,
IEEE Computer Society, pp 127-141, DOI 10.1109/E2EMON.2005.1564474,
URL https://doi.org/10.1109/E2EMON.2005.1564474

Obaidellah U, Al Haek M, Cheng PCH (2018) A survey on the usage of
eye-tracking in computer programming. ACM Comput Surv 51(1):5:1-5:58,
DOT 10.1145/3145904, URL http://doi.acm.org/10.1145/3145904

Olsson P (2007) Real-time and offline filters for eye tracking. KTH Electrical
Engineering, Stockholm, Sweden

Park K, Sharif B (2021) Assessing perceived sentiment in pull requests
with emoji: Evidence from tools and developer eye movements. In: 6th
IEEE/ACM International Workshop on Emotion Awareness in Software En-
gineering, SEmotion@ICSE 2021, Madrid, Spain, May 31, 2021, IEEE, pp
1-6, DOI 10.1109/SEmotion52567.2021.00009, URL https://doi.org/10.
1109/SEmotion52567.2021.00009

Pennington N (1987) Stimulus structures and mental representations in ex-
pert comprehension of computer programs. Cognitive Psychology 19(3):295—
341, DOI https://doi.org/10.1016,/0010-0285(87)90007-7, URL https://
www.sciencedirect.com/science/article/pii/0010028587900077

Peterson CS, Abid NJ, Bryant CA, Maletic JI, Sharif B (2019a) Factors influ-
encing dwell time during source code reading: a large-scale replication exper-
iment. In: Krejtz K, Sharif B (eds) Proceedings of the 11th ACM Symposium
on Eye Tracking Research & Applications, ETRA 2019, Denver , CO, USA,
June 25-28, 2019, ACM, pp 38:1-38:4, DOI 10.1145/3314111.3319833, URL
https://doi.org/10.1145/3314111.3319833

Peterson CS, Saddler JA, Halavick NM, Sharif B (2019b) A gaze-based ex-
ploratory study on the information seeking behavior of developers on stack
overflow. In: Mandryk RL, Brewster SA, Hancock M, Fitzpatrick G, Cox
AL, Kostakos V, Perry M (eds) Extended Abstracts of the 2019 CHI Con-
ference on Human Factors in Computing Systems, CHI 2019, Glasgow, Scot-
land, UK, May 04-09, 2019, ACM, DOI 10.1145/3290607.3312801, URL
https://doi.org/10.1145/3290607.3312801

Ramler R, Gattringer M, Pichler J (2020) Live replay of screen videos: Au-
tomatically executing real applications as shown in recordings. In: Kon-
togiannis K, Khomh F, Chatzigeorgiou A, Fokaefs M, Zhou M (eds) 27th

43

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

IEEE International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2020, London, ON, Canada, February 18-21, 2020, IEEE,
pp 664-665, DOI 10.1109/SANER48275.2020.9054833, URL https://doi.
org/10.1109/SANER48275.2020.9054833

Rayner K (1978) Eye movements in reading and information processing. Psy-
chological Bulletin 85(3):618-660

Rayner K (1998) Eye movements in reading and information processing: 20
years of research. Psychological bulletin 124 3:372-422

Rist RS (1986) Plans in programming: Definition, demonstration, and devel-
opment. In: Papers Presented at the First Workshop on Empirical Studies
of Programmers on Empirical Studies of Programmers, Ablex Publishing
Corp., USA, p 28-47

Saddler JA, Peterson CS, Sama S, Nagaraj S, Baysal O, Guerrouj L, Sharif
B (2020) Studying developer reading behavior on stack overflow during api
summarization tasks. In: 2020 IEEE 27th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), IEEE, pp 195-205

Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-
tracking protocols. In: Proceedings of the 2000 Symposium on Eye Track-
ing Research & Applications, ACM, New York, NY, USA, ETRA ’00, pp
71-78, DOI 10.1145/355017.355028, URL http://doi.acm.org/10.1145/
355017 .355028

Sharafi Z, Shaffer T, Sharif B, Guéhéneuc Y (2015a) Eye-tracking metrics in
software engineering. In: Sun J, Reddy YR, Bahulkar A, Pasala A (eds) 2015
Asia-Pacific Software Engineering Conference, APSEC 2015, New Delhi,
India, December 1-4, 2015, IEEE Computer Society, pp 96-103, DOI 10.
1109/APSEC.2015.53, URL https://doi.org/10.1109/APSEC.2015.53

Sharafi Z, Soh Z, Guéhéneuc YG (2015b) A systematic literature review on
the usage of eye-tracking in software engineering. Information and Software
Technology (IST)

Sharafi Z, Sharif B, Guéhéneuc Y, Begel A, Bednarik R, Crosby ME (2020) A
practical guide on conducting eye tracking studies in software engineering.
Empir Softw Eng 25(5):3128-3174, DOI 10.1007 /s10664-020-09829-4, URL
https://doi.org/10.1007/s10664-020-09829-4

Sharif B, Maletic JI (2016a) itrace: Overcoming the limitations of short code
examples in eye tracking experiments. In: 2016 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC,
USA, October 2-7, 2016, IEEE Computer Society, p 647, DOI 10.1109/
ICSME.2016.61, URL https://doi.org/10.1109/ICSME.2016.61

Sharif B, Maletic JI (2016b) itrace: Overcoming the limitations of short code
examples in eye tracking experiments. In: 2016 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pp 647647, DOI
10.1109/ICSME.2016.61

Sharif B, Meinken J, Shaffer T, Kagdi H (2016a) Eye movements in soft-
ware traceability link recovery. Empirical Software Engineering pp 1—
40, DOI 10.1007/s10664-016-9486-9, URL http://dx.doi.org/10.1007/
s10664-016-9486-9

44

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

Sharif B, Shaffer T, Wise JL, Maletic JI (2016b) Tracking developers’ eyes in
the IDE. IEEE Softw 33(3):105-108, DOI 10.1109/MS.2016.84, URL https:
//doi.org/10.1109/MS.2016.84

Sharif B, Peterson C, Guarnera D, Bryant C, Buchanan Z, Zyrianov V, Maletic
J (2019) Practical eye tracking with itrace. In: 2019 ITEEE/ACM 6th Inter-
national Workshop on Eye Movements in Programming (EMIP), pp 41-42,
DOT 10.1109/EMIP.2019.00015

Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge.
Software Engineering, IEEE Transactions on SE-10:595 — 609, DOI 10.1109/
TSE.1984.5010283

Stigchel S, Theeuwes J (2006) Our eyes deviate away from a location where
a distractor is expected to appear. Experimental brain research Exper-
imentelle Hirnforschung Expérimentation cérébrale 169:338-49, DOI 10.
1007/s00221-005-0147-2

Stigchel S, Mills M, Dodd M (2010) Shift and deviate: Saccades reveal that
shifts of covert attention evoked by trained spatial stimuli are obligatory.
Attention, perception & psychophysics 72:1244-50, DOI 10.3758/APP.72.5.
1244

Storey MD (2006) Theories, tools and research methods in program compre-
hension: past, present and future. Softw Qual J 14(3):187-208, DOI 10.1007/
$11219-006-9216-4, URL https://doi.org/10.1007/s11219-006-9216-4

Sun J, Zhang S, Huang S, Hui Z (2018) Design and application of a sikuli
based capture-replay tool. In: 2018 IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion, QRS Companion 2018,
Lisbon, Portugal, July 16-20, 2018, IEEE, pp 42-44, DOI 10.1109/QRS-C.
2018.00021, URL https://doi.org/10.1109/QRS-C.2018.00021

Sun Y, Chen D, Jiao W, Huang G (2014) An online education approach using
web operation record and replay techniques. In: IEEE 38th Annual Com-
puter Software and Applications Conference, COMPSAC 2014, Vasteras,
Sweden, July 21-25, 2014, IEEE Computer Society, pp 456-465, DOI
10.1109/COMPSAC.2014.68, URL https://doi.org/10.1109/COMPSAC.
2014.68

Sun Y, Chen D, Xin C, Jiao W (2015) Automating repetitive tasks on
web-based ides via an editable and reusable capture-replay technique. In:
Ahamed SI, Chang CK, Chu WC, Crnkovic I, Hsiung P, Huang G, Yang
J (eds) 39th IEEE Annual Computer Software and Applications Confer-
ence, COMPSAC 2015, Taichung, Taiwan, July 1-5, 2015. Volume 2, IEEE
Computer Society, pp 666-675, DOI 10.1109/COMPSAC.2015.12, URL
https://doi.org/10.1109/COMPSAC.2015.12

Van der Stigchel S, Theeuwes J (2005) The influence of attending to
multiple locations on eye movements. Vision Research 45(15):1921-
1927, DOI https://doi.org/10.1016/j.visres.2005.02.002, URL https://
www.sciencedirect.com/science/article/pii/S0042698905000945

Von Mayrhauser A, Vans A (1995) Program comprehension during software
maintenance and evolution. Computer 28(8):44-55, DOI 10.1109/2.402076

45

52 Yan F, Qi Z, Xia M, Liu X (2018) Efficient and deterministic replay for web-
1533 enabled android apps. In: Chaudron M, Crnkovic I, Chechik M, Harman M
1534 (eds) Proceedings of the 40th International Conference on Software Engi-
1535 neering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May
1536 27 - June 03, 2018, ACM, pp 329-330, DOI 10.1145/3183440.3194994, URL
s https://doi.org/10.1145/3183440.3194994

153 Zyrianov V, Guarnera DT, Peterson CS, Sharif B, Maletic JI (2020) Auto-

1539 mated recording and semantics-aware replaying of high-speed eye track-
1540 ing and interaction data to support cognitive studies of software engi-
1541 neering tasks. In: IEEE International Conference on Software Maintenance

1542 and Evolution, ICSME 2020, Adelaide, Australia, September 28 - October
1543 2, 2020, IEEE, pp 464-475, DOI 10.1109/ICSME46990.2020.00051, URL
1544 https://doi.org/10.1109/ICSME46990.2020.00051

46

