
Noname manuscript No.
(will be inserted by the editor)

Deja Vu: Semantics-Aware Recording and Replay of1

High-Speed Eye Tracking and Interaction Data to2

Support Cognitive Studies of Software Engineering Tasks3

- Methodology and Analyses4

Vlas Zyrianov · Cole S. Peterson · Drew5

T. Guarnera · Joshua Behler · Praxis6

Weston · Bonita Sharif · Jonathan I.7

Maletic8

Received: date / Accepted: date9

Abstract The paper introduces a fundamental technological problem with10

collecting high-speed eye tracking data while studying software engineering11

tasks in an integrated development environment. The use of eye trackers is12

quickly becoming an important means to study software developers and how13

they comprehend source code and locate bugs. High quality eye trackers can14

record upwards of 120 to 300 gaze points per second. However, it is not al-15

ways possible to map each of these points to a line and column position in a16

source code file (in the presence of scrolling and file switching) in real time at17

data rates over 60 gaze points per second without data loss. Unfortunately,18

higher data rates are more desirable as they allow for finer granularity and19

more accurate study analyses. To alleviate this technological problem, a novel20

method for eye tracking data collection is presented. Instead of performing21

gaze analysis in real time, all telemetry (keystrokes, mouse movements, and22

eye tracker output) data during a study is recorded as it happens. Sessions23

are then replayed at a much slower speed allowing for ample time to map24

Vlas Zyrianov
University of Illinois at Urbana-Champaign, E-mail: vlasz2@illinois.edu

Cole S. Peterson
University of Nebraska–Lincoln, E-mail: Cole.Scott.Peterson@huskers.unl.edu

Drew T. Guarnera
College of Wooster, E-mail: dguarnera@wooster.edu

Joshua Behler
Kent State University, E-mail: jbehler1@kent.edu

Praxis Weston
Kent State University, E-mail: gweston2@kent.edu

Bonita Sharif
University of Nebraska–Lincoln, E-mail: bsharif@unl.edu

Jonathan I. Maletic
Kent State University, E-mail: jmaletic@kent.edu

gaze point positions to the appropriate file, line, and column to perform addi-25

tional analysis. A description of the method and corresponding tool, Deja Vu,26

is presented. An evaluation of the method and tool is conducted using three27

different eye trackers running at four different speeds (60Hz, 120Hz, 150Hz,28

and 300 Hz). This timing evaluation is performed in Visual Studio, Eclipse,29

and Atom IDEs. Results show that Deja Vu can playback 100% of the data30

recordings, correctly mapping the gaze to corresponding elements, making it a31

well-founded and suitable post processing step for future eye tracking studies32

in software engineering. Finally, a proof of concept replication analysis of four33

tasks from two previous studies is performed. Due to using the Deja Vu ap-34

proach, this replication resulted in richer collected data and improved on the35

number of distinct syntactic categories that gaze was mapped on in the code.36

Keywords eye tracking · high-speed tracking · empirical software engineer-37

ing · program comprehension · replication analyses38

1 Introduction39

Studying how developers read and understand source code is a core research40

topic in software engineering. Research on mental models of program com-41

prehension dates into the 1980’s (Brooks, 1983; Letovsky, 1987; Rist, 1986;42

Soloway and Ehrlich, 1984; Pennington, 1987; Von Mayrhauser and Vans,43

1995). Historically, researchers use approaches such as think-aloud and pre/post44

surveys to collect data for such studies. Recently, researchers are taking advan-45

tage of eye tracking technology to study how people read source code (Obaidel-46

lah et al., 2018). In general, eye trackers are a vital research tool in understand-47

ing how people observe and in turn comprehend visual stimuli (Rayner, 1978).48

Researchers successfully use eye tracking hardware to better understand how49

people read natural language prose, understand diagrams, and process visual50

landscapes. Computer scientists use eye tracking devices to study how peo-51

ple interact with graphical user interfaces and web pages (Goldberg et al.,52

2002). The software engineering community is currently using eye tracking53

equipment to study how developers read and understand source code (Sharafi54

et al., 2015b). There is a recently published practical guide on conducting eye55

tracking studies in software engineering (Sharafi et al., 2020) that covers the56

technology and best practices to follow when conducting eye tracking studies57

in software engineering.58

Eye tracking devices come in a wide range of forms and take advantage of a59

range of technologies. The devices are made up of hardware, mainly specialized60

cameras, along with sophisticated software that computes the focal point of61

the eyes using data collected by the cameras. The software is needed to map62

each of the eye gazes to locations on a visual stimulus (e.g., computer screen).63

Additionally, eye tracking devices differ greatly with regards to accuracy (of64

tracking eye movements) and the applications and environments they can be65

applied to (Andersson et al., 2010). In particular, studying how people read66

and comprehend text or source code requires high precision (and costly) eye67

2

tracking hardware and software. While determining general spatial regions68

where a person is looking (left, right, up, down) only requires simple and69

low cost hardware and software. Low cost systems cannot identify the exact70

focus of the eyes, such as the word or letter someone is looking at. They only71

work well on larger stimuli such as objects in computer games. A high quality,72

accurate, research-grade eye tracking device allows researchers to determine73

the exact xy-coordinate on the screen a person is examining. The higher-end74

eye trackers, in a controlled setting, can pinpoint down to the letter being75

examined. Research on reading prose and source code most often requires76

accuracy to the word level at minimum.77

Using an eye tracker to study a developer (participant) works by presenting78

an image or text (stimuli) on a computer screen and then using the data from79

the cameras to determine the location (xy-coordinate) the person is looking.80

However, there are a number of limitations to this technology. The subject81

must be forward looking at the stimuli, cannot move around the room, and82

must be fairly stationary. While these are not serious limitations for conduct-83

ing scientific studies, there is one underlying limitation that poses a substantial84

road block for studying how programmers understand large, real-world soft-85

ware. Accurate research-grade eye trackers only work on fixed stimuli (i.e., an86

image or text block) that fits on the computer screen. Changes to the stimuli87

(screen), such as scrolling or switching files, present a very complex problem.88

Mapping the (x, y) to the correct position in the stimuli (say a 1000 line file)89

becomes impractical.90

Fortunately, infrastructure to deal with this problem has been recently91

constructed, namely iTrace (Sharif et al., 2019; Guarnera et al., 2018; Sharif92

and Maletic, 2016a; Sharif et al., 2016b). iTrace (www.i-trace.org) allows a93

software engineering researcher to conduct eye tracking studies directly in an94

integrated development environment (IDE) such as Visual Studio or Eclipse.95

It supports the tracking of eye gazes in the presence of scrolling and context96

switching. Thus, researchers can study developers in a real-world environment97

using large realistic software systems. iTrace does this by linking the IDE via98

a plugin architecture and invoking application and system calls to map the99

screen xy-coordinate to a line and column in the file in real time. This is then100

used in a post processing phase to determine the source code token being101

examined by the study participant.102

Unfortunately there are some technical limitations to this approach that103

pose a problem for researchers studying developers. Eye trackers sample eye104

gazes x-times every second denoted by the frame rate. For example, a 120105

Hz eye tracker generates 120 samples per second of raw eye gaze coordinates.106

Each gaze needs to be looked up in real time to map to the line, column107

within the file. Of course the lookup time is bound to the time it takes for the108

system calls to be executed and return. If the response time of this system call109

is too long it is not possible to map all (120) gazes coming in accurately to110

the correct file location in time. Through use of the iTrace infrastructure we111

determined that the maximum frame rate at which this can be done in real112

time is approximately 60Hz (for both Visual Studio and Eclipse). This implies113

3

that anything above 60Hz will cause the tracker in iTrace to either incorrectly114

map data or drop gaze points altogether. While having a faster computer may115

help a to some degree, getting to 120Hz, 300Hz or even 1000Hz (at which116

reading studies are typically done in psychology) is impossible with real time117

mapping.118

The research presented here, and previously in Zyrianov et al. (Zyrianov119

et al., 2020), addresses this limitation of the current iTrace architecture by120

taking all the processing offline. While the IDE API function call response121

time is fixed, our technique allows for all input events to be recorded and122

replayed back in a post processing step at a slower rate (several options exist123

on playback rate). This allows for accurate mapping of gaze data to source code124

locations with very high-speed eye trackers. The technique is implemented in125

Deja Vu, a novel tool that leverages the iTrace infrastructure and integrates126

well with its workflow. The technique and details of the Deja Vu’s approach127

are presented.128

The main contributions presented in this paper are:129

– Formalization. We introduce a fundamental problem in performing eye130

tracking studies in practical developer environments with high-speed eye131

trackers.132

– Technique. We present a novel technique to solve the technological prob-133

lem presented using automated recording and semantics-aware replaying of134

eye tracking and interaction data to support cognitive studies of software135

engineering tasks.136

– Tool. The novel technique is realized and implemented in a practical tool,137

Deja Vu, that is integrated in to the iTrace eye tracking infrastructure.138

iTrace, along with Deja Vu, is available at www.i-Trace.org. An ini-139

tial release of Deja Vu is available at https://doi.org/10.5281/zenodo.140

3976332. Future releases of Deja Vu will be available on the iTrace website:141

http://www.i-trace.org/downloads/142

– Evaluation. An evaluation of the fundamental problem of collecting high-143

speed eye tracking data with and without Deja Vu is presented in the144

context of three integrated development environments (i.e., Eclipse, Visual145

Studio, and Atom).146

– Replication Analysis. A replication analysis is conducted by collecting proof147

of concept data with a small sample of participants using Deja Vu on four148

tasks from two prior studies. The data is then compared to prior studies149

to show evidence of added syntactic categories mapped using the Deja Vu150

approach. This analysis is presented in Section 8.151

This paper extends our prior conference paper (Zyrianov et al., 2020) in the152

following ways. First, experiments evaluating Deja Vu now include the Atom153

IDE and are described in Section 7. The prior paper only included experiments154

for Eclipse and Visual Studio. Second, a replication analysis (Section 8) of tasks155

in two prior studies (Saddler et al., 2020; Kevic et al., 2015) is done to provide156

evidence of the richer syntactic categories that are provided with the Deja Vu157

approach. Section 8 is a completely new addition that required the collection158

4

of proof of concept data to illustrate the additional useful information the159

Deja Vu approach provides. Third, a detailed description and illustration of the160

iTrace infrastructure, the delay mechanism in Deja Vu, and the post processing161

Toolkit (Section 5) is given including new and updated diagrams as well as162

usage scenarios (Section 6.4). Fourth, we integrated Deja Vu directly into the163

iTrace-Core (previously it was stand alone), thereby greatly enhancing the164

actual use by researchers to support their studies and finally the practicalities165

of implementation have been updated to include the addition of supporting166

mouse double click events during the reply of Deja Vu sessions and fixing of167

race conditions (Section 6.3).168

The paper is organized as follows. Section 2 presents related work in in-169

teraction monitoring. Section 3 formally presents the problem and motivation170

for Deja Vu. Section 4 clearly defines the types of effects that could be studied171

with high speed tracking and the need for supporting high speed data collec-172

tion. Section 5 discusses details of the Deja Vu architecture, design decisions,173

and how Deja Vu integrates with iTrace. Section 6 discusses implementation174

details of the recording and replaying stages including the challenges faced175

and how they were mitigated or need managed. The section also touches on176

usage scenarios for iTrace and Deja Vu. Section 7 provides an evaluation on177

the impact of data output rates from eye tracking devices on real-time analy-178

sis of eye tracking data on source code with respect to the iTrace framework179

(Guarnera et al., 2018; Sharif and Maletic, 2016b). Section 8 presents a repli-180

cation analysis on four tasks taken from two prior studies using the Deja Vu181

approach. Section 9 summarizes our methodology, analyses, and presents av-182

enues of future work.183

2 Related Work184

This section presents related work in automatically capturing user interactions185

that is most relevant to this paper’s scope.186

Capturing user interaction data for analysis is a common approach in a187

variety of computational research studies. Minelli et al. (Minelli et al., 2015,188

2014, 2016) record mouse, keyboard, and IDE interaction data. Fine grain in-189

teractions are grouped into broad categories such as comprehension, editing,190

navigating, etc. to observe developer behavioral during typical tasks. Findings191

about what activities consume the most developer time, the proportion of192

development time is dedicated to program comprehension, and the IDE navi-193

gational efficiency of developers are presented. The Blackbox project (Brown194

et al., 2018) has collected programming interactions within the BlueJ Java195

IDE for over five years. This dataset has been aimed at providing raw data196

for research analysis towards better understanding software development be-197

haviors of novice developers. Mylar (Kersten and Murphy, 2006), now known198

as Mylyn for the Eclipse IDE, allows a developer to track IDE usage activity199

related to defined tasks. These task contexts can be easily switched in order for200

developers to multitask without the need to manually relocate artifacts upon201

5

returning to a previous task activity. Deja Vu drastically differs from Mylyn in202

that Deja Vu is intended to store interactions along with cognitive information203

(eye tracking data) for the purpose of replay and subsequent analysis while204

Mylyn is an active development productivity tool.205

ActivitySpace (Bao et al., 2015) stores mouse and keyboard events related206

to applications used by software developers to accomplish daily tasks. Event207

information is logged to a database as an “action record” to create a historical208

profile of developer interactions. Action records are grouped by a user de-209

fined time window and can be queried to help remind developers of resources210

used and actions taken while working on a given task to improve productivity.211

Interaction data from ActivitySpace has also been used with machine learn-212

ing techniques are compared to classify developer activity into higher level213

categories such as coding, debugging, testing, navigation, web browsing, and214

documentation (Bao et al., 2018).215

In addition to the capture user interactions, running simulated interactions216

is a popular solution for software testing research. Sikuli is used in (Sun et al.,217

2018) to construct synthetic macro scripts that are application agnostic based218

on common keyboard and mouse usage. User interactions are supplemented219

with desktop screenshots and image processing to determine the targets of220

the actions and automate GUI testing. Specific environments such as websites221

(Burg et al., 2013; Niño et al., 2005) and Android applications (Yan et al.,222

2018; Guo et al., 2019) have also been instrumented to record and replay223

user interactions for the purpose of testing and evaluating web or GUI based224

applications.225

Capture and replay approaches also benefit general purpose automation226

techniques. The Online Synchronous Education Platform (OSEP) records and227

abstracts user interactions with websites allowing for editable interactions228

scripts to be run as pre-recorded or synchronous demonstrations to support229

educational environments (Sun et al., 2014). Using the same framework, an230

system for automating common or lengthy website interactions is also proposed231

to improve user productivity (Sun et al., 2015). Recent works by Ramler et232

al. (Ramler et al., 2020) and Bernal-Cárdenas et al. take a different approach233

to capturing and replaying user interaction (Bernal-Cárdenas et al., 2020).234

Instead of instrumenting applications or recording interactions at an OS level,235

recorded video of an activity is broken down into individual still frames which236

are post processed to reverse engineer user interactions shown in the video.237

Since we do not have video as input, we did not favor this approach and instead238

focus on recording IDE interactions as they occur.239

Summary: In order to learn more about eye tracking in program compre-240

hension, we direct the reader to a survey of eye tracking (Obaidellah et al.,241

2018) and a practical guide (Sharafi et al., 2020) on conducting experiments242

in program comprehension. These two works summarize the state of the art243

in eye tracking research for software engineering. While Deja Vu makes use244

of existing recording and replaying techniques, it differs from the state of the245

art by recreating an eye tracking study in its entirety. User interactions with246

mouse and keyboard and gaze locations are all replayed to simulate a prior247

6

Fig. 1: Gaze plot of a developer’s fixations on code. Fixations are represented
as circles. The number in the circle represents the fixation index in time.
Fixations are linked via a scan path shown by lines connecting consecutive
fixations.

eye tracking study while allowing ample time for more detailed analysis that is248

not feasible to perform in real-time using high speed eye tracking equipment249

due to system call response time limitations. Additionally, Deja Vu affords250

researchers an opportunity to replicate a study any number of times while251

analyzing the study in different ways each time to greatly increase the value252

of participant recording sessions. This is a novel contribution to the current253

state of the art and provides the eye tracking software research community254

added incentive to use eye tracking equipment in their studies. The additional255

advantage of supporting high-speed trackers above 60 Hz (most research grade256

trackers are 120 Hz or higher) without data loss enables many different types257

of cognitive analyses (outlined in Section 4) that were unable to be done before258

because of the engineering problem described.259

3 Background and Problem Formalization260

There are decades of research, that take advantage of eye tracking technology,261

to study how people comprehend visual stimuli (Rayner, 1998). Modern eye262

trackers collect a person’s eye gaze data on the visual display (referred to as the263

stimulus) in an unobtrusive way while the subject is performing a given task.264

This eye movement data provides very valuable insight into comprehension265

strategies (Soloway and Ehrlich, 1984) as to how and why people arrive at a266

certain solution. Eye movements are essential to cognitive processes because267

they focus a subject’s visual attention to the parts of a visual stimulus that268

are processed by the brain. Visual attention triggers cognitive processes that269

are required to perform such things as comprehension. Eye movement is also270

a proxy for cognitive effort (Rayner, 1998) and allows us to determine what271

parts of a visual stimuli are difficult to understand.272

7

The underlying basis of an eye tracker is to capture various types of eye273

movements that occur while humans physically gaze at an object of interest.274

Fixations and saccades are the two types of eye movements. A fixation is275

the stabilization of eyes on an object of interest for a certain period of time.276

Fixations are made up of multiple raw gazes. Saccades are quick movements277

that move the eyes from one location to the next (i.e., re-fixates). Dwell time is278

defined as the sum of all gazes in a dwell (one visit to an area of interest from279

entry to exit) (Holmqvist and Andersson, 2017). An area of interest is defined280

by the researcher as any part of the stimulus that is of interest for analysis.281

For example, in source code it can be a token, a line, or multiple statements. A282

scan path is a directed path formed by saccades between fixations. The general283

consensus in the eye tracking research community is that the processing of284

visual information occurs during fixations, whereas, no such processing occurs285

during saccades (Duchowski, 2007). The visual focus of the eyes on a particular286

location triggers certain mental processes in order to solve a given task (Just287

and Carpenter, 1980). Modern eye trackers are accurate to 0.5 degrees (0.25288

in. diameter) on the screen. In Fig 1, we see eye gazes on source code (some289

areas having a much higher density of fixations than others). The fixations290

are shown as circles on the diagram. The radius of the circle represents the291

duration of the fixation. The bigger the radius, the more time is spent looking292

at that particular point. Each fixation has a number displayed in the center293

of the circle, which indicates the order in which the fixation occurred.294

Not all eye trackers are made equal. Generally, eye trackers range from low-295

cost consumer grade to more expensive research-grade tracking equipment.296

Research-grade eye trackers are thoroughly tested for accuracy, quality, and297

reliability compared to low-cost models. Low-cost eye trackers costing approxi-298

mately $200 USD are for consumer use (mainly gaming). Low-cost eye trackers299

miss the subtle differences in how humans read and navigate text. Another dif-300

ference is the frame rate. Low-cost eye trackers capture gazes at a slower rate301

compared to the research-grade ones. More gazes captured per second give302

more detailed insight into how people read and analyze software artifacts.303

The current generation of eye tracking devices offer a wide range of data304

rates (Andersson et al., 2010). Older and entry level devices tend to operate305

at 60 Hz meaning that 60 data points are provided within one second. When306

performing real-time analysis with received gaze data, analysis tools would be307

left with approximately 17 milliseconds (ms) for any analysis before a subse-308

quent new data point will be received from a tracker. This window narrows309

as modern trackers are capable of supporting anywhere from 120 Hz to over310

2000 Hz.311

Eye tracking of source code within an integrated development environment312

(IDE) is a serious challenge compared to the traditional approach of using313

static images or text that fit completely on a single screen. In the case of a314

static stimulus, the position of the image or the source text has little to no315

variation. The gaze data recorded while the stimulus is visible can easily be316

mapped down to the pixel on an image-based representation of the data on317

the display. In contrast, while using an IDE, users may manipulate the view318

8

of the source code in any number of ways such as scrolling, file switching, or319

even editing. These actions require that the gaze data recorded is contextually320

informed of state of the IDE with respect to the positioning of the source code321

text and interface elements at a specific moment in time. For example, if a322

user is scrolling through a source code file looking for a specific identifier, the323

user’s eye positioning may remain fixed within a limited region of the display324

as the text scrolls past. The issue is that location of the stimulus is changed325

drastically due to scrolling and it is no longer possible to easily map the screen326

location of a gaze to the stimulus.327

In the case of the iTrace infrastructure (Guarnera et al., 2018; Sharif and328

Maletic, 2016b) (or other similar gaze analysis infrastructures), IDE plugins329

map gaze locations to interface elements and source code text. The high la-330

tency of IDE plugin environment API calls significantly limits the feasibility331

of deep real-time gaze and textual analysis at the data sampling rate of high-332

speed trackers. Currently, solving this problem requires serious tradeoffs. One333

option is to drop gaze points received while the plugin is busy performing gaze334

mapping operations causing valuable data points to be lost. Another choice is335

to buffer all gazes to prevent data loss, but this causes the mapping process to336

steadily fall behind as the mapping process is a real-time operation and relies337

on the context of the current state of the IDE when the gaze data is received.338

This ultimately leads to a desynchronization of the gaze data and the IDE339

state and renders the data invalid.340

4 The Need to Support High Speed Eye Tracking341

Enabling support for high speed trackers allows researchers to collect data342

for studying various software engineering tasks and better enable them to343

come to conclusions similar to that of cognitive psychology reading studies344

that typically use 1000-2000Hz trackers. We now enumerate several benefits of345

having support for high speed trackers implemented in Deja Vu by extending346

current eye tracking community infrastructure.347

Running realistic studies using the community infrastructure such as iTrace348

on a tracker greater than 60Hz is now possible as Deja Vu takes full advantage349

of the faster frame rate. Most affordable research grade eye trackers are at350

least 120Hz. This enables researchers to take advantage of the higher frame351

rate available to them. The higher the sampling rate, the greater the precision352

of the eye in space, causing less error on dwell time (Holmqvist and Andersson,353

2017) at any given point on the stimulus. This relates directly to the accuracy354

of the eye tracker. Accuracy is important when drilling down to the specific355

token the developer is examining. Tokens are of varying length (e.g., short356

variable names, data types (int) or opening and closing braces) and accurate357

dwell time is critical for a study. Additionally, with higher precision we can358

accurately map the eyes to the parts of the stimuli with more realistically359

sized fonts. Currently, to overcome this limitation, researchers use a larger360

font, however, this is not very realistic as developers do not normally program361

9

in very large fonts. With a 60Hz tracker, the window of error is about 32 ms362

- once every 16 ms in either direction (Andersson et al., 2010).363

There are known attentional effects such as attentional cuing (Van der364

Stigchel and Theeuwes, 2005), inhibition of return (Dodd et al., 2009; Klein365

and MacInnes, 1999; Lupiáñez, 2010), distractor inhibition (Stigchel and366

Theeuwes, 2006), and flanker effects (Eriksen, 1995), to name a few, that are367

highly significant but often quite small and range between 10-15 ms in response368

and in dwell time. It is impossible to capture these effects with low-precision369

eye trackers. Many of these effects are highly relevant to software engineering370

studies. But none of the current studies analyze such effects as there is cur-371

rently no support to do this in current infrastructure. Note that this is still372

possible to do with high speed trackers if using short code snippets that fit on373

the screen, however it has been shown that the results from short snippets do374

not necessarily generalize to more realistic tasks (Abid et al., 2019).375

Researchers have studied how eye curvature affects a task. These charac-376

teristics can only be discerned at a high sampling rate requiring the use of377

high-speed tracking. For example, the eye can be attracted to or repelled from378

a distractor as a function of temporal relationship between a target and a379

distractor (Stigchel and Theeuwes, 2006). We have yet to determine if these380

issues impact real world programming behavior. Researchers can generally381

extract more information from high precision data such as pupillary activ-382

ity (Duchowski et al., 2020a; Rayner, 1998) and velocity measures that can383

help with saccade (Stigchel et al., 2010) and microsaccade analysis (Engbert384

and Kliegl, 2003; Hafed and Clark, 2002; Lowet et al., 2018). Microsaccades385

are miniature eye movements along with tremor and drift that are made dur-386

ing a fixation. They are typically found 1-2 times per second and have an387

amplitude of between 1’-25’ (arcminute). Microsaccades have regained popu-388

larity recently and are being studied by eye tracking researchers to learn about389

the cognitive load (Kelleher and Hnin, 2019) and task difficulty (Duchowski390

et al., 2020b). However, to correctly conduct microsaccade analysis, a 300Hz391

or higher (500Hz recommended) tracker is necessary to be confident in the ve-392

locity measures. Typically, oversampling of the data is used as an alternative393

but this is not recommended due to the artificial nature of the generated sam-394

ples. Finally, with the introduction of multiple data collection streams such395

as studies that incorporate fMRI (Floyd et al., 2017), fNIRS (Fakhoury et al.,396

2018), EEG, or GSR with eye tracking, it is recommended to have high speed397

precision to align timing data.398

In summary, we have only begun to start studying developers and cognition399

in software engineering using eye trackers. We have yet to learn from cognitive400

psychology and one of the ways to do this correctly is to have support for401

high-speed trackers in order to start collecting data correctly and making402

scientifically sound conclusions using realistic settings.403

Another point of discussion is what theories support empirical analysis of404

studies run on such eye tracking infrastructure. Note that a detailed analysis405

and actually conducting an empirical study was not the scope of this paper.406

This paper is producing infrastructure that enables studies to be done. In407

10

order to show this in a feasibility analysis, we ran a short replication analysis408

(see Section 8 by collected data on prior tasks with a few participants and409

analyzed the results with Deja Vu and compared it to the syntactic categories410

of the original studies without Deja Vu. One can always refer to the mental411

models and theories in program comprehension (Storey, 2006), however, this412

is best left to when a research study is designed. That was not the scope of413

this paper. We could come up with working theories to provide better insight414

into cognitive load and comprehension processes. However, this paper is not415

about finding cause/effect via an empirical study. It was merely showing that416

we can get additional syntactic categories (via a replication analysis) because417

now we support high speed tracking. We also want to note that sometimes418

theory hinders experiments (especially interdisciplinary ones such as the ones419

using eye tracking) as pointed out by Ko and Nelson in their award winning420

paper at ICER in 2018 (Nelson and Ko, 2018). Even though their paper is on421

CS Education, the same principles still hold for general SE research.422

5 The iTrace Infrastructure423

Deja Vu leverages, and is now integrated into, the iTrace infrastructure (www.424

i-Trace.org) (Guarnera et al., 2018; Sharif and Maletic, 2016b) to capture425

mouse and keyboard activity during an eye tracking study. To understand the426

role of Deja Vu it is necessary to be familiar with the architecture and workings427

of iTrace presented in this section.428

5.1 iTrace Architecture429

iTrace is eye tracking infrastructure that enables research studies within mul-430

tiple types of software development environments. It was designed and built to431

support the software engineering community in conducting eye tracking exper-432

iments seamlessly within realistic developer environments i.e., IDEs. The in-433

frastructure’s design is modular featuring three key components, iTrace Core,434

iTrace Plugins (See Fig. 2), and an offline post processing application for gaze435

analysis called iTrace Toolkit (see Fig. 3). For a detailed low-level diagram on436

how iTrace works, we direct the reader to (Guarnera et al., 2018).437

The Core provides a unified interface for managing supported eye tracking438

devices. Through this application eye trackers can be set up to calibrate or be-439

gin and end eye tracking data recording. All data generated by the eye trackers440

is first received by the Core which then makes quick decisions based on validity441

indicators whether the data is acceptable for use by other iTrace infrastructure442

applications (plugins). The Core also provides socket and websocket servers443

to allow for iTrace plugins to connect to the Core and receive gaze data for444

additional processing. In addition to gaze data, the socket communication also445

coordinates the start and stop of a recording session and subsequent plugin446

data processing as well as any output file storage locations for organizational447

purposes.448

11

Fig. 2: iTrace Architecture Diagram. iTrace is composed of two main compo-
nents: the core and an IDE plugin(s). The core interacts with the eye tracker
and sends information to the plugin. Given the screen (x, y) coordinate of a
gaze, the plugin determines the file, line, and column that maps to that gaze.

Plugins for iTrace support applications such as Eclipse, Visual Studio,449

Atom, and the Google Chrome web browser to allow study participants to450

engage with standard development tools instead of simulated proxies. This451

allows for data collection to occur in a natural and realistic development envi-452

ronment. Plugins receive the screen coordinate location of a gaze via socket or453

websocket communication as well as a unique identifier from the Core. Using454

this information, each plugin performs real-time analysis to map a gaze to455

contextual information within the IDE or web browsing window. This map-456

ping constitutes line and column positions within a visible source code editing457

window, IDE interface widgets, or HTML elements (with respect to Google458

Chrome) that fall under a participant’s gaze. These contextual mappings are459

essential as study participants are free to manipulate the stimulus environ-460

ment through scrolling, resizing, switching files or pages, searching, and other461

activities. Without any kind of context to associate with a gaze, combined462

with the volatile nature of the stimulus environment, it would be impossible463

to correctly determine what elements of the stimulus are actually viewed at a464

given moment in time.465

Note that even eye tracking vendor software does not have support that466

iTrace provides. They (at best) cache a page apriori if it extends screen size467

and need to know in advance what participants will look at. This is not the468

12

Fig. 3: The iTrace Toolkit fuses all the different data sources together into a
multi-relation database (SQLite). This allows researchers to formulate queries
and conduct analysis on the data. This is done as a post processing phase after
replay. Fixations are computed, line/column positions and syntactic informa-
tion are mapped to source code tokens via srcML.

case with iTrace. iTrace completely revolutionizes the way eye tracking studies469

are conducted in realistic settings.470

All data collected from each eye tracking recording session is stored in XML471

files. The Core stores participant and study metadata, calibration information,472

details about the specific tracker used to record the data, and all the raw gaze473

data points (valid or invalid) received from the eye tracking device during474

the session. Each plugin records valid gaze points received by the Core and475

contextual information about the gaze location with the IDE or web browser476

environment. When a study is complete, the custom offline post processing477

Toolkit provided by the iTrace infrastructure aggregates the data from all478

XML files. All study metadata and gaze data is collected into a unified Sqlite479

database where raw gaze data and plugin context information is joined using480

the aforementioned unique identifiers. Once all of the data is aggregated into481

the Sqlite database it can be queried using standard SQL commands or further482

analyzed using the post processing application.483

13

5.2 iTrace Toolkit484

The iTrace Toolkit (Fig. 3) is a post processing application written in C++485

and QML. It performs two key analysis methods on the collected study data.486

The Toolkit makes use of the eye-tracking information gathered from iTrace487

Core, the contextual information gathered from the iTrace Plugin of choice,488

and a srcML archive file of the source code observed (if indeed source code was489

one of the artifacts being viewed). For artifacts that are not source code, the490

process is a little different and adhoc in nature and needs to be written specific491

to that artifact. For e.g., if the artifact is a custom built web application that492

uses the iTrace-Chrome plugin, the post processing will be very specific to the493

structure of that website. iTrace-Toolkit will need to be extended to support494

that specific website’s data collection needs.495

First, the Core and plugin data is loaded into the Toolkit. Multiple different496

recording sessions can be loaded in at once. Using srcML (Collard et al., 2013)497

in conjunction with the line and column information provided by the iTrace498

IDE plugins, all textual tokens and the syntactic context of each token within499

a source code document can be recovered and stored within the database for500

later querying. The related srcML archive file is loaded in, and all of the501

raw gaze data from the eye-tracker is matched to the contextual information502

to deduce what file, line number, column number, and token the participant503

examined. This information is stored in a Sqlite database. The data model for504

this database is given in Fig. 4. As additional mapping to tokens is done, that505

information is also added to the database. This allows researchers to easily506

manage and analyze the data produced in each study.507

The Toolkit supports three different fixation detection algorithms – Basic508

(Olsson, 2007), I-VT, and I-DT (Salvucci and Goldberg, 2000) – each with509

adjustable parameters (Andersson et al., 2017). All fixations identified are510

stored within the database and each fixation references the raw gaze collection511

that it represents. Other fixation filters can easily be added to the Toolkit as512

needed. The Toolkit also provides a way for a participant/researcher to query513

the loaded database for specific fixations; i.e., if the researcher wants to look514

at all fixations that focused on whitespace and happened before line 300. The515

queries’ outputs can be saved in a variety of formats: SQL, TSV, JSON, and516

XML. This data can then be imported into the user’s statistical package of517

choice for further qualitative and quantitative analysis.518

5.3 Software Tasks in Research Studies519

iTrace and Deja Vu are eye tracking infrastructure to support researchers in520

studying developers (i.e., their eye movements) while trying to understand521

software systems. In the context of software development, any program under-522

standing task can be studied within a research study including debugging, bug523

localization, method summarization, concept location, feature location, trac-524

ing, etc. In other words, iTrace Deja Vu is task agnostic and supports data525

14

Fig. 4: An overveiw of the iTrace Toolkit Relational Database Schema.

15

collection in the cases where IDE lookup times are slower than the eye tracker526

frequency. At this point in time, Deja Vu and iTrace do not support tasks527

that involve editing. The only exception to this is a specialized iTrace-Atom528

version with our collaborators that supports limited editing (Fakhoury et al.,529

2021) for a specific study that needed to be conducted.530

Accurate automatic support for eye tracking in the presence of editing is a531

very difficult and currently open problem. However, the iTrace infrastructure532

and the way Deja Vu was architected forms a basis for addressing this challenge533

to support tracking full editing capabilities in the near future.534

6 Realizing Deja Vu535

The contextual information that iTrace provides is of great value. However, the536

overhead incurred by collecting this information in real time becomes prob-537

lematic as the speed at which eye tracking devices are capable of transmitting538

data increases. To alleviate this issue and fully support high speed eye track-539

ing while still collecting contextual stimulus environment information a new540

approach is required.541

To address the problem, Deja Vu augments iTrace to allow all gaze analysis542

that occurs in real-time to be deferred to an offline post processing phase. We543

record all telemetry data (e.g., keyboard, mouse), along with eye tracker data,544

and time stamps. This requires Deja Vu to record all user interactions. A545

subsequent replay phase is used to synchronize each user action with respect546

to recorded gaze data. Hence, we are no longer is constrained by real-time547

performance requirements.548

One method of implementing this is capturing the entire operating system549

after receiving each gaze during an eye tracking study session. After the study,550

each operating system state is loaded and all mappings are calculated. This is551

entirely accurate, however is not practical. It has very poor performance due552

to requiring copying the entirety of RAM to disk and may require introducing553

the complexity of a hypervisor.554

Deja Vu takes an alternative approach. Only actions that get the envi-555

ronment to each state are recorded and stored. Practically, these are mainly556

human-computer interaction events — mouse movements and keyboard key557

state data. Other vital information includes the operating system state his-558

tory, such as the exact position where a window pops up (in Windows, it559

depends on where it was previously opened). In these cases, a Deja Vu style560

approach needs to take measures to address this and ensure that replays are561

deterministic.562

In the Deja Vu approach, the execution process is split into two steps.563

First, during an eye tracking study, the computer interaction data is collected564

in real time. After the eye tracking study session is completed, all the computer565

interactions can be replayed at some later time. This involves replaying the566

session on the same machine but at a slower frame rate. Since all data is567

timestamped this can be done without loss and in an accurate manner. Thus,568

16

Table 1: Example of data collected during the recording phase. Some gazes
omitted for brevity. The events are shown as they happen. In this case we
have shown gaze, KeyDown, KeyUp, and MouseMove events.

Event Type TimeStamp Coordinates/Codes
gaze 132277258033906585 314,769

KeyDown 132277258035886613 72

gaze 132277258037224389 336,790

gaze 132277258037601928 333,791

KeyDown 132277258037645064 73

gaze 132277258037758814 323,786

gaze 132277258037914237 333,794

gaze 132277258039069772 270,767

KeyUp 132277258039085245 72

KeyUp 132277258039090178 73

gaze 132277258039225920 276,771

gaze 132277258039755087 316,804

MouseMove 132277258055005185 391,823

MouseMove 132277258055085137 388,823

the system/application calls to calculate the line, column in the file can be run569

without concern and in-depth analysis (of almost any type) can be performed570

during the replay. An overview of the two steps is shown in Fig. 5 and Fig. 6.571

6.1 Recording Stage572

During the recording phase (see Fig. 5), Deja Vu captures human-computer573

interaction data by recording mouse, and keyboard, along with the eye track-574

ing gaze data. Mouse and keyboard events are captured using Win32 hooks.575

Hooking into operating system events is a feature of the Windows API and is576

done through the SetWindowsHookEx function. By using this function to hook577

into low level mouse and keyboard events, Deja Vu can capture these events578

before they are added into the OS input queue. If a study participant is typing579

code in an IDE, Deja Vu captures and saves each keystroke before the IDE580

even receives it. This capturing and saving step happens imperceptibly fast.581

Performing the capture this way allows for perfect accuracy and replays. Gaze582

data is collected by listening for broadcasted event data from iTrace-Core. As583

this data is collected, it is saved to disk in a CSV format. A sample of the584

recorded data is shown in Table 1. Each row is in the following format: event585

type, a 64-bit integer specifying the system time, and any data related to the586

event. This format contains all data necessary for replaying the user’s com-587

puter interaction. Each recoded event type is shown in Table 2. KeyDown and588

KeyUp is used to represent keyboard key state changes. A Windows virtual589

key code (which is the size of a byte) can store any keyboard key, including590

modifier keys such as shift or control. Each of the mouse buttons are explicitly591

stated as an event type. Forward and back refers to the buttons on the left side592

of a mouse (generally used for webpage navigation). MouseMove specifies the593

17

Table 2: Each event type (which can originate from the mouse, keyboard, or
eye tracker during a Deja Vu recording) that appears in the CSV format. Each
of the event types is timestamped. The additional data description includes
the main components of each event type.

Event Type Additional Data
Keyboard

KeyDown Virtual Key Code
KeyUp Virtual Key Code

Mouse
LeftMouseDown
LeftMouseUp
RightMouseDown
RightMouseUp
MiddleMouseDown
MiddleMouseUp
ForwardMouseDown
ForwardMouseUp
BackMouseDown
BackMouseUp
MouseMove (x,y) coordinates
MouseWheel Mouse scroll amount (positive for an upward

scroll and negative for a downward)
Eye Tracker

Gaze event id (used for indexing iTrace Core output)
and averaged gaze coordinates (x,y) for both
eyes

Study Session
session start The time when study session started
session end The time when study session ended

new absolute position on screen after the mouse has been moved. MouseWheel594

stores any scroll that happens with a value that specifies how much the mouse595

is scrolled. This event also collects touchpad scrolling on laptops. The gaze,596

session start, and session end events are directly retrieved from iTrace597

Core. Gaze events store the x and y screen coordinate the participant’s gaze598

at that time including validity codes, pupil diameter, and distance to screen.599

The session start and session end events are used by iTrace to mark the600

beginning and end of a study. These are primarily used to synchronize iTrace601

Core state with plugins.602

6.2 Replaying Stage603

During the replaying phase (see Fig. 6), Deja Vu reads in the CSV data pro-604

duced during the recording stage and replays each event by creating mouse605

and keyboard events using the Windows API. Specifically, the mouse event606

and keyboard event functions are used to synthesize button presses, mouse607

motions, and mouse scrolls. In addition, Deja Vu also replays all gazes and608

emulates the communications protocol used by iTrace Core. This allows ex-609

18

Fig. 5: Overview of the Record Stage. Deja Vu collects all interaction infor-
mation of the developer along with gaze information, all of which is stored in
an event log.

Fig. 6: Overview of the Replay Stage. Deja Vu replay takes the place of both
the user and iTrace core. The event log is replayed back at a slower rate and the
iTrace plugin (re)produces the file, line and column information in the same
manner as iTrace without Deja Vu. This way all gaze points can be mapped
correctly to a line and column.

19

Fig. 7: Illustration of how the fixed and proportional pause delay mechanisms
work.

isting iTrace plugins to connect to Deja Vu to receive gaze data and perform610

analysis during the replay. In essence, Deja Vu works as proxy for iTrace Core.611

All events are replayed synchronously. To slow down the replay, Deja Vu612

pauses in between events it produces. This pause provides time for connected613

plugins to process received gaze data. Therefore, time in between events must614

be carefully considered to give ample time for each connected plugin to perform615

its analysis. There are multiple possible algorithms for choosing the time to616

wait in between replaying each event. Deja Vu implements three such methods617

so researchers can choose whichever fits their needs the best. Refer to Fig. 7618

and Fig. 8 for a graphical illustration of how the delays work.619

6.2.1 Fixed Pause Delay620

The time waited after each event is a fixed amount of time based on the type621

of the event. Plugin processing time for each type of event received will vary622

depending on the type of analysis performed. Generally, most processing is623

done after gaze events. Other events, such as mouse movements, may not need624

any analysis (depending on the researcher’s needs). In these cases, processing-625

heavy events (such as gazes) can be set to have a greater pause time than626

processing-light events (such as mouse movements).627

The primary drawback to this mode is that choosing a good pause length628

is difficult. Gaze processing latencies are not necessarily easy to predict and629

outliers are possible. However, via some trial runs a suitable duration could630

be determined and used. If the experiment is short and fairly simple the fixed631

paused approach should work well. A visual illustration of this replay method632

is shown in Fig 7.633

20

Fig. 8: Illustration of how bidirectional delay and replay works. In this example,
the same recorded data log file is used as in Fig 7. The pause after each gaze
in bidirectional delay could be a variable length (depending on how long the
plugin takes to do its computation).

6.2.2 Proportional Delay634

The time after each event is proportional to what it is during the recording.635

For example, Deja Vu can set to replay everything at exactly half the speed of636

recording. This mode is useful for visualizations. Screen recordings performed637

during the replay stage can easily be sped up by the same factor as the replay638

is slowed down. Using this method, the sped-up recording of the replay is639

identical to a recording of the session. See Fig 7.640

The drawback to this mode is that it is impossible to set a minimum time641

between events. If processing is to happen after each keypress, nothing stops642

events from being generated during replay at a very high frequency. During643

recording, the user can have press several keys on the keyboard, generating key644

presses nearly simultaneously. It is possible that one might want to do some645

analysis after each keystroke. If the analysis takes 20 ms, it is impossible to set646

a minimum pause after each keystroke. Even if slowed down by a factor of 10,647

when a user presses two keys within less than 2 ms, there is not have enough648

time for analysis. However, this is not an issue for gaze data as eye trackers649

typically generate readings quite uniformly, making it possible to reinforce a650

minimum pause time in between gaze events.651

6.2.3 Bidirectional Delay652

In the third method, after gaze events, Deja Vu waits indefinitely for a re-653

ply/acknowledgement from each connected plugin. This reply marks that the654

plugin is finished doing processing and is ready to process more data. Com-655

munication between Deja Vu and plugins happens bidirectionally. Events that656

21

do not need to be waited on are followed by a short fixed-length pause. From657

a technical point of view, this is the best pausing method. The difficulty of658

choosing a good fixed-pause length is alleviated. Pauses after gaze events are659

always correct. No extra time is wasted as padding for the highest-latency660

lookup/processing cases.661

The primary drawback to this method is that it requires modification to the662

existing components in the iTrace infrastructure. Plugins need to be modified663

to reply a ready-signal (over the TCP socket connection between the plugin664

and Deja Vu) in response to events that require confirmation. In addition, there665

is the potential added overhead due to the additional layer of communication666

that needs to take place. A visual illustration of this replay method is shown667

in Fig 8.668

6.2.4 Theoretical Foundations in Replay Pausing Strategies669

In this section, we provide a summary and a theoretical foundation for ana-670

lyzing the slowdown between different pausing strategies. Let ce indicate the671

number of times the event e is encountered. Let pe be the fixed pause length672

(ms) assigned to event e. Let t be the initial recording length (ms), and t′ be673

the replay length (ms).674

Fixed Pause Replay:675

t′ =
∑

e∈all event types

ce · pe

Proportional Replay: Let s be the scale chosen for the proportional replay.676

Then:677

t′ = t · s

Bidirectional Replay: Let m be the average time it takes each plugin to678

finish processing each gaze, and reply to Deja Vu. Then:679

t′ = cgaze ·m +
∑

e∈(all event types−{gaze})

ce · pe

6.3 Practicalities of Implementation680

While developing the Deja Vu tool, we ran into several non-obvious problems681

and issues, some of which are challenging to completely address. Each can682

be addressed in several different ways and we present our solutions to these683

below. We believe that these challenges generalize for the implementation of684

tools using a similar approach to that of Deja Vu. Hence, these descriptions685

may prove useful to other researchers.686

22

6.3.1 Solving Non-Deterministic Window Placements687

The initial window position is non-deterministic on MS Windows making it688

difficult to start the replay from the exact same position. During a replay,689

the position where a window opens up can be different from where it opened690

during recording. To address this, Deja Vu forces each window opened during691

recording and replay to open in a single predefined location on the screen. In692

Deja Vu, this predefined location is the top left corner of the screen. This is693

done by frequently iterating over each window handle and checking if any new694

handles appear.695

In theory, this method is not entirely accurate for every application, since696

the application can move its window without human interaction. However, we697

have not found an application that does this to date in the use cases Deja Vu698

is used for. To maintain integrity of replays, researchers performing studies699

need to still consider this issue and avoid using applications in studies that700

have this behavior.701

6.3.2 Restoring Initial Interface State702

A slight change in interface layouts between runs can cause replay to become703

out of sync with the events that happen during recording. This can happen in704

a butterfly-effect style. To address this, researchers need to be careful choosing705

a replicable initial state between runs.706

Currently, ensuring that the initial interface state is the same is performed707

manually by the researcher. Many IDE’s, such as MS Visual Studio, support708

saving and restoring UI layouts (e.g., through a simple hotkey). Saving a layout709

before running a study and restoring it before performing a replay is one710

method of ensuring initial interface state in an IDE with adjustable element711

sizes will remain consistent.712

6.3.3 Relative or Absolute Mouse Positioning713

The MS Windows API allows for two methods of capturing and moving the714

mouse: by the absolute value (directly specifying mouse position with x and y715

coordinates) or by relative value (changes the x and y coordinate of the mouse)716

(Microsoft, 2018). Deja Vu uses absolute mouse values.717

The advantage of absolute values over relative value is that replays are718

more robust. Moving the mouse accidentally during a replay using relative719

values will cause all subsequent mouse usages to be off. Absolute mouse values720

solve this issue by automatically locking the mouse back where it should be721

after each mouse move event.722

6.3.4 Replaying Mouse Double Clicks723

This challenge was discovered after the dataset for our replication analysis724

(given in Section 8.4) was collected. If a sequence containing a double-click725

23

(two mouse clicks in quick succession, with a pause in between) is slowed726

down enough, it will result in replaying two separate clicks (and not a double-727

click). To address this problem, Deja Vu replay looks ahead into the event log728

and replaces any double-clicks (which would become two separate clicks after729

slowing the replay down), with a double-click event.730

6.3.5 Race Conditions731

This was another challenge discovered after the dataset collected for our repli-732

cation analysis. Due to multiple input sources (e.g., mouse, keyboard, and733

sockets) collecting data concurrently a race condition was possible while writ-734

ing to the log. We have identified and fixed this race condition that occasionally735

corrupted event log data entries.736

6.4 Using Deja Vu with iTrace737

As far as we are aware, this is the first attempt at supporting high-speed738

trackers for software engineering-based studies that work on complex artifacts739

tracked within an IDE. Deja Vu will typically be used in the following manner.740

Let’s assume that a researcher is looking to investigate how developers un-741

derstand class hierarchies (using a high-speed 1000Hz eye tracker). Before the742

study, the researcher chooses a suitable real-world code base and the questions743

a study participant is to answer. The code base is imported into a project file744

in an IDE that has iTrace plugin support (such as Visual Studio or Eclipse).745

The layout is saved. During the study, a participant is put in front of the com-746

puter. The eye tracker is calibrated for the participant. The IDE is opened,747

and the layout is restored. Eye tracking is started in iTrace-Core with Deja748

Vu Recording enabled.749

During the study, the participant performs the assigned set of tasks. They750

have the freedom to interact with the IDE, OS, and any applications if they so751

desire (for example, opening a web browser to access StackOverflow). During752

replay, all computer events will be replayed. If the participant highlighted753

text and pressed Ctrl+C to copy the text, the same sequence of events would754

be replayed during the Replay phase (the same text would be highlighted, the755

Ctrl+C keypress would be replayed causing the highlighted text to be copied).756

While users can interact with any application, the applications that support757

gaze-token lookups will depend on the iTrace plugins that are running. If a758

study participant opens Firefox (for which no iTrace Plugin exists yet), gaze759

data will still be collected, however the gaze {x,y} coordinates will not be760

mapped to specific tokens or areas-of-interest on screen. Once the participant761

is finished, the the tracking and recording are stopped. The Recording phase762

is complete.763

At some point after the study is completed, the researcher begins the replay764

phase. Deja Vu Replay is opened in Core. Analysis plugins are enabled in765

the IDE and are connected to Core. The IDE layout is restored again. Deja766

24

Vu Replay is started in Core. Everything that happened during the study767

is now replayed slowly on the computer. Analysis is being performed in the768

background via iTrace. Once it is finished, the researcher can collect the data769

from the plugins and analyze it in any statistical package. In this use case,770

they can investigate how the developer navigated the class hierarchies and771

what they looked at before they completed the task.772

6.5 Example Usage Scenario773

To perform a study with iTrace Deja Vu, first a code project and associated774

IDE (which has an iTrace plugin) is chosen. Next, iTrace Core is started, cali-775

brated and setup. The IDE is to be brought into a reproducible initial position776

(typically this is the IDE taking up the full screen space i.e., maximized). The777

session is setup in Core, and recording with Deja Vu is enabled. The study778

participant is then invited to perform the instructed task (e.g., in the case of779

the replication study we conduct in section 7, they perform a bug localization780

task). As seen in Fig. 5, Deja Vu records computer and gaze interactions of781

the study participant.782

Once the participant is finished with the task (see Section 5.3), the record-783

ing is stopped. We recommend starting and stopping tracking before each task784

is performed to have a clean data recording for each task. For example, as a785

researcher, if you setup your study to have four tasks per participant, you will786

start and stop tracking before each task within iTrace with the Deja Vu option787

selected. After all the data collection for all the tasks is complete and after788

the participant has left, the researcher can now collect detailed gaze data with789

Deja Vu Replay. In order to do this, first, the initial IDE position is restored.790

Deja Vu Replay is selected in iTrace Core, and a previously recorded session791

can be selected to replay. During this time, detailed Plugin information, such792

as file along with line and column gaze information, is collected (as seen in793

Fig. 6). Once replaying is finished for all tasks and the detailed plugin data is794

collected, further analysis can be performed.795

To perform analysis, the project code file is converted into its srcML rep-796

resentation. iTrace Toolkit then combines the core and plugin files and along797

with srcML information is able to map tokens to gaze coordinates. As shown798

in Fig. 3, iTrace Toolkit generates a database which can be queried for eye799

tracking data. iTrace Toolkit also supports various fixation event detection800

algorithms that are run on the raw gaze data and exported by the researcher801

to perform further statistical analysis. Note that iTrace Toolkit is not a sta-802

tistical package. iTrace Toolkit is a post processing tool to combine core and803

Plugin files, generate fixations, and map the fixations to source code tokens.804

In addition, it can filter the data on specific criteria via queries from the user805

interface. See Section 5.2 for more details.806

It is important to note that iTrace and iTrace Deja Vu are task agnos-807

tic. They do not directly support software engineering tasks such as bug lo-808

calization or code summarization. The infrastructure provides a method for809

25

researchers to collect eye tracking data on software engineering tasks. iTrace810

has been used in previous eye tracking research studies to better understand811

tasks such as code summarization (Abid et al., 2019; Saddler et al., 2020),812

code review (Park and Sharif, 2021), program comprehension (Peterson et al.,813

2019b,a), software traceability (Sharif et al., 2016a), and bug fixing (Kevic814

et al., 2015, 2017). The task to be studied depends on the researcher’s objec-815

tive and the research questions they seek to address in their study. iTrace and816

iTrace Deja Vu facilitate collection of (high speed) eye tracking data within817

the IDE while developers are working on software tasks. More information on818

iTrace along with video tutorials are available at https://www.i-trace.org/.819

7 Evaluating the Deja Vu Approach820

The evaluation of our approach is conducted via two experiments. Experiment821

1 evaluates the initial problem by looking at two typical data analysis plugin822

implementations (iTrace Visual Studio, iTrace Eclipse, and iTrace Atom) to823

show data loss and degradation with high-speed trackers. Experiment 2 evalu-824

ates Deja Vu to determine whether it can recreate all gazes that were produced825

during the recording phase. This is done in the context of a sample eye tracking826

experiment.827

Experiment participants are assigned to one of two groups each denoted828

by the identifier K and L respectively. Table 3 shows the eye trackers and829

data rates used by each group. Each tracker for Group K is connected to a830

64-bit MS Windows 10 desktop with a 3.6 GHz Intel i7-7700 CPU, mechanical831

hard disk drive, 8 GB of RAM, and two 24-inch LCD displays running at a832

1920x1200 resolution. Group L eye trackers ran on two separate machines. The833

machine connected to the Tobii TX300 used the tracker’s built-in 23” monitor834

running at 1920x1080 resolution on a Windows 10 desktop with 3.5 GHz Intel835

i7-7800X, a solid-state drive, and 32 GB of RAM. The Gazepoint GP3-HD was836

connected to a 27” LCD panel running at 1920x1080 resolution, on a Windows837

10 laptop with 2.7 GHz Intel i7-6820HQ CPU, a solid-state drive, and 32 GB838

of RAM.839

Table 3: Participant groups and the eye tracking devices and data rates used.

Participant Groups Eye Tracker Model Data Rate

K
Gazepoint GP3 HD 60Hz
Tobii Pro X3-120 120Hz

L
Gazepoint GP3 HD 150Hz

Tobii TX300 300Hz

26

7.1 Experiment 1: Data Collection without Deja Vu840

This experiment evaluates the initial problem: Does the latency for real time841

data collection make it infeasible to map eye gaze to semantic elements at842

high-speed tracking frequencies? To determine this, all the IDE plugins that843

iTrace currently supports (iTrace Visual Studio, iTrace Eclipse, and iTrace844

Atom) are evaluated to determine the impact on data rate limitations when845

performing real-time gaze analysis.846

7.1.1 Experiment Setup847

The plugins are instrumented to collect timings from the functions related848

to real-time line, column lookup analysis. The evaluation is run on multiple849

hardware configurations (Group K and Group L) to provide a less biased850

performance measure. Each plugin environment (Eclipse, Visual Studio, and851

Atom) is also stressed with an increasing number of open source-code tabs to852

identify potential implementation specific overhead.853

7.1.2 Data Collection854

A process diagram for the first experiment is shown in Fig. 9. An eye tracking855

study is set up in iTrace. The IDE gaze analysis plugins are connected to iTrace856

Core. The study participant is instructed to have no files open in the IDE and857

gaze at the screen for 5 seconds. Then they are instructed to open a file and858

look at it for 5 seconds. This is repeated until 4 files are opened inside the859

IDE. Each IDE plugin is modified before the study to collect implementation860

and environment API performance data. In the iTrace-VisualStudio plugin,861

this is done using the C# Stopwatch API. Elapsed times for each call to the862

gaze analysis functionality within the plugin is stored in memory and written863

out to a file at the end of a recording session. For the iTrace-Eclipse plugin,864

API performance data is collected using the System.nanoTime() API and865

calculating the difference between the start and stop time for each call to the866

gaze analysis function. This timing data is stored in memory and written out867

to a file at the end of a recording session.868

7.1.3 Results Showing Loss of Data869

The data collection process is repeated for each plugin with 0-4 open tabs870

and the results are presented in Fig. 10. iTrace Eclipse provides an optimized871

API for translating screen coordinates to the file, line, and column at that872

screen coordinate. Each lookup in eclipse takes 0.015 seconds. 0.015 seconds is873

equivalent to approximately 66Hz. This means that real time data collection874

can only happen for eye trackers operating at 66Hz or less.875

Visual Studio does not provide an optimized API for converting screen876

coordinates to file, line, and column data. For this reason, the lookup timings877

for iTrace Visual Studio plugin implementation scales linearly with respect to878

27

Fig. 9: Process diagram for data collection in Experiment 1 (Data Collection
without Deja Vu).

the number of tabs open (due to needing to iterate over all open files). When a879

single tab is open, the plugin is able to support up to 166hz trackers. However,880

typically developers have more than a single tab open and any number of tabs881

open above two will not even support 60Hz. However, both eye tracker speeds882

estimates are liberal because they do not consider outliers. Fig. 11 shows the883

raw timing data in the Visual Studio plugin.884

iTrace Atom is implemented as a package for Atom, a text editor that is885

built on the Electron framework. Electron allows developing desktop applica-886

tions using web technologies by running code using the Chromium rendering887

engine. Because of this, iTrace Atom has access to an optimized DOM screen888

coordinate to text element API. This allows iTrace Atom to perform lookups889

at an average of 0.223ms per lookup, regardless of number of tabs open. Be-890

cause the lookup is already very fast, Deja Vu has less potential to be useful,891

unless running experiments on weaker hardware or using an eye tracker that892

collects data at higher rate than 4500Hz.893

In conclusion, real time data collection in IDE’s (with the exception of894

iTrace Atom) using the iTrace eye tracking infrastructure is infeasible for high895

speed eye trackers (running above 60Hz).896

7.2 Experiment 2: Is Deja Vu an Effective Solution?897

In this section, we describe a simple experiment on two tasks with the goal898

of showing that Deja Vu is able to keep up with high speed eye trackers to899

collect and recreate all gazes that occurred during an experiment.900

7.2.1 Experiment Setup901

The simulated eye tracking experiment consists of two tasks and each task is902

repeated twice per participant with variations in the data rate of the eye track-903

ing device. The first task requires participants to read out loud each method904

28

Fig. 10: IDE screen coordinate to (file, line, column) lookup times in the Visual
Studio, Eclipse, and Atom iTrace Plugins. iTrace Atom took an average of
0.223 ms per lookup.

Fig. 11: Raw timing data from Visual Studio. A trendline showing the linear
growth is displayed as the number of tabs open increase.

name and return type from the source code file SvgExporter.java taken from905

the JHotDraw8 project. This file contains 1,166 lines of code and 42 methods.906

While this task is straight forward, it will require active engagement with907

the source code while ensuring a long enough recording duration, minimize908

cognitive fatigue, and require scrolling.909

The second task requires participants to summarize three methods in the910

SvgExporter.java file selected randomly from a collection of the eight largest911

methods (in terms of lines of code). Participants perform the summarization912

out loud and the selected methods are not repeated by the participant on the913

second run of the task when the eye tracker data rate is changed. This task is914

designed to engage the participant and represent a more advanced eye tracking915

study task.916

29

Fig. 12: Process diagram for data collection in Experiment 2 (Data collection
with Deja Vu).

In this study, Deja Vu was setup to use a fixed-pause delay strategy during917

replay as it provided us with enough time to map what we needed. Refer918

to Fig. 7 for a graphical illustration of the fixed pause delay mechanism.919

If bi-directional delay was used it would just complete in a different total920

time (not worse than fixed pause delay, since we chose a time that is longer921

than needed to compute the gaze mappings). Proportional would be slower922

than bidirectional and fixed-pause because everything would be slowed down923

equally (compared to the other two where we can choose to slow down only924

the gazes but replay interactions faster)925

7.2.2 Data Collection926

A process diagram for this experiment is shown in Fig 12. Participant data927

captured during the simulated eye tracking study consists of a set of data com-928

prised of: 1) an iTrace-Core data file representing all valid data points gener-929

30

ated by the eye tracking device; 2) an iTrace-Eclipse or iTrace-VisualStudio930

plugin data file containing all data received from iTrace-Core and processed931

in real-time; and 3) a Deja Vu recording file storing all mouse and keyboard932

interactions and gaze positions sent from iTrace-Core. Each participant gen-933

erates two sets of data representing tasks recorded using different eye tracking934

data rates. Audio recordings of participant activities are also saved via a cellu-935

lar phone audio recording application. To determine the effectiveness of Deja936

Vu’s data collection, all gaze data present in the plugin and Deja Vu output937

files is compared against the valid raw data points stored and transmitted to938

each application by iTrace-Core. Gaze data is uniquely identified by an event939

id value and is used to determine any data loss (e.g. data transmitted, but not940

received by the plugin or Deja Vu).941

Table 4: Raw gaze datapoints collected during study. The percent shows the
data loss. The K samples were collected in the Visual Studio plugin. The L
samples (last four) were collected in the Eclipse plugin.

Sample Data Rate Core Data Deja Vu Plugin
K1 60Hz 22629 22629 (0%) 15817 (30%)
K2 60Hz 21333 21333 (0%) 19833 (7%)
K3 60Hz 28392 28392 (0%) 16306 (43%)
K1 120Hz 41999 41999 (0%) 23424 (44%)
K2 120Hz 48405 48405 (0%) 26087 (47%)
K3 120Hz 67024 67023 (<1%) 35786 (47%)
L1 150Hz 52506 52506 (0%) 25047 (52%)
L2 150Hz 48090 48088 (<1%) 15858 (67%)
L1 300Hz 138442 138441 (<1%) 79967 (42%)
L2 300Hz 106674 106674 (0%) 68852 (35%)

7.2.3 Results942

Table 4 shows the data rates of eye tracking devices and the amount of valid943

data successfully captured by iTrace-Core, Deja Vu, and the iTrace plugins for944

Eclipse and Visual Studio. From the table we see that an eye tracking device945

running at 60 Hz, tends to moderately tax the real-time analysis component of946

the iTrace plugins. As the data rate increases to 120 Hz, real-time analysis in947

the plugins falls behind and nearly half of the data transmitted to the plugins948

for analysis is lost as plugins cannot keep up with the faster data generation949

rate of the eye trackers. It is interesting to note that in nearly all cases, the950

data rate of the eye tracker poses no issue for Deja Vu with nearly 100% of the951

data sent from iTrace-Core is also recorded by Deja Vu along with participant952

mouse and keyboard interactions. Note that iTrace-Atom was not compared as953

the IDE lookup time for the (file, line, column) were much smaller and will be954

at least as good and most likely better (see Fig. 10) than iTrace-VisualStudio955

and iTrace-Eclipse.956

31

Note that we cannot claim a link between the data rate and data loss in957

terms of percentages. The plugin behaves very undeterministicaly in how it958

drops gazes when moving from 150Hz to 300Hz as seen from Table 4. The959

main point to note is that Deja Vu takes care of the data loss. That said, we960

did use two different machine configurations to collect the 150Hz data and961

another machine to collect the 300Hz data. The 150Hz dataset was collected962

on a laptop fitted with the GazePoint tracker whereas a dedicated machine for963

the TX-300 tracker which comes incorporated into a monitor was used for the964

300Hz dataset. It is not straightforward to just move the GazePoint tracker965

on the TX-300 machine. We do not believe collected the data on two different966

configurations invalidates the fact that there is data loss regardless.967

7.2.4 Limitations968

We are not implying that the high-speed support for trackers will be needed969

for every study. Similarly, not every study needs to be an eye tracking study970

(there needs to be a specific reason). Likewise, not every eye tracking study971

will need to be done using a high-speed tracker. However, as we pointed out in972

Section 3, there are specific use cases for when a high speed tracker is needed.973

In those cases, Deja Vu will significantly improve data collection without any974

data loss or incorrect mapping. Closer investigation of the instances where Deja975

Vu did not manage to capture all data points transmitted from iTrace-Core976

revealed a bug in the research prototype. Occasionally, Deja Vu can corrupt977

a data entry which we believe to be caused by a race condition on the output978

file resource. While this can explain the missing data points given Deja Vu’s979

generally consistent performance, we still consider these data points to have980

been lost in Table 4 to avoid under-reporting the findings. This issue has since981

been fixed.982

8 Replication Analysis983

We present a replication analysis of four tasks taken from two prior eye tracking984

studies. The first two tasks consist of bug fixing tasks from Kevic et al. (Kevic985

et al., 2015) where participants need to find the location of a bug and propose986

a potential solution. These two bug fixing tasks are both on the JabRef system.987

The last two consist of code summarization tasks from Saddler et al. (Saddler988

et al., 2020) where participants are asked to provide a summary of one method989

and one class. Both summarization tasks are on the Eclipse project.990

During the study, participants only have access to the code files present991

in the project corresponding to their current task, a text file describing the992

current task or bug. Each participant completes the study in the same order993

using the same stimuli. Participants’ eye movement data is collected using the994

iTrace-Eclipse plugin.995

32

8.1 Research Questions996

The research questions we seek to address in this replication analysis are given997

below:998

– RQ 1: What additional syntactic categories does Deja Vu provide over prior999

work’s results?1000

– RQ 2: What further analysis can be done with the additional syntactic1001

categories that Deja Vu provides?1002

The motivation behind RQ 1 is to show the added insight that Deja Vu pro-1003

vides by comparing the results of prior work with the current study’s results.1004

The motivation behind RQ 2 is to provide examples of some further analysis1005

that can be done with the additional syntactic categories Deja Vu provides.1006

Note that the goal of Section 8 is not to completely replicate the prior studies1007

but to show via replication analysis on two different types of tasks that Deja1008

Vu works in these settings and generates additional, and useful, information1009

for analysis. The researcher can then take this information and use it towards1010

some functional goal related to their specific research question.1011

8.2 Tasks1012

For the bug fixing tasks, JabRef is selected as the subject system. JabRef is a1013

desktop application for managing bibliographic databases with many import1014

and export formats. JabRef version 1.8.1 is used in this study. Only two of the1015

three original bug fixing tasks are selected due to time constraints labeled in1016

this study as Task 1 and Task 2. In both of these tasks, the bug descriptions1017

submitted to the JabRef project are added to the text file describing the1018

current task. Participants are given a maximum of 20 minutes to fix the bug1019

to avoid fatigue. This is also done in the original study. Further details of the1020

tasks can be viewed in the original study (Kevic et al., 2015). In this paper1021

we name our tasks as follows: Task 1 refers to Bug 2 in the original paper and1022

Task 2 refers to Bug 4 in the original paper (Kevic et al., 2015).1023

For the code summarization tasks, Eclipse is selected as the subject system.1024

Eclipse is an IDE used primarily for Java programming. Eclipse version 4.21025

is used in this study. Due to time constraints, only the two summarization1026

tasks about code elements in Eclipse in the original study are used in this1027

replication labeled in this study as Task 3 and Task 4. Participants are given1028

either a method name they needed to summarize or a class name they needed1029

to summarize. Once they navigated to the code element, read the code, they1030

provided their summary for their task. Further details of the tasks can be1031

viewed in the original study (Saddler et al., 2020). In this paper we name our1032

tasks as follows: Task 3 refers to T1 in the original paper and Task 4 refers to1033

T2 in the original paper (Saddler et al., 2020). See Table 5 for an overview of1034

the tasks.1035

33

Table 5: An overview of the tasks used in the replication study analysis.

Task No. Type System Description
Task 1 Bug Fix JabRef No comma added to separate keywords
Task 2 Bug Fix JabRef Failure to import big numbers

Acrobat Launch fails on Win98
Task 3 Summarization Eclipse Summarize Method

core.databinding.binding.dispose

Task 4 Summarization Eclipse Summarize Class
swt.SWTError

8.3 Eye Tracking Apparatus1036

Two different eye tracking setups are used at the different universities. At1037

UNL, the study is conducted with a Tobii TX300 set to capture eye gaze data1038

at 120 Hz with an accuracy of 0.5 degrees. The built-in 23-inch, 1920px by1039

1080px monitor is used. At KSU, the study is conducted with using the Tobii1040

X3-120 eye tracker set to capture eye gaze data at 120 Hz with an accuracy1041

of 0.5 degrees. A laptop with a 15.6”, 1920px by 1080px monitor is used with1042

this eye tracker. Deja Vu is run with a fixed-pause strategy. See Fig. 7 for a1043

graphical illustration of the fixed-pause replay strategy.1044

8.4 Data Collection Process1045

There are two sets of participants from the two collaborating universities that1046

participated in this study to collect this proof of concept data and includes1047

the first four authors of the paper plus two additional members from their1048

respective research labs. No one from outside the current research team is1049

used to collect this data. This is important to note because this is not a1050

typical replication study. It is a proof of concept replication analysis of two1051

prior studies also done by the some of the authors. In order to do the replication1052

with Deja Vu, the data needed to be collected with Deja Vu Record. We used1053

our own research team for this evaluation. However, none of these participants1054

had done the prior study nor were they familiar with the study tasks apriori.1055

This was done to simulate a real study environment.1056

On the day of the study, participants came into the research lab (alone due1057

to COVID-19 restrictions at the time). Next, participants are asked to find the1058

location of a described bug and find a solution for two bug fixing tasks. After1059

they finished proposing a solution, participants rated their confidence of their1060

solution’s correctness and their perceived difficulty of the task. Next, they1061

are asked to summarize a method and a class from the Eclipse project. After1062

they finished summarizing a code element, participants rated their confidence1063

of their summary and their perceived difficulty of the task. We do not use1064

the confidence ratings in this paper however we did this to keep the protocol1065

as similar as possible with what was done in the prior studies. Eye tracker1066

calibration is done at the start of each of the four tasks to ensure the best eye1067

34

tracking accuracy during the tasks (also done in prior studies). Participants1068

are also allowed a short break between tasks if needed to reduce fatigue over1069

the entire study.1070

The participants had access only to the Eclipse IDE which containes the1071

code files of the entire subject system of the task, JabRef for the bug fixing1072

tasks and Eclipse for the summarization tasks, and a text file containing the1073

task instructions and bug description for bug fixing tasks. The demographics1074

of the previous studies participants were very similar with the group of partic-1075

ipants we used in this replication analysis study. None of them were complete1076

novices and all had similar programming experience and experience in bug1077

fixing and code summarization tasks.1078

As stated earlier, we do not use these results for a research study goal. We1079

do however try to keep the environment and questions the same as done in1080

the previous two studies.1081

8.5 Replication Analysis Results1082

This section presents results of the replication analysis conducted based on1083

each of the two research questions.1084

8.5.1 RQ1 Results: Additional syntactic categories Deja Vu provides over1085

prior work1086

When comparing the benefits of using the latest version of iTrace (at http:1087

//www.i-trace.org/) alongside Deja Vu with previous versions of iTrace1088

(which is still available via an archive site at https://github.com/SERESLab/1089

iTrace-Archive), we look at the number of unique syntactic categories that1090

are able to be extracted from the eye tracking data from both the original1091

dataset and the data collected from this replication. We directly compare these1092

distinct categories for each task independently, and find that the current ver-1093

sion of iTrace alongside Deja Vu consistently provides finer grained syntactic1094

categories.1095

Table 6: Comparing the number of distinct syntactic categories between the
original studies’ analysis and replication analysis on the same set of tasks.

Task Task Type Original Dataset Replication Dataset
Task 1 Bug Fixing 34 48
Task 2 Bug Fixing 34 41
Task 3 Summarization 7 23
Task 4 Summarization 7 24

The overlap between the syntactic categories in these datasets provides1096

further insight into the type of information that the current version of iTrace1097

provides. See Table 6 for a list of distinct syntactic categories in each dataset.1098

35

It is clear that Deja Vu provides more syntactic category types compared1099

to the original set. We do not believe this is due to technical skill bias as the1100

populations studied were very similar both in terms of programming experience1101

and experience in bug fixes and summarization.1102

This is due to three reasons, a) iTrace has been completely rewritten to1103

make optimal use of srcML which provides extended mapping to all source1104

tokens b) a higher speed tracker is used which gives more samples per second1105

and c) no gaze data are lost when using a high speed tracker greater than1106

60Hz. Note that this replication study is done with a 120Hz tracker to show the1107

practicality of Deja Vu while the prior studies are done with 60 Hz trackers. We1108

use the number of fixations to determine the counts for the syntactic categories1109

in Table 6. We direct the reader to additional metrics (Sharafi et al., 2015a)1110

that can be used in future emipircal studies.1111

In the summarization tasks, most of the syntactic categories in the repli-1112

cation dataset do not have a clear one-to-one relationship with the categories1113

in the original dataset. For example, the argument list category in the repli-1114

cation dataset can be assigned the categories, Method Use, Method Declare,1115

or Variable Declare in the original dataset. Vice versa, the Method Use cate-1116

gory in the original dataset can be assigned to the argument list, parameter1117

list, name, or specifier categories in the current replication dataset. Another1118

important detail from the original dataset is that the Outer Class and Inner1119

Class declarations are differentiated into separate categories while they are not1120

in the replicated dataset. While at first this appears to be a limitation, these1121

categories can easily be obtained using the fine-grained categories and syn-1122

tactic hierarchy provided by srcML to derive the aforementioned higher-level1123

categories in a post processing step via iTrace Toolkit.1124

In the bug fixing tasks, most syntactic categories in the datasets are shared.1125

Syntactic categories relating to keywords and other low level units, e.g., for,1126

if, or comment, have a one to one relationship between the two datasets.1127

However, certain categories in the original dataset are at a higher level than the1128

replicated dataset. Method call, method declaration, and variable declaration1129

in the original dataset are composed of several unique category types in the1130

replicated dataset such as argument list, parameter list, or name. Overall,1131

these two category sets are much more similar to each other but there are still1132

some high level aggregation that occurs within the original dataset.1133

While fine-grain syntactic category information is useful, it can be hard to1134

comprehend and analyze findings with the larger number of categories. The1135

advantage is that aggregation of these syntactic categories is always possible1136

to derive categories at higher levels of granularity with the additional syntactic1137

context srcML provides. The same however is not true in reverse, if only high1138

level syntactic categories are used as in our original dataset, we are unable to1139

produce token categories at a finer level of granularity. For sake of an example,1140

in the original dataset a mapping can be made to a method use, but it is not1141

possible to discern if the gaze fell on a argument list or the name of the1142

method. In comparison to the fine-grain syntactic data from the replication1143

dataset, this ambiguity does not exist. Providing a clear syntactic hierarchy1144

36

down to the lowest level permits researchers to perform analyses at nearly any1145

granularity to identify the source code content developers view while solving1146

a task.1147

8.5.2 RQ2 Results: Further analysis with Deja Vu1148

One large benefit of the current version of iTrace and Deja Vu is that the1149

syntactic categories are generated post-hoc allowing syntactic categories to be1150

constructed at varying levels of specificity. The previous versions generated1151

these categories on the fly meaning that they are baked into the data at any1152

given point. Once the session is done, there is no way of going back to a more1153

specific level.1154

To address this research question, we provide some examples of further1155

analysis that can be done with the varying levels of specificity of syntactic1156

categories available. One example of analysis is to investigate how participants1157

fixate on more specific structures. We examined the method signatures and1158

how participants view the method name and the method parameters. In the1159

previous two studies, these sub-components of the method signature are not1160

recorded as they are not the focus of the study and as such this analysis cannot1161

be done with the previous data. While the previous version of iTrace is capable1162

of collecting data like this, it required the researcher to know this is the use1163

case before the study is done.1164

Table 7: List of fixation metrics on the method name and method parameters
in the method signature.

Task 1 Task 2 Task 3 Task 4
Total Fixations 15756 9148 2655 2825

Total Fixations on Method Signature 873 629 318 755
Avg Percentage of Method Signature Fixations 41.58% 47.57% 29.01% 45.18%

on Method Name
Avg Percentage of Method Signature Fixations 24.52 28.20% 14.25% 37.82%

on Method Parameters

With the current approach, since the lowest mapping is collected, we can1165

drill up or down the abstract syntax tree to get any level of abstraction we re-1166

quire using srcML. We can easily find the sub-components described earlier by1167

using a simple XPath expression (as the srcML format is XML). The method1168

name can be retrieved with:1169

– //src:function/src:name1170

– //src:constructor/src:name1171

Method parameters can be retrieved with:1172

– //src:function/src:parameter list1173

– //src:constructor/src:parameter list1174

37

The method signature is retrieved by collecting all fixations inside function1175

and constructor that are not immediately followed by a block element.1176

Using this analysis, there are two main observations from the fixation1177

counts and percentages seen in Table 7. First, more fixation attention in-1178

side the method signature is spent on the method name than the method1179

parameters in every task. This indicates that for both bug fixing and code1180

summarization, the method name is the more important (or at least is given a1181

lot more attention) to participants than the parameters of a method. Lastly,1182

we see that the task has a large influence on the distribution of fixations inside1183

the method signature. The two bug localization and fixing tasks are relatively1184

similar but are different to the two summarization tasks. In Task 3, a summa-1185

rization of a single method, the emphasis on the method name and parameters1186

is reduced along with much fewer total fixations on a method signature. How-1187

ever, in Task 4, a summarization of a single class, the method parameters1188

have a higher percentage of fixation attention in the method signature than1189

any other task. This clearly indicates that the task also plays a big role in how1190

developers spend time examining different elements. All of these observations1191

help developers answer very specific questions in eye tracking studies using1192

Deja Vu.1193

8.6 Threats to Validity1194

One threat to validity is the measurement of the unique number of syntactic1195

categories in the fixation data as a metric for usefulness. If there is added1196

redundancy in a category, reduction is always possible. The syntactic categories1197

in the previous studies can be seen as a subset of the larger category set present1198

in the replicated data which the replicated data’s categories can be reduced1199

down into. New information cannot be added easily to the smaller number of1200

distinct categories in the original datasets.1201

In studies where specificity provided by the updated version of iTrace and1202

Deja Vu is not needed, the added specificity can be reduced to a more useful1203

subset of categories for the research goals of any studies.1204

The small amount of participants used in this replication study was for1205

demonstration purposes only to show that we are able to provide much finer1206

grained mapping and not loose any gazes with high speed trackers. With more1207

participants and more fixations we would have a larger amount of distinct1208

categories (not less) meaning that the results would only become more pro-1209

nounced.1210

9 Conclusions and Future Work1211

The paper presents a novel solution to a fundamental technological problem1212

for studying software developers using high-speed, high-quality eye trackers1213

while working in a natural and familiar development environment on produc-1214

tion sized software systems. A methodology and tool - Deja Vu - is introduced1215

38

that captures all relevant user and system interactions for later replay of a1216

user session within a study. The replay allows for accurate mapping of user1217

gaze points on the entire stimulus being viewed i.e., the specific elements of1218

source code or other software artifacts. This overcomes serious real-time lim-1219

itations posed in mapping screen coordinates to line and column in a given1220

file. To add to our prior work (Zyrianov et al., 2020), we provide additional1221

timing experiments in iTrace-Atom and conduct a replication analysis of two1222

prior studies by collecting data with Deja Vu to provide evidence of the richer1223

syntactic categories that are provided with the Deja Vu record and replay ap-1224

proach. iTrace and Deja Vu directly facilitate software engineering researchers1225

in studying how developers read software during various types of tasks such1226

as general comprehension, bug fixes, and refactoring to name a few. It also1227

allows the software engineering research community to apply additional eye1228

tracking analyses (such as microsaccade analyses) from cognitive psychology1229

research (that require high-speed tracker output) on text understanding. We1230

believe this will lead to a much deeper understanding of how developers read1231

source code and solve problems which is a complex mixture of many factors.1232

As part of future work, the Deja Vu approach will be extended to support1233

eye tracking studies in the presence of editing source code. Supporting editing1234

is a very difficult engineering problem and more research and tests are needed1235

to support this type of data collection in an accurate manner. Recently, we1236

released a version of iTrace-Atom that supports editing, however this is re-1237

stricted to just Atom and is a first attempt at supporting editing (Fakhoury1238

et al., 2021) in eye tracking studies. Supporting editing in the iTrace infras-1239

tructure with high speed trackers is a bigger challenge that we plan to work1240

on in future iTrace releases.1241

Another avenue for future work includes adding support for other popular1242

IDEs. We have had many requests for the supporting Atom and so we prior-1243

itized that first. iTrace is designed in a way that supports ease of extension.1244

We foresee members of the community contributing support for other plugins1245

and call on the community to do so.1246

Acknowledgements The authors would like to thank the anonymous reviewers for their1247

insightful comments and suggestions. This work has been partly funded by the US NSF1248

under Grant Numbers CNS 17-30181, CNS 18-55753, and CCF 18-557561249

References1250

Abid NJ, Sharif B, Dragan N, Alrasheed H, Maletic JI (2019) Developer read-1251

ing behavior while summarizing java methods: size and context matters. In:1252

Atlee JM, Bultan T, Whittle J (eds) Proceedings of the 41st International1253

Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,1254

May 25-31, 2019, IEEE / ACM, pp 384–395, DOI 10.1109/ICSE.2019.00052,1255

URL https://doi.org/10.1109/ICSE.2019.000521256

39

Andersson R, Nyström M, Holmqvist K (2010) Sampling frequency and eye-1257

tracking measures: how speed affects durations, latencies, and more. Journal1258

of Eye Movement Research 3(3), DOI 10.16910/jemr.3.3.61259

Andersson R, Larsson L, Holmqvist K, Stridh M, Nyström M (2017) One1260

algorithm to rule them all? an evaluation and discussion of ten eye movement1261

event-detection algorithms. Behavior Research Methods 49:616–6371262

Bao L, Ye D, Xing Z, Xia X, Wang X (2015) Activityspace: A remembrance1263

framework to support interapplication information needs. In: Cohen MB,1264

Grunske L, Whalen M (eds) 30th IEEE/ACM International Conference on1265

Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November1266

9-13, 2015, IEEE Computer Society, pp 864–869, DOI 10.1109/ASE.2015.90,1267

URL https://doi.org/10.1109/ASE.2015.901268

Bao L, Xing Z, Xia X, Lo D, Hassan AE (2018) Inference of development1269

activities from interaction with uninstrumented applications. Empir Softw1270

Eng 23(3):1313–1351, DOI 10.1007/s10664-017-9547-8, URL https://doi.1271

org/10.1007/s10664-017-9547-81272

Bernal-Cárdenas C, Cooper N, Moran K, Chaparro O, Marcus A, Poshy-1273

vanyk D (2020) Translating video recordings of mobile app usages into1274

replayable scenarios. In: Rothermel G, Bae D (eds) ICSE ’20: 42nd Inter-1275

national Conference on Software Engineering, Seoul, South Korea, 27 June1276

- 19 July, 2020, ACM, pp 309–321, DOI 10.1145/3377811.3380328, URL1277

https://doi.org/10.1145/3377811.33803281278

Brooks R (1983) Towards a theory of the comprehension of computer1279

programs. International Journal of Man-Machine Studies 18(6):543–554,1280

DOI https://doi.org/10.1016/S0020-7373(83)80031-5, URL https://www.1281

sciencedirect.com/science/article/pii/S00207373838003151282

Brown NCC, AlTadmri A, Sentance S, Kölling M (2018) Blackbox, five years1283

on: An evaluation of a large-scale programming data collection project.1284

In: Malmi L, Korhonen A, McCartney R, Petersen A (eds) Proceed-1285

ings of the 2018 ACM Conference on International Computing Educa-1286

tion Research, ICER 2018, Espoo, Finland, August 13-15, 2018, ACM, pp1287

196–204, DOI 10.1145/3230977.3230991, URL https://doi.org/10.1145/1288

3230977.32309911289

Burg B, Bailey R, Ko AJ, Ernst MD (2013) Interactive record/replay for1290

web application debugging. In: Izadi S, Quigley AJ, Poupyrev I, Igarashi T1291

(eds) The 26th Annual ACM Symposium on User Interface Software and1292

Technology, UIST’13, St. Andrews, United Kingdom, October 8-11, 2013,1293

ACM, pp 473–484, DOI 10.1145/2501988.2502050, URL https://doi.org/1294

10.1145/2501988.25020501295

Collard ML, Decker MJ, Maletic JI (2013) srcML: An Infrastructure for the1296

Exploration, Analysis, and Manipulation of Source Code: A Tool Demon-1297

stration. In: 2013 IEEE International Conference on Software Maintenance,1298

pp 516–519, DOI 10.1109/ICSM.2013.851299

Dodd MD, der Stigchel SV, Hollingworth A (2009) Novelty is not always1300

the best policy: Inhibition of return and facilitation of return as a func-1301

tion of visual task. Psychological Science 20(3):333–339, DOI 10.1111/1302

40

j.1467-9280.2009.02294.x, URL https://doi.org/10.1111/j.1467-9280.1303

2009.02294.x, pMID: 192228121304

Duchowski A (2007) Eye Tracking Methodology: Theory and Practice. DOI1305

10.1007/978-1-84628-609-41306

Duchowski A, Krejtz K, Gehrer N, Bafna T, Baekgaard P (2020a) The1307

low/high index of pupillary activity. In: 2020 CHI Conference on Human1308

Factors in Computing Systems, pp 1–12, DOI 10.1145/3313831.33763941309

Duchowski AT, Krejtz K, Żurawska J, House DH (2020b) Using Microsac-1310

cades to Estimate Task Difficulty During Visual Search of Layered Surfaces.1311

IEEE Transactions on Visualization and Computer Graphics 26(9):2904–1312

2918, DOI 10.1109/TVCG.2019.29018811313

Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of1314

covert attention. Vision Research 43(9):1035–1045, DOI https://doi.org/1315

10.1016/S0042-6989(03)00084-1, URL https://www.sciencedirect.com/1316

science/article/pii/S00426989030008411317

Eriksen C (1995) The flankers task and response competition: A useful tool for1318

investigating a variety of cognitive problems. Visual Cognition 2:101–1181319

Fakhoury S, Ma Y, Arnaoudova V, Adesope O (2018) The effect of poor source1320

code lexicon and readability on developers’ cognitive load. In: Proceedings1321

of the 26th Conference on Program Comprehension, ACM, New York, NY,1322

USA, ICPC ’18, pp 286–296, DOI 10.1145/3196321.3196347, URL http:1323

//doi.acm.org/10.1145/3196321.31963471324

Fakhoury S, Roy D, Pines H, Cleveland T, Peterson CS, Arnaoudova V, Sharif1325

B, Maletic J (2021) gazel: Supporting source code edits in eye-tracking1326

studies. In: 2021 IEEE/ACM 43rd International Conference on Software1327

Engineering: Companion Proceedings (ICSE-Companion), pp 69–72, DOI1328

10.1109/ICSE-Companion52605.2021.000381329

Floyd B, Santander T, Weimer W (2017) Decoding the representation of1330

code in the brain: An fmri study of code review and expertise. In: 20171331

IEEE/ACM 39th International Conference on Software Engineering (ICSE),1332

pp 175–186, DOI 10.1109/ICSE.2017.241333

Goldberg JH, Stimson MJ, Lewenstein M, Scott N, Wichansky AM (2002)1334

Eye tracking in web search tasks: Design implications. In: Proceedings of1335

the 2002 Symposium on Eye Tracking Research & Applications, ACM, New1336

York, NY, USA, ETRA ’02, pp 51–58, DOI 10.1145/507072.507082, URL1337

http://doi.acm.org/10.1145/507072.5070821338

Guarnera DT, Bryant CA, Mishra A, Maletic JI, Sharif B (2018) itrace: eye1339

tracking infrastructure for development environments. In: Proceedings of the1340

2018 ACM Symposium on Eye Tracking Research & Applications, ACM, p1341

1051342

Guo J, Li S, Lou J, Yang Z, Liu T (2019) Sara: self-replay augmented1343

record and replay for android in industrial cases. In: Zhang D, Møller A1344

(eds) Proceedings of the 28th ACM SIGSOFT International Symposium1345

on Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-1346

19, 2019, ACM, pp 90–100, DOI 10.1145/3293882.3330557, URL https:1347

//doi.org/10.1145/3293882.33305571348

41

Hafed ZM, Clark JJ (2002) Microsaccades as an overt measure of covert1349

attention shifts. Vision Research 42(22):2533–2545, DOI https://doi.org/1350

10.1016/S0042-6989(02)00263-8, URL https://www.sciencedirect.com/1351

science/article/pii/S00426989020026381352

Holmqvist K, Andersson R (2017) Eye-tracking: A comprehensive guide to1353

methods, paradigms and measures. Oxford University Press1354

Just M, Carpenter P (1980) A theory of reading: from eye fixations to com-1355

prehension. Psychological review 87 4:329–541356

Kelleher C, Hnin W (2019) Predicting Cognitive Load in Future Code Puzzles,1357

Association for Computing Machinery, New York, NY, USA, p 1–12. URL1358

https://doi.org/10.1145/3290605.33004871359

Kersten M, Murphy GC (2006) Using task context to improve programmer1360

productivity. In: Young M, Devanbu PT (eds) Proceedings of the 14th1361

ACM SIGSOFT International Symposium on Foundations of Software En-1362

gineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006, ACM,1363

pp 1–11, DOI 10.1145/1181775.1181777, URL https://doi.org/10.1145/1364

1181775.11817771365

Kevic K, Walters BM, Shaffer TR, Sharif B, Fritz T, Shepherd DC (2015) Trac-1366

ing software developers eyes and interactions for change tasks. Proceedings1367

of the 10th Joint Meeting of the European Software Engineering Confer-1368

ence and the ACM SIGSOFT Symposium on the Foundations of Software1369

Engineering1370

Kevic K, Walters B, Shaffer T, Sharif B, Shepherd DC, Fritz T (2017) Eye1371

gaze and interaction contexts for change tasks - observations and potential.1372

J Syst Softw 128:252–266, DOI 10.1016/j.jss.2016.03.030, URL https://1373

doi.org/10.1016/j.jss.2016.03.0301374

Klein RM, MacInnes WJ (1999) Inhibition of return is a foraging facilitator in1375

visual search. Psychological Science 10(4):346–352, DOI 10.1111/1467-9280.1376

00166, URL https://doi.org/10.1111/1467-9280.001661377

Letovsky S (1987) Cognitive processes in program comprehension. Jour-1378

nal of Systems and Software 7(4):325–339, DOI https://doi.org/10.1016/1379

0164-1212(87)90032-X, URL https://www.sciencedirect.com/science/1380

article/pii/016412128790032X1381

Lowet E, Gomes B, Srinivasan K, Zhou H, Desimone R (2018) Enhanced neural1382

processing by covert attention only during microsaccades directed toward1383

the attended stimulus. Neuron 99:207–214.e31384

Lupiáñez J (2010) Inhibition of return. Scholarpedia 3:17–341385

Microsoft (2018) mouse event function (winuser.h). URL https:1386

//docs.microsoft.com/en-us/windows/win32/api/winuser/1387

nf-winuser-mouse_event1388

Minelli R, Mocci A, Lanza M, Kobayashi T (2014) Quantifying program com-1389

prehension with interaction data. In: 2014 14th International Conference on1390

Quality Software, pp 276–285, DOI 10.1109/QSIC.2014.111391

Minelli R, Mocci A, Lanza M (2015) I know what you did last summer -1392

an investigation of how developers spend their time. In: 2015 IEEE 23rd1393

International Conference on Program Comprehension, pp 25–35, DOI 10.1394

42

1109/ICPC.2015.121395

Minelli R, Mocci A, Lanza M (2016) Measuring navigation efficiency in the1396

ide. p to be published, DOI 10.1109/IWESEP.2016.111397

Nelson GL, Ko AJ (2018) On use of theory in computing education re-1398

search. In: Malmi L, Korhonen A, McCartney R, Petersen A (eds) Pro-1399

ceedings of the 2018 ACM Conference on International Computing Educa-1400

tion Research, ICER 2018, Espoo, Finland, August 13-15, 2018, ACM, pp1401

31–39, DOI 10.1145/3230977.3230992, URL https://doi.org/10.1145/1402

3230977.32309921403

Niño IJ, de la Ossa B, Gil JA, Sahuquillo J, Pont A (2005) CARENA: a1404

tool to capture and replay web navigation sessions. In: Al-Shaer E, Pras1405

A, Owezarski P (eds) Third IEEE/IFIP Workshop on End-to-End Monitor-1406

ing Techniques and Services, E2EMON 2005, 15th May 2005, Nice, France,1407

IEEE Computer Society, pp 127–141, DOI 10.1109/E2EMON.2005.1564474,1408

URL https://doi.org/10.1109/E2EMON.2005.15644741409

Obaidellah U, Al Haek M, Cheng PCH (2018) A survey on the usage of1410

eye-tracking in computer programming. ACM Comput Surv 51(1):5:1–5:58,1411

DOI 10.1145/3145904, URL http://doi.acm.org/10.1145/31459041412

Olsson P (2007) Real-time and offline filters for eye tracking. KTH Electrical1413

Engineering, Stockholm, Sweden1414

Park K, Sharif B (2021) Assessing perceived sentiment in pull requests1415

with emoji: Evidence from tools and developer eye movements. In: 6th1416

IEEE/ACM International Workshop on Emotion Awareness in Software En-1417

gineering, SEmotion@ICSE 2021, Madrid, Spain, May 31, 2021, IEEE, pp1418

1–6, DOI 10.1109/SEmotion52567.2021.00009, URL https://doi.org/10.1419

1109/SEmotion52567.2021.000091420

Pennington N (1987) Stimulus structures and mental representations in ex-1421

pert comprehension of computer programs. Cognitive Psychology 19(3):295–1422

341, DOI https://doi.org/10.1016/0010-0285(87)90007-7, URL https://1423

www.sciencedirect.com/science/article/pii/00100285879000771424

Peterson CS, Abid NJ, Bryant CA, Maletic JI, Sharif B (2019a) Factors influ-1425

encing dwell time during source code reading: a large-scale replication exper-1426

iment. In: Krejtz K, Sharif B (eds) Proceedings of the 11th ACM Symposium1427

on Eye Tracking Research & Applications, ETRA 2019, Denver , CO, USA,1428

June 25-28, 2019, ACM, pp 38:1–38:4, DOI 10.1145/3314111.3319833, URL1429

https://doi.org/10.1145/3314111.33198331430

Peterson CS, Saddler JA, Halavick NM, Sharif B (2019b) A gaze-based ex-1431

ploratory study on the information seeking behavior of developers on stack1432

overflow. In: Mandryk RL, Brewster SA, Hancock M, Fitzpatrick G, Cox1433

AL, Kostakos V, Perry M (eds) Extended Abstracts of the 2019 CHI Con-1434

ference on Human Factors in Computing Systems, CHI 2019, Glasgow, Scot-1435

land, UK, May 04-09, 2019, ACM, DOI 10.1145/3290607.3312801, URL1436

https://doi.org/10.1145/3290607.33128011437

Ramler R, Gattringer M, Pichler J (2020) Live replay of screen videos: Au-1438

tomatically executing real applications as shown in recordings. In: Kon-1439

togiannis K, Khomh F, Chatzigeorgiou A, Fokaefs M, Zhou M (eds) 27th1440

43

IEEE International Conference on Software Analysis, Evolution and Reengi-1441

neering, SANER 2020, London, ON, Canada, February 18-21, 2020, IEEE,1442

pp 664–665, DOI 10.1109/SANER48275.2020.9054833, URL https://doi.1443

org/10.1109/SANER48275.2020.90548331444

Rayner K (1978) Eye movements in reading and information processing. Psy-1445

chological Bulletin 85(3):618–6601446

Rayner K (1998) Eye movements in reading and information processing: 201447

years of research. Psychological bulletin 124 3:372–4221448

Rist RS (1986) Plans in programming: Definition, demonstration, and devel-1449

opment. In: Papers Presented at the First Workshop on Empirical Studies1450

of Programmers on Empirical Studies of Programmers, Ablex Publishing1451

Corp., USA, p 28–471452

Saddler JA, Peterson CS, Sama S, Nagaraj S, Baysal O, Guerrouj L, Sharif1453

B (2020) Studying developer reading behavior on stack overflow during api1454

summarization tasks. In: 2020 IEEE 27th International Conference on Soft-1455

ware Analysis, Evolution and Reengineering (SANER), IEEE, pp 195–2051456

Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-1457

tracking protocols. In: Proceedings of the 2000 Symposium on Eye Track-1458

ing Research & Applications, ACM, New York, NY, USA, ETRA ’00, pp1459

71–78, DOI 10.1145/355017.355028, URL http://doi.acm.org/10.1145/1460

355017.3550281461

Sharafi Z, Shaffer T, Sharif B, Guéhéneuc Y (2015a) Eye-tracking metrics in1462

software engineering. In: Sun J, Reddy YR, Bahulkar A, Pasala A (eds) 20151463

Asia-Pacific Software Engineering Conference, APSEC 2015, New Delhi,1464

India, December 1-4, 2015, IEEE Computer Society, pp 96–103, DOI 10.1465

1109/APSEC.2015.53, URL https://doi.org/10.1109/APSEC.2015.531466

Sharafi Z, Soh Z, Guéhéneuc YG (2015b) A systematic literature review on1467

the usage of eye-tracking in software engineering. Information and Software1468

Technology (IST)1469

Sharafi Z, Sharif B, Guéhéneuc Y, Begel A, Bednarik R, Crosby ME (2020) A1470

practical guide on conducting eye tracking studies in software engineering.1471

Empir Softw Eng 25(5):3128–3174, DOI 10.1007/s10664-020-09829-4, URL1472

https://doi.org/10.1007/s10664-020-09829-41473

Sharif B, Maletic JI (2016a) itrace: Overcoming the limitations of short code1474

examples in eye tracking experiments. In: 2016 IEEE International Confer-1475

ence on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC,1476

USA, October 2-7, 2016, IEEE Computer Society, p 647, DOI 10.1109/1477

ICSME.2016.61, URL https://doi.org/10.1109/ICSME.2016.611478

Sharif B, Maletic JI (2016b) itrace: Overcoming the limitations of short code1479

examples in eye tracking experiments. In: 2016 IEEE International Confer-1480

ence on Software Maintenance and Evolution (ICSME), pp 647–647, DOI1481

10.1109/ICSME.2016.611482

Sharif B, Meinken J, Shaffer T, Kagdi H (2016a) Eye movements in soft-1483

ware traceability link recovery. Empirical Software Engineering pp 1–1484

40, DOI 10.1007/s10664-016-9486-9, URL http://dx.doi.org/10.1007/1485

s10664-016-9486-91486

44

Sharif B, Shaffer T, Wise JL, Maletic JI (2016b) Tracking developers’ eyes in1487

the IDE. IEEE Softw 33(3):105–108, DOI 10.1109/MS.2016.84, URL https:1488

//doi.org/10.1109/MS.2016.841489

Sharif B, Peterson C, Guarnera D, Bryant C, Buchanan Z, Zyrianov V, Maletic1490

J (2019) Practical eye tracking with itrace. In: 2019 IEEE/ACM 6th Inter-1491

national Workshop on Eye Movements in Programming (EMIP), pp 41–42,1492

DOI 10.1109/EMIP.2019.000151493

Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge.1494

Software Engineering, IEEE Transactions on SE-10:595 – 609, DOI 10.1109/1495

TSE.1984.50102831496

Stigchel S, Theeuwes J (2006) Our eyes deviate away from a location where1497

a distractor is expected to appear. Experimental brain research Exper-1498

imentelle Hirnforschung Expérimentation cérébrale 169:338–49, DOI 10.1499

1007/s00221-005-0147-21500

Stigchel S, Mills M, Dodd M (2010) Shift and deviate: Saccades reveal that1501

shifts of covert attention evoked by trained spatial stimuli are obligatory.1502

Attention, perception & psychophysics 72:1244–50, DOI 10.3758/APP.72.5.1503

12441504

Storey MD (2006) Theories, tools and research methods in program compre-1505

hension: past, present and future. Softw Qual J 14(3):187–208, DOI 10.1007/1506

s11219-006-9216-4, URL https://doi.org/10.1007/s11219-006-9216-41507

Sun J, Zhang S, Huang S, Hui Z (2018) Design and application of a sikuli1508

based capture-replay tool. In: 2018 IEEE International Conference on Soft-1509

ware Quality, Reliability and Security Companion, QRS Companion 2018,1510

Lisbon, Portugal, July 16-20, 2018, IEEE, pp 42–44, DOI 10.1109/QRS-C.1511

2018.00021, URL https://doi.org/10.1109/QRS-C.2018.000211512

Sun Y, Chen D, Jiao W, Huang G (2014) An online education approach using1513

web operation record and replay techniques. In: IEEE 38th Annual Com-1514

puter Software and Applications Conference, COMPSAC 2014, Vasteras,1515

Sweden, July 21-25, 2014, IEEE Computer Society, pp 456–465, DOI1516

10.1109/COMPSAC.2014.68, URL https://doi.org/10.1109/COMPSAC.1517

2014.681518

Sun Y, Chen D, Xin C, Jiao W (2015) Automating repetitive tasks on1519

web-based ides via an editable and reusable capture-replay technique. In:1520

Ahamed SI, Chang CK, Chu WC, Crnkovic I, Hsiung P, Huang G, Yang1521

J (eds) 39th IEEE Annual Computer Software and Applications Confer-1522

ence, COMPSAC 2015, Taichung, Taiwan, July 1-5, 2015. Volume 2, IEEE1523

Computer Society, pp 666–675, DOI 10.1109/COMPSAC.2015.12, URL1524

https://doi.org/10.1109/COMPSAC.2015.121525

Van der Stigchel S, Theeuwes J (2005) The influence of attending to1526

multiple locations on eye movements. Vision Research 45(15):1921–1527

1927, DOI https://doi.org/10.1016/j.visres.2005.02.002, URL https://1528

www.sciencedirect.com/science/article/pii/S00426989050009451529

Von Mayrhauser A, Vans A (1995) Program comprehension during software1530

maintenance and evolution. Computer 28(8):44–55, DOI 10.1109/2.4020761531

45

Yan F, Qi Z, Xia M, Liu X (2018) Efficient and deterministic replay for web-1532

enabled android apps. In: Chaudron M, Crnkovic I, Chechik M, Harman M1533

(eds) Proceedings of the 40th International Conference on Software Engi-1534

neering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May1535

27 - June 03, 2018, ACM, pp 329–330, DOI 10.1145/3183440.3194994, URL1536

https://doi.org/10.1145/3183440.31949941537

Zyrianov V, Guarnera DT, Peterson CS, Sharif B, Maletic JI (2020) Auto-1538

mated recording and semantics-aware replaying of high-speed eye track-1539

ing and interaction data to support cognitive studies of software engi-1540

neering tasks. In: IEEE International Conference on Software Maintenance1541

and Evolution, ICSME 2020, Adelaide, Australia, September 28 - October1542

2, 2020, IEEE, pp 464–475, DOI 10.1109/ICSME46990.2020.00051, URL1543

https://doi.org/10.1109/ICSME46990.2020.000511544

46

