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A B S T R A C T   

The yearly cycles in vegetation greenness are among the most important drivers of ecosystem processes. Pre
dictive models for the timing of vegetation greenup and senescence are crucial for understanding how biological 
communities respond to global change. Greenup timing is closely tied to climate and also tracks yearly variability 
in temperature, and the strength of this relationship varies spatio-temporally. Local studies have been useful in 
understanding underlying mechanisms but they are insufficient in explaining larger scale variabilities. Large- 
scale studies using remotely-sensed data have the potential to harness regional dynamics, even if underlying 
mechanisms remain unknown, Yet predictive power using these approaches is low. Here, we predict vegetation 
phenology across Eastern North America via a novel class of Bayesian regression model. Our modeling frame
work provides continental-level peak greenup time predictions with high accuracy using satellite observations 
from the MODerate resolution Imaging Spectroradiometer (MODIS). In addition to taking into account temporal 
structure at individual sites, our models make use of information from the entire study extent regardless of their 
spatial proximity. 

Models were built from 2000 to 2016 and showed high prediction accuracy (R2 > 95%). Out-of-sample 
predictions for the years 2017 and 2018 showed accuracy within days of the predicted peaks, even though 
yearly greenup timing can vary by up to 30 days across the study region. Performance was remarkably high 
across deciduous and mixed forest types. Our method is generalizable to temperate forests across the globe and 
provides a basis for backcasting and forecasting forest greenup for any time periods where daily temperatures, 
whether directly measured or modeled, are available.   

1. Introduction 

The sensitivity of vegetation phenology to climate change has broad 
implications for many aspects of ecological functions and ecosystem 
services (Schröter et al., 2005; Lafferty, 2009). Green-up timing is a key 
determinant of growing season length, so it is vital to productivity in 
both natural and agricultural systems. Warming temperatures and 
longer growing seasons may impact insect pest phenologies, sometimes 
by adding additional generations, which can lead to outbreaks (IPCC, 
2007; Altermatt, 2010; Musolin, 2007; Bale et al., 2002). Local studies 
have shown that when plant phenologies change, it can impact trophic 
relationships and contribute to phenological mismatches between 

plants, herbivores, and predators or between mutualistic species such as 
plants and pollinators (Kudo and Ida, 2013). Despite its importance, 
vegetation phenology is rarely well represented by terrestrial biosphere 
models (Richardson et al., 2012) and reliable forecasting of phenology 
with climate change has remained elusive. This has hindered research 
into large-scale processes that rely on phenological information. Here, 
we develop a model for forest green-up at continental scales that is 
implemented and parameterized for a particular region. The specific 
model parameterization can then be used to either forecast phenology 
dynamics into the future based on global climate models or, using his
torical climate data, hindcast phenology estimates into past time periods 
before satellite imagery is available. In either case, this modeling 
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framework vastly increases the temporal scope at which we can carry 
out continental-scale studies that include phenological dynamics based 
on vegetation greenup timing. 

Altered vegetation phenologies have both direct and indirect 
ecological effects: directly, the vegetation surfaces provide food and 
shelter for herbivores, whereas indirectly it affects predators such as 
leaf-gleaning birds or mutualistic partners such as ants (Fleming et al., 
2021). Timing can also result in phenological mismatches that can ripple 
through trophic relationships and are thus hypothesized to impact the 
survival and breeding of many species. This concern has been especially 
high for migratory species (Both et al., 2006; Hostetler et al., 2015). For 
instance, many migratory birds (Faaborg et al., 2010) arrive at their 
breeding grounds in North America after overwintering further south. 
Such species appear to follow peak vegetation greenness along their 
migratory pathways to fulfill their food and shelter requirements (La 
Sorte et al., 2014a,b). Recent reviews also show that the warmer tem
peratures lead to earlier onset of phenological events for many species 
(see Gallinat et al., 2021). Such mismatches may be one factor that 
underlies biodiversity loss in the present day (Both et al., 2006; Johnson 
et al., 2011) and may continue in the future under various global 
warming conditions and associated uncertainties (Cleland et al., 2007; 
Sekercioglu et al., 2008; Wiens, 2016; Neupane et al. 2022). 

As disturbances become increasingly global in nature, it is critical to 
explore the consequences of these shifting dynamics at multiple scales: 
local, regional, and continental (Heffernan et al., 2014; Youngflesh 
et al., 2021). For large-scale studies, satellite-based peak greenness 
timing products are the most tractable data source for studying pheno
logical mismatch; these provide an observable proxy for resource 
availability across trophic systems. This timing correlates with the 
maximum abundance of insects and caterpillars that provide food for 
many secondary consumers in forest systems (Valtonen et al., 2013; 
Richards and Windsor, 2007). Thus, pinpointing the factors that most 
accurately predict peak greenness timing at macro-level scales is 
important to explore trophic dynamics that are linked to phenology (Fu 
et al., 2014a; Mayor et al., 2017). In Eastern North America, forest 
greening begins in April in the south and progresses northward into 
Canada over the late spring and summer (Fig. 1b), where migrant birds, 
bats, and also insects (e.g., the iconic monarch butterfly, Danaus plex
ippus and important pests such as the armyworm, Spodoptera frugiperda) 
arrive after wintering in the south. Further, there is substantial variation 
in onset timing (Fig. 2), which differs across space and time. This pre
sents a more challenging landscape when species must adapt their own 
developmental or migratory timing to match. 

In Eastern North American forests, variability in the peak onset of 
greenness can be as much as 30 days in either direction, although more 
typically on the order of one to two weeks (Fig. 3). This magnitude of 
annual variability in observed onset dates has been reported in past 
studies, and is a function of both true environmental variability and 

methodological noise in the data products (Jenerette et al., 2010; Sou
dani et al., 2008; Tan et al., 2010; Peng et al., 2017; Stanimirova et al., 
2019; Xie et al., 2015; Dunn and de Beurs, 2011). 

While all the mechanisms that control variability in peak greenness 
have not yet been fully resolved, it is well known that annual variability 
in seasonal temperatures is a primary driver (Richardson et al., 2013; 
Wang et al., 2015; Zhang et al., 2007). However, the evidence on what 
component of temperature (e.g., minima, means or maxima) is the most 
critical is mixed. Some studies have shown that vegetation greening is 
largely dictated by daily maximum, rather than minimum or mean 
temperatures, especially in the northern hemisphere (Fu et al., 2016; 
Peng et al., 2013). Yet, other studies have shown that elevated minimum 
temperatures are associated with increased plant productivity and 
earlier onset of greening (Myneni et al., 1997; Shen et al., 2016). Rather 
than focus on average temperature metrics, we use a growing degree day 
(GDD) model where the accumulation of measured degrees of temper
ature serves as a proxy of energy available for plant development. GDD 
models consist of fixing a minimum threshold temperature (the “base” 
temperature, T0) and accumulating daily temperature values exceeding 
that threshold (Morrison et al., 1989; Man and Lu, 2010). For instance, if 
the base temperature (T0) is 0◦C and the day’s average temperature is 
20◦C, that day 20 GDD would be accumulated. Focal species or systems 
are thus modeled to accumulate heat (measured in GDD), with specific 
milestones (in the case of plants, budburst, timing of leaf out and 
flowering) predicted to occur when GDD accumulation reaches a critical 
value (k) which varies depending on the species or forest type (Leinonen 
and Kramer, 2002; Kramer et al., 2000; Chuine, 2000). This approach to 
measuring temperature was developed in agricultural sciences to allow 
for appropriate crop choices and timing of planting, harvest and pest 
control (Diffenbaugh et al., 2008; McMaster and Wilhelm, 1997). More 
recently, it has been applied to natural systems to understand a wider 
range of phenological events, such as timing of the budburst, green-up, 
and flowering season for plants and patterns of abundance for insects 
and other ectotherms (Aurambout et al., 2009; Cayton et al., 2015; 
Abarca et al., 2018). 

The GDD model is widely recognized for its ability of predicting 
green-up with models performing well at local scales. GDD models have 
also been deployed at larger spatial scales in temperate forests (Botta 
et al., 2000; Yang et al., 2012; Jeong et al., 2012; Cong et al., 2013; Fu 
et al., 2014b; Piao et al., 2015; Li et al., 2021), including the eastern 
North America (Klosterman et al., 2018), however, model accuracy has 
generally been low. 

One reason for the reduced performance at large scales, is that re
searchers are not making predictions for individual species (for which 
these models are customized) but tracking the greening of entire eco
systems that vary in dominant species across space and time. GDD 
models vary in critical values such as T0 and k based on species and even 
across varietals (Chung et al., 2011). These development models may 

Fig. 1. Land use land cover classification 
from the National Land use land Cover 
dataset for 2011, coarsened to align with the 
Livneh climate product (6-km) (a). Pixels 
that are dominated by a single cover type 
(>75%) are shaded: forest (evergreen, de
ciduous or any mix of the two types), crop, 
and builtup (cities and suburbs). Unclassified 
pixels, water bodies, grasslands, and bare 
grounds are not shown. Peak onset of 
greenness (POG) timing is shown for forest 
pixels only (b) and is based on mean values 
from 2000 to 2016 MODIS satellite 
observations.   
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include additional predictor variables, such as chilling degrees, where 
low temperatures are accumulated (Harrington et al., 2010; Xie et al., 
2015), photoperiod requirements(Way and Montgomery, 2015), or 
other climate covariates such as precipitation (Laube et al., 2014; Fu 
et al., 2014b). When making predictions across plant communities 
rather than for individual species, there is not a single mechanistic 
model that will work because different species are responding to 
different environmental factors. However, because the accumulation of 
heat is a critical component for all species across deciduous, temperate 
forests (e.g., Wang et al., 2020), including those in eastern North 
America, model simplicity has led many researchers often use GDD as 
the sole model predictor (Kim and Wang, 2005; Yang et al., 2012). For 
instance, several studies have examined the accuracy of GDD model 
predictions of greenness onset. Xie et al. (2015) tested several GDD 
models with T0 values between 4 and 6 ◦C to predict the Eastern North 
America greenness onset from satellite imagery and found that a mini
mum threshold of 6◦C led to the best predictions of onset dates. Fu et al. 
(2014a) compared various phenological models, the GDD model pre
dictions explained most (67–79%) variability in Eastern North America, 
but this is still relatively low and limits the ability to make useful pro
jections into time periods with no satellite imagery. Low accuracy is due 
to substantial spatial structure in performance (Fig. 2) that are likely 

Fig. 2. Differences in the peak onset of greenness (POG) timing from the 2001 to 2016 mean MODIS satellite observations.  

Fig. 3. Histogram of MODIS satellite observed peak onset of greenness (POG) 
timing differences in annual from the 2001 to 2016 mean (annual MODIS ob
servations - climatological mean). Values outside of ±50 are truncated. 
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keyed to local plant community structure and physical geography. 
Our goal is to increase prediction accuracy for phenological 

greening, using temperate, deciduous forests in Eastern North America 
(100◦W - 67◦W; 25◦N - 52◦N) as a case study, so that phenological dy
namics in those systems can be considered at continental scales and over 
longer time periods. In addition to potential improvements in the 
biosphere models that feed into global climate models (Richardson et al., 
2012), this will allow the incorporation of phenological timing into 
broad-scale models of trophic interactions. Trophic dynamics, especially 
the potential for trophic mismatches under altered climate has received 
increasing attention in the ecological literature (Visser and Gienapp, 
2019). The main tool we introduce to better characterize dynamics of 
green-up onset is a spatially explicit regression model with latent 
random effects modeled as gaussian processes (GPs), rather than a more 
typical implementation where random effects are modeled individually 
at each location. Indeed, incorporating random effects allows us to vary 
the model based on local dynamics without understanding the under
lying biological mechanism, yet still achieve higher predictability. 
Modeling random effects using GPs allows us to vastly increase the 
spatial scope of our studies. This flexible methodology has been devel
oped in the field of geostatistics and its use is widespread today in 
diverse areas such as biostatistics and machine learning (Gelfand et al., 
2010; Banerjee et al., 2014; Rasmussen and Williams, 2006). Due to 
poor scalability of the GPs, the computational demand is substantial for 
large scale data and here we overcome that challenge by implementing a 
recently introduced methodology, “meshed” GPs (MGPs, Peruzzi et al., 
2020). This allows for scalable inference of random effects at continental 
scales, which are associated with superior predictive performance for 
massive multi-dimensional spatial and temporal data arising from sat
ellite imaging. This advancement will allow macro-scale ecologists to 
project green-up timing into the future using climate models or into the 
past wherever daily temperature data are available. For instance, daily 
temperature products currently exist back to 1915 for the USA (Livneh 
et al., 2013) extending the ability to examine the potential of past im
pacts of phenology shift on ecological communities. Furthermore, global 
climate models also project daily temperatures into the future under 
multiple emissions scenarios (Stocker, 2014). This model thus greatly 
expands the temporal scope for which we can explore the impacts of 
phenology and phenological mismatch across multiple trophic levels 
both forward and backward. 

2. Data sources 

Our basic model predicts the day of the year when maximum 
greening is occurring (we call this “peak onset of greenness”, or POG) 
from satellite observations based on GDD accumulation calculated from 
daily minimum and maximum temperature values. Environmental 
datasets are available at various grains and extents. For consistency, we 
interpolated all the data onto a base Livneh grid (6-km resolution), 
expanding its extent into Canada up to 52◦N. We selected the Livneh grid 
because this was the coarsest gridded data among all the datasets that 
we used here and also because it represents the longest-duration daily 
temperature data across the entire USA and will allow this model to be 
hindcasted as far back as 1915 (Livneh et al., 2013). Both greenness (see 
Section 2.1) and temperature (see Section 2.2) were linearly interpo
lated and harmonized to match the Livneh data set. Our specific study 
extent is in eastern North America, 100◦W - 67◦W; 25◦N - 52◦N, 
including regions in both the USA and Canada (Fig. 1a, b). We generated 
our base grid (from the Livneh grid) which resulted in 528 divisions 
along longitude and 444 divisions along latitude resulting in a coverage 
including 234,432 pixels. This region is largely dominated by the 
temperate forest biomes (Fig. 1a), with generally warm and humid 
summers and mild to cold winters. The more northern regions (up to 
52◦N) have the most pronounced greening seasonal cycle because they 
have the largest seasonal changes in temperature. The southern forest, 
south of 33◦N, towards the Gulf of Mexico is characterized by evergreen 

forest and this biome has only a marginal leaf seasonality. We include 
them in our analysis to determine if our methods are able to capture 
these more subtle seasonal changes. 

2.1. MODIS greenup data 

Green-up data are obtained from the MODIS (MODerate Resolution 
Imaging Spectroradiometer, combined Aqua/Terra) satellite. This data 
has been developed into a product that tracks phenology. The MODIS 
Land Cover Dynamics (MCD12Q2, v. 006) product is available since 
2001 and it is used to estimate the day of the year when 50% and 100% 
greening is achieved in each year at 500-m spatial resolution (Friedl 
et al., 2019). In this product, peak greenness (100%) indicates when 
greenness reaches the highest level of saturation and signifies a time of 
year when foliage reaches both its maximum leaf area but at a time when 
the leaves are still relatively young. We use the day-of-year value when 
50% of the peak greening is reached and define this as our peak onset of 
greenness (POG), the independent variable in our model. Thus, our 
predictions are being trained to determine the single day of each year in 
each pixel when this phenological milestone, POG, is reached. We were 
able to obtain data through 2018 for this project since data are made 
available with a 1–2 year lag. We used 2001–2016 data for training and 
tested our predictions on 2017 and 2018 data. This means, these two 
years are not included in the model building. 

2.2. Land cover 

Because our study region includes regions of both the USA and 
Canada, we used the data with the finest spatial resolution for each 
country and then harmonized them both to our full study extent. For the 
USA, we used land cover data from the National Land Cover Database 
(NLCD, Yang et al., 2018). This is available for the conterminous United 
States at 30-m spatial resolution for a subset of years from 2001 to 2016. 
There are altogether 19 land cover types, including the three forest 
types, deciduous, evergreen, and mixed (Fig. 1a). For Canada, we used 
the North American Land Change Monitoring System (NALCMS). This 
product is also available at 30-m spatial resolution for 2005, 2010, and 
2015 (Latifovic et al., 2017). To match the period of land cover data 
available for both USA and Canada, we selected 2011 NLCD data. 2011 
is selected because it is around the middle of our study period 
(2001–2018) and also because the changes in the land use/ forest, 
especially in the region east of 100◦W was relatively low during our 
study period  (Homer et al., 2015; Homer et al., 2016). For this reason, 
we built our model only with 2011 data, meaning that we do not account 
for changing land cover type as a variable in our model. 

We extracted the land cover types for each pixel by creating a circle 
with a 2-km radius centered at each pixel centroid. This also allowed us 
to ensure that distortion over latitudes would not exceed pixel size and 
thus avoid the problems of overlapping buffers at more northerly lati
tudes. In our target study regions, we summarized the type of each of the 
30-m land cover pixels within the 2-km radius from centroid of each 
pixel of our base (Livneh) grid. In order to avoid issues of heterogeneous 
habitat, we only use pixels where >75% of land cover is forested (Fig. 1 
shows selected pixels). Similar threshold approach has also been used in 
other studies (Xie and Wilson, 2020) and preliminary analyses (not 
shown) suggested that grids with <75% forest showed reduced predic
tive performance. Then, we classified each pixel as the dominant forest 
type. To calculate our forest pixel type in each 2-km radius buffered 
circle, we summarized the number of each forest pixel type from the 
land classification data sets and used the following rules to classify them 
as deciduous, evergreen or mixed at our coarser grain: (1) calculate the 
percentage of land cover for all cover types that fall within the enclosed 
circle (2) if the cover type is >75% “Deciduous” or “Evergreen” forest, 
then, we classify those as the dominant forest type, but if the cover type 
is  < 75% forest but not dominated by either Deciduous or Evergreen, 
then, we classify those pixels as “Mixed” forest. We also excluded North 
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America west of 100◦W because in that region, precipitation becomes 
far more important for predicting green-up and thus models based on 
simple GDD are no longer appropriate (Wang et al., 2003). 

Throughout our study region, every year, there are a total of 27,178 
pixels with >75% forest cover (Fig. 1a), with 17% predominantly De
ciduous, 6% predominantly Evergreen, and 77% a mix of the two. These 
forest classification types were also included in the model as categorical 
variables. 

2.3. GDD accumulation 

GDD values must be calculated from daily temperature values. We 
used the Daymet daily minimum and maximum temperatures, with a 
base temperature (T0) of −5◦C. To accumulate GDD, starting on January 
1st of each year (as in Fu et al., 2014a), we accumulated all temperature 
values over −5◦C. As a result, each pixel in each year is associated with a 
sequence of 365 GDD values (366 in a leap year). Rather than choosing a 
fixed estimate of the critical accumulation threshold “k” for green-up, 
we selected 19 GDD threshold values, from 800 to 2600 at intervals of 
100 GDD, where k is 800 GDD, 900 GDD…2600 GDD. Then, we extract 
the day of the year when each of these threshold values is reached. For 
example, in the year 2001 for k = 800, we accumulated the daily GDD 
value in every pixel from January 1st through the day of the year when it 
become equal to 800 GDD. We extract this day of the year as a predictor 
variable for our model. Then we do the same for the remaining 18 values 
of k (900, 1000, …, 2600). Therefore, each pixel has 19 predictors’ 
values corresponding to the day of year when each of 19 critical 
thresholds (k) is reached. This range (800 to 2600 GDD) of k values was 
selected because preliminary analyses showed that GDD accumulation 
was generally within these limits when peak onset occurred in all pixels 
throughout our study region. Further, no study has specifically esti
mated our target milestone (the Fu et al., 2014a estimate of k = 591 was 
for the beginning of onset). In addition, there are different forest types in 
our study region and using one value of k for the entire domain could 
result in low predictive value. By allowing all 19 values of k, we can 
build more accurate models and also leverage the values of “k” that are 
most relevant to the structure of the tree community by region. We are 
also allowing the model to vary regionally via random processes that are 
modeled using a Gaussian distribution. Note that this means that each 
individual pixel (each unique location in our study region), is attributed 
with a vector of values of k (GDD threshold) of length 19 for each year 
and with a random effect as well as a factor indicating forest type. Each 
of these threshold values of k becomes a predictor for our regression 
model. These 19 variables are certain to be highly correlated but we 
account for that by our modeling approach (see below). We are also 
careful not to ascribe any biological meaning to the parameter estimates, 
our only goal is to build a highly predictive model. 

2.4. Model setup 

2.4.1. Modeling spatiotemporal dynamics 
We consider a regression model to link our outcome variable MODIS 

peak onset of greenness (POG) to forest types and the GDD predictors 
listed previously (19 critical GDD thresholds). The simplest and most 
common regression model to consider first is ordinary least squares or 
linear regression (LR). If we label the outcome variable, peak onset, for 
each pixel i as yi, and the corresponding predictor vector as xi = (xi,1, … 
, xi,p) the conditional distribution of yi given the predictors is denoted by 
p(yi

⃒
⃒xi). The linear regression model assumes that the conditional 

expectation of the outcome given the predictors is E[yi
⃒
⃒β, xi] = x⊤

i β =

β1xi,1 + … + βpxi,p, and the conditional variance var[yi
⃒
⃒xi] = τ2 for all i; a 

Gaussian distributional assumption leads to p(yi
⃒
⃒xi,1,…,xi,p) = N(yi; x⊤

i β,

τ2), where N(y; m, v2) denotes the Gaussian distribution with mean m 
and variance v2 evaluated at y. 

When a sample of n units (pixels) is collected, the joint likelihood is 

the product of n densities L({yi}
n
i=1) =

∏n
i=1N(yi; x⊤

i β, τ2). Using vector 
notation, we denote y = (y1, …, yn)

⊤
, ε = (ε1, …, εn)

⊤, and X =

(x⊤
1 , …, x⊤

n )
⊤ as the n × p matrix of predictors; then, the LR model can be 

equivalently written as y = Xβ +ε where ε ∼ MVNn(0, τ2In) where In is 
the identity matrix and MVNj(m, V) is the j-dimensional multivariate 
Gaussian distribution with mean m and covariance matrix V. We take a 
Bayesian perspective to estimate the unknown parameters β and τ2; this 
entails representing our uncertainty about β and τ2 by introducing prior 
distributions π(β), and π(τ2). We then obtain the posterior distribution of 
the unknowns, given the observed data, by applying Bayes’ rule to up
date our prior uncertainty. This LR model, however, is unable to account 
for spatial or temporal dynamics. The error term [εi = yi −x⊤

i β] is 
assumed to be independent and identically distributed as N(0, τ2)

random variables. Therefore, a linear regression model corresponds to 
assuming a linear, static relationship between all predictors and the 
outcome. In particular, the assumption that random variables are in
dependent and identically distributed (i.i.d. assumption) on the mea
surement error implies that all spatial variability in the outcome must be 
explained by the regressors. However, such model will fail to capture 
spatial and temporal variability not measured by the regressors. Un
derstanding this, we develop a spatially varying random intercept model 
that takes care of such spatio-temporal dynamics. 

Our first step in developing a spatio-temporal regression model is the 
introduction of a spatial and time domain, labeled as D ⊂R2 × N. The 
spatial coordinates are denoted as s ∈ R2 (i.e. longitude and latitude, or 
easting and northing) whereas time is t ∈ N. A generic space-time 
location is thus ℓ = (s, t) ∈ D . Each observational unit i = 1, …, n will 
then be indexed by specific location, i.e. we write yi = y(ℓi) as the 
spatiotemporally-referenced outcome at location ℓi. Similarly, x(ℓi)

denotes the row-vector of predictors collected at location ℓi. 
We model space-time dynamics by introducing a random effect w(ℓi)

, stacked into the w vector, which refers to the portion of y(ℓi) not 
explained by the predictors, but also not due to measurement error. We 
may interpret it as the unobserved purely spatial and/or temporal effect. 
We then assume that w arises from a Gaussian Process (GP) with 
covariance function C(⋅, ⋅, θ) : D × D →R. A GP is a prior distribution 
over functions which leads to tractable inference within a Bayesian 
paradigm. In spatial settings (with dimension 2), a GP models spatial 
surfaces and in spatiotemporal settings, it models the continuous tem
poral dynamics of a spatial surface. The covariance function used to 
build the GP is also commonly referred to as kernel, and controls the 
smoothness of the surfaces. C(⋅, ⋅) is a positive-definite function indexed 
by unknown parameters θ. When the domain includes time, a separable 
covariance function would allow one to write C as the product of spatial- 
only and time-only covariances, i.e. C(ℓ, ℓ′

) = Cspace(s, s′)Ctime(t, t′), but 
this assumption may be restrictive in not allowing for modeling possible 
interactions. For this reason, we will consider nonseparable space-time 
covariance functions (Gneiting and Guttorp, 2010). Therefore, writing 
w(⋅) ∼ GP(0, C(⋅, ⋅)) implies that for any set of locations T = {ℓ1, …, ℓn}

it holds that w = (w(ℓ1), …, w(ℓn))
⊤

∼ MVNn(0, CT ), where CT is the 
n × n matrix whose (i, j) entry is C(ℓi, ℓj; θ). Then, we write our more 
general regression model at each location as 

y

(

ℓ
)

=
∑p

j=1
βjxj

(

ℓ
)

+ w

(

ℓ
)

+ ∊

(

ℓ
)

, (1)  

where the symbols in this case represent the variables as indicated 
within the brackets: y (peak greenness), β (GDD thresholds, forest types), 
w (varying intercept that also includes the random effect), and ∊ (mea
surement error), respectively. We can write Eq. 1 in vector form as y =

Xβ + w + ε. In this regression model, the unobserved space-time 
random effect w explains y alongside the observed predictors; the mea
surement errors ε(ℓi) are independent and identically distributed 
Gaussian random variables with variance τ2. This model is a 
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spatiotemporally-varying intercept (SVI) model, since the random ef
fects w act as the dynamic intercept term in the model. The random 
effects can also be interpreted as a way to relax the i.i.d. assumption the 
LR model makes on the measurement errors. In fact, we note that the SVI 
model can be written as y = Xβ +ε̃ where ε̃ ∼ MVNn(0, CT +τ2In) are 
spatially and temporally correlated measurement errors. The Bayesian 
posterior distribution for this model now includes w and can be written 
as 

π
(
w, β, τ2|y, X

)
∝p

(
y|w, X, β, τ2)

π
(
w|θ

)
π

(
β, τ2, θ

)
. (2)  

This general regression model is computationally tractable but becomes 
computationally cumbersome when the number of data locations n is 
large. When working with extensive satellite generated layers, the 
massive size of the covariance matrices demand massive computing 
power to model spatial dependence. In fact, in a standard GP, one needs 
to compute the inverse and the determinant of CT which is of size n × n; 
the cost of these operations grows as O(n3), leading to prohibitive 
computational demands. The growing literature on scalable GPs for 
Bayesian hierarchical modeling addresses this issue by replacing the 
original GP with a computationally tractable alternative. Here, we 
implement the meshed Gaussian process (MGPs) models introduced by 
Peruzzi et al. (2020). This particular class of GPs is suitable for Bayesian 
regression models for space-time data arising from satellite imaging. GPs 
are convenient tools to model spatial and/or temporal dynamics via 
parametric covariance functions or kernels, and lead to tractable infer
ence, allow more accurate interpolation of predictions, projections into 
different time periods, along with a more robust quantification of un
certainty (Banerjee et al., 2008). In addition to the covariance function 
C, a MGP is based on partitioning the spatiotemporal domain into 
blocks. Then, each block is mapped in a 1:1 relationship with nodes of a 
directed acyclic graph (DAG, also called a Bayesian network). The DAG is 
a conceptual model of conditional independence across nodes; when the 
nodes refer to domain partitions as in an MGP, the DAG is the ruleset 
that determines how dependence is allowed to flow in space and time 
across different partitions. The DAG structure for spatio-temporal data, 

in this case, is a 3-d mesh (for details see Peruzzi et al., 2020). Using a 
DAG to limit spatial dependence guarantees that the posterior distri
bution of all unknowns can be computed even for a much large number 
of observational locations and times. In this way, we developed our 
model. The model input and output, including the components of the 
model are summarized in the flowchart (Fig. 4). 

2.5. Estimation and prediction 

The posterior distribution in Eq. (2) is not available in closed form, 
but can be sampled using Markgov Chain Monte Carlo (MCMC) 
methods. In our applications here, we take π(β) = N(0, Vβ) where Vβ =

1000Ip and π(τ2) = IG(a, b) – an inverse Gamma distribution – where a =

2,b = 1; these are customary choices that correspond to vague priors for 
these parameters and thus encode high uncertainty a priori. MCMC 
methods construct a Markov chain whose stationary distribution is π(w,

β, τ2
⃒
⃒y, X); their output is a correlated sample of size S, denoted as 

{w(j), β(j), τ2(j)}
S
j=1, which can be used to compute approximate sum

maries of quantities of interest, such as the posterior mean and variance, 
and make predictions at unobserved or left-out spatial locations. Un
certainty about estimates and predictions can be assessed by con
structing credible intervals; these, too, are obtained from 

{w(j), β(j), τ2(j)}
S
j=1. We partition the 2,134,308 space-time locations into 

278,338 blocks via axis-parallel partitioning of the three coordinate axes 
(longitude, latitude, time) into 132, 111, and 19 GDD values, respec
tively. We choose a “cubic” DAG to link the partitions – each rectangular 
region in the spatial domain is then modeled to be conditionally inde
pendent of all others, once values at its spatial neighbors (including itself 
in time) are given, as described in Peruzzi et al. (2020). This means that 
each region is “explained” solely by its spatial and temporal immediate 
neighbors. We build the MGP model on a nonseparable spacetime cor
relation defined in Gneiting (2002): 

Fig. 4. Data inputs for our model parame
terization that predicts the day of the year 
when greenness is at peak onset (POG) for 
North America east of the 100th meridian 
and up to 52◦N latitude. Parameterization 
must be done separately for any focal study 
region because accounting for autocorrelated 
random effects is computationally intensive 
but greatly increases predictive power. 
Models were validated with out-of-sample 
predictions in three ways. Projections can 
then be made into years with no satellite 
data, but always adding new years as they 
become available will increase predictive 
power and decrease the problems of 
nonstationarity.   

N. Neupane et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102747

7

C((s, t), (s′, t′); θ) =
1

(α|t − t′| + 1)
exp

{

−
ϕ‖s − s′‖

(α|t − t′| + 1)
γ/2

}

, (3)  

where θ = {σ2, α, γ, ϕ} are the unknown covariance parameters. Then, 
w(⋅) ∼ MGP(0,σ2C(⋅, ⋅)), where σ2 > 0 is the spatial variance, α > 0 and 
ϕ > 0 are the time and space decay parameters (their inverses are the 
temporal and spatial ranges, respectively), and γ ∈ [0, 1] is a parameter 
controlling the degree of nonseparability between space and time. Our 
MCMC algorithm estimates σ2 via parameter expansion (Peruzzi et al., 
2021); rather than sampling σ2 directly, we write the model as y(ℓ) =

x⊤(ℓ)β + λw(ℓ) + ε(ℓ), where w(⋅) ∼ MGP(0, σ̃2C(⋅, ⋅)). Here, λ and σ̃2 

are not separately identifiable as they are introduced with the sole 
purpose of improving MCMC performance. Ultimately, we find σ2 =

λ2σ̃2. We note that our 19 GDD predictors are highly correlated; corre
lation across predictors in linear models is concerning when not enough 
data are collected to reliably estimate their effects on the output. In our 
case, no such problem arises given the huge dimension of our dataset: in 
Fig. 5(b), all uncertainty bands for GDD predictors are narrow, indi
cating that the sample size is large enough (about 1.7 million) to esti
mate the individual GDD effects with relatively high precision. 

2.6. Performance criteria 

We evaluate and compare our model on a test set of 50,000 locations 
spanning all years, in addition to the full year of 2017 and 2018. Pre
dictive performance for model m is measured via the root mean square 

error (RMSE), defined as RMSE(m) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑nout

j=1
(
y(ℓi) − ŷm(ℓi)

)2
/nout

√

where y(ℓi) is the observed peak onset and ŷm(ℓi) is the prediction at 
location ℓi from model m; the mean absolute percentage error (MAPE), 

defined as, MAPE
(

m) = 100
∑nout

j=1

⃒
⃒
⃒
⃒
y(ℓi)− ŷm(ℓi)

y(ℓi)

⃒
⃒
⃒
⃒

/

nout, and the frequentist 

coverage of 95% credible intervals of predictions, which is defined as the 
percentage of data falling into 95% uncertainty intervals identified by 
the model. Accurate coverage (i.e. near the 95% nominal target) is 
important as it relates to the accuracy in quantifying posterior uncer
tainty of predictions. RMSE and MAPE are widely used criteria of model 
selection in remote sensing (Richter et al., 2012; Liao et al., 2016; Hamm 
et al., 2015; Kouadio et al., 2014; Wu et al., 2019). 

In this way, we develop a spatio-temporal model [LR (fixed only) and 
SVI (with random effect), as described in Section 2.3 to predict the 
greenness peak onset times in the Eastern USA. Fixed predictor variables 
(19 ”k” thresholds, as described in Section 2.3 + forest types) are fed 
into the LR and SVI models. LR is included for comparison with the SVI 
model. In the first step, we develop models based on all years’ POG from 
MODIS except the year being predicted. For example, for 2010, we 
developed a model based on MODIS POG from all years from 2001 to 
2016 except 2010. Then, using the 2010 GDD, we predict the peak onset 
for 2010, then we compare this with the MODIS POG for 2010. In this 
way, every year, we compare the model predicted POG with the MODIS 
observed POG values. We repeat this for all years. In this way we vali
dated our model using 16 years from our model building step. In the 
second step, we use the model to predict the near-term future POG, 
specifically, 2017 and 2018 in this study. These two years are left as test 
sets. As earlier, we develop models based on all years from 2001 to 2016 

MODIS POG, then we use this model to predict POG for 2017 and 2018 
and finally compare those with the MODIS POG. 

3. Results 

Not surprisingly, the random effects model with spatially varying 
intercept (SVI) models have substantially lower root mean square 
(RMSE) and mean absolute percentage (MAPE) error values compared 
with the linear regression (LR) models (Table 1). RMSE measures the 
absolute deviation of predictions from the observations, whereas MAPE 
expresses the percentage of deviation of the predictions from the ob
servations; in both cases, smaller values mean a better model fit. All 
subsequent results are thus based on SVI models only. SVI models that 
include the effect of dominant forest cover types (Mixed, Deciduous, and 
Evergreen) outperformed models based only on the 19 k values for GDD, 
although by a much smaller margin (Table 1). Overall, the best models 
included the Gaussian process-based (spatiotemporal) random effects, 
GDD predictors, and forest type and all subsequent results are generated 
from this model construction. 

Spatial distance lags were much more important in the model 
compared to time lags (Fig. 5a). The spatial effect reduces exponentially 
as the distance increases, meaning that the farther locations (greater 
than 1 decimal degree) have a very small effect upon the model pre
diction at any given location. The effect of time lags is conversely very 
small. This means all previous years have comparable effect upon pre
diction in any given year. A combination of several k values had the 
largest impact on model prediction. In order to incorporate k in our 
model, we used as predictors the 19 constant GDD thresholds (see Sec
tion 2.3). Our results suggest that different thresholds have different 
effect sizes on model fit, depending on k (Fig. 5b) but that these are 
additive. For instance, let’s focus on a k-value of 1300. The beta coef
ficient for this accumulation is 0.15. This implies that there is a 0.15-day 
delay in peak onset for every 1 additional day that is required to reach a 
threshold of 1300 GDDs. That impact is also influenced by other k 
thresholds with the magnitude depending on the value of the beta co
efficient and whether the credible interval crosses zero. Although our 
predictors were highly correlated, we did not detect any performance 
issues due to multicollinearity. In particular, the standard errors of 
regression coefficients were relatively small (e.g., see the spread in each 
box plot in Fig. 5b) and we did not detect any switching of signs of co
efficient estimates. We believe, in our case, multicollinearity was not an 
issue in model performance due to the massive sample size (N  =

1747312). 
Our model predicts the MODIS observed POG with very high accu

racy within the model-building dataset (2001–2016). Predicted peak 
onset is significantly correlated with the observed peak onset for all 
years, with in-sample correlations above 0.93 for all years (Fig. 6). Each 
data point in this figure represents a single location and there are alto
gether 27,178 forest locations in our region of interest. There is little 
spatial structure to the distribution of the errors (Fig. 7) suggesting that 
our GP random model appropriately accounted for the substantial 
spatial structure in errors evident in the SLR model (results not shown). 
Our model was able to project peak onset of greenness well into two 
subsequent years outside our model-building data set. Relatively, the 
model performed better for 2017 than 2018 (Fig. 8). Differences be
tween the model predictions and the satellite observations were mostly 

Table 1 
Model performance summary.    

Validation set 2017 prediction 2018 prediction 

Model Forest MAPE RMSE 95% 
Covg 

Width 
(days) 

MAPE RMSE 95% 
Covg 

Width 
(days) 

MAPE RMSE 95% 
Covg 

Width 
(days) 

SVI no 4.841 8.2384 95.70% 33.8 6.4687 10.1459 95.20% 40.89 5.9737 9.156 97.98% 46.92 
SVI yes 4.8174 8.2227 95.32% 32.7 6.5488 10.1969 95.71% 43.43 6.1102 9.2742 98.42% 51.68 
SLR yes 10.5255 15.4441 93.35% 60.7 10.7402 17.0653 91.10% 60.7 8.1921 12.9737 95.78% 60.68  
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within 3 days in 2017 and 7 days in 2018. In both cases, projections were 
much more successful for forest stands dominated by deciduous trees 
(correlations 0.92 and 0.81 for 2017 and 2018, respectively). R2 value 
remained high for mixed stands, but fell significantly for stands domi
nated by evergreen trees (Fig. 9). Most pixels in the study region contain 
mixed forest, with pure evergreen stands the least common (Fig. 10). 
Note that prediction error skewed early in both years and for all forest 
types, with a bigger shift early in 2018. 

4. Discussion 

We have presented a model that produces highly accurate pre
dictions for green-up timing within mixed and deciduous-dominant 
temperate forests in Eastern North America (Figs. 5, 6; Table 1). We 
leveraged an advancement in a computation process, MGPs, (Peruzzi 
et al., 2020) that allowed us to estimate posterior distributions for both 
fixed effects (GDD accumulation, k, and forest type) and Gaussian pro
cesses (GP) that capture both spatially and temporally autocorrelated 
random effects over massive spatial and temporal extents. Previously, 
computational limitations would have made those GPs difficult to esti
mate; but the use of MGPs (Peruzzi et al., 2020) allowed us to overcome 
that obstacle. In our model, spatial autocorrelation was much more 
important than temporal autocorrelation (Fig. 5); this means we can 
project our model into the past (when daily climate data are available. 
For example, Livneh that provides data since the early 20th century on 

daily time scale), we can also project forward into the future when 
global climate models provide daily forecasts at an appropriate spatial 
scale. At some point, issues of nonstationarity may erode predictive 
power the further we move away from the model-building time-frame 
(Rollinson et al., 2021); however, continually updating the model as 
new satellite data become available will greatly reduce this problem 
(Dietze et al., 2018). 

Observations of spring phenology have been made for centuries 
(Chen, 2003). Long-term changes (e.g., decadal) in green-up timing have 
been investigated since the 1950s (Schwartz and Reiter, 2000) using the 
field observations and since 1980s, with satellite data (Jeong et al., 
2011). In terms of predicting green-up timing, generally, there has been 
good correspondence between the field observations, on a local scale, 
and remotely sensed data (Kross et al., 2011). However, predicting on 
regional and continental scales has been challenging. Furthermore, 
spring phenology appears to be more sensitive to region (Reed, 2006; 
Jeong et al., 2011) and together, these offer more difficulties in building 
accurate predictive model for larger scales. 

Green-up during our study period has generally advanced, for 
example, it began much earlier in some of the most recent years (as in 
2012, 2015, Fig. 2) than in the earlier years (as in 2002–2004). This is 
consistent with previous study, which shows that timing has advanced 
by roughly 0.5 days per year over two decades (Keenan et al., 2014) and 
with reviews of earlier spring phenology associated with warming in 
temperate forests (Linderholm, 2006; Richardson et al., 2013). For 
studies at the broadest spatial scales in North America, climate, land 
cover, and some biodiversity data (especially for birds, but also for high- 
profile insects such as butterflies) are available since the early 1900s 
(Wells and Tonkyn, 2014; Dietze et al., 2018). The missing piece for any 
study of direct and indirect impacts of phenological shifts is tracking 
vegetation green-up in these natural systems. While Schwartz et al. 
(2013) provide spring onset indices across North America, these are 
calibrated to lilac and honeysuckle, herbaceous plants grown as orna
mentals that include many species classified as invasive in North 
America (Beans et al., 2012; Swearingen and Bargeron, 2016). Lilac and 
honeysuckle observations for these onset products originate from a large 
network of on-the-ground volunteer observers (through the USA- 
National Phenology Network, www.usanpn.org) since they are very 
easy to observe. However, the relevance for general ecosystem function 
is currently unknown. 

We included the spatiotemporal component in a simple linear 
regression model (SLR) and also developed a spatially varying intercept 
(SVI) model. This, implemented using a meshed Gaussian process under 
a Bayesian framework, helped increase the model’s performance sub
stantially and therefore supported this modeling approach despite its 
higher level of complexity and computational demands. Specifically, 
goodness of fit tests showed that deviations from expectations were 
more than halved using the SVI vs. the simpler SLR models. In contrast, 
including forest types had only marginal performance improvement 
(Table 1), but that also may be due to the fact that performance was 
generally high for the two most common forest types, Mixed and De
ciduous (Fig. 9). In agreement with this, past studies also showed that 
the model predictions correlated most with the satellite observations in 
forest covers (Deciduous and Mixed) of the Eastern North America 
(Schwartz and Reed, 1999). Overall, within-sample models showed high 
fits for our study region (R2 > 95%, Fig. 6). Finally, we used this SVI 
model to predict POG for two out-of-sample years (2017 and 2018) and 
the predicted values were within 3 days for most pixels in 2017 and 
within 7 days for most pixels in 2018 (Fig. 8). Differences were relatively 
larger (up to 10 days) in the boreal forest of the Northeast and dominant 
Oak forests of Missouri and Arkansas in 2018. Further research is 
necessary to improve performance in these region. 

For predictors, we used a series of 19 GDD thresholds, k (described in 
Section 2). k is a parameter that measures the number of GDD that must 
be accumulated for developmental milestones like budburst, maximum 
greening, flowering (for plants) or molting and eclosion (for example, in 

Fig. 5. (a) Spatio-Temporal effect on model prediction (estimated covariance at 
spacetime lag). (b) Effect of GDD accumulation threshold on the peak onset of 
greenness (POG). Line in each box indicates the credible interval. 
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holometabolous insects). GDD models have been successful because for 
ectothermic organisms, development, once triggered, depends most 
strongly upon ambient air temperatures (Van der Have and De Jong, 
1996). In well-studied species (mostly crops and pests), detailed physi
ological laboratory experiments are conducted to determine the base 
temperature and k for any individual species (Abarca et al., 2018). In the 
case of this study, we were tracking development of an ecotype (forest) 
rather than an individual species, so there is less guidance available on 
the best critical values to set. So we settled on −5 ◦C after initial 
exploratory analyses using a range of values typical for these types of 
systems (see method section). There is much less guidance on appro
priate values for k. Our solution was to provide 19 GDD thresholds 
(parameterized as the POG date when each of those thresholds was 
reached) and our results suggest that this combination of parameters 
provided a highly accurate model, although variable coefficients for 
each of the 19 variables means that we can make little inference about 
what is driving those values of k. However, previous studies of pests and 
crops have suggested that "k" may be more locally determined than T0, 
which tends to be highly conserved in most species (Abarca et al., 2018). 
In our case, we avoided that with the use of multiple thresholds and a 
spatial model of autoregressive correlations where a spatially varying 
random intercept allows the model to be tailored to fixed locations 
throughout Eastern North America. This means, the spatial component 
vary in a way such that the model provides the best predictions for that 

location. Because of this, understanding the physical mechanism be
comes difficult in our case. Although the specific parameterizations of 
this model could not be transferred to any other region, which is 
fundamentally true for any model with a strong random-effect compo
nent, the same approach could be implemented for forest green-up in 
any forest in other temperate regions of the world. 

Our model is solely based on the GDD accumulation and cover types. 
Xie and Wilson (2020) estimated the green-up timing of the deciduous 
Eastern USA forest using the MODIS satellite observations from 2001 to 
2015. They used a piecewise linear combination of line segments joining 
four major points that mark the change in the value of greenness index, 
also called the change point estimation method, to model the green-up 
timing. They reported a much larger variation in the onset times, 
especially in the eastern USA (e.g., POG ranged from 51 to 154, which is 
20 February–3 June). Also, comparable to our range of predictive ac
curacy, Jolly et al. (2005) estimated the green-up timing of the Harvard 
Forest from 1990 to 1997. Their model estimations deviated from the 
observations by up to 8 days, however, this was only for one location 
and there are many differences in our method from their method. Their 
model was based not only on temperatures but also on other variables 
such as photoperiod and vapor pressure. Likewise, Zhang et al. (2006) 
developed a piece-wise logistic model based on the MODIS observations 
and used that to calculate the green-up timing. The calculated times 
differed by less than 10 days from the in-situ measured greenness index 

Fig. 6. Scatterplot of the peak onset of greenness (POG) predicted from the model and observations from the MODIS satellite for 2001 through 2016.  

N. Neupane et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102747

10

in the Harvard Forest. 
Compared with the deciduous and mixed forests, SVI model was 

relatively less efficient in predicting onset peak in the evergreen forest 
(Fig. 9). This may likely be due to the difficulty in detecting seasonal 
variation in foliage pigmentation for plants that stay green throughout 
the year (Filippa et al., 2018; Bowling et al., 2018; Johnson et al., 2011; 
Kobayashi et al., 2018). For instance Richardson et al. (2018) compared 
the POG observed from the MODIS satellite to the ground based Phe
noCam data. In their study, the two data sets were highly correlated in 
deciduous (Pearson’s r = 0.83) but the correlations were very small in 
the evergreen (r = 0.37) forest. Model performance was generally high 
for deciduous forests, but for 2018, performance dropped from most 
estimates being within +/- 3 days to +/- 7 days or more (Fig. 8b). We did 
not attempt to determine what factors may have contributed to this drop 
in performance, but clearly there was a shift in the relationship between 
temperature and greenup. While future mechanistic studies may be able 

to pinpoint the physiological basis for this variability, it is clearly 
important to include as many years as possible when parameterizing the 
model to project into years where satellite data are not available. Thus, 
there would be high value for always updating the model parameters 
whenever more years become available. 

Modeling the year-to-year peak onset variability and its accurate 
prediction is useful for understanding the phenological relationship 
across multiple trophic levels (Meineke and Davies, 2019). Trophic 
mismatches may cascade; for instance, shifts in phenological timing of 
plant development and associated insects may cause insectivorous birds 
to either be more or less synchronous with their food source (Brooks 
et al., 2017). Either situation could cascade throughout the larger 
ecosystem in ways that are very difficult to measure directly. Although 
studies of phenological mismatch have become more common, most of 
those studies are restricted to one or a small set of study sites and are 
often in simplified ecosystems, such as arctic systems (Visser and Both, 

Fig. 7. Peak onset of greenness (POG) timing from SVI Model prediction minus MODIS observation.  
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2005). Large-scale studies of phenological mismatch are rare (but see 
Mayor et al., 2017; Franks et al., 2018; Youngflesh et al., 2021) because 
harmonizing data on multiple trophic levels is difficult at the largest 
spatial scales (Heffernan et al., 2014). The model presented here over
comes that barrier for remotely-sensed plant dynamics at continental 
scales. 

The temperate forest ecoregion in eastern North America is the 

breeding ground of many resident and migratory birds, bats, and insects. 
Every year, migrants arrive there after overwintering in the south, while 
residents initiate their breeding. The peak onset times of forest green
ness correlates with the arrival and breeding times of migrants (La Sorte 
et al., 2014a,b) and egg-laying times of resident bird species (Phillimore 
et al., 2016; Franks et al., 2018). However, the synchrony of those shifts 
differs among species and regions; green-up timing is shifting faster at 

Fig. 8. (a) 2017 peak onset of greenness (POG) timing from SVI Model prediction minus MODIS observation. (b) Is same as (a) but for 2018.  

Fig. 9. Peak onset of greenness (POG) timing scatter plots (MODIS, Model) for (a) Deciduous, (b) Mixed, and (c) Evergreen forest locations in 2017. (d, e, f) are same 
as in (a, b, c) but for 2018. 

N. Neupane et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102747

12

more northern latitudes where synchronization with arriving migratory 
birds is historically at its highest and mismatches there may have the 
biggest cross-trophic impacts (Youngflesh et al., 2021). To more rigor
ously examine these and similar dynamics, expanding the time frame 
both in the past (hindcasting) and future (forecasting) of these studies is 
critical. Since daily surface minimum and maximum temperature data is 
available since the early 20th century (e.g., Livneh), our model will be 
able to hindcast the green-up times in the past. This will enable us to 
explore the relationship between insects, birds and vegetation phenol
ogies in the past. Similarly, using the climate models, we can forecast 
green-up times into the future. Understanding the patterns and mecha
nisms of the variability and predicting its onset times is important for 
biodiversity management in the present and preparing the conservation 
plans under various emerging threats of global warming. 

For most years, the frequency of differences between the MODIS 
observations and the model are centered around zero, and the distri
bution tapers off towards both sides (Fig. 10). In a few locations, the 
differences were beyond ±25 days. It is important to note here that the 
variability in the MODIS observations were very high (as displayed in 
Fig. 3). This could be associated with the algorithm used in calculating 
the POG from the MODIS satellite, and here we do not investigate this 
further (but see Soudani et al., 2008; Turner et al., 2006). Regardless, 
our model predicted onset peaks that occurred largely within ±3 days 
from the MODIS observed peak. Such high prediction accuracy of green- 
up timing peaks helps prepare management plans not only for birds and 
insects but also controlling emergence of pests (Steinbauer, 2011; 
Deveson, 2013). 

5. Conclusions 

Vegetation peak onset of greenness (POG) varies in Eastern North 
America from year to year, as depicted in the MODIS satellite observa
tions. In general, greening begins much earlier in the forests to the south 
(by early spring) than in the northeast (by late summer). Also, the onset 
peak varies interannually by up to ±50 days. Using the daily surface 
maximum and minimum temperatures from the Daymet observations, 
we developed a meshed Gaussian process, spatially varying intercept 

(SVI) model under the Bayesian framework. Our model was based on the 
MODIS and Daymet observations from 2001 to 2016. We validated the 
model performance in this way: first we developed our model based on 
all years except a year, and in the second step, we predicted the year that 
was excluded in the model building year. Our model predictions 
correlated significantly with the observations (R2 = 0.97). The model 
was also able to capture the spatial and temporal variability in the onset 
timings and the differences between the model predictions and the ob
servations were mostly ±3 days. Then, we used this model to predict 
two years (2017 and 2018) that were not included in our model build
ing. Differences between the SVI model predictions and the observations 
were still low but with greater error (± 7) days. There were some var
iations in the model prediction accuracies by forest types. In the de
ciduous and mixed forest types, the correlations between the model and 
observations were much larger (R2 = 0.92), while correlations were 
smaller in the evergreen forest of the south (R2 = 0.41, as in 2018). 
These results indicate that the greenness timing, in the forest with de
ciduous trees, can be predicted with high degree of accuracy using the 
surface temperature observations in our model. This will be useful for 
projecting greenness timing backward into the past when daily records 
of surface temperature observations are available (for example, Livneh, 
since early 20th century) as well as forecasting into the future generally 
to 2100 using climate models. 

The power of this model comes from leveraging the strong influence 
of local dynamics via a random model based on Gaussian processes. This 
framework could be applied to any region that is temperate with a strong 
component of deciduous trees - but each region must be parameterized 
separately, and updating models each year will result in improved ac
curacy for forecasts and backcasts. 
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Fig. 10. Peak onset of greenness (POG) timing differences between MODIS and SVI model for Deciduous (a), Evergreen (b), and Mixed (c) forest locations in 2017. 
(d, e, f) are same as in (a, b, c) but for 2018. 
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