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A hidden Markov model (HMM) solved recursively by the Viterbi algorithm can be configured to search
for persistent, quasimonochromatic gravitational radiation from an isolated or accreting neutron star, whose
rotational frequency is unknown and wanders stochastically. Here an existing HMM analysis pipeline is
generalized to track rotational phase and frequency simultaneously, by modeling the intrastep rotational
evolution according to a phase-wrapped Ornstein-Uhlenbeck process, and by calculating the emission
probability using a phase-sensitive version of the Bayesian matched filter known as the B-statistic, which is
more sensitive than its predecessors. The generalized algorithm tracks signals from isolated and binary
sources with characteristic wave strain h0 ≥ 1.3 × 10−26 in Gaussian noise with amplitude spectral density
4 × 10−24 Hz−1=2, for a simulated observation composed of NT ¼ 37 data segments, each Tdrift ¼ 10 days
long, the typical duration of a search for the low-mass x-ray binary (LMXB) Sco X − 1 with the Laser
Interferometer Gravitational Wave Observatory (LIGO). It is equally sensitive to isolated and binary
sources and ≈1.5 times more sensitive than the previous pipeline, which achieves h0 ≥ 2.0 × 10−26 for a
comparable search. Receiver operating characteristic curves (to demonstrate a recipe for setting detection
thresholds) and errors in the recovered parameters are presented for a range of practical h0 and NT values.
The generalized algorithm successfully detects every available synthetic signal in Stage I of the Sco X − 1

Mock Data Challenge convened by the LIGO Scientific Collaboration, recovering the frequency and
orbital semimajor axis with accuracies of better than 9.5 × 10−7 Hz (one part in ∼108) and 1.6 × 10−3 lt s
(one part in ∼103) respectively. The Viterbi solver runs in≈2 × 103 CPU-hr for an isolated source and ∼105

CPU-hr for a LMXB source in a typical, broadband (0.5-kHz) search, i.e., ≲10 times slower than the
previous pipeline.

DOI: 10.1103/PhysRevD.104.042003

I. INTRODUCTION

Rapidly rotating neutron stars with time-varying mass
and current quadrupole moments are promising targets
of searches for continuous-wave gravitational radiation
by long-baseline interferometers such as the Laser
Interferometer Gravitational Wave Observatory (LIGO)
and Virgo [1]. Several classes of isolated and accreting
neutron stars are predicted to be approaching detection, if

they emit at or near indirect amplitude limits derived from
energy or angular momentum conservation arguments
based on electromagnetic observations [2–4].
Among the challenges faced by such experiments is the

fact that the signal frequency is often unknown or highly
uncertain and wanders stochastically due to irregularities in
the star’s rotation, known as spin wandering or timing noise
[5–7]. For some isolated targets, such as nonpulsating
neutron stars in supernova remnants, the spin frequency f�
of the crust and corotating magnetosphere cannot be
observed, e.g., central compact objects like Cassiopeia A*amelatos@unimelb.edu.au
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or the putative neutron star in SNR 1987A [8–10]. In radio
pulsars like the Crab, on the other hand, f�ðtÞ is measured
accurately as a function of time t by timing the radio
pulsations, but there is no guarantee that the crust corotates
exactly with the gravitational-wave-emitting quadrupole
[11]. For accreting targets, such as low-mass x-ray binaries
(LMXBs),1 the accretion can drive electromagnetic
signatures—thermal x-ray pulsations or type I x-ray burst
oscillations—which allow f�ðtÞ to be measured. However,
f�ðtÞ is unknown in some of the brightest sources, like
Scorpius X − 1 (Sco X − 1), which exhibit neither signa-
ture. [12] Indirect upper limits on the characteristic gravi-
tational wave strain h0, [13] based on energy conservation
in isolated sources (i.e., the star spins down entirely due
to gravitational radiation) and angular momentum conser-
vation in binary sources (i.e., accretion torque balance),
imply h0 ∝ τ−1=2 and h0 ∝ F1=2

X respectively, where τ ¼
f�ð2j _f�jÞ−1 denotes the spin-down age, and FX denotes the
X-ray flux [1]. Hence the most promising targets—young,
isolated objects and x-ray-luminous accretors—can be
those for which the least is known about f�ðtÞ.
One powerful strategy for overcoming the challenge of

spin wandering—especially in LMXB searches—is to track
f�ðtÞ with a hidden Markov model (HMM). [14] Given a
time-ordered sequence of observations, a HMM relates
each observation to the system’s underlying, hidden state
[e.g., f�ðtÞ] by an emission probability (e.g., a detection
statistic of some type). The hidden state evolves through a
concurrent sequence, whose stepwise transitions are mod-
eled probabilistically as well (e.g., as a random walk).
In the gravitational wave context, a HMM solved by

the fast, recursive, Viterbi algorithm [15] has been imple-
mented as a general-purpose search pipeline and applied to
look for the LMXB Sco X − 1 in Advanced LIGO data
[16,17]. The pipeline exists in two versions.

(i) Version I calculates the emission probability by
summing the maximum likelihood F -statistic [13]
at orbital sidebands incoherently without reference
to the orbital phase [18,19]. Given Gaussian noise
with one-sided amplitude spectral density
Shð2f�Þ1=2 ¼ 4 × 10−24 Hz−1=2, representative of
Advanced LIGO’s design sensitivity, version I
detects isolated sources with h0 ≥ 2 × 10−26 and
binary sources with h0 ≥ 8 × 10−26 and finds 41 out
of 50 injected signals in Stage I of the Sco X − 1
Mock Data Challenge (MDC) [18,20]. It was ap-
plied to data from Advanced LIGO’s first observing
run (O1) and returned the upper limit h0 ≤ h95%0 ¼
5 × 10−25 (95% confidence) at 106 Hz for Sco

X − 1, noting that O1 did not reach full design
sensitivity [16].

(ii) Version II tracks orbital phase as well as f�ðtÞ and
sums the sideband power coherently using a Jacobi-
Anger decomposition of the F -statistic [19]. Given
Shð2f�Þ ¼ 4 × 10−24 Hz−1=2, it detects isolated and
binary sources with h0 ≥ 2 × 10−26 and finds all 50
injections in Stage I of the Sco X − 1 MDC. It is
being applied to data from Advanced LIGO’s second
[17] and third observing runs.

In this paper, we extend version II of the HMM to track
the rotational phase (i.e., the phase of the carrier wave)
as well as the orbital phase. The result is an algorithm
(version III) which performs nearly as well as a fully
coherent matched filter like the F -statistic, when the phase
evolution is known electromagnetically. It maintains the
same level of performance, when the phase evolution is
unknown, as long as the HMM time-step is chosen to be
shorter than the spin wandering timescale [7]. Ensuring that
the latter condition is satisfied involves trial and error but is
not taxing computationally for most realistic searches.
Version III of the HMM is built on a phase-dependent
version of the Bayesian matched filter called the B-statistic
used in loosely coherent and related continuous-wave
searches [21–26]. It outperforms versions I and II because
(i) the B-statistic is more sensitive than the F -statistic, and
(ii) the in-built requirement of phase continuity reduces
false alarms, as discussed in Sec. II. It leverages the
existing, easy-to-use, thoroughly tested software infra-
structure housed in the LIGO Scientific Collaboration
Algorithm Library (LAL). Several of its subroutines and
intermediate data products are shared by the F -statistic and
versions I and II of the HMM.2

The paper is structured as follows. In Secs. II–IV we
describe how to modify the emission and transition
probabilities of the HMM to track the rotational phase.
The performance of the extended HMM is then tested by
performing Monte-Carlo simulations with Gaussian noise
for isolated and binary sources in Secs. V and VI respec-
tively. Specifically, the sensitivity is calculated as a function
of the user-selected false alarm and false dismissal prob-
abilities and compared for versions I, II, and III of the
HMM. The accuracy of frequency and phase recovery as
part of a successful detection is also quantified. Finally we
run the extended HMM on data from Stage I of the Sco
X − 1 MDC in Sec. VII and confirm that it detects every
injection easily. Implications for future gravitational wave
searches and their astrophysical impact are discussed
briefly in Sec. VIII. Among them is the tantalizing
possibility that a gravitational wave detection of spin
wandering (possibly in conjunction with radio/x-ray timing

1In this paper, we follow the usual shorthand of using the term
LMXB interchangeably to refer to either the binary system or the
neutron star therein.

2AViterbi-based algorithm has also been developed to perform
nonparametric, all-sky searches [27]. Generalizing it to track
phase as well as frequency lies outside the scope of this paper.
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data) may clarify its physical origin, which remains a
subject of debate in both isolated [5,28–32] and accreting
[6,33–37] systems.

II. HMM TRACKING

HMM frequency tracking is exploited widely in engi-
neering applications ranging from radar and sonar analysis
[38] to mobile telephony [39,40] and has been extended to
handle amplitude and phase information and multiple
targets [41–43]. It delivers accurate estimation, when the
signal-to-noise ratio (SNR) is low, but the sample size is
large [14], as in continuous-wave gravitational wave data
analysis. In this section we describe how to generalize a
HMM that tracks f�ðtÞ to one that tracks the rotational
phase Φ�ðtÞ (and hence the carrier phase of the signal) as
well as f�ðtÞ. Section II A sets out the tracking framework
in its general form [14,44]. Section II B explains the central
role played by stepwise phase continuity in reducing the
HMM’s false alarm rate. Section II C discusses how to
discretize the HMM’s state space and the related challenges
involved in enforcing phase continuity, when the emission
probability is calculated from the output of a frequency-
domain matched filter like the F -statistic. Modified
transition and emission probabilities are presented in
Secs. III and IV.

A. General formulation and drift timescale

A HMM is a probabilistic finite state automaton
defined by a hidden (unobservable) state variable, qðtÞ,
and an observable state variable, oðtÞ. The automaton
jumps through a time-ordered sequence of observations,
O ¼ foðt0Þ;…; oðtNT

Þg, at discrete times t0 ≤ … ≤ tNT
.

In general there exist NNTþ1
Q possible hidden-state paths,

Q ¼ fqðt0Þ;…; qðtNT
Þg, which are consistent withO. Here

NQ counts the finite number of discrete values, that qðtÞ can
take at time t.
Given O, some paths are more likely than others. If we

assume that the automaton is Markovian, such that the
transition probability from qðtnÞ to qðtnþ1Þ depends only
on qðtnÞ, then the probability that Q gives rise to O equals

PrðQjOÞ ¼ LoðtNT
ÞqðtNT

ÞAqðtNT
ÞqðtNT−1Þ × � � �

× Loðt1Þqðt1ÞAqðt1Þqðt0ÞΠqðt0Þ: ð1Þ

In (1),

Aqjqi ¼ Pr½qðtnþ1Þ ¼ qjjqðtnÞ ¼ qi� ð2Þ

is the transition probability matrix;

Lojqi ¼ Pr½oðtnÞ ¼ ojjqðtnÞ ¼ qi� ð3Þ

is the emission probability matrix, namely the probability
that the system is observed in state oðtnÞ while occupying
the hidden state qðtnÞ; and

Πqi ¼ Pr½qðt0Þ ¼ qi� ð4Þ

is the prior vector, namely the probability that the system
occupies the hidden state qðt0Þ initially.
To solve the HMM, one seeks the most probable path

Q�ðOÞ, which maximizes PrðQjOÞ given O, viz.

Q�ðOÞ ¼ argmax PrðQjOÞ: ð5Þ

The maximization can be done in many ways. In previous
gravitational wave applications as well as in this paper,
we employ the Viterbi algorithm, [14,15] whose logic
and pseudocode are summarized briefly in Appendix A.
The Viterbi algorithm is a dynamic programming algo-
rithm. It is computationally efficient, executing of order
ðNT þ 1ÞNQ lnNQ floating point operations.
Table I summarizes how the general framework above

maps onto versions I, II, and III of the HMM. For each
version, it specifies the intended astrophysical target, the
hidden astrophysical variables being tracked, the inter-
mediate data inputs distilled from the raw observations
(which go into calculating Lojqi), as well as the forms of
Aqjqi , Lojqi , and Πqi , which define the probabilistic struc-
ture of the HMM. The entries in each column are discussed
in detail when introduced in Secs. II–IV, together with full

TABLE I. Comparison of HMM versions I, II, and III: intended targets (column 2), hidden variables (column 3), intermediate data
inputs (column 4), and probabilistic structure (columns 5–7). The entries in each column are discussed in detail in Secs. II–IV. In column
4, the terms Fourier and Bessel refer to ordinary and Bessel-weighted Fourier transforms of the raw interferometer data respectively, the
latter to account for binary orbital phase, which go into calculating Lojqi as described in Sec. IV. In column 5, which defines Aqjqi ,
random walk refers to a discrete-time, simple random walk, and Ornstein-Uhlenbeck refers to continuous-time, damped Brownian
motion, as described in Sec. III. The detection statistics F , J , and B in column 6 are defined mathematically when first introduced in
Secs. II–IV.

Version Target qðtÞ oðtÞ Aqjqi Lojqi Πqi Refs.

I Isolated f�ðtÞ Fourier Random walk F (max. likelihood) Uniform [16,18]
II Binary f�ðtÞ Bessel Random walk J (max. likelihood) Uniform [17,19]
III Isolated Φ�ðtÞ, f�ðtÞ Fourier Ornstein-Uhlenbeck B (Bayesian) Uniform This paper

Binary Φ�ðtÞ, f�ðtÞ Bessel Ornstein-Uhlenbeck B (Bayesian) Uniform This paper
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mathematical definitions of the various terms and
symbols, e.g., F , J , and B. In this paper, we take
qðtÞ ¼ ½f�ðtÞ;Φ�ðtÞ�. We adopt a flat prior, as in previous
work, [18,19] and track the phase difference Φ�ðtnþ1Þ −
Φ�ðtnÞ across each HMM step; Φ�ð0Þ is the result of a
historical accident, which obviates the need to track the
absolute phase.
In gravitational wave applications, the underlying, sto-

chastic evolution of qðtÞ is continuous. Nonetheless the
discrete-time HMM defined by (1)–(5) provides an
appropriate analysis framework, as long as the duration
Tdrift ¼ tnþ1 − tn of each HMM step is chosen wisely. A
recipe for choosing Tdrift in versions I and II of the HMM is
given in previous papers [18,19]. The generalized recipe for
version III is set out in Appendix B, where the key
condition on Tdrift is given by Eq. (B1). One always has
TSFT ≤ Tdrift ≤ Tobs, where TSFT denotes the duration of
the short-time Fourier transforms (SFTs) [45] used to
compute Lojqi (see Sec. II C and Appendix B), and Tobs ¼
NTTdrift ∼ 1 yr is the total observation time. The SFTs are a
data management device to assist with storage and input-
output. They divide the observing run into short stretches,
typically TSFT ¼ 1800 s in length, during which one
assumes that the antenna beam pattern is approximately
constant (neglecting rotation of the Earth), and the detector
noise is approximately stationary. They are knitted together
to compute a detection statistic such as the F -statistic
coherently over an interval Tdrift. By contrast, Tdrift is a
user-selected time interval which contains an integer number
of SFTs, during which one assumes that the system stays
within a single HMM state, if condition (B1) is satisfied.
Detailed implementation instructions, explaining how the
SFTs are converted into “data atoms” and hence values of the
emission probability Lojqi, are provided in Ref. [46].

B. Phase continuity

In previous implementations of HMM-based gravita-
tional wave searches, [16,18,19] LoðtnÞqi is computed from
the maximum-likelihood, frequency-domain matched filter
called the F -statistic [13] or a close variant, evaluated over
the time interval tn−1 ≤ t ≤ tn. For an isolated source, the
F -statistic concentrates all the signal power into a single
frequency bin, of width Δfdrift ¼ ð2TdriftÞ−1, provided that
the Tdrift condition (B1) holds. For a binary source, the
F -statistic disperses the signal power into approximately
2M0 þ 1 ¼ 2ceilð2πf�a0Þ þ 1 orbital sidebands, separated
by P−1 in frequency, where a0 is the projected semimajor
axis of the binary orbit, P is the orbital period, and ceilð…Þ
returns the lowest integer greater than or equal to its
argument. However, it is possible to redirect most of the
signal power into a small subset (≪ 2M0 þ 1) of frequency
bins by summing the F -statistic values at the orbital
sidebands with an appropriate weighting, namely Bessel
coefficients arising from the Jacobi-Anger expansion of the

waveform. If the coefficients are squared Bessel functions,
the sum is incoherent, and LoðtnÞqi exhibits a narrow, cuspy
peak as a function of frequency, as in version I of the HMM
(Bessel-weighted F -statistic) [19]. If the coefficients
include powers of eiϕa , where ϕa is a reference phase
(usually defined by the orbit’s ascending node), and the
F -statistic is factorized into a product of complex numbers
before summation, the sum is coherent with respect to
orbital phase, and LoðtnÞqi contains all the signal power in a
single frequency bin, of width Δfdrift ¼ ð2TdriftÞ−1, as in
version II of the HMM (J -statistic) [19]. In summary, it is
always possible to concentrate all the signal power into
a single frequency bin, by calculating LoðtnÞqi from the
F -statistic (isolated source) or J -statistic (binary source).
This result is confirmed by numerous Monte Carlo sim-
ulations in Ref. [19].
There is only one “correct” frequency bin at each HMM

step, and Q�ðOÞ either finds it or not. It is therefore natural
to ask what extra advantage rotational phase tracking
confers, when the optimal path Q�ðOÞ in versions I and II
of the HMM already captures the maximum signal power
available to anyHMM, for the reason set out in the previous
paragraph. The answer is that phase tracking increases the
detection probability by sharpening the HMM’s ability to
discriminate against spurious sequences. For example, if a
strong noise event occurs in the ith frequency bin at the
nth step, then Q�ðOÞ is likely to contain qðtnÞ ¼ qi, if
frequency is the only hidden state variable. Yet if phase is
tracked as well, the HMM is more likely to reject the
spurious path containing qðtnÞ ¼ qi in favor of another
path with lower LoðtnÞqj (j ≠ i) but higher Aqðtnþ1Þqj and
Aqjqðtn−1Þ, i.e., a path whose transition probabilities into and
out of the nth step are more consistent with phase
continuity. This is equivalent to the distinction between
a semicoherent and a coherent search. The latter is ≈N1=4

T
times more sensitive than the former because it effectively
reduces the denominator in the SNR by excluding false
alarms that violate phase continuity.
We implement rotational phase tracking by enlarging

the state vector to two dimensions for an isolated source,
with qðtÞ ¼ ½f�ðtÞ;Φ�ðtÞ�, and four dimensions for a binary
source, with qðtÞ ¼ ½f�ðtÞ; a0ðtÞ;ϕaðtÞ;Φ�ðtÞ�. Under nor-
mal astrophysical circumstances, a0 and ϕa are constant
throughout a full search (Tobs ≲ 1 yr), so there is no need to
track them. Hence, for both target classes, the HMM
reduces to two dimensions, with qðtÞ ¼ ½f�ðtÞ;Φ�ðtÞ�,
except that it is computed on a grid of ða0;ϕaÞ pairs for
a binary source; see Sec. II A in Ref. [19]. This approach is
readily parallelizable across ða0;ϕaÞ pairs and sources.

C. Grid resolution

How do we select the number of hidden states, NQ ¼
Nf�NΦ� , withNf� ¼B=Δfdrift andNΦ� ¼2π=ΔΦdrift, where
B ¼ max f� −min f� is the bandwidth, and ΔΦdrift is the
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width of a phase bin? There are many valid ways to do this,
as discussed in Appendix B, noting that Δfdrift and ΔΦdrift

are related through Φ�ðtÞ ¼ 2π
R
t
0 dt

0f�ðt0Þ. The choice
comes down to how the HMM emission probability is
calculated from the data, as foreshadowed in Sec. II A. In
this paper, we seek to leverage the existing, easy-to-use,
thoroughly tested software infrastructure for frequency-
domain continuous-wave searches maintained in the
LAL suite, including the F -statistic [13,46], B-statistic
[21,23–25], and intermediate data products generated by
the F -statistic; see Sec. IV in this paper and Sec. III A
in Ref. [19]. These software tools are built around
Fourier transforms. We are therefore obliged to take
Δfdrift to be the half-Nyquist bin width of the F -statistic
evaluated over a time interval of duration Tdrift, viz.
Δfdrift ¼ ð2TdriftÞ−1.
The half-Nyquist criterion creates a problem: small

uncertainties in f� of �Δfdrift due to binning lead to large
uncertainties in Φ� of �2πTdriftΔfdrift ¼ �π when propa-
gated forward over one HMM time-step, degrading the
HMM’s ability to track Φ�ðtÞ. One can circumvent this
obstacle by abandoning the frequency domain, thereby
surrendering its practical advantages. Alternatively, one can
achieve sub-Nyquist frequency resolution (≪ Δfdrift and
hence NΦ� ≫ 1) by modeling the underlying evolution
of qðt0Þ ¼ ½f�ðt0Þ;Φ�ðt0Þ� within a HMM time-step
(tn ≤ t0 ≤ tn þ Tdrift). We adopt the latter approach. A
simple, linear ramp does not improve the situation
much, e.g., f�ðt0Þ ¼ f�ðtnÞ � ðt0 − tnÞΔfdrift=Tdrift implies
Φ�ðtnþ1Þ −Φ�ðtnÞ ¼ 2πTdriftf�ðtnÞ � π=2, which is still a
large fractional uncertainty. We find instead that evolving
qðt0Þ stochastically according to a phase-wrapped,
Ornstein-Uhlenbeck process (i.e., Brownian motion that
is 2π-periodic in phase) yields good practical results. The
approach is described in Sec. III and Appendix C and tested
against Monte Carlo simulations in Secs. V and VI. It is
analogous to a vernier scale, in which the frequency bins
yield a coarse first approximation to the frequency, and the
phase bins yield a refined approximation. We find empiri-
cally that NΦ� ¼ 32 is adequate for the transition proba-
bilities assumed in this paper (see Appendix B and
footnote 10). Sub-Nyquist frequency resolution is routinely
achieved in signal processing problems, where phase
tracking is involved, using a variety of techniques [41].

III. TRANSITION PROBABILITIES

In this section we introduce an Ornstein-Uhlenbeck
(Brownian) model of the stochastic, intrastep evolution
of the star’s rotation and hence the signal’s frequency and
phase. Transition probabilities Aqjqi for frequency-phase
tracking are presented in Sec. III A. The Ornstein-
Uhlenbeck model is controlled by two auxiliary parame-
ters. We explain how to set these parameters given Tdrift
in Sec. III B.

A. Stepping forward in frequency and phase

In versions I and II of the HMM, it is assumed that f�ðtÞ
jumps by −1, 0, or þ1 frequency bins at every step with
equal probability 1=3.3 In version III of the HMM, we again
assume that f�ðt0Þ executes an unbiased random walk
for tn ≤ t0 ≤ tn þ Tdrift and choose Tdrift according to
condition (B1), as discussed in Appendix B. However
we model the intrastep random walk explicitly as an
Ornstein-Uhlenbeck process that is 2π-periodic in phase.
The aim is to derive Aqjqi in a way that self-consistently
relates the jumps in f�ðtÞ and Φ�ðtÞ and allows adequate
phase resolution (NΦ� ≫ 1), as discussed in Sec. II C.
The Ornstein-Uhlenbeck process is described by a pair

of stochastic differential equations,

df�
dt

¼ −γf� þ σξðtÞ; ð6Þ

dΦ�
dt

¼ f�: ð7Þ

It is controlled by two parameters: γ, a damping rate, and σ,
a fluctuation amplitude. The fluctuating torque ξðtÞ has
white noise statistics, viz.

hξðtÞi ¼ 0; ð8Þ

hξðtÞξðt0Þi ¼ δðt − t0Þ; ð9Þ

where h…i denotes an ensemble average. We assume that
there is no white noise forcing term in (7), i.e., the principal
axes of the gravitational-wave-emitting quadrupole are
fixed in the body frame rotating instantaneously at the
frequency f�ðtÞ. In Brownian motion in thermal equilib-
rium, γ and σ are related by the fluctuation-dissipation
theorem, with σ2=γ proportional to the system temperature.
Here, in contrast, γ and σ are independent. We explain how
to choose them in practice in Sec. III B.
The stochastic differential equations (6) and (7) are

equivalent to the forward Fokker-Planck equation [50]

∂p
∂t ¼

∂ðγf�pÞ
∂f� −

∂ðf�pÞ
∂Φ�

þ σ2

2

∂2p
∂f2� ; ð10Þ

whose solution pðt; f�;Φ�Þ equals the probability density
that the hidden state lies in the infinitesimal domain
ðf�; f� þ df�Þ ∪ ðΦ�;Φ� þ dΦ�Þ at time t if it started at
qð0Þ ¼ ½f�ð0Þ;Φ�ð0Þ� at t ¼ 0, i.e., pð0; f�;Φ�Þ ¼
δ½f� − f�ð0Þ�δ½Φ� −Φ�ð0Þ�. Hence evolving pðt; f�;Φ�Þ
from t ¼ tn to t ¼ tnþ1 is exactly what one needs to

3As in previous papers, we exclude the possibility of impulsive
rotational glitches with f�ðtnþ1Þ − f�ðtnÞ > Δfdrift; [47,48] see
footnote 3 in Ref. [18] and compare Ref. [49].
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calculate the transition probabilities Aqjqi , as defined by (2).
Specifically we write

Aðf�j;Φ�kÞðf�l;Φ�mÞ ¼ pðtnþ1; f�j;Φ�kÞΔfdriftΔΦdrift ð11Þ

with f�ðtnÞ¼f�l andΦ�ðtnÞ ¼ Φ�m, where the integers j, l
and k, m index discrete frequency and phase bins respec-
tively. Analytic formulas are derived for pðt; f�;Φ�Þ and its
characteristic function in Appendix C [51].
In the Viterbi algorithm, it is sometimes more convenient

to calculate the backward transition probabilities, Aback
qjqi ¼

Pr½qðtnÞ ¼ qjjqðtnþ1Þ ¼ qi�. This can be done by solving
the backward Fokker-Planck equation, which is adjoint
to (10). Details and formulas are given in Appendix C.
The resulting PDF is a 2π-wrapped Gaussian; see
Eqs. (C10)–(C15).

B. Control parameters

How should the control parameters γ and σ be chosen?
Two conditions must be satisfied during every HMM step:
γ must be small enough, such that hf�i does not drift by
more than one frequency bin, Δfdrift; and σ must be large
enough, so that we have hf2�i − hf�i2 ≈ ðΔfdriftÞ2, i.e.,
probability leaks significantly into the frequency bins on
either side of the starting bin but not much further. From the
moment formulas in Appendix C, typical of a diffusion
process, the above conditions reduce to

f�½1 − expð−γTdriftÞ� < Δfdrift ð12Þ

and

σ2

2γ
½1 − expð−2γTdriftÞ� ≈ ðΔfdriftÞ2 ð13Þ

respectively for all f� in the observation band. For a
typical LMXB search with Tdrift ¼ 10 d and f� ≳ 50 Hz,
we have Δfdrift=f� ≲ 1 × 10−8, γTdrift ≪ 1, and hence
γ < ð2f�T2

driftÞ−1 and σ ≈ ð4T3
driftÞ−1=2.

Figure 1 presents an example of the transition proba-
bilities for an illustrative choice of γ and σ satisfying the
constraints in the previous paragraph and used sub-
sequently in the validation experiments in Secs. V and VI.
Contours of the PDF Aqjqi in the f� −Φ� plane are plotted
in Fig. 1(a). Three constant-f� cross sections are plotted
versus Φ� in Fig. 1(b). We find that pðtnþ1; f�;Φ�Þ leaks
significantly into the frequency bins on either side of the
starting bin, with Af�i�1;f�i ¼ 0.196 and Af�i;f�i ¼ 0.608
(normalized). In this implementation, the PDF is truncated
to give Af�i�2;3;…;;f�i ¼ 0 to achieve computational savings,
but if one does not truncate one finds Af�i�2;f�i ¼
3.82 × 10−4. The probabilities of jumping up or down in
frequency are equal, as in version I of the HMM, while the
probability of staying in the same bin is higher (0.608) than
in version I (0.333).
In contrast, the PDF extends over many bins in phase,

as is clear from Fig. 1(b), with full-width half-maximum
≈1.78 rad (nine bins). Phase wrapping ensures periodicity
in Φ�, but for the plotted parameters the PDF is tiny at the
edges of the plot, and it is hard to verify the periodicity by
eye. The initial state qðtnÞ determines whether the phase
wraps or not. Figure 1(b) confirms that phase wrapping
alternates between even and odd frequency bins (and
depends on whether f� jumps by zero or �Δfdrift),

(a) (b)

FIG. 1. Forward transition probabilities Aqjqi ¼ Pr½qðtnþ1Þ ¼ qjjqðtnÞ ¼ qi� (not normalized) for f�ðtnÞ ¼ 111.0 Hz,Φ�ðtnÞ ¼ 0 rad,
γ ¼ 1.0 × 10−16 s−1, and σ ¼ 3.7 × 10−10 s−3=2. (a) Contour plot versus f�ðtnþ1Þ − f�ðtnÞ and Φ�ðtnþ1Þ −Φ�ðtnÞ. The color scale is
arbitrary; hot colors are high, cool colors are low. The white grid delineates frequency-phase bins. The horizontal and vertical axes
are labeled by number of bins. A subset of the hidden state space is plotted for clarity. (b) Cross sections at fixed
f�ðtnþ1Þ − f�ðtnÞ ¼ 0;�Δfdrift. The crosses, plus signs, and asterisks mark phase bins. The horizontal axes indicate Φ�ðtnþ1Þ −
Φ�ðtnÞ in units of radians (top) and number of bins (bottom). The backward transition probabilities are identical but centered on qðtnþ1Þ
instead of qðtnÞ.
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as discussed in Sec. II C; the phase jumps by π, when the
frequency bin at tn is odd, and by zero when the frequency
bin at tn is even. The contours slope diagonally, because f�
and Φ� are correlated, with hf�Φ�i − hf�ihΦ�i ≠ 0; see
Eq. (C14) in Appendix C. The shape of the contours is the
same for the forward and backward transition probabilities,
but the centroid shifts with qðtnÞ and qðtnþ1Þ respectively.
The above recipe for setting γ and σ is sensible but not

unique. The optimal values of the control parameters (and
Tdrift) depend on the waveform of the true signal, which is
unknown in advance in an astronomical setting. Altering γ
and σ does not introduce a systematic bias, because the
Ornstein-Uhlenbeck process is symmetric with respect to
positive and negative frequency jumps, but in general it
increases or decreases the sensitivity modestly. It is found
empirically that HMMs are robust to the exact form of
Aqjqi , which is why the naive choice of Aqjqi in version I
of the HMM works well. [14] The extra sensitivity in
version III comes from phase tracking, which depends
weakly on γ and σ, because the PDF in Fig. 1 is broad in
phase. When publishing searches with real data, it is
important to emphasize that any upper limits are condi-
tional on the signal model, which includes γ, σ, and Tdrift.

IV. EMISSION PROBABILITIES

For the class of frequency-domain, continuous-wave
searches considered in this paper, Lojqi in (3) can be
expressed in terms of a suitable frequency-phase detection
statistic Gðf�;Φ�Þ as

LoðtnÞqi ∝ exp½Gðf�i0 ;Φ�i00 Þ�: ð14Þ

Here Gðf�i0 ;Φ�i00 Þ is the log likelihood that f�ðtn−1Þ lies in
the i0th frequency bin ½f�i0 ; f�i0 þ Δfdrift�, and Φ�ðtn−1Þ lies
in the i00th frequency bin ½Φ�i00 ;Φ�i00 þ ΔΦdrift�, with
i ¼ i0NΦ� þ i00, given the data oðtnÞ.4 Concretely oðtnÞ
comprises a set of strain measurements, numbering Tdrift
multiplied by the interferometer sampling rate, or their
Fourier-transformed counterparts, sampled during the inter-
val tn−1 ≤ t0 ≤ tn. There exist many valid ways to construct
Gðf�;Φ�Þ, depending on computational constraints, the
data format, and the assumed model for the evolution
of qðtÞ ¼ ½f�ðtÞ;Φ�ðtÞ�.
In this paper, we strive to exploit the easy-to-use,

thoroughly tested software infrastructure in the LAL suite
associated with the F -statistic [13]. We are therefore led to
build Gðf�;Φ�Þ as a frequency-domain matched filter,
using as many existing LAL components as possible. In
versions I and II of the HMM,Gðf�;Φ�Þ is constructed as a
maximum likelihood estimator from the F -statistic (iso-
lated source) or a Bessel-weighted sum ofF -statistic values
(binary source) [18,19]. In version III, we press into service

the phase-dependent generalization of the Bayesian
B-statistic used in loosely coherent searches. [21–26]
The latter choice is justified against maximum likelhood
alternatives in Appendix D. We review briefly the signal
model and its definitions in Sec. IVA, define the frequency
domain intermediate data products that we need (e.g.,
complex Fourier amplitudes generated by the LAL) in
Sec. IV B, and present a formula for Gðf�;Φ�Þ in terms of
the B-statistic in Sec. IV C.

A. Signal model and likelihood

The gravitational wave signal measured at the Earth from
a biaxial rotor can be written as a linear combination of
eight independent components, [13]

hðtÞ ¼
X4
i¼1

A1ih1iðtÞ þ A2ih2iðtÞ: ð15Þ

In (15), A1i and A2i are arbitrary amplitudes set by the
source, and h1iðtÞ and h2iðtÞ are defined in Ref. [13] as
sinusoidal functions of ΦðtÞ and 2ΦðtÞ respectively, where
ΦðtÞ is the signal phase at the detector [note: ΦðtÞ ≠ Φ�ðtÞ
in general]. The amplitudes of h1iðtÞ and h2iðtÞ are
modulated diurnally by the antenna beam-pattern functions
aðtÞ and bðtÞ, defined by Eqs. (12) and (13) respectively
in Ref. [13].
Following Eqs. (18) and (96) in Ref. [13], we split the

signal phase into five terms,

ΦðtÞ ¼ 2πf0½tþΦmðt; α; δÞ� þΦs½t; fðkÞ0 ; α; δ�
− 2πf0a0 sinð2πt=P − ϕaÞ þΦwðtÞ: ð16Þ

In (16), f0 is the signal frequency at the detector,5 Φm is a
time shift produced by the diurnal and annual motions of
the detector and source relative to the Solar System bary-
center, Φs is a phase shift combining the latter two effects
with the intrinsic, deterministic, secular evolution of the

source through the frequency derivatives fðkÞ0 ¼ dkf0=dtk

(k ≥ 1) (see Eq. (14) in Ref. [13]), the fourth term (∝ a0)
is the Doppler modulation produced by the source’s orbital
motion in a binary system, and ΦwðtÞ is the phase
accumulated from stochastic spin wandering. The sky
position of the source (right ascension α, declination δ)
enters Φm and Φs. Naturally it is possible to absorb the

binary orbit and stochastic spin wandering into fðkÞ0 , and

4Equally one can use some other reference time, e.g., tn.

5One has f0 ≠ f�ðtÞ in general. f�ðtÞ is the true, underlying
spin frequency of the star, which we cannot measure directly
and which forms one component of the hidden state. f0 is any
arbitrary frequency, where the emission probability and associ-
ated phase model (16) are evaluated, which may or may not
coincide with f�ðtÞ, depending on where in the parameter space
we look.
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hence absorb the fourth and fifth terms in (16) intoΦs, but it
is clearer to keep the contributions separate in what follows.
The output from a single interferometer is given by

xðtÞ ¼ hðtÞ þ nðtÞ, where nðtÞ denotes additive noise. The
normalized log likelihood after measuring the time series
xðtÞ over the interval 0 ≤ t ≤ Tobs is proportional to

lnΛ0 ¼ ðxkhÞ − 1

2
ðhkhÞ; ð17Þ

where we define the inner product

ðxkyÞ ¼ 2

Tobs

Z
Tobs

0

dtxðtÞyðtÞ: ð18Þ

In versions I and II of the HMM, the emission probability is
computed by maximizing lnΛ0 in (17) with respect to the
amplitudes A1i and A2i and evaluating the result on a grid of
f0 values to find the peak. (This procedure is not exactly the
same as maximizing over A1i, A2i, and f0 simultaneously.)
The result is a sum of terms quadratic in ðxkh1iÞ or ðxkh2iÞ,
which can be computed from Fourier-transformed inter-
ferometer data as discussed in Sec. III D in Ref. [13] and
Appendix D below; see also Ref. [46] and Sec. II A
in Ref. [19]. In version III of the HMM, the emission
probability is computed via the Bayesian B-statistic,
defined in Sec. IV C. The B-statistic can be computed
efficiently from the same, Fourier-transformed interferom-
eter data used by versions I and II. We define the relevant
Fourier integrals in Sec. IV B.

B. Fourier integrals

The waveforms h1iðtÞ and h2iðtÞ in (15) are amplitude
modulated by the antenna beam pattern functions aðtÞ and
bðtÞ. The log likelihood lnΛ0 in (17) is a function of ðxkhÞ,
which reduces to calculating the Fourier transforms
of xðtÞaðtÞ and xðtÞbðtÞ, because one has ðxkh11Þ ¼
ðxkaðtÞ cosΦðtÞÞ for example. For an isolated source
(a0 ¼ 0), let us define the Fourier integrals [13]

F1aðf0Þ¼
Z

Tobs

0

dtbx½tðtbÞ�a½tðtbÞ�e−iΦs½tðtbÞ�−2πif0tb ; ð19Þ

F1bðf0Þ¼
Z

Tobs

0

dtbx½tðtbÞ�b½tðtbÞ�e−iΦs½tðtbÞ�−2πif0tb ; ð20Þ

where tb ¼ tþΦmðtÞ defines a barycentered time coor-
dinate tb related implicitly to t through the time shift arising
from the Earth’s motion. In this paper, we neglect the
secular frequency evolution of the source, e.g., due to

electromagnetic braking, and set fðkÞ0 ¼ 0 for k ≥ 1 and

hence Φs½tðtbÞ� ¼ 0. It is easy to keep fðkÞ0 ≠ 0 in (19) and
(20) if desired. We also specialize without loss of generality
to the case A1i ¼ 0, corresponding to a search for one signal
frequency (as opposed to two simultaneously).

For a binary source (a0 ≠ 0), the integrands in (19)
and (20) feature an extra, Doppler-modulated phase factor
exp½2πif0a0 sinð2πt=P − ϕaÞ�, derived from (16). Upon
expanding this factor using the Jacobi-Anger identity, we
find that F1a and F1b should be replaced in LoðtnÞqi by

J1aðf0Þ ¼
XM0

s¼−M0
Jsð2πf0a0Þe−isϕaF1aðf0 þ s=PÞ; ð21Þ

J1bðf0Þ ¼
XM0

s¼−M0
Jsð2πf0a0Þe−isϕaF1bðf0 þ s=PÞ; ð22Þ

where Js denotes a Bessel function of order s of the first
kind. Equations (21) and (22) add together the Fourier
amplitudes in orbital sidebands coherently, by taking into
account the relative orbital phases of the sidebands. [19]
The infinite sums are truncated, because one has JsðxÞ ≪ 1
for s ≫ x to a good approximation [52,53].
It turns out that the emission probability LoðtnÞqi in (14)

can be calculated easily from F1a and F1b (isolated source)
or J1a and J1b (binary source) in every HMM implemen-
tation we consider. The maximum likelihood formulas for
LoðtnÞqi in versions I and II of the HMM are quoted in
Appendix D, where it is shown that they (and their phase-
dependent generalizations) are poorly suited to rotational
phase tracking. The B-statistic adopted in this paper for
version III of the HMM is presented next in Sec. IV C.
The Fourier integrals (19) and (20) are taken formally

over 0 ≤ t ≤ Tobs. In practice, to facilitate data manage-
ment, the integral is subdivided into “atoms” [46]. Each
atom corresponds to one SFT, which is convolved with a
sliding-window sinc function to increase the frequency
resolution from ð2TSFTÞ−1 to ð2TobsÞ−1, as required by (19)
and (20). The reader is referred to Sec. IV. 2 in Ref. [46] for
full details; see also Sec. III A in Ref. [19]. In this paper,
following Ref. [46], we approximate aðtÞ and bðtÞ as
piecewise-constant during each SFT.

C. Phase-dependent B-statistic

The B-statistic [21] is a Bayesian alternative to the
maximum likelihood F -statistic [13]. It is derived from the
likelihood function Λ0 in (17) combined with an isotropic
prior on the source orientation (i.e., spin axis). Its detection
efficiency is ≈5 per cent greater than that of the F -statistic,
and it is arguably motivated better astrophysically; the
F -statistic implicitly assumes a uniform prior on the
amplitude, whereas the B-statistic favors lower amplitudes,
which is more realistic. [21] In practice, however, the
F -statistic has proved more popular than the B-statistic,
having been preferred in various published LIGO searches,
e.g., [2,54] (targeted), [8,55] (directed), and [56,57] (all-
sky), as well as forming the basis of versions I and II of the
HMM [10,16,18,19]. This is because: (i) the advantage
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held by the B-statistic in terms of detection efficiency is
small [21,23,24]; (ii) the F -statistic software in the LAL
was developed first and is now thoroughly tested; and
(iii) the B-statistic involves numerical integrals, which are
relatively expensive computationally, although fast approx-
imations do exist [23,24,26].
In this section, we present a phase-dependent version of

the B-statistic formulated for loosely coherent searches
[23]. The associated emission probability is calculated from
(19) and (20) (isolated source) or (21) and (22) (binary
source), i.e., the same intermediate data products as
versions I and II of the HMM. We settle on this choice
after testing several phase-dependent generalizations of
the maximum likelihood F -statistic, as discussed in
Appendix D. Empirically we find that: (i) none perform
as well as the B-statistic nor offer any discernible improve-
ment over versions I and II of the HMM; (ii) a HMM based
on the B-statistic approaches the theoretical sensitivity of a
fully coherent search; and (iii) the sensitivity improvement
exceeds the ≈5 percent advantage of the B-statistic over the
F -statistic without any phase dependence, [21] so phase
tracking is clearly playing a role. Of course these empirical
findings do not constitute a formal proof, that the phase-
dependent B-statistic always outperforms any phase-
dependent maximum likelihood estimator, cf. Ref. [21].
However such a formal proof lies outside the scope of this
paper and is unnecessary at this stage given the excellent
performance achieved in tests with synthetic data in Secs. V
and VI. Other competing estimators will be tested in future
work, e.g., the phase-relaxed F -statistic [58].
Instead of maximizing Λ0 in (17) with respect to A1i and

A2i, we marginalize it (by Bayes’s theorem) over uniform
priors in three source-dependent variables: (i) the polari-
zation angle, ψ ; (ii) the cosine of the inclination angle,
cos {; and (iii) the characteristic wave strain, h0 [23–25].
Let us define

Aþ ¼ h0
2
ð1þ cos2 {Þ ð23Þ

and

A× ¼ h0 cos { ð24Þ

to be the real amplitudes of the plus and cross polarizations
respectively, which can be related to A2i as explained in
Ref. [59]. (For simplicity we consider the popular case
A1i ¼ 0 here.) Following Ref. [23], let us also define the
auxiliary complex variables

w0
1 ¼ ð2h0Þ−1ðAþ cos 2ψ þ iA× sin 2ψÞ ð25Þ

and

w0
2 ¼ ð2h0Þ−1ðAþ sin 2ψ − iA× cos 2ψÞ; ð26Þ

which satisfy the identities

1 ¼ jw0
1 þ iw0

2j1=2 þ jw0
1 − iw0

2j1=2; ð27Þ

2h0w0
1 ¼ A21 − iA23, and 2h0w0

2 ¼ A22 − iA24. In terms of
the above definitions, we obtain the following expression
for the marginalized likelihood [23]:

B ¼
Z

π

0

dψ
Z

1

−1
dðcos {Þ

Z
hmax
0

0

dh0 exp

�
h0U −

h20V
2

�
;

ð28Þ

with

U ¼ w0
1
�R1aðf0;Φ0Þ þ w0

2
�R1bðf0;Φ0Þ; ð29Þ

V ¼ Ajw0
1j2 þ 2CReðw0

1w
0
2
�Þ þ Bjw0

2j2; ð30Þ

R1aðf0;Φ0Þ ¼ Re½expð−iΦ0ÞF1aðf0Þ�; ð31Þ

and

R1bðf0;Φ0Þ ¼ Re½expð−iΦ0ÞF1bðf0Þ�: ð32Þ

In (30), we have A ¼ ðajjaÞ, B ¼ ðbjjbÞ, C ¼ ðajjbÞ, and
C ≪ minðA; BÞ for most sky positions [26]. The B-statistic
peaks, when the trial phase Φ0 in (29), (31) and (32)
matches the true signal phase at the detector, viz. ΦðtÞ
in (16).
The h0 integral in (28) is not normalized as it stands; the

HMM disregards multiplicative constants. Hence we can
take the limit hmax

0 → ∞ without loss of generality and
express the h0 integral in closed form as an error function.
In loosely coherent searches, B is maximized with respect
to Φ0 [23]. We cannot do the same here, because we track
the rotational phase and therefore need B to depend on Φ0.
The final result, expressed again in the notation of
Ref. [23], is given by

Bðf0;Φ0Þ ¼
Z

π

0

dψ
Z

1

−1
dðcos {Þ

�
π

2V

�
1=2

× exp

�
U2

2V

��
1þ erf

�
Uffiffiffiffiffiffi
2V

p
��

; ð33Þ

with

erfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

dy expð−y2Þ: ð34Þ

The double integral in (33) is evaluated numerically by
Simpson’s rule in what follows.
Figure 2 presents examples of the emission probability

for two signals from an isolated source injected into
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Gaussian noise with Shðf0Þ ¼ 4 × 10−24. The contour plots
in the figure are generated from Tobs ¼ 10 days of syn-
thetic data. In Fig. 2(a) the stronger injection is clearly
detectable, with h0 ¼ 4.0 × 10−26, and the emission prob-
ability peaks near the correct ðf0;Φ0Þ bin. Figure 2(b)
displays the weaker injection, with h0 ¼ 1.7 × 10−26.
There is a hot spot near the correct bin, but it does not
stand out visually from the other, noise-generated hot spots.
The constant-f0 cross section does not peak at the correct
value of Φ0, although it still has roughly the same func-
tional form as in Fig. 2(a). Note that the emission
probability is not always unimodal in the vicinity of the
injection as it is in Fig. 2(a). When the complex arguments
of F1a and F1b differ sufficiently, B develops two peaks as a
function of Φ0 (at fixed f0), only one of which corresponds
to the signal. The tests in Sec. V show that the HMM is
effective at resolving this ambiguity and identifying the
true peak for NT > 1.

V. ISOLATED NEUTRON STAR

We begin by testing version III of the HMM on synthetic
data generated by injecting the signal from an isolated
neutron star into additive, Gaussian noise. Section VA
describes the injection procedure. Tracking results are
presented in Sec. V B for a representative sample of
synthetic data. A systematic, threshold-based strategy for
identifying signal candidates during an astrophysical search
is described in Sec. V C and is applied to characterize
the performance of the HMM in Sec. V D. The accuracy
with which the HMM reconstructs the true hidden state
sequence given a successful detection is quantified in
Sec. V E. Versions I (isolated source) and III of the
HMM are compared at each stage. versions II (binary
source) and III are compared in Sec. VI.

A. Synthetic data

The signal phase corresponding to an isolated neutron
star is given by (16) with a0 ¼ 0. In the tests below, the
stochastic component of the injected phase evolves during
the interval tn ≤ t0 ≤ tnþ1 according to Φwðt0Þ¼2π½ðt0−
tnÞ3  f�ðtnÞ=6þðt0−tnÞ2 _f�ðtnÞ=2þðt0−tnÞf�ðtnÞ�þΦwðtnÞ,
where  f�ðt0Þ ¼  f�ðtnÞ is drawn randomly from a uniform
PDF while ensuring that jf�ðtnþ1Þ − f�ðtnÞj ≤ Δfdrift is
satisfied, and _f�ðt0Þ, f�ðt0Þ, andΦwðt0Þ are continuous from
one HMM step to the next. This prescription is neither
unique nor necessarily optimal; it is one of many, equally
valid approaches. We assume for simplicity that there is
no secular frequency drift, i.e., h _f�ðtÞi ¼ 0. Incorporating
h _f�ðtÞi ≠ 0 is straightforward; it is already part of LAL
implementations of the F -statistic, for example. However it
is unnecessary in many astrophysical settings, because the
HMM with the transition probabilities defined in Sec. III
and Fig. 1 automatically handles secular spin evolution
with hj _f�ðtÞji≲ Δfdrift=Tdrift as a matter of course.
The stepwise evolution of  f� differs deliberately from

the stepwise evolution of _f� modeled by the fluctuating
torque ξðtÞ in (6), which underpins the transition prob-
abilities in Sec. III and Appendix C. In general we do not
know the functional form of the spin wandering in
astrophysical sources. [7] Hence it is prudent to assume
different forms of wandering in the test injections and
transition probabilities, to double-check the robustness
of the algorithm. The injection parameters are quoted in
Table II and are the same as those in Ref. [18] to facilitate
comparison, except that in this paper f�ðt0Þ and Φ�ðt0Þ
are chosen randomly (from uniform PDFs covering the
ranges in Table II) as a self-blinding precaution. The
synthetic data are generated using Makefakedata_v4 in
the LAL.

(a) (b)

FIG. 2. Logarithm of the emission probability, Gðf0;Φ0Þ ¼ lnBðf0;Φ0Þ (not normalized), represented by its contours in the f0 −Φ0

plane (color scale arbitrary). (a) Stronger injection; h0 ¼ 4.0 × 10−26. (b) Weaker injection; h0 ¼ 1.7 × 10−26. The injections are marked
by crosses; their parameters are listed in Table II (isolated source). The observation oðtnÞ consists of Tobs ¼ 10 days of data (NT ¼ 1).
The white grid delineates frequency-phase bins with Δfdrift ¼ 5.8 × 10−7 Hz and ΔΦdrift ¼ π=16. A subset of the hidden states is
plotted for clarity. The noise is Gaussian, with Shðf0Þ1=2 ¼ 4 × 10−24 Hz−1=2 as in Table II.
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B. Representative example

Figure 3 illustrates the output of versions I and III
of the HMM for three typical, injected signals with
h0=10−26 ¼ 1.7, 1.3, and 1.1. The strongest signal is

detectable by both versions of the HMM, the intermediate
signal is detectable by version III only, and the weakest
signal is detectable by neither version. The figure displays
the frequency path that best matches the injected f�ðtÞ.
When the signal is detected, the best-matching frequency
path is also the optimal HMM path, i.e., the frequency
component of Q�ðOÞ. The frequency is recovered accu-
rately, with root mean square errors of εf� ¼6.5×10−7Hz¼
1.1Δfdrift and εf� ¼ 5.9 × 10−7 Hz ¼ 1.0Δfdrift for version
III in Figs. 3(a) and 3(b) respectively. Note that the injected
f�ðtÞ traces a piecewise-parabolic path, because  f�ðtÞ is
piecewise-constant (see Sec. VA). In contrast, the frequency
path recovered by version III of the HMM, which obeys the
Ornstein-Uhlenbeck transition probabilities in Appendix C,
is piecewise-constant in the figure, because the HMM jumps
between discrete frequency bins of width Δfdrift.
Figure 4 displays the absolute error between the injected

and recovered phase as a function of time for the three

TABLE II. Injection parameters used to create the synthetic
data analyzed in Secs. V and VI. Different tests employ different
subsets of the ranges in the first two lines.

Parameter Value Units

Φ�ðt0Þ ½0; 2π� rad
f�ðt0Þ [111.0, 111.1] Hz
_f�ðt0Þ 0 Hz s−1

ψ 4.08407 rad
cos { 0.71934 −
α 4.27570 rad
δ −0.27297 rad
Shðf0Þ1=2 4 × 10−24 Hz−1=2

(a) (b)

(c)

FIG. 3. Sample tracking output from versions I (purple curves) and III (green curves) of the HMM for three injected signals (black
curves) from an isolated neutron star with source parameters drawn from Table II and h0=10−26 ¼ 1.7 [panel (a)], 1.3 [panel (b)], and 1.1
[panel (c)]. The purple and green curves are the best-matching frequency paths (with minimum path-integrated, root-mean-square error
εf� ; see Sec. V E), centred on f�ðtNT

Þ and plotted in units of Δfdrift; they are not necessarily the optimal path Q�ðOÞ. The optimal path
matches well [i.e., within two frequency bins of f�ðtÞ for all t] for versions I and III in (a) and version III in (b). The optimal path matches
poorly for version I in (b) and versions I and III in (c); indeed it lies outside the border of the plot. We plot instead the paths with
minimum εf� , viz. the sixth, 20-th, and 411-th Viterbi paths respectively, which lie within a few frequency bins of f�ðtÞ purely by chance
but are of no practical use in an astrophysical search. Control parameters: γ ¼ 1.0 × 10−16 s−1, σ ¼ 3.7 × 10−10 s−3=2.
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isolated sources studied in Fig. 3. Superficially the phase
reconstruction in Fig. 4 looks worse than the corresponding
frequency reconstruction in Fig. 3. The B-statistic concen-
trates the signal power into at most two adjacent frequency
bins yet spreads it out over multiple phase bins. As seen in
Fig. 2(a), Bðf0;Φ0Þ is nearly a delta function in frequency
(like the F - and J -statistics in versions I and II of the
HMM) but has full-width half-maximum ≈π in phase.
Nevertheless, although the phase tracking is imperfect, it
delivers improved sensitivity on balance, if one compares
Fig. 3(a) with Fig. 3(b) for example. This improvement
does not occur simply because version III of the HMM uses
the B-statistic, which in its phase-maximized form is≈5 per
cent more sensitive than theF -statistic (see Sec. IV C) [21].
To verify this, we repeat the tests in Figs. 3 and 4 while
artificially scrambling the phase, i.e., randomizing Φ�ðtnÞ
at every HMM step while keeping f�ðtÞ continuous as in
Sec. VA. Phase randomization converts the version III
detection of the injection with h0 ¼ 1.3 × 10−26 into a
nondetection while having no effect on the version I results.
When the signal is not detected,Q�ðOÞ is clearly wrong,

e.g., εf� ¼ 1.2 × 10−2 Hz ¼ 2.1 × 104Δfdrift for version III
in Fig. 3(c). The agreement looks better in the figure but

artificially so. The minimum-εf� paths plotted in the figure
turn out to be the 6th, 20th, and 411th Viterbi paths [i.e., not
Q�ðOÞ] for the nondetections using version I in Fig. 3(b)
and versions I and III in Fig. 3(c) respectively. While these
do lie within a few frequency bins of f�ðtÞ by chance, they
are of no practical use in an astrophysical search, where the
true f�ðtÞ is unknown. The optimal path is plotted when-
ever possible in Fig. 3 but it always lies far outside the
border of the plot, when the signal is not detected.
The PDFs of lnB in pure noise and for a relatively strong

injection are compared in Appendix E 1 for completeness.
They do not follow a chi-squared distribution, unlike the
F -statistic, because marginalizing over ψ, cos {, and h0 in
(28) implicitly enforces constraints between the amplitudes
in (15), so that lnB is not a sum of independent squares.

C. Detection strategy

We assess the performance of version III of the HMM
within the Neyman-Pearson framework applied to other
continuous wave search pipelines developed by the LIGO
Scientific Collaboration. [1] Specifically, we generate
receiver operating characteristic (ROC) curves for a range
of h0 and NT values, generalizing the tests in Ref. [51] to

(a) (b)

(c)

FIG. 4. Accuracy of HMM phase reconstruction. Absolute pointwise phase error (in rad) between the injected phase and the phase
recovered by version III of the HMM for the three isolated sources in Fig. 3, plotted in the range ½−π; π� versus time (in units of 10 days).
Panels (a), (b), and (c) correspond one-to-one to the panels in Fig. 3.
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include the time-dependent antenna beam-pattern functions
aðtÞ and bðtÞ. The aims of the exercise are (i) to character-
ize the sensitivity given user-selected false alarm and false
dismissal probabilities, denoted by Pa and Pd respectively;
and (ii) to develop a practical recipe for how to subdivide
the full data set (duration Tobs) into NT segments of
duration Tdrift.
To generate a ROC curve, i.e., a graph of 1 − Pd versus

Pa, we must first define precisely what a detection means.
This is not trivial for HMM-based algorithms. In versions I
and II of the HMM, the probability that a Viterbi path
terminates in a particular frequency bin is correlated with
the termination probability for the 2NT nearest bins,
because HMM paths terminating in neighboring bins share
common subpaths in general. The problem worsens in
version III of the HMM, where the tails of pðtnþ1; f�j;Φ�kÞ
in (11) extend outside the range jf�j − f�ðtnÞj ≤ Δfdrift and
wrap through 2π in phase, as calculated in Appendix C (see
also Sec. II C). For example, the chance of encountering a
false alarm within ∼NT bins of another false alarm is higher
than encountering it elsewhere.
Several valid ways exist to handle the above correlations.

In this paper, we adopt the following approach. First, we
divide the full search space into disjoint parcels of width
2NTΔfdrift in frequency and 2π in phase, which we call
“blocks.” Each block contains 2NTNΦ frequency-phase
bins. (We check that the results do not change significantly,
if the frequency width of the blocks is kNTΔfdrift with
k≳ 2, in Appendix E.) Starting with multiple realizations
of pure noise (i.e., h0 ¼ 0), we calculate

Si ¼ max
ji0−ij≤NT

max
0≤Φ�00≤2π

ln Pr½Q�ðOÞjO; q�ðtNT
Þ ¼ ðf�i0 ;Φ�00 Þ� ð35Þ

in the block centered on the ith frequency bin. In (35),
Si is the HMM log likelihood for the optimal path q�ðtÞ
terminating at a given frequency-phase bin, q�ðtNT

Þ ¼
ðf�i0 ;Φ�00 Þ, maximized over all the frequency-phase bins
in the block centered at frequency f�i, with jf�i0 − f�ij ≤
NTΔfdrift and 0 ≤ Φ�00 ≤ 2π. We call Si the “block score”
and write it as S henceforth as shorthand.6 We then define a
threshold SthðfÞ, where f is the central frequency of the
block, such that an analyst-selected fraction Pa of the
realizations are false alarms, i.e., they return S > SthðfÞ.
(The dependence on f is weak.) We then repeat the exercise
after injecting a signal h0 > 0 into multiple noise realiza-
tions. A block with S > SthðfÞ is flagged as a candidate.

If any subset of the frequency component of the injected
path, ff�ðt1Þ;…; f�ðtnÞg, overlaps with the block, the
candidate counts as a successful detection; otherwise the
candidate is a false alarm.7 We check below that the results
do not change significantly, if we require a minimum of
(say) half the injected path to overlap with the block.
Conversely, a false dismissal occurs, when zero candidates
overlap even partially with the one or two blocks containing
the injected signal.8

Sample histograms of the block score S in (35) are
presented in Appendix E 1 as a validation test. Noise-only
and noise-plus-injection histograms are visibly separate,
when the detection threshold is exceeded, demonstrating
the discriminating power of the HMM. The PDFs of S and
lnB have different functional forms, brought about by the
maximization steps in the Viterbi algorithm and (35) [19].
Continuous wave searches are typically subdivided into

subbands of widthΔfsub ∼ 1 Hz (0.6 Hz in this paper). Sub-
bands are a housekeeping device to handle the practicalities
of data management (e.g., storage and input-output overhead
on a compute cluster). They are not the same as blocks,
which are logical units in the detection strategy above. It is
therefore necessary to convert the block-based false alarm
probability, Pa, to a subband-based false alarm probability,
P0
a, using the binomial theorem, viz. P0

a ¼ 1 − ð1 − PaÞN0

with N0 ¼ Δfsub=ð2NTΔfdriftÞ [52]. Note that SthðfÞ is a
slow function of f over ∼1 Hz, so it is usually good enough
to use its midpoint value across the whole subband [52,53].
The above approach mimics the one adopted in previous
searches for Sco X − 1 with the sideband algorithm, where
frequency bins are correlated over windows of width
ð2M0 þ 1ÞΔfdrift, i.e., the width of the Bessel comb of
orbital sidebands [20,52,53,60]. The threshold SthðfÞ is also
a function of NT , as discussed in Appendix E 2.

D. ROC curves

A key question for any detection algorithm is how the
trade-off between Pa andPd adjusts, as the SNR changes. To
this end,wepresentROCcurves in Fig. 5 forh0=10−26 ¼ 1.7,
1.3, and 1.1, Shðf0Þ1=2 ¼ 4 × 10−24 Hz−1=2, Tdrift ¼ 10 d,
NT ¼ 37, and the source parameters in Table II, adhering to
the detection strategy in Sec. V C. Results from versions III
and I of the HMM are plotted as solid and dashed curves
respectively. The version III curve for h0 ¼ 1.7 × 10−26

overlaps with the top border of the figure and is invisible.
The version III curve for h0 ¼ 1.3 × 10−26 givesPd ≈ 0.1 for

6The block score does not equal the Viterbi score used in
previous work, [16,19] e.g., Eqs. (29)–(31) in Ref. [19]. The latter
quantity is defined as the number of standard deviations that
ln Pr½Q�ðOÞjO; q�ðtNT

Þ ¼ qi� in the ith bin stands away from the
mean, where the mean and standard deviation are computed over
the full search band (width B) for one realization.

7There is no advantage in also testing for phase overlap with
fΦ�ðt1Þ;…;Φ�ðtnÞg, because Bðf0;Φ0Þ is a broad function of
Φ0; see Fig. 2.

8It is always possible that the highest S value in a block is a
false alarm, while the second-highest (say) is a real signal,
because nearby HMM paths are correlated. In practice it is
imprudent to claim a detection in a genuine, astrophysical search
under such circumstances; the pragmatic response is to wait for
more data.
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Pa ¼ 10−2, a popular combination in published LIGO
searches, e.g., Ref. [16]. In comparison, version I of the
HMM achieves the same ðPa; PdÞ combination for h0 ≈
2 × 10−26, i.e., its sensitivity is≈1.5 times lower [18].Version
III of the HMM is a fairly reliable detection algorithm even at
low false alarm probabilities, with Pd < 0.4 for Pa ≥ 10−4.
The detection probability for Pa ¼ 10−2 drops below
1 − Pd ¼ 0.5 for h0 ≤ 1.1 × 10−26.
A practical task when applying the HMM is to estimate

in advance, how its performance scales with the volume
of data available, and how the data and parameter
space should be subdivided to maximize performance.
Appendix E 2 quantifies how the detection probability
scales with NT under two practical scenarions: (i) Tdrift
is fixed, so that the volume of data increases, as NT
increases; and (ii) Tobs is fixed, so that a fixed volume
of data is subdivided into more coherent segments, as NT
increases. In scenario (i), 1 − Pd rises monotonically
with NT , as expected. In scenario (ii), 1 − Pd peaks, when
Tobs=NT matches the characteristic timescale over which
f�ðtÞ fluctuates intrinsically, also as expected. The block
score threshold Sth is calculated versus NT for both
scenarios. Appendix E 3 checks for completeness, that
the ROC curves are insensitive to how the blocks are
partitioned. It is found that Pd changes by ≤ 3 per cent
at fixed Pa (with 10−4 ≤ Pa ≤ 1) for block bandwidths
2kNTΔfdrift in the range 0.243 ≤ k ≤ 2.00, independent of
the absolute position of the leftmost bin in the block.

E. Accuracy

Previous numerical experiments with versions I and II
of the HMM demonstrate that the tracking accuracy is
bounded by the Nyquist criterion [18,19,51]. When an

injected signal is detected successfully, the root mean
square error integrated along the path satisfies
εf� ≲ Δfdrift, whereas one typically finds εf� ≫ Δfdrift
for false alarms. The representative examples in Fig. 3
suggest that this remains true for version III of the HMM,
with εf�=Δfdrift ¼ 1.0 (detection), 1.1 (detection), and
2 × 104 (nondetection) for h0=10−26 ¼ 1.7, 1.3, and 1.1
respectively. Versions I and III are equally accurate in
Fig. 3(a), for example, with εf� ≲ Δfdrift. The tendency for
version III to dwell somewhat longer in certain frequency
bins follows from Aqjqi in Fig. 1.
We quantify the tracking accuracy systematically

through Fig. 6, which displays εf� for the optimal path
in the highest-ranked block against the block score S.
Versions III and I of the HMM are displayed in Figs. 6(a)
and 6(b) respectively. The plotted symbols, each corre-
sponding to one realization, separate into two clusters:
detections at the bottom right, with S≳ SthðfÞ and
εf� ≲ Δfdrift, and nondetections at the top left, with
S≲ SthðfÞ and εf� ≫ Δfdrift. A handful of points form a
bridge between the clusters, because a few realizations
produce false alarms with S > SthðfÞ but εf� ≫ Δfdrift,
e.g., the point with S ≈ −2.4 and εf� ≈ 2.5 × 10−5 Hz in
Fig. 6(a). These accidents are expected; phase consistency
sometimes happens by chance in the noise along a
path with fortuitously high B values. Occasionally the
tracker achieves a good match with εf� ≲ Δfdrift even for
S≲ SthðfÞ, corresponding to a false dismissal in a real
search. About 5 percent of the latter events occur acci-
dentally, when the signal block happens to rank highest (out
of 20 blocks in Fig. 6) due to features in the noise (even
with h0 ¼ 0). Note that no threshold is applied explicitly in
constructing Fig. 6, although implicitly SthðfÞ falls near the
value of S below which εf� ≫ Δfdrift typically occurs.
The significant uncertainty in phase tracking, exempli-

fied by Fig. 4, does not impair the accuracy of frequency
tracking reported in Fig. 6, as discussed in Secs. II C
and V B. However, it does circumscribe the astrophysical
questions that can be answered. Knowing the phase
evolution more accurately can help distinguish between
astrophysical emission mechanisms, in situations where the
frequency evolution is not informative enough. A time-
domain version of the HMM offers one possible way to
achieve better phase tracking, at the cost of stepping outside
the well-tested frequency-domain software infrastructure in
the LAL suite. Designing a time-domain HMM is a goal of
future work.

VI. NEUTRON STAR IN A BINARY

We now repeat the tests in Sec. V for a neutron star in a
binary system. The HMM structure and search procedure
remain unchanged, except that F1aðf0Þ and F1bðf0Þ are
replaced by J1aðf0Þ and J1bðf0Þ respectively in the
B-statistic via (28)–(34). Appendix E 4 verifies that this

FIG. 5. Comparative HMM performance for an isolated source.
ROC curves for h0=10−26 ¼ 1.7 (blue curve; hidden under top
border), 1.3 (green curve), and 1.1 (purple curve) and the source
parameters in Table II. The false alarm probability Pa and
detection probability 1 − Pd are plotted on the horizontal
and vertical axes respectively. Solid and dashed curves corre-
spond to HMM versions III and I respectively with Tdrift ¼ 10 d
and NT ¼ 37. Control parameters: γ ¼ 1.0 × 10−16 s−1, σ ¼
3.7 × 10−10 s−3=2. Realizations: 104 per curve.
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replacement leads to minimal loss of signal power; the
Doppler sidebands collapse into a single frequency bin
without discernible leakage into neighboring bins, just like
for the J -statistic. In Sec. VI Awe present tracking results
for a representative sample of synthetic data. ROC curves
are discussed in Sec. VI B. In Sec. VI C we plot the
B-statistic as a function of the orbital parameters a0 and ϕa,
in order to inform the gridding strategy for future searches,
e.g., for LMXBs. Versions II and III of the HMM are
compared at each stage.

A. Representative example

The signal phase corresponding to a binary neutron star
is given by (16) with a0 ≠ 0. Figure 7 illustrates the output
of versions II and III of the HMM for three injected signals
of the above form with the same h0 values as in Sec. VA,
viz. h0=10−26 ¼ 1.7, 1.3, and 1.1. The parameters of the
binary orbit are quoted in Table III, with a0 and ϕa set at the
midpoints of their ranges. The stochastic component of
the injected phase, ΦwðtÞ, evolves according to the algo-
rithm in Sec. VA.
The results in Fig. 7 resemble those in Fig. 3. Both HMM

versions detect the strongest signal, but only version III
detects the intermediate signal. Neither detects the weakest
signal. Version III is ≈1.4 times more sensitive than version
II, and its sensitivity is approximately the same for isolated
and binary sources.9 Once the HMM fails to detect a signal,
the optimal Viterbi path stands many bins away from the
injected path and normally falls outside the plotted region.
The agreement in Figs. 7(b) and 7(c) looks better than it

actually is, because we plot the minimum-εf� paths, which
turn out to be the 2nd, 2nd, and 408th Viterbi paths for the
nondetections using version II in Fig. 7(b) and versions II
and III in Fig. 7(c) respectively. Such coincidental suc-
cesses are useless in an astrophysical search, where the true
f�ðtÞ is unknown. Similarly, it may seem that version II
outperforms version III on the h0 ¼ 1.1 × 10−26 injection,
because the minimum-εf� paths are the 2nd (version II)
versus the 408th (version III). Again this is misleading:
paths other than the first are not ranked consistently by the
Viterbi algorithm, and besides version III has 32 times more
paths than version II (and a different bin numbering system)
because it tracks both f� and Φ�.
The phase component of Q�ðOÞ is discussed briefly for

completeness in Appendix F.

B. ROC curves

In order to characterize the sensitivity of the HMM
systematically, we compute ROC curves for the same three
signal amplitudes in Fig. 7, viz. h0=10−26 ¼ 1.7, 1.3, and
1.1. The results are plotted in Fig. 8, where solid and
dashed curves correspond to versions III and II of the
HMM respectively. In the regime of practical interest, viz.
5 × 10−3 ≤ Pa ≤ 2 × 10−1, version III of the HMM deliv-
ers a detection probability ≈0.05 higher than version II at
the same Pa, a significant advantage when operating near
the detection limit. Replacing F1aðf0Þ and F1bðf0Þ with
J1aðf0Þ and J1bðf0Þ in the B-statistic leads to similar
tracking performance for isolated and binary sources,
although there is some modest loss of sensitivity in the
latter case. For example, a detection probability of ≈0.75 is
achieved in Fig. 8 for a binary source with h0¼1.3×10−26,
given Pa ¼ 10−2, compared to ≈0.90 for an isolated source

(a) (b)

FIG. 6. Tracking accuracy of the HMM. Root mean square frequency error εf� (left axis in units of Hz, right axis in units of
Δfdrift ¼ 5.8 × 10−7 Hz) integrated along the optimal path in the highest-ranked block versus the block score S. (a) Version III (red,
open circles) with NT ¼ 37 and Tdrift ¼ 10 d. (b) Version I (blue, filled circles) with NT ¼ 37 and Tdrift ¼ 10 d. Realizations: 3 × 102

per panel. Each realization comprises 20 contiguous, 37-bin blocks, one of which contains an injected signal with h0 ¼ 1.3 × 10−26 and
the source parameters in Table II. The block scores in (a) and (b) should not be compared as they arise from different statistics (B and F
respectively).

9This is consistent with previous work: Version II of the HMM
is sensitive down to the same h0 value, h0 ≈ 2 × 10−26, for a
binary source as version I is for an isolated source.
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with the same h0 in Fig. 5. [16] This is because the Jacobi-
Anger decomposition (21) and (22) accounts for the binary
motion imperfectly when combined with the B-statistic,
due to some covariance between the orbital and carrier
phases in the orbital sidebands. For h0 ≥ 1.7 × 10−26, the
performance is almost identical, as in Appendix E 4.
Monte Carlo simulations confirm that the performance of

the HMM as a function of NT for Tdrift or Tobs fixed is the

same as in the case of isolated sources (see Figs. 12 and 13
respectively in Appendix E). The results are not plotted to
avoid repetition.

C. Sensitivity to orbital parameters

Electromagnetic observations normally supply prior
constraints on LMXB orbital parameters. [12,61–63]
For many objects, including Sco X − 1, the electromagnetic
measurement of P through high-resolution optical spec-
troscopy is accurate enough, that a search over P is
unnecessary. In contrast, searches over a0 and ϕa are
usually required [64].
Figure 9 displays ln Pr½Q�ðOÞjO� for version III of the

HMM as a function of a0 and Tasc ¼ ϕaP=ð2πÞ þ constant,
where Tasc is the time of ascending node. The log
probability is evaluated at the true, injected value of f�
and maximized with respect to Φ�, for a strong signal with
h0 ¼ 8 × 10−26 tracked over NT ¼ 37 steps. Starting from

(a) (b)

(c)

FIG. 7. Sample tracking output from versions II (purple curves) and III (green curves) of the HMM for three injected signals (black
curves) from a source in a binary with parameters drawn from Tables II and III with h0=10−26 ¼ 1.7 [panel (a)], 1.3 [panel (b)], and 1.1
[panel (c)], plotted on the same axes as in Fig. 3. The purple and green curves are the best-matching frequency paths (with minimum
εf� ); they are not necessarily the optimal path Q�ðOÞ. The optimal path matches well [i.e., within a few frequency bins of f�ðtÞ for all t]
for versions II and III in (a) and version III in (b). The optimal path matches poorly for version II in (b) and versions II and III in (c);
indeed it lies outside the border of the plot. We plot instead the paths with minimum εf� , viz. the 2nd, 2nd, and 408th Viterbi paths
respectively, which lie within a few frequency bins of f�ðtÞ purely by chance but are of no practical use in an astrophysical search.
Control parameters: γ ¼ 1.0 × 10−16 s−1, σ ¼ 3.7 × 10−10 s−3=2.

TABLE III. Orbital parameters used to create the synthetic data
for the binary sources analyzed in Sec. VI.

Parameter Value Units Description

P 68023.7 s Orbital period
a0 [1.26,1.62] lt-s Projected orbital semimajor axis
ϕa ½0; 2π� — Reference orbital phase
e 0.0 — Orbital eccentricity
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the panel at the bottom right of the figure, we observe that
ln Pr½Q�ðOÞjO� peaks strongly around the true, injected
orbital elements atrue0 and T true

asc . The top left panel zooms
into the peak (note the magnified scale) and shows that it is
encircled by “ripples” reminiscent of a diffraction pattern.
The ripples are visible more clearly in the cross sections at

Tasc ¼ T true
asc and a0 ¼ atrue0 , graphed in the top right and

bottom left panels respectively. Both cross sections are
sinc-like, except that the nodes do not touch zero;
Pr½Q�ðOÞjO� is positive definite. Qualitatively the features
in Fig. 9 match those observed in Fig. 4 in Ref. [19] for the
J -statistic HMM (version II), although the scales are not
comparable of course.
In practice, in a search with real data, the grid spacings in

a0 and Tasc are set according to a parameter space metric
and depend on the search frequency f0. [64] For example,
the LIGO O2 search for Sco X − 1 with HMM version II
employs 768 a0 bins of width 2.3 × 10−3 lt s [with
1.45 ≤ a0=ð1 lt sÞ ≤ 3.25] at f0 ¼ 60 Hz, compared to
8227 a0 bins of width 2.2 × 10−4 lt s at f0 ¼ 650 Hz.
[17,63] The resolution is chosen to yield a mismatch of
≤ 10% in the squared SNR, as defined by Eq. (5) in
Ref. [64], the worst case being when the signal straddles the
boundary between two bins. Without being comparable
directly, the above approach is consistent with Fig. 9: the
squared SNR is of the same order as ln Pr½Q�ðOÞjO�,
and ln Pr½Q�ðOÞjO� drops off by ≤ 10% from its peak for
ja0 − atrue0 j≲ 10−3 lt s in the top right panel of Fig. 9 and for
jTasc − T true

asc j≲ 5 s in the bottom left panel of Fig. 9.
Convenient formulas for the number of a0 and Tasc
templates in terms of the desired mismatch are given in
Sec. V of Ref. [64].

VII. SCO X− 1 MDC: A REALISTIC EXAMPLE

A. Synthetic data

The Sco X − 1 MDC is a project to compare system-
atically the performance of published continuous-wave
search pipelines on a level playing field under simulated
Advanced LIGO conditions [20]. The MDC predates
HMM versions I and II. It evaluates the relative proficiency
of five pipelines against criteria including sensitivity,
computational cost, and accuracy in parameter estimation.
The pipelines are based on the CrossCorr [65–67], TwoSpect
[68,69], Radiometer [70–72], Sideband [52,60], and
Polynomial [73] algorithms. Method papers describing each
algorithm are cited in the previous sentence. Since the MDC
was published, two of the pipelines have completed searches
using Advanced LIGO data from O1 and O2 [3,74], as have
HMM versions I and II [16,17]. Two other pipelines have
completed searches using Initial LIGO data from Science
Run 6 (S6) [53,75]. It should be noted that O1 and O2 do not
achieve Advanced LIGO’s design sensitivity, approximated
in the MDC as Shðf0Þ1=2 ≈ 4 × 10−24 Hz−1=2 (Gaussian
recolored).
The MDC enables an important check on the results in

previous sections under realistic yet controlled conditions
on a dataset generated by an independent party. Of course,
the MDC is no longer closed, as it was in its original
incarnation; the TwoSpect, Radiometer, Sideband, and
Polynomial pipelines competed blindly in Ref. [20], before

FIG. 9. HMM performance as a function of binary orbital
elements. Log probability ln Pr½Q�ðOÞjO� versus a0 and Tasc for a
strong (SNR ≫ 1) binary-star signal with constant f⋆ observed
during NT ¼ 37 10-day segments. (Top left) Contours of
ln Pr½Q�ðOÞjO� on the Tasc − a0 plane, centered on the injected
values T true

asc and atrue0 . Hot colors stand for the highest log
probabilities. (Top right) Cross section through the peak of
ln Pr½Q�ðOÞjO� versus a0 for Tasc ¼ T true

asc . (Bottom left) Cross
section through the peak of ln Pr½Q�ðOÞjO� versus Tasc for
a0 ¼ atrue0 . (Bottom right) Zoomed out version of the top left
panel. Injection parameters: h0 ¼ 8 × 10−26, f⋆ ¼ 111.1 Hz,
atrue0 ¼ 1.44 lt s, and T true

asc ¼ 897753994 s (arbitrary orbital
phase), characteristic of Scorpius X − 1; see also Tables II and III.

FIG. 8. Comparative HMM performance for a source in a binary.
ROC curves for sources with h0=10−26 ¼ 1.7 (blue curve), 1.3
(green curve), and 1.1 (purple curve) and the source parameters in
Tables II and III. The false alarm probability Pa and detection
probability 1 − Pd are plotted on the horizontal and vertical axes
respectively. Solid and dashed curves correspond toHMMversions
III and II respectively. Control parameters: γ ¼ 1.0 × 10−16 s−1,
σ ¼ 3.7 × 10−10 s−3=2. Realizations: 104 per curve.
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the injection parameters were revealed, and the CrossCorr
pipeline analyzed the data in self-blinded mode, after the
injection parameters were revealed. In this paper we
preserve the etiquette of a self-blinded analysis but note
in fairness that some of the authors participated in previous
analyses of the same data with HMM versions I and II
[18,19]. We also note that f�ðtÞ does not wander for any of
the injected signals, even though we allow for wandering in
the HMM transition probabilities. Extensive testing in
previous published work demonstrates, that the HMM
delivers equal sensitivity, whether f�ðtÞ wanders or not,
as long as Tdrift satisfies (B1), [18,19] in line with
theoretical expectations [14]. Strictly speaking, however,
the analysis in this section checks the sensitivity and
accuracy of version III of the HMM; it does not test its
robustness to spin wandering. (Indeed nor did the original
MDC study with the five pipelines in Ref. [20].) A future
incarnation of the MDC including spin wandering, drawing
on the analysis in Ref. [7], is currently being prepared and
should be encouraged.
The parameters of the 50 injected signals in Stage I

(version 6) of the MDC are listed in Table III in Ref. [20].
They are designed to resemble Sco X − 1, with 0.050 ≤
2f�=ð1 kHzÞ ≤ 1.5 and orbital elements similar to those
measured electromagnetically [61–63]. Since the original
MDC release, the data for three injections, with indexes 65,
66, and 75 in Ref. [20], are no longer accessible due to
human error. They are omitted from the analysis below,
which is restricted to 47 injections.

B. Search procedure

The analysis is conducted as follows in order to copy
approximately some of the steps in a search with real
LIGO data.
(1) Starting from f0 ¼ 50 Hz and defining subbands in

increments of 0.1 Hz, we identify the subband
containing the injected signal. The partition is
similar to the O2 Sco X − 1 search with version
II of the HMM, which implemented 0.6-Hz sub-
bands, without f� being known of course. [17] In
effect this step is self-blinded to a good approxima-
tion, because there are ð0.1 HzÞ=Δfdrift ¼ 1.7 × 105

frequency bins in the subband, any single one of
which can contain the injected signal in principle.

(2) An orbital grid is laid out in a0 and Tasc as for the
HMM O2 Sco X − 1 search. The grid spacings in a0
and Tasc are given by 1.2 × 10−4ðf0=0.3 kHzÞ−1 lt s
and 0.89ðf0=0.3 kHzÞ−1ða0=1.44 lt sÞ−1 s within the
electromagnetic priors 1.45 ≤ a0=ð1 lt sÞ ≤ 3.25 and
1164543014 ≤ Tasc=ð1 sÞ ≤ 1164543614 respec-
tively [17,63]. The grid spacings are one quarter
of what is predicted by the parameter space metric
via Eqs. (70) and (71) in Ref. [64], assuming a
squared-SNR mismatch of ≤ 10%. The safety factor
1=4 is discussed further below. Strictly speaking the

grid spacing varies from one f0 bin to the next, but in
practice it is kept uniform within each 0.1-Hz
subband, substituting the subband midpoint into
the above formulas as a good approximation.

(3) A grid is also laid out in orbital period P, with grid
spacing 1.0ðf0=0.3 kHzÞ−1ða0=1.44 lt sÞ−1 s involv-
ing the same safety factor 1=4 from step 2 above,
based on Eqs (70) and (71) in Ref. [64] in the regime
P ≪ Tdrift. This is a new step. Some of the MDC
injections are not exactly at P ¼ 68023.7 s, the
central value returned by electromagnetic observa-
tions, [61–63] although they are close to it. Previous
MDC analyses ignore the slight mismatch, moti-
vated by the parameter space metric which implies
that one P template is sufficient, because the
experimental uncertainty (�0.04 s) is less than the
metric-based resolution ≈0.2 s. [19,64] They search
P ¼ 68023.7 s only and are still successful; for
example, version II of the HMM finds all 50
injections thus. [19] However version III of the
HMM, which is more sensitive to weaker signals,
also depends more sensitively on P.

(4) Version III of the HMM is executed on 4 × 4 × 4
adjacent triples ða0; Tasc; PÞ centered on the injec-
tion. (The MDC analysis is executed on a subset of
the grid for computational economy; in an astro-
physical search, we scan the whole grid.) Each triple
ða0; Tasc; PÞ is accompanied by an f0 scan divided
into ð0.1 HzÞ=Δfdrift=NT ¼ 4671 blocks as de-
scribed in Sec. V C. The highest log probability
among these 64 × 4671 ðf0; a0; Tasc; PÞ combina-
tions becomes the block score according to (35).

(5) The root mean square frequency error εf� is calcu-
lated along the optimal, wandering Viterbi track as
in Sec. V E. Absolute, signed errors εa0 and εTasc

are
also calculated for a0 and Tasc respectively as the
injected minus recovered values for the optimal
Viterbi track. This approach is adopted deliberately
to stay consistent with previous MDC analyses,
which verify the accuracy of the top candidate in
a block instead of quantifying the false alarm
probability. [18,20] In a search with real data, one
would instead compare the block score with a
threshold set by Pa and follow up any candidates
through a veto procedure [16,17].

C. Signal detectability

The results of analyzing theMDC data with version III of
the HMM are presented in Table IV. Each line of the table
corresponds to one injection, indexed as in Ref. [20] (first
column). The injection parameters f�, a0, and Tasc are
quoted along with the respective errors εf� , εa0 , and εTasc

in
the parameter values recovered by the HMM. Two simu-
lated interferometers (H1 and L1) are employed, chiefly to
preserve consistency with the previous MDC analysis

A. MELATOS et al. PHYS. REV. D 104, 042003 (2021)

042003-18



involving version II of the HMM [19]. The data start at GPS
time 1230338490 and are divided into NT ¼ 37 segments
with Tdrift ¼ 10 d.

Version III detects 47 out of 47 available injections. The
outcome is reassuring but not surprising. Version II also
detects every signal, and version III is ≈1.5 times more

TABLE IV. Results of tracking the 47 available injections in the Sco X − 1MDC, sorted by index from Ref. [20], using version III of
the HMM to track phase and frequency.

Index h0ð10−25Þ heff0 ð10−25Þ f� (Hz) εf⋆ (Hz) a0 (s) εa0 (s) Tasc (s) εTasc
(s)

1 4.160 2.706 54.498391348174 4.342 × 10−7 1.37952 −9.518 × 10−4 1245967666.02 −11.12
2 4.044 2.511 64.411966012332 4.229 × 10−7 1.76461 4.803 × 10−4 1245967592.98 −5.27
3 3.565 3.463 73.795580913582 6.836 × 10−7 1.53460 −1.585 × 10−3 1245967461.35 −5.66
5 1.250 1.154 93.909518008164 5.104 × 10−7 1.52018 −8.158 × 10−5 1245966927.93 2.22
11 3.089 1.399 154.916883586097 3.464 × 10−7 1.39229 4.297 × 10−5 1245967559.97 2.67
14 2.044 1.286 183.974917468730 3.553 × 10−7 1.50970 −7.066 × 10−4 1245967551.05 −3.63
15 11.764 4.169 191.580343388804 3.612 × 10−7 1.51814 −4.484 × 10−4 1245967298.45 0.10
17 3.473 1.253 213.232194220000 2.244 × 10−7 1.31021 −7.427 × 10−5 1245967522.54 1.74
19 6.031 2.437 233.432565653291 3.189 × 10−7 1.23123 −1.060 × 10−4 1245967331.14 1.27
20 9.710 3.434 244.534697522529 3.941 × 10−7 1.28442 −4.418 × 10−4 1245967110.97 −1.10
21 1.815 0.792 254.415047846878 5.561 × 10−7 1.07219 7.354 × 10−5 1245967346.40 −1.24
23 2.968 1.677 271.739907539784 3.922 × 10−7 1.44287 −2.731 × 10−4 1245967302.29 −2.22
26 1.419 1.172 300.590450155009 3.342 × 10−7 1.25869 −1.721 × 10−4 1245967177.47 −1.87
29 4.275 3.131 330.590357652653 4.893 × 10−7 1.33070 −6.673 × 10−5 1245967520.83 −0.84
32 10.038 4.391 362.990820993568 1.870 × 10−7 1.61109 −2.790 × 10−4 1245967585.56 0.24
35 16.402 9.183 394.685589797695 3.466 × 10−7 1.31376 −1.059 × 10−4 1245967198.05 1.75
36 3.864 1.539 402.721233789014 5.075 × 10−7 1.25484 −6.642 × 10−5 1245967251.35 0.79
41 1.562 0.746 454.865249156175 2.651 × 10−7 1.46578 −1.896 × 10−4 1245967225.75 0.36
44 2.237 1.996 483.519617972096 8.346 × 10−8 1.55221 −1.446 × 10−4 1245967397.86 0.13
47 4.883 1.992 514.568399601819 2.824 × 10−7 1.14020 −1.637 × 10−4 1245967686.81 0.33
48 1.813 0.745 520.177348201609 6.614 × 10−7 1.33669 −3.329 × 10−5 1245967675.30 0.15
50 1.093 1.027 542.952477491471 5.178 × 10−7 1.11915 −2.302 × 10−4 1245967927.48 −1.47
51 9.146 3.372 552.120598886904 6.501 × 10−7 1.32783 6.253 × 10−5 1245967589.54 −0.94
52 2.786 1.550 560.755048768919 4.209 × 10−7 1.79214 −6.193 × 10−5 1245967377.20 0.61
54 1.518 1.256 593.663030872532 5.792 × 10−7 1.61276 −3.115 × 10−5 1245967624.53 0.30
57 1.577 0.788 622.605388362863 5.260 × 10−7 1.51329 −5.596 × 10−5 1245967203.21 −1.00
58 3.416 1.287 641.491604906276 6.158 × 10−7 1.58443 −1.418 × 10−4 1245967257.74 0.16
59 8.835 4.981 650.344230698489 7.830 × 10−7 1.67711 −1.422 × 10−4 1245967829.90 −0.69
60 2.961 2.467 664.611446618250 7.197 × 10−7 1.58262 5.343 × 10−5 1245967612.31 −0.41
61 6.064 2.158 674.711567789201 4.978 × 10−7 1.49937 −1.037 × 10−4 1245967003.32 −0.01
62 10.737 3.853 683.436210983289 8.223 × 10−7 1.26951 −4.060 × 10−5 1245967453.97 −0.00
63 1.119 0.745 690.534687981171 6.762 × 10−7 1.51824 −3.958 × 10−5 1245967419.39 −0.18
64 1.600 0.570 700.866836291234 5.143 × 10−7 1.39993 −6.909 × 10−5 1245967596.12 −0.96
67 4.580 1.623 744.255707971300 3.620 × 10−7 1.67774 −1.551 × 10−4 1245967084.30 0.27
68 3.696 1.844 754.435956775916 4.000 × 10−7 1.41389 −8.960 × 10−5 1245967538.70 0.38
69 2.889 1.053 761.538797037770 3.693 × 10−7 1.62613 −1.239 × 10−4 1245966821.55 0.03
71 2.923 1.232 804.231717847467 3.238 × 10−7 1.65203 8.338 × 10−6 1245967156.55 0.30
72 1.248 0.792 812.280741438401 4.597 × 10−7 1.19649 −1.325 × 10−4 1245967159.08 0.87
73 2.444 0.936 824.988633484129 9.533 × 10−7 1.41715 −6.960 × 10−5 1245967876.83 0.82
76 3.260 1.725 882.747979842807 4.813 × 10−7 1.46249 −8.305 × 10−5 1245966753.24 −0.17
79 4.681 1.656 931.006000308958 2.697 × 10−7 1.49171 −7.243 × 10−5 1245967290.06 0.14
83 5.925 2.186 1081.398956458276 7.176 × 10−7 1.19854 −3.862 × 10−5 1245967313.93 −1.02
84 11.609 7.184 1100.906018344283 7.529 × 10−7 1.58972 −6.257 × 10−6 1245967204.15 −0.35
85 4.553 1.633 1111.576831848269 8.018 × 10−7 1.34479 −9.497 × 10−5 1245967049.35 −0.90
90 0.684 0.618 1193.191890630547 4.053 × 10−7 1.57513 −7.212 × 10−5 1245966914.27 −0.21
95 4.293 3.059 1324.567365220908 5.198 × 10−7 1.59169 −1.443 × 10−5 1245967424.76 0.53
98 5.404 1.948 1372.042154535880 7.448 × 10−7 1.31510 −7.340 × 10−5 1245966869.92 −0.34
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sensitive than version II according to the results in Secs. V
and VI. The signal amplitudes are quoted in the second
and third columns of Table IV in terms of h0 and heff0 ¼
h02−1=2f½ð1þ cos2 {Þ=2�2 þ cos2 {g1=2 respectively. The
source inclination influences detectability through the
relative weighting of the plus and cross polarizations,
and heff0 serves as an amplitude proxy which normalizes
for this effect, as verified in Ref. [19] (see the tests in
Sec. VA and Fig. 5 of the latter reference). The quietest
detected signals from the h0 and heff0 perspectives are
injections 90 (h0¼6.8×10−26) and 64 (href0 ¼ 5.7 × 10−26)
respectively. Both lie well above the version III sensitivity
limit h0 ≥ 1.3 × 10−26 established in Secs. V and VI.
The conclusions are not affected by the absence of
injections 65, 66, and 75, which are all relatively strong
[7.7 ≤ h0=ð10−25Þ ≤ 9.3] and are detected easily by ver-
sions I and II with two interferometers.

D. Accuracy

Although versions II and III both detect all the injections,
version III recovers the true signal parameters more
accurately. The fifth column of Table IV indicates that
version III recovers f�ðtÞ with a root mean square error
across NT ¼ 37 segments of εf� ≤ 9.5×10−7 Hz≤ 2Δfdrift.
(Recall that the optimal Viterbi track is free to wander,
whereas the injections are stationary.) Indeed 33 out of 47
injections are recovered with εf� ≤ Δfdrift. Essentially
parameter estimation is limited by the spectral resolution.
In contrast, version II of the HMM recovers 27 out of
50 injections with εf� ≈ P−1 ≫ Δfdrift, much worse than
the spectral resolution, viz. 1 ≤ εf�=ð10−5 HzÞ ≤ 2; see
Table IV in Ref. [19]. The step up from εf� ∼ Δfdrift to
εf� ∼ P−1 occurs, because version II sometimes converges
on the orbital sidebands f� � P−1, whereas version III
always converges on the central peak f� for the MDC
injections. Interestingly, no strong correlation is found
between εf� and heff0 with version III. Once the HMM
detects a signal, εf� ≲ Δfdrift is grid-limited and essentially
random. A similar lack of correlation is observed for
version II [19].
Version III is also more accurate than version II when

recovering the orbital elements. The seventh column of
Table IV indicates that version III recovers a0 with an
absolute error of jεa0 j ≤ 1.6 × 10−3 lt s. This amounts to≲5
times the grid resolution, which decreases ∝ f−10 from
6.6 × 10−4 lt s at f0¼54.5Hz (injection 1) to 2.6×10−5 lts
at f0 ¼ 1.37 kHz (injection 98). Although the maximum
value of jεa0 j is comparable for versions II and III,
version III recovers 26 out of 47 injections with
jεa0 j ≤ 1 × 10−4 lt s, whereas version II only recovers eight
out of 50 injections with jεa0 j ≤ 1 × 10−4 lt s. Interestingly
version III underestimates a0 41 out of 47 times. It is
currently unclear why this happens, and more tests are

needed to explore the behavior and check if it is a
statistical fluctuation.
The ninth column of Table IV indicates that version III

recovers Tasc with an absolute error of jεTasc
j ≤ 11 s, i.e.,

≲5 times the grid resolution, which decreases ∝ f−10 a−10
from ≈5 s at f0 ¼ 54.5 Hz (injection 1) to ≈0.2 s at
f0 ¼ 1.37 kHz (injection 98). The Tasc estimates compare
favorably with the orbital phase errors jεϕa

j¼2πjεTasc
j=P≤

1.0×10−3 yielded by version II. The maximum ϕa error is
comparable in versions II and III, but version III recovers
21 out of 47 injections with jεTasc

j ≤ 0.5 s, whereas version
II recovers only five out of 50 injections with jεTasc

j ≤ 0.5 s.
The Tasc results parallel the behavior observed in εa0 .
Accuracy of parameter estimation is a better diagnostic

for illustrating the superiority of version III in the MDC
context than (say) the minimum number of segments
required to detect a signal. Version II detects 43 out of
50 injections with NT ¼ 1 and the remaining seven with
NT ≤ 13 (Tdrift ¼ 10 d) [19]. There is not much room for
version III to outperform against this measure but for the
record it does: it detects every injection except the two
weakest (indexes 64 and 90) with NT ¼ 1.

VIII. CONCLUSIONS

A HMM coupled with a stepwise matched filter provides
an efficient, semicoherent way to detect and track the
unknown signal frequency of a quasimonochromatic,
continuous gravitational wave source with spin wandering
driven by internal processes (isolated source) or accretion
(binary source). In previous work HMMs have searched for
the LMXB Sco X − 1 in LIGO O1 and O2 data using
frequency domain, maximum likelihood matched filters:
the Bessel-weighted F -statistic (version I), which does
not track orbital phase, and the Jacobi-Anger J -statistic
(version II), which does. Here we generalize existing HMM
pipelines to track rotational phase as well as orbital phase
(version III). In the emission probability, the J -statistic is
replaced by a phase-sensitive version of the Bayesian
B-statistic introduced for loosely coherent searches. The
data are input as SFTs, leveraging the well-tested software
infrastructure in the LAL. In the transition probability, the
intra-step spin wandering is modeled according to a phase-
wrapped Ornstein-Uhlenbeck process. A recipe for choos-
ing the Ornstein-Uhlenbeck control parameters, γ and σ, is
given in Sec. III B. A revised detection strategy based on
block scores is described in Sec. V C.
The sensitivity of version III of the HMM is quantified.

The ROC curves in Secs. V D and VI B give Pd ≥ 0.9
(isolated source) and Pd ≥ 0.75 (binary source), when the
characteristic wave strain satisfies h0 ≥ 1.3 × 10−26, with
Pa ¼ 10−2. Hence version III is ≈1.5 times more sensitive
than version II. The requirement of phase continuity from
one HMM step to the next lowers Pa at fixed h0 and
increases 1 − Pd at fixed Pa. Performance is optimized,
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when Tdrift matches the source’s spin wandering timescale.
The results depend weakly on γ, σ, the block width when
calculating the block score, and the location of the block
boundary.
The tracking accuracy is quantified in Secs. V E and

VI C. It is found that the root mean square frequency error
is bounded spectrally and is therefore near-optimal, with
εf� ≲ Δfdrift when an injected signal is detected success-
fully and εf� ≫ Δfdrift otherwise. The absolute errors in the
orbital elements are limited to ≲5 times the grid resolution
in a0 and ϕa (or equivalently Tasc) set by the parameter
space metric. [64] The HMM log probability peaks unim-
odally at the correct value in the a0 − Tasc plane, with a
sinc-like cross section (see Fig. 9). The accuracy is
confirmed by the performance of version III of the
HMM in the Sco X − 1 MDC (in self-blinded mode). It
finds 47 out of 47 injections currently available (out of
50 originally) with NT ¼ 37, Tdrift ¼ 10 d, and two simu-
lated interferometers, achieving accuracies of jεf� j ≤
9.5 × 10−7 Hz, jεa0 j ≤ 1.6 × 10−3 lt s, and jεTasc

j ≤ 11 s.
Version III is less prone to converging on the sidebands
f� � P−1 and is systematically more accurate, e.g., it
recovers 26 out of 47 injections with jεa0 j≤1×10−4 lts,
whereas version II only achieves such accuracy eight times
out of 50. The gridding strategy adopted here, which is to
implement conservatively the parameter space metric in
Ref. [64] as described in Sec. VII B, should be regarded as a
first pass. Optimizing the gridding strategy is postponed to
future work, in the context of a search with real data (which
introduces other relevant constraints). Stage II of the MDC
will test the robustness of the HMM and other algorithms
like CrossCorr [67] and TwoSpect [69] to spin wandering.
Previous studies demonstrate that the HMM handles
signals with and without spin wandering with equal
dexterity, as long as Tdrift satisfies condition (B1) [18,19].

The HMM in this paper is solved by the Viterbi algorithm,
which exploits dynamic programming. The additional phase
tracking step inevitably slows down version III of the HMM
compared to version II, with the number of operations
scaling approximately ∝ NQ lnNQ (see Sec. II A), and NQ

increasing by a factor ∼10. Overall, however, the imple-
mentation remains fast, processing ≈0.3 Hz per CPU-hr for
one choice of ða0; Tasc; PÞ, approximately 10 times slower
than version II. Viterbi-based continuous wave searches have
proved amenable to being implemented on graphical
processing units, which can shorten the run time ≈40-fold
[76]. The computational savings from an optimized imple-
mentation on graphical processing units can be reinvested to
extend the astrophysical ambition of an analysis, e.g., by
targeting LMXBs other than Sco X − 1 [12]. Savings can
also be reinvested to expand the scope of Viterbi-based,
nonparametric, all-sky searches and searches for wandering
instrumental lines [27].
What conclusions can we expect to draw about the

astrophysical causes of spin wandering, when the HMM

ultimately detects a real signal? At present it is hard to say.
Neutron star models involve a great deal of uncertain
physics, which will blur the interpretation of any HMM
detection, whether it involves versions I, II, or III, unless
the detection itself reveals some unexpected and inform-
ative signature. Electromagnetic observations may improve
the situation. Consider, for example, an LMXB where
one observes simultaneously the X-ray flux FXðtÞ and
the wandering spin f�ðtÞ. One might hope to cross-
correlate the fluctuations in FX and _f� and thereby test
the accretion physics [7]. However, the traditional
assumption FX ∝ _M ∝ _f�, where _M denotes the mass
accretion rate, does not always hold for various reasons,
e.g., nonconservative mass transfer, hydromagnetic con-
tributions to _f�, and unsteady dynamics due to magneto-
spheric instabilities [37,77]. Some of the relevant issues are
canvassed in Ref. [78]. As a second illustrative example,
suppose the HMM detects a steady tone with minimal spin
wandering from a radio pulsar, that displays strong timing
noise at radio wavelengths. Such an observation would
arguably suggest, that the gravitational wave signal is
emitted by the weakly coupled superfluid interior of the
star as opposed to the crust (which is locked magnetically
to the radio pulses). Furthermore, if f� from the HMM
approximately equals the time-averaged radio pulse fre-
quency, it arguably represents partial evidence for pinning
of the superfluid [32,79]. These and other possibilities will
clarify themselves, once detections are made routinely.
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APPENDIX A: VITERBI ALGORITHM

The Viterbi algorithm prunes the tree of possible hidden
state sequences Q by appealing to Bellman’s principle of
optimality: if a subpath fq�ðtiÞ;…; q�ðtjÞg is optimal, then
all of its subpaths are optimal as well [80]. Dynamic
programming is exploited to implement the principle of
optimality in an efficient, recursive fashion [14,15,18].
Pseudocode describing the implementation is presented
below in abridged form for ease of reference.
At time tk (1 ≤ k ≤ NT), let the vector δðtkÞ store the NQ

maximum probabilities

δqiðtkÞ ¼ max
qj

Pr½qðtkÞ ¼ qijqðtk−1Þ ¼ qj;OðkÞ�; ðA1Þ

with 1 ≤ i ≤ NQ, and let the vector ΦðtkÞ store the hidden
states at tk−1 leading to the corresponding maximum
probabilities in δðtkÞ, viz.

ΦqiðtkÞ ¼ argmax
qj

Pr½qðtkÞ ¼ qijqðtk−1Þ ¼ qj;OðkÞ�;

ðA2Þ

with OðkÞ ¼ foðt0Þ;…; oðtkÞg and

Pr½qðtkÞ ¼ qijqðtk−1Þ ¼ qj;OðkÞ� ¼ LoðtkÞqiAqiqjδqjðtk−1Þ:
ðA3Þ

The components of δðtkÞ and ΦðtkÞ are filled by running
forward through the NT observations, then the optimal path
Q�ðOÞ is reconstructed by backtracking.
(1) Initialization:

δqiðt0Þ ¼ Loðt0ÞqiΠqi ; ðA4Þ

for 1 ≤ i ≤ NQ.
(2) Recursion:

δqiðtkÞ ¼ LoðtkÞqi max
1≤j≤NQ

½Aqiqjδqjðtk−1Þ�; ðA5Þ

ΦqiðtkÞ ¼ argmax
1≤j≤NQ

½Aqiqjδqjðtk−1Þ�; ðA6Þ

for 1 ≤ i ≤ NQ and 1 ≤ k ≤ NT .
(3) Termination:

max PrðQjOÞ ¼ max
qj

δqjðtNT
Þ ðA7Þ

q�ðtNT
Þ ¼ argmax

qj
δqjðtNT

Þ ðA8Þ

for 1 ≤ j ≤ NQ.
(4) Optimal path backtracking:

q�ðtkÞ ¼ Φq�ðtkþ1Þðtkþ1Þ ðA9Þ

for 0 ≤ k ≤ NT − 1.

APPENDIX B: DRIFT TIMESCALE

A practical recipe for choosing the drift timescale Tdrift ¼
tnþ1 − tn (see Sec. II A) when tracking f�ðtÞ is described
in Refs. [18,19]. In this Appendix we generalize the recipe
for the purpose of tracking f�ðtÞ and Φ�ðtÞ in version III
of the HMM.
The choice of Tdrift is governed by the packaging of input

data when computing the emission probability Lojqi, which
comes with implicit assumptions about the signal proper-
ties in the interval tn−1 ≤ t ≤ tn. Importantly we require
Lojqi to peak as sharply as possible in the neighborhood
of the truly occupied hidden state qðtnÞ, with Lojqi ≈ δ½qi −
qðtnÞ� ideally, in order to maximize Pr½Q�ðOÞjO�. Typically
Lojqi is computed from frequency-domain data covering
the whole interval tn−1 ≤ t ≤ tn, and qðtÞ does not contain
frequency-drift variables like _f�ðtÞ. Therefore the matched
filter that computes Lojqi (e.g., the F - or B-statistic)
assumes that f�ðtÞ stays within a single, discrete bin during
every HMM time-step. For this assumption to hold, one
must choose Tdrift to satisfy

����
Z

tþTdrift

t
dt0 _f�ðt0Þ

���� < Δfdrift ðB1Þ

for all t, where Δfdrift is the separation between adjacent
frequency bins (which are assumed to be uniformly spaced
in this paper, i.e., Δfdrift is independent of qi). A different
method of computing Lojqi , e.g., from time-domain data,
may impose a different constraint on Tdrift.
It is tempting to extend the above argument to Φ�ðtÞ

and insist that it should stay within a single bin too (of
width ΔΦdrift ¼ π=16 in this paper),10 but this is unneces-
sary. Frequency-domain matched filters like the F - and
B-statistic do not assume that Φ�ðtÞ is constant for
tn−1 ≤ t ≤ tn; they are well-behaved functions of
Φ�ðtn−1Þ at the start of the HMM time-step. Confining
Φ�ðtÞ to a single phase bin would shorten Tdrift by a factor
≈π=ΔΦdrift, widen every frequency bin by the same factor

10The analyst enjoys considerable freedom in setting ΔΦdrift,
as long as the peaks in the transition probability in Fig. 1(b) are
resolved. In contrast, Δfdrift ¼ ð2TdriftÞ−1 is determined by Tdrift.
See Sec. II C for details.
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(Nyquist theorem), and reduce proportionally the signal-to-
noise ratio per frequency bin [13,22].
Naturally one does not know _f�ðt0Þ in (B1) in advance,

so there is some trial and error involved in choosing Tdrift
through (B1). In this paper we focus on gravitational wave
searches for isolated and accreting neutron stars, whose
rotatational irregularities have been studied extensively in
radio [5,31] and x-ray [6,35] timing experiments, which
yield autocorrelation timescales of days to months. These
electromagnetic measurements therefore offer a starting
point to estimate Tdrift for other objects in the same class,
where _f�ðt0Þ is not measured [7]. For reasons of conven-
ience described in Sec. II, we elect to work with Fourier-
transformed data in this paper [18,19], which come
packaged in calibrated, conditioned (antialias filtering, data
drop-out), short-time Fourier transforms (SFTs) of duration
TSFT ¼ 30 min [45]. Hence one has TSFT ≤ Tdrift as a
practical matter, a constraint which would be absent in a
time-domain analysis. Given the wide range of measured
autocorrelation timescales, one can envisage a hierarchical
search strategy, in which a search is repeated for
several Tdrift values in the range TSFT ≤ Tdrift ≤ Tobs, where
Tobs ∼ 1 yr is the total observation time.

APPENDIX C: PHASE-WRAPPED
ORNSTEIN-UHLENBECK PROCESS

In this Appendix we solve the Fokker-Planck equation
corresponding to the stochastic differential equations (6)
and (7) to obtain the probability density function (PDF)
pðt; f�;Φ�Þ and hence the HMM transition probabilities
over the interval tn ≤ t ≤ tnþ1 given the initial state qðtnÞ ¼
½f�ðtnÞ;Φ�ðtnÞ� or the final state qðtnþ1Þ ¼ ½f�ðtnþ1Þ;
Φ�ðtnþ1Þ�. The discussion follows Appendix A in
Ref. [51]. Equations (6) and (7) are equivalent to tradi-
tional, spatial Brownian motion, with f� andΦ� playing the
roles of velocity and displacement respectively, except that
Φ� is 2π-periodic.
If the hidden state qðtnÞ occupied at the start of the HMM

step tn ≤ t ≤ tnþ1 is known with certainty, the PDF of the
final state at t ¼ tnþ1 is given by the solution pFðt; f�;Φ�Þ
of the forward Fokker-Planck equation [50]

∂pF

∂t ¼ γpF þ γf�
∂pF

∂f� − f�
∂pF

∂Φ�
þ σ2

2

∂2pF

∂f2� ; ðC1Þ

evaluated at t ¼ tnþ1 given pFðtn;f�;Φ�Þ¼δ½f�−f�ðtnÞ�×
δ½Φ�−Φ�ðtnÞ�. If the final state qðtnþ1Þ is known
with certainty, the PDF of the initial state is given by
the solution pBðt; f�;Φ�Þ of the backward Fokker-Planck
equation,

∂pB

∂t ¼ γf�
∂pB

∂f� − f�
∂pB

∂Φ�
−
σ2

2

∂2pB

∂f2� ; ðC2Þ

evaluated at t ¼ tn given pBðtnþ1; f�;Φ�Þ ¼ δ½f�−
f�ðtnþ1Þ�δ½Φ� −Φ�ðtnþ1Þ�. Equation (C2) is the adjoint
of (C1). Upon multiplying (C1) by the integrating factor
expð−γtÞ, we find

pBðt; f�;Φ�Þ ∝ expð−γtÞpFðt; f�;Φ�; σ2 ↦ −σ2Þ; ðC3Þ

where σ2 ↦ −σ2 denotes replacing σ2 by −σ2 in pF.
Upon Fourier analyzing pF, as in Ref. [51], we find that

the characteristic function

p̃Fðt; κ; mÞ ¼
Z

2π

0

dΦ�

Z
∞

−∞
df� expð−imΦ� − iκf�Þ

× pFðt; f�;Φ�Þ ðC4Þ

satisfies

∂p̃F

∂t ¼ ð−γκ þmÞ ∂p̃
F

∂κ −
σ2κ2p̃F

2
; ðC5Þ

subject to the initial condition

p̃Fðtn; κ; mÞ ¼ exp½−imΦ�ðtnÞ − iκf�ðtnÞ�: ðC6Þ

Equations (C5) and (C6) are solved by the method of
characteristics to give

p̃Fðtnþ1; κ; mÞ ¼ exp½−imΦ�ðtnÞ − iρf�ðtnÞ�

× exp

�
σ2

4γ

�
ρ −

m
γ

��
ρþ 3m

γ

��

× exp

�
−
σ2

2

�
m2τ

γ2
þ 2m

γ2

�
κ −

m
γ

��	

× exp

�
−
σ2

4γ

�
ρ −

m
γ

�
2

expð2γτÞ
�
;

ðC7Þ

with τ ¼ tnþ1 − tn and

ρ ¼ m
γ
þ
�
κ −

m
γ

�
expð−γτÞ ðC8Þ

and hence

p̃Fðtnþ1; f�;Φ�Þ ¼ ð2πÞ−2
X∞

m¼−∞
expðimΦ�Þ

×
Z

∞

−∞
dκ expðiκf�Þp̃Fðt; κ; mÞ: ðC9Þ

By completing the square in the argument of the expo-
nential in (C7), one finds that (C9) can be written as a
wrapped Gaussian [51].

HIDDEN MARKOV MODEL …. III. ROTATIONAL PHASE TRACKING PHYS. REV. D 104, 042003 (2021)

042003-23



The solution (C3) to the backward Fokker-Planck
equation (C2) provides an efficient route to calculating
the maximum probabilities at each HMM step, which are
stored in the vector δðtkÞ in the Viterbi implementation
described in Appendix A. Equation (C3), just like (C9), can
be expressed as a wrapped Gaussian, viz.

pBðtn;qÞ ¼ ð2πÞ−1ðdetΣÞ−1=2

×
X∞

m¼−∞
exp½−ðq −QmÞΣ−1ðq −QmÞT�;

ðC10Þ

with q ¼ ðf�;Φ�Þ and matrix elements

ðQmÞ1 ¼ f�ðtnþ1Þ expð−γτÞ; ðC11Þ

ðQmÞ2 ¼ Φ�ðtnþ1Þ þ
f�ðtnþ1Þ

γ
½1 − expð−γτÞ� − 2πm;

ðC12Þ

Σ11 ¼
σ2

2γ
½1 − expð−2γτÞ�; ðC13Þ

Σ12 ¼ Σ21 ¼
σ2

2γ2
½1 − expð−γτÞ�2; ðC14Þ

Σ22 ¼
σ2

2γ3
f1þ 2γτ − ½2 − expð−γτÞ�2g: ðC15Þ

We can then read off the moments hf�i, hΦ�i, hf2�i − hf�i2,
hf�Φ�i − hf�ihΦ�i, and hΦ2�i − hΦ�i2 of pB by inspection
from (C11)–(C15) respectively [51].

APPENDIX D: MAXIMUM LIKELIHOOD
ALTERNATIVES TO THE B-STATISTIC

In this Appendix, we review briefly the maximum
likelihood formulas for LoðtnÞqi used in versions I and II
of the HMM, which do not depend on rotational phase.
[18,19] We then present for completeness a natural, phase-
dependent generalization of these maximum likelihood
formulas. Empirical testing indicates, that the generalized
formula yields no discernible improvement in performance
over versions I and II of the HMM, unlike the B-statistic
presented in Sec. IV C.
In version I of the HMM, [18] for an isolated source

(a0 ¼ 0) with zero phase (cf. spin) wandering (Φw ¼ 0),
the log likelihood is just the F -statistic, Gðf0Þ ¼ F ðf0Þ,
viz.

F ðf0Þ ¼
4Fðf0ÞH−1Fðf0Þ†

TobsShðf0Þ
; ðD1Þ

where a dagger denotes the Hermitian transpose, with

Fðf0Þ ¼ ½F1aðf0Þ; F1bðf0Þ�; ðD2Þ

H ¼
�
A C

C B

�
; ðD3Þ

A ¼ ðakaÞ, B ¼ ðbkbÞ, and C ¼ ðakbÞ. In the general case
A2i ≠ 0, Eqs. (D1)–(D3) contain additional, analogous
terms involving F2a and F2b, obtained from F1a and
F1b by replacing f0 with 2f0.
For a binary source (a0 ≠ 0) with zero phase wandering

(Φw ¼ 0), the log likelihood in version I of the HMM is
approximated by the Bessel-weighted F -statistic,

Gðf0Þ ¼
XM0

s¼−M0
½Jsð2πf0a0Þ�2F ðf0 − s=PÞ; ðD4Þ

with M0 ¼ ceilð2πf0a0Þ. Equation (D4) adds together
the power in orbital sidebands incoherently; it takes no
account of the relative Fourier phases of the sidebands. This
omission is corrected in version II of the HMM, [19] where
F1a and F1b are replaced by J1a and J1b, defined by (21)
and (22) respectively, in order to include orbital phase
information. The log likelihood is calculated similarly to
the binary-modulated F -statistic and yields the J -statistic,
Gðf0Þ ¼ J ðf0Þ, with

J ðf0Þ ¼
4Jðf0ÞH−1Jðf0Þ†

TobsShðf0Þ
ðD5Þ

and

Jðf0Þ ¼ ½J1aðf0Þ; J1bðf0Þ�: ðD6Þ

Equation (D5) concentrates all the signal power in the
orbital sidebands into one f0 bin, unlike (D4), as verified in
Fig. 1 in Ref. [19]. It is therefore as sensitive for binary
sources, as (D1) is for isolated sources, i.e., (D1) and (D5)
can detect the same h0 value [19].
When the HMM tracks Φ�ðtÞ as well as f�ðtÞ, it is

tempting to generalize Gðf0Þ to Gðf0;Φ0Þ, whereΦ0 is the
trial phase, by analogy with (D5). First, one may try to
incorporate the phase into the amplitudes A1i, as in
Ref. [59], e.g., A11¼Aþcos2ψ cosΦw−A× sin2ψ sinΦw.
Unfortunately, maximizing the likelihood Λ0 with respect
to A1i returns estimators Â1i, which are rotated versions
of the phase-independent estimators, e.g., Â11 becomes
Â11 cosΦw þ Â13 sinΦw. The resulting F -statistic is inde-
pendent of phase, as shown in Appendix A in Ref. [19] in
the context of orbital phase. Instead, one may try to
factorize the F -statistic into a quadratic form constructed
from complex amplitudes, multiply the complex ampli-
tudes by the cosine of the phase, and reassemble the
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quadratic form to obtain a real likelihood.11 In this spirit,
we define

Gðf0;Φ0Þ ¼
4Rðf0;Φ0ÞH−1Rðf0;Φ0Þ†

TobsShðf0Þ
; ðD7Þ

with

Rðf0;Φ0Þ ¼ ½R1aðf0;Φ0Þ; R1bðf0;Φ0Þ�: ðD8Þ

Numerical experiments reveal that (D7) produces no
improvement in sensitivity compared to version I of the
HMM. Essentially this is because noise in the phase
estimate defeats the HMM’s ability to reject paths with
inconsistent phase. This can be seen by plotting the output
of the function XLALEstimatePulsarAmplitudeParams
in the LAL suite, which returns maximum likelihood
estimates of the source parameters (including phase) given
F1a and F1b, against the injected phase.12 Figure 10
demonstrates that the estimated and injected phases are
strongly correlated for h0 ¼ 8.0 × 10−25. However, the
correlation weakens appreciably for h0 ¼ 8.0 × 10−26

and even more so near the detection limit for version III
of the HMM (h0 ¼ 1.3 × 10−26), where the points scatter
randomly (not plotted). The Pearson correlation coefficient,
computed versus h0 in Table V, exhibits the same behavior.
Note that the HMM tracks the phase difference between

HMM steps; the absolute phase enters through the prior
and is not tracked explicitly. This differs subtly from a fully

coherent F -statistic search (without spin wandering),
where F is evaluated as a function of Φwðt0Þ as well as

fðkÞ0 , α, and δ [13].

APPENDIX E: VALIDATION TESTS

In this Appendix, we present for completeness and
reproducibility the results of several validation tests applied
to version III of the HMM. The tests relate to the PDF of the
B-statistic after a single HMM step, the PDF of the block
score after multiple HMM steps, the detection probability
as a function of NT for Tdrift or Tobs fixed, the effect of
the block definition on the detector’s performance, and the
conservation of signal power by the detection statistic. The
tests will help to guide future refinements of the HMM.

1. PDF of the detection statistic

Figure 11(a) displays the PDF of lnB computed for a
single HMM step in pure noise (h0 ¼ 0; purple histogram)
and for a relatively strong injection (h0 ¼ 5 × 10−26; green
histogram). The injection shifts the mode of the PDF to the
right, as expected. Figure 11(b) investigates in more detail
the functional form of the noise-only PDF. All the histo-
grams and curves in Fig. 11(b) are normalized, and the
results are independent of f0 and Φ0.

13 It is clear by
inspection that the noise-only B-statistic does not obey a
central chi-squared distribution with four degrees of free-
dom (unlike the F -statistic) nor with two to six degrees of
freedom. The two statistics correspond to slightly different
choices of amplitude priors within a Bayesian framework
but are otherwise the same, with jlnB − F j≲ 0.05F for a
wide range of signal and noise parameters [21,23–25].
However, by marginalizing over ψ, cos {, and h0 in (28),
one implicitly enforces constraints between Aþ and A× and
hence the four amplitudes A1i in (15), so that the statistic is
no longer the sum of four independent squares.
Detection with the HMM is performed using the block

score S defined in (35) in Sec. V C. Figure 11(c) displays
histograms of S after NT ¼ 37 steps of the HMM for pure
noise (h0 ¼ 0; purple histogram) and an injection below
the single-step detection threshold (h0¼1.3×10−26; green
histogram). The peaks of the noise-only and noise-plus-
injection histograms are clearly separated, demonstrating
the discriminating power of the HMM. The PDFs of S are
narrower than for lnB and have thinner right-hand tails,
because the nonlinear maximization step in the Viterbi
algorithm produces an extreme value distribution similar to
the Gumbel law. [19] The maximum is taken over all
Viterbi paths terminating in a given frequency-phase bin,
so paths terminating in neighboring bins are correlated
because they share common subpaths. There is no analytic

FIG. 10. Maximum likelihoodphase tracking. Estimated (vertical
axis) versus injected (horizontal axis) phase for h0 ¼ 8.0 × 10−25

(purple points; 63 trials) and h0 ¼ 8.0 × 10−26 (green points; 63
trials), using themaximum likelihood estimate returned by the LAL
function XLALEstimatePulsarAmplitudeParams.

11In nongravitational-wave applications where the signal is an
unmodulated sinusoid with a single polarization mode, and the
antenna beam-pattern does not vary diurnally, this procedure
yields the exact, maximum likelihood estimator [51].

12At the time of writing, XLALEstimatePulsarAmplitudePar-
ams incorrectly adds π to the phase. The error is corrected here.

13There is a weak dependence on the width of the running
median window applied to the power spectral density, as for the
F -statistic [16,53].
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expression for the PDF of ln Pr½Q�ðOÞjO� in the literature
to the best of our knowledge. [19] We therefore rely on the
empirical PDF in Fig. 11(c) to set SthðfÞ given Pa.

2. Detection probability versus NT

Another important question is how the performance of
the HMM scales with NT . We formulate the question with
respect to two practical scenarios: (i) Tdrift is fixed, and

Tobs ∝ NT varies; and (ii) Tobs is fixed, and Tdrift ∝ N−1
T

varies. Figure 12 presents data for scenario (i). As expected,
the sensitivity of the HMM increases, as NT and hence Tobs
increase [51]. We observe in Fig. 12(b) that the detection
probability rises with NT at fixed Pa ¼ 10−2. The same
trend occurs in Fig. 12(a) for 10−3 ≤ Pa ≤ 1. Figure 12(b)
corresponds to a vertical cut at constant Pa ¼ 10−2 through
the family of ROC curves in Fig. 12(a). One subtlety is that
Sth depends on NT through two countervailing factors. The
number of frequency bins per block is proportional to NT ,
so Sth should increase with NT , ceteris paribus, to keep Pa
per block fixed; but the product PrðQjOÞ in (1) decreases
with NT , as more factors LoðtnÞqðtnÞAqðtnÞqðtn−1Þ ≤ 1 are
appended, implying that Sth should decrease with NT for
fixed Pa. The latter effect outweighs the former, as is
evident in Fig. 12(c); the threshold decreases from Sth ≈ 4.0
for NT ¼ 5 to Sth ≈ −5.5 for NT ¼ 35. In a genuine,
astrophysical search one would typically set Pa ¼ 10−2

for the whole search band (B ∼ 1 kHz), or for sub-bands
with Δfsub ∼ 1 Hz (to facilitate data handling), and hence

TABLE V. Estimated versus injected phase: Pearson correlation
coefficient as a function of signal strength for the maximum
likelihood estimator XLALEstimatePulsarAmplitudeParams with
103 realizations.

h0 (10−26) Coefficient

80 0.978
8.0 0.464
1.7 0.156
1.3 0.059

(a) (b)

(c)

FIG. 11. Normalized PDF of the detection statistic for pure noise (purple histograms) and a detected injection with the source
parameters in Table II (green histograms). (a) Logarithm of the B-statistic, lnBðf�;Φ�Þ, computed for a single HMM step in the bin
ðf�;Φ�Þ containing the injection (where present), with h0 ¼ 0 (purple histogram) and h0 ¼ 5 × 10−26 (green histogram). (b) Noise-only
histogram from (a) rebinned over the domain ½−3; 3� and overlaid with normalized, central, chi-squared distributions with 2, 3, 4, and
6 degrees of freedom (solid curves; color scheme in legend), in order to test for congruence with the functional form of the F -statistic
PDF. (c) Block score Si defined by (35) for the block containing the injection (where present), with h0 ¼ 0 (purple histogram),
h0 ¼ 1.3 × 10−26 (green histogram), and NT ¼ 37. Realizations: 2.5 × 103 per histogram.
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have Pa ≪ 10−2 per block, with NTΔfdrift ≪ Δfsub ≤ B.
The scalings with NT are the same in this regime, but
the ROC curves are time-consuming to generate by
Monte Carlo simulations.14

Figure 13 presents data for scenario (ii) in the previous
paragraph, i.e., fixed Tobs. The trend with NT depends on
whether Tdrift ∝ N−1

T is less or greater than the characteristic
timescale over which the signal frequency wanders. [51] If
Tdrift is less than the wandering timescale, the detection
probability decreases, as Tdrift decreases; it is disadvanta-
geous to shorten the coherent integration in a HMM
segment, when the frequency wanders by less than
one bin during a segment. We observe this behavior in
Fig. 13(b) to the left of the peak. If Tdrift is greater than the
wandering timescale, the detection probability increases,
as Tdrift decreases; it is better to make the segments shorter,

as required by condition (B1), up to the point where the
frequency wanders by roughly one bin during a segment.
We observe this behavior to the right of the peak in
Fig. 13(b). The behavior in Fig. 13(b) for Pa ¼ 10−2 per
block is consistent with the ROC curves in Fig. 13(a) over
the range 10−3 ≤ Pa ≤ 1. The threshold decreases with NT
in Fig. 13(c), just like in Fig. 12(c), because it is
approximately independent of Tdrift.

3. Block definition

What happens when a candidate straddles the boundary
between two blocks? In this paper, we treat it as a special
case, to be followed up through a veto procedure in a
genuine astrophysical search. Straddlers represent a modest
fraction∼N−1=2

T of all signals or false alarms.15 Figure 14(a)

(a) (b)

(c)

FIG. 12. Detector performance as a function of NT for Tdrift ¼ 10 d fixed, Tobs ¼ NTTdrift ∝ NT variable, and the source parameters in
Table II. (a) ROCcurves forh0 ¼ 1.7 × 10−26 andNT ¼ 5 (purple curve), 15 (green curve), 30 (blue curve). (b)Detection probability 1 − Pd

versusNT for h0 ¼ 1.3 × 10−26 (green curve), 1.7 × 10−26 (purple curve), andPa ¼ 10−2 per block. (c) Block score threshold Sth [see (35)]
versusNT for false alarm probability Pa ¼ 10−2 per block; the number of bins per block, PrðQjOÞ, and hence Sth depend onNT . All curves
are calculated for version III of the HMM. Control parameters: γ ¼ 1.0 × 10−16 s−1, σ ¼ 3.7 × 10−10 s−3=2. Realizations: 103 per curve.

14Occasionally situations may arise, where it is desirable to
hold the number of bins per block fixed while varying NT , e.g.,
when comparing results from two data sets of different durations.
We defer the analysis of such situations to future work.

15Alternatively one can record straddlers on a candidate list
and consolidate candidates that share common subpaths, after all
the data are analyzed. This complicates the statistical interpre-
tation of the results, because HMM paths with common subpaths
are correlated [19].
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(a) (b)

(c)

FIG. 13. Detector performance as a function of NT for Tobs ¼ 360 d fixed, Tdrift ¼ N−1
T Tobs ∝ N−1

T variable, and the source parameters
in Table II. (a) ROC curves for h0 ¼ 1.3 × 10−26 and NT ¼ 6 (purple curve), 18 (green curve), 36 (blue curve), chosen to give an integer
number of days per HMM step. (b) Detection probability 1 − Pd versus NT for h0 ¼ 1.3 × 10−26 (purple curve), 1.5 × 10−26 (green
curve), and Pa ¼ 10−2 per block. (c) Block score threshold Sth [see (35)] versus NT for false alarm probability Pa ¼ 10−2 per block. The
number of bins per block and hence Sth scale with NT , with Tdrift ¼ N−1

T Tobs ∝ N−1
T variable (purple curve) and Tdrift ¼ 10 d ¼ constant

[green curve; copied from Fig. 12(c) for comparison]. All curves are calculated for version III of the HMM. Control parameters:
γ ¼ 1.0 × 10−16 s−1, σ ¼ 3.7 × 10−10 s−3=2. Realizations: 103 per curve.

(a) (b)

FIG. 14. Effects of block definition on performance. (a) ROC curves for blocks of bandwidth 2NTΔfdrift, whose leftmost frequency
bins are shifted 1; 2;…; NT − 1 bins to the right of an arbitrary reference bin, for h0 ¼ 1.3 × 10−26, Tdrift ¼ 10 d, and NT ¼ 37. The 36
curves overlap closely and cannot be distinguished by eye. (b) ROC curves for blocks of bandwidth 2kNTΔfdrift, with k ¼ 0.243, 0.514,
0.757, 1.00, 1.24, 1.51, 1.76, 2.00 (chosen to give an integer number of bins per block). All curves are calculated for version III of the
HMM. Source parameters: see Table II. Control parameters: γ ¼ 1.0 × 10−16 s−1, σ ¼ 3.7 × 10−10 s−3=2. Realizations: 103 per curve.
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verifies that the absolute position of the block boundary
does not affect the ROC curves appreciably. It displays
NT − 1 individual ROC curves for NT − 1 different block
boundaries, in which the leftmost frequency bin is shifted
right by 1; 2;…; NT − 1 bins relative to an arbitrary,
reference bin. The curves overlap closely and are barely
distinguishable by eye.
Likewise we find that the performance of the HMM

depends weakly on the bandwidth of each block. It is
unlikely for a path to drift by ≈NT bins afterNT ≫ 1HMM
steps, even when the tails in Aqjqi with jj − ij > 1 are
preserved, as in Appendix C (cf. truncated Aqjqi with
jj − ij ≤ 1 in Ref. [18]). Figure 14(b) verifies this property
by plotting multiple ROC curves for block widths
2kNTΔfdrift with 0.2 ≤ k ≤ 2. Again the curves overlap
closely. We use k ¼ 1 henceforth in this paper.

4. Conservation of signal power

In version II of the HMM, based on the J -statistic,
J1aðf0Þ and J1bðf0Þ marshal the Doppler-shifted signal
power into one frequency bin by coherently summing
orbital sidebands weighted by Jsð2πf0a0Þe−isϕa. It turns out
that the same holds true empirically for the B-statistic,
although there exists no formal mathematical proof at the
time of writing; it may not be possible to derive the B-
statistic for a binary source exactly as a Jacobi-Anger
expansion of the B-statistic for an isolated source, by
analogy with the J -statistic. This Appendix verifies
numerically that minimal power is lost or dispersed into
neighboring frequency bins, when the B-statistic is evalu-
ated using J1aðf0Þ and J1bðf0Þ.

Figure 15(a) graphs Bðf0;Φ�Þ versus f0 (evaluated for
Φ� in the injected bin) for a strong binary signal using F1a

and F1b to evaluate B. As the orbital motion is not
accounted for, B displays a comb of orbital sidebands at
f� þ s=P, which fill the band 111.09 ≤ f0=ð1 HzÞ ≤
111.11. The comb exhibits the classic two-horned envelope
familiar from the Sideband algorithm, [52,60] because the
source spends more time moving perpendicular to the plane
of the sky (when the orbital Doppler shift is a maximum)
than moving perpendicular to the line of sight (when the
Doppler shift is zero). Figure 15(b) shows the same thing as
Fig. 15(a) but with F1a and F1b replaced by J1a and J1b
when computing B. The sidebands now merge into one
peak, which is ≈40 times higher than the tallest peak in the
comb in Fig. 15(a) (note the different scales). Identical
behavior is seen in Fig. 1 in Ref. [19] for the J -statistic
instead of the B-statistic.

APPENDIX F: REPRESENTATIVE PHASE
PATHS RECOVERED BY THE HMM

FOR A SOURCE IN A BINARY

In this Appendix, we examine for completeness the
optimal phase paths Φ�ðtÞ recovered by version III of the
HMM for the representative examples of binary sources
studied in Sec. VI A.
Figure 16 displays the absolute error between the

injected and recovered phase for the three synthetic
binary sources tracked in Fig. 7. The interpretation is the
same as in Sec. V B. The phase error jumps around, even
after unwinding the phase wrapping, because the B-statistic
spreads the signal power over multiple phase bins. On
balance, though, the imperfect phase tracking delivers
improved sensitivity, as evidenced by comparing
Figs. 7(a) and 7(b) and the ROC curves in Sec. VI B.

(a) (b)

FIG. 15. Conservation of signal power. B-statistic at the correct phase bin versus frequency (in Hz) for a strong binary injection with
h0 ¼ 8 × 10−25 and source parameters drawn from Tables II and III. (a) B evaluated with F1a and F1b in (28)–(34). (b) B evaluated with
J1a and J1b (Jacobi-Anger version) in (28)–(34). Note the different vertical scales in (a) and (b).
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