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Hidden Markov model tracking of continuous gravitational waves
from a binary neutron star with wandering spin. III.
Rotational phase tracking
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A hidden Markov model (HMM) solved recursively by the Viterbi algorithm can be configured to search
for persistent, quasimonochromatic gravitational radiation from an isolated or accreting neutron star, whose
rotational frequency is unknown and wanders stochastically. Here an existing HMM analysis pipeline is
generalized to track rotational phase and frequency simultaneously, by modeling the intrastep rotational
evolution according to a phase-wrapped Ornstein-Uhlenbeck process, and by calculating the emission
probability using a phase-sensitive version of the Bayesian matched filter known as the -statistic, which is
more sensitive than its predecessors. The generalized algorithm tracks signals from isolated and binary
sources with characteristic wave strain i, > 1.3 x 1072 in Gaussian noise with amplitude spectral density
4 x 1072* Hz~'/2, for a simulated observation composed of N = 37 data segments, each Ty = 10 days
long, the typical duration of a search for the low-mass x-ray binary (LMXB) Sco X — 1 with the Laser
Interferometer Gravitational Wave Observatory (LIGO). It is equally sensitive to isolated and binary
sources and ~1.5 times more sensitive than the previous pipeline, which achieves h, > 2.0 x 10726 for a
comparable search. Receiver operating characteristic curves (to demonstrate a recipe for setting detection
thresholds) and errors in the recovered parameters are presented for a range of practical iy and N7 values.
The generalized algorithm successfully detects every available synthetic signal in Stage I of the Sco X — 1
Mock Data Challenge convened by the LIGO Scientific Collaboration, recovering the frequency and
orbital semimajor axis with accuracies of better than 9.5 x 10~/ Hz (one part in ~10%) and 1.6 x 1073 1ts
(one part in ~10%) respectively. The Viterbi solver runs in ~2 x 10® CPU-hr for an isolated source and ~10°
CPU-hr for a LMXB source in a typical, broadband (0.5-kHz) search, i.e., <10 times slower than the
previous pipeline.
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I. INTRODUCTION

Rapidly rotating neutron stars with time-varying mass
and current quadrupole moments are promising targets
of searches for continuous-wave gravitational radiation
by long-baseline interferometers such as the Laser
Interferometer Gravitational Wave Observatory (LIGO)
and Virgo [1]. Several classes of isolated and accreting
neutron stars are predicted to be approaching detection, if
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they emit at or near indirect amplitude limits derived from
energy or angular momentum conservation arguments
based on electromagnetic observations [2—4].

Among the challenges faced by such experiments is the
fact that the signal frequency is often unknown or highly
uncertain and wanders stochastically due to irregularities in
the star’s rotation, known as spin wandering or timing noise
[5-7]. For some isolated targets, such as nonpulsating
neutron stars in supernova remnants, the spin frequency f,
of the crust and corotating magnetosphere cannot be
observed, e.g., central compact objects like Cassiopeia A

© 2021 American Physical Society
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or the putative neutron star in SNR 1987A [8—10]. In radio
pulsars like the Crab, on the other hand, f,(#) is measured
accurately as a function of time ¢ by timing the radio
pulsations, but there is no guarantee that the crust corotates
exactly with the gravitational-wave-emitting quadrupole
[11]. For accreting targets, such as low-mass x-ray binaries
(LMXBS),1 the accretion can drive electromagnetic
signatures—thermal x-ray pulsations or type I x-ray burst
oscillations—which allow f,(7) to be measured. However,
f.(2) is unknown in some of the brightest sources, like
Scorpius X — 1 (Sco X — 1), which exhibit neither signa-
ture. [12] Indirect upper limits on the characteristic gravi-
tational wave strain &g, [13] based on energy conservation
in isolated sources (i.e., the star spins down entirely due
to gravitational radiation) and angular momentum conser-
vation in binary sources (i.e., accretion torque balance),
imply ho o 71/2 and hy o Fy/* respectively, where 7 =
f.(2|f.])"" denotes the spin-down age, and Fy denotes the
X-ray flux [1]. Hence the most promising targets—young,
isolated objects and x-ray-luminous accretors—can be
those for which the least is known about f,(1).

One powerful strategy for overcoming the challenge of
spin wandering—especially in LMXB searches—is to track
f+(#) with a hidden Markov model (HMM). [14] Given a
time-ordered sequence of observations, a HMM relates
each observation to the system’s underlying, hidden state
le.g., f.(¢)] by an emission probability (e.g., a detection
statistic of some type). The hidden state evolves through a
concurrent sequence, whose stepwise transitions are mod-
eled probabilistically as well (e.g., as a random walk).

In the gravitational wave context, a HMM solved by
the fast, recursive, Viterbi algorithm [15] has been imple-
mented as a general-purpose search pipeline and applied to
look for the LMXB Sco X —1 in Advanced LIGO data
[16,17]. The pipeline exists in two versions.

(1) Version I calculates the emission probability by
summing the maximum likelihood F-statistic [13]
at orbital sidebands incoherently without reference
to the orbital phase [18,19]. Given Gaussian noise
with  one-sided amplitude spectral density
Sy(2f)/? =4 x 107> Hz"'/2, representative of
Advanced LIGO’s design sensitivity, version I
detects isolated sources with Ay > 2 x 1072° and
binary sources with 4y > 8 x 1072¢ and finds 41 out
of 50 injected signals in Stage I of the Sco X — 1
Mock Data Challenge (MDC) [18,20]. It was ap-
plied to data from Advanced LIGO’s first observing
run (O1) and returned the upper limit A < th% =
5x107% (95% confidence) at 106 Hz for Sco

'In this paper, we follow the usual shorthand of using the term
LMXB interchangeably to refer to either the binary system or the
neutron star therein.

X —1, noting that O1 did not reach full design
sensitivity [16].

(ii) Version II tracks orbital phase as well as f,(¢) and
sums the sideband power coherently using a Jacobi-
Anger decomposition of the F-statistic [19]. Given
S,(2f,) = 4 x 1072* Hz"'/2, it detects isolated and
binary sources with /2y > 2 x 10726 and finds all 50
injections in Stage I of the Sco X — 1 MDC. It is
being applied to data from Advanced LIGO’s second
[17] and third observing runs.

In this paper, we extend version II of the HMM to track
the rotational phase (i.e., the phase of the carrier wave)
as well as the orbital phase. The result is an algorithm
(version III) which performs nearly as well as a fully
coherent matched filter like the F-statistic, when the phase
evolution is known electromagnetically. It maintains the
same level of performance, when the phase evolution is
unknown, as long as the HMM time-step is chosen to be
shorter than the spin wandering timescale [7]. Ensuring that
the latter condition is satisfied involves trial and error but is
not taxing computationally for most realistic searches.
Version III of the HMM is built on a phase-dependent
version of the Bayesian matched filter called the B-statistic
used in loosely coherent and related continuous-wave
searches [21-26]. It outperforms versions I and II because
(i) the B-statistic is more sensitive than the JF-statistic, and
(ii) the in-built requirement of phase continuity reduces
false alarms, as discussed in Sec. II. It leverages the
existing, easy-to-use, thoroughly tested software infra-
structure housed in the LIGO Scientific Collaboration
Algorithm Library (LAL). Several of its subroutines and
intermediate data products are shared by the F-statistic and
versions I and II of the HMM.?

The paper is structured as follows. In Secs. II-IV we
describe how to modify the emission and transition
probabilities of the HMM to track the rotational phase.
The performance of the extended HMM is then tested by
performing Monte-Carlo simulations with Gaussian noise
for isolated and binary sources in Secs. V and VI respec-
tively. Specifically, the sensitivity is calculated as a function
of the user-selected false alarm and false dismissal prob-
abilities and compared for versions I, II, and III of the
HMM. The accuracy of frequency and phase recovery as
part of a successful detection is also quantified. Finally we
run the extended HMM on data from Stage I of the Sco
X —1 MDC in Sec. VII and confirm that it detects every
injection easily. Implications for future gravitational wave
searches and their astrophysical impact are discussed
briefly in Sec. VIII. Among them is the tantalizing
possibility that a gravitational wave detection of spin
wandering (possibly in conjunction with radio/x-ray timing

?A Viterbi-based algorithm has also been developed to perform
nonparametric, all-sky searches [27]. Generalizing it to track
phase as well as frequency lies outside the scope of this paper.
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data) may clarify its physical origin, which remains a
subject of debate in both isolated [5,28-32] and accreting
[6,33-37] systems.

II. HMM TRACKING

HMM frequency tracking is exploited widely in engi-
neering applications ranging from radar and sonar analysis
[38] to mobile telephony [39,40] and has been extended to
handle amplitude and phase information and multiple
targets [41-43]. It delivers accurate estimation, when the
signal-to-noise ratio (SNR) is low, but the sample size is
large [14], as in continuous-wave gravitational wave data
analysis. In this section we describe how to generalize a
HMM that tracks f,() to one that tracks the rotational
phase @, (7) (and hence the carrier phase of the signal) as
well as f, (7). Section IT A sets out the tracking framework
in its general form [14,44]. Section II B explains the central
role played by stepwise phase continuity in reducing the
HMM’s false alarm rate. Section II C discusses how to
discretize the HMM s state space and the related challenges
involved in enforcing phase continuity, when the emission
probability is calculated from the output of a frequency-
domain matched filter like the JF-statistic. Modified
transition and emission probabilities are presented in
Secs. III and IV.

A. General formulation and drift timescale

A HMM is a probabilistic finite state automaton
defined by a hidden (unobservable) state variable, ¢(¢),
and an observable state variable, o(¢). The automaton
jumps through a time-ordered sequence of observations,
O ={o(ty),...,o(ty,)}, at discrete times 7, < ... <ty, .
In general there exist NgTH possible hidden-state paths,
Q = {q(ty). -...q(ty,)}, which are consistent with O. Here
N counts the finite number of discrete values, that ¢() can
take at time .

Given O, some paths are more likely than others. If we
assume that the automaton is Markovian, such that the
transition probability from ¢(z,) to ¢(t,.,) depends only
on ¢(t,), then the probability that Q gives rise to O equals

TABLE L.

Pr(Q|0) = Lo(sy, )q(in, ) Adtiny yaltny) X "
X Lo(t,)q(1)Aq(eratro) Ta(ro) - (1)
In (1),
quq,- = Pr[‘](thrl) = Qj|Q(tn) = qi} (2)
is the transition probability matrix;
Lo,q,v = Pr[()([ﬂ) = 0j|q(tn) = ql] (3)

is the emission probability matrix, namely the probability
that the system is observed in state o(#,) while occupying
the hidden state ¢(7,); and

1, = Prlg(t) = q;] (4)

is the prior vector, namely the probability that the system
occupies the hidden state g(t,) initially.

To solve the HMM, one seeks the most probable path
0*(0), which maximizes Pr(Q|O) given O, viz.

0*(0) = argmax Pr(Q|0). (5)

The maximization can be done in many ways. In previous
gravitational wave applications as well as in this paper,
we employ the Viterbi algorithm, [14,15] whose logic
and pseudocode are summarized briefly in Appendix A.
The Viterbi algorithm is a dynamic programming algo-
rithm. It is computationally efficient, executing of order
(N7 +1)NyInN,, floating point operations.

Table I summarizes how the general framework above
maps onto versions I, II, and III of the HMM. For each
version, it specifies the intended astrophysical target, the
hidden astrophysical variables being tracked, the inter-
mediate data inputs distilled from the raw observations
(which go into calculating L(,jqi), as well as the forms of

Afljfli’ LU,/CI,”

ture of the HMM. The entries in each column are discussed
in detail when introduced in Secs. II-1V, together with full

and I1, , which define the probabilistic struc-

Comparison of HMM versions I, II, and III: intended targets (column 2), hidden variables (column 3), intermediate data

inputs (column 4), and probabilistic structure (columns 5-7). The entries in each column are discussed in detail in Secs. [I-IV. In column
4, the terms Fourier and Bessel refer to ordinary and Bessel-weighted Fourier transforms of the raw interferometer data respectively, the

latter to account for binary orbital phase, which go into calculating L

0;q; S described in Sec. IV. In column 5, which defines quq’_,

random walk refers to a discrete-time, simple random walk, and Ornstein-Uhlenbeck refers to continuous-time, damped Brownian
motion, as described in Sec. III. The detection statistics F, [, and B in column 6 are defined mathematically when first introduced in

Secs. II-IV.

Version Target q(1) o(t) L,y I, Refs.

I Isolated fi(t) Fourier Random walk F (max. likelihood) Uniform [16,18]

I Binary S (1) Bessel Random walk J (max. likelihood) Uniform [17,19]

I Isolated D, (1), f.(1) Fourier Ornstein-Uhlenbeck B (Bayesian) Uniform This paper
Binary D, (1), f.(1) Bessel Ornstein-Uhlenbeck B (Bayesian) Uniform This paper
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mathematical definitions of the various terms and
symbols, e.g., F, J, and B. In this paper, we take
q(t) = [f.(1), D,(r)]. We adopt a flat prior, as in previous
work, [18,19] and track the phase difference ®,(z,,) —
®,(1,) across each HMM step; @, (0) is the result of a
historical accident, which obviates the need to track the
absolute phase.

In gravitational wave applications, the underlying, sto-
chastic evolution of ¢(z) is continuous. Nonetheless the
discrete-time HMM defined by (1)-(5) provides an
appropriate analysis framework, as long as the duration
T 4ty = t,41 — t, of each HMM step is chosen wisely. A
recipe for choosing 7 g5 in versions I and II of the HMM is
given in previous papers [18,19]. The generalized recipe for
version III is set out in Appendix B, where the key
condition on 7y, is given by Eq. (B1). One always has
Tspr < Tyire < Tops» Where Tgpr denotes the duration of
the short-time Fourier transforms (SFTs) [45] used to
compute L, , (see Sec. II C and Appendix B), and T, =

N7T s ~ 1 yris the total observation time. The SFTs are a
data management device to assist with storage and input-
output. They divide the observing run into short stretches,
typically Tggr = 1800 s in length, during which one
assumes that the antenna beam pattern is approximately
constant (neglecting rotation of the Earth), and the detector
noise is approximately stationary. They are knitted together
to compute a detection statistic such as the F-statistic
coherently over an interval Tg;;. By contrast, Ty 1S a
user-selected time interval which contains an integer number
of SFTs, during which one assumes that the system stays
within a single HMM state, if condition (B1) is satisfied.
Detailed implementation instructions, explaining how the
SFTs are converted into “data atoms” and hence values of the
emission probability L are provided in Ref. [46].

04>

B. Phase continuity

In previous implementations of HMM-based gravita-
tional wave searches, [16,18,19] L, ,, is computed from
the maximum-likelihood, frequency-domain matched filter
called the F-statistic [13] or a close variant, evaluated over
the time interval 7,_; <t < t,. For an isolated source, the
JF-statistic concentrates all the signal power into a single
frequency bin, of width Af 4 = (2T 4ir) ™', provided that
the T4 condition (B1) holds. For a binary source, the
JF-statistic disperses the signal power into approximately
2M' + 1 = 2ceil(2zf,ay) + 1 orbital sidebands, separated
by P~! in frequency, where a, is the projected semimajor
axis of the binary orbit, P is the orbital period, and ceil(...)
returns the lowest integer greater than or equal to its
argument. However, it is possible to redirect most of the
signal power into a small subset (< 2M’ + 1) of frequency
bins by summing the F-statistic values at the orbital
sidebands with an appropriate weighting, namely Bessel
coefficients arising from the Jacobi-Anger expansion of the

waveform. If the coefficients are squared Bessel functions,
the sum is incoherent, and L,, ),. exhibits a narrow, cuspy
peak as a function of frequency, as in version I of the HMM
(Bessel-weighted F-statistic) [19]. If the coefficients
include powers of e®s, where ¢, is a reference phase
(usually defined by the orbit’s ascending node), and the
J-statistic is factorized into a product of complex numbers
before summation, the sum is coherent with respect to
orbital phase, and Lo)g: contains all the signal power in a
single frequency bin, of width Afgix = (2Tgie)~", as in
version II of the HMM (7 -statistic) [19]. In summary, it is
always possible to concentrate all the signal power into
a single frequency bin, by calculating Lo from the
J-statistic (isolated source) or J-statistic (binary source).
This result is confirmed by numerous Monte Carlo sim-
ulations in Ref. [19].

There is only one “correct” frequency bin at each HMM
step, and Q*(O) either finds it or not. It is therefore natural
to ask what extra advantage rotational phase tracking
confers, when the optimal path Q*(0) in versions I and II
of the HMM already captures the maximum signal power
available to any HMM, for the reason set out in the previous
paragraph. The answer is that phase tracking increases the
detection probability by sharpening the HMM’s ability to
discriminate against spurious sequences. For example, if a
strong noise event occurs in the ith frequency bin at the
nth step, then Q*(0) is likely to contain ¢(t,) = ¢;, if
frequency is the only hidden state variable. Yet if phase is
tracked as well, the HMM is more likely to reject the
spurious path containing ¢(z,) = ¢; in favor of another
path with lower Lo(,”)qj (j # i) but higher A, and

A,
q;4(tp-1)

out of the nth step are more consistent with phase

continuity. This is equivalent to the distinction between

tn+l)qj
, 1.e., a path whose transition probabilities into and

a semicoherent and a coherent search. The latter is leT/ N
times more sensitive than the former because it effectively
reduces the denominator in the SNR by excluding false
alarms that violate phase continuity.

We implement rotational phase tracking by enlarging
the state vector to two dimensions for an isolated source,
with g(t) = [f. (), @, ()], and four dimensions for a binary
source, with g(7) = [f. (1), ag(t), (1), ®.(7)]. Under nor-
mal astrophysical circumstances, a; and ¢, are constant
throughout a full search (7, < 1 yr), so there is no need to
track them. Hence, for both target classes, the HMM
reduces to two dimensions, with ¢(7) = [f.(1), ®,(1)],
except that it is computed on a grid of (ag, ¢,) pairs for
a binary source; see Sec. I A in Ref. [19]. This approach is
readily parallelizable across (ag, ¢,) pairs and sources.

C. Grid resolution
How do we select the number of hidden states, Ny =
Nﬂ N(D* . with Nf* = B/Afdrift and NQ)* = ZE/A(Ddrifl’ where
B = max f, —min f, is the bandwidth, and A®; is the
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width of a phase bin? There are many valid ways to do this,
as discussed in Appendix B, noting that A f 4;r and A®Dgp
are related through @, (r) =2z [} df'f.(¢). The choice
comes down to how the HMM emission probability is
calculated from the data, as foreshadowed in Sec. II A. In
this paper, we seek to leverage the existing, easy-to-use,
thoroughly tested software infrastructure for frequency-
domain continuous-wave searches maintained in the
LAL suite, including the F-statistic [13,46], B-statistic
[21,23-25], and intermediate data products generated by
the JF-statistic; see Sec. IV in this paper and Sec. III A
in Ref. [19]. These software tools are built around
Fourier transforms. We are therefore obliged to take
Af s to be the half-Nyquist bin width of the F-statistic
evaluated over a time interval of duration T4, Viz.
Afgin = (2T arin) ™"

The half-Nyquist criterion creates a problem: small
uncertainties in f, of =Af;r due to binning lead to large
uncertainties in @, of £2x7T 4 Af4irr = 7 When propa-
gated forward over one HMM time-step, degrading the
HMM’s ability to track ®,(¢). One can circumvent this
obstacle by abandoning the frequency domain, thereby
surrendering its practical advantages. Alternatively, one can
achieve sub-Nyquist frequency resolution (< Afyr and
hence Ng > 1) by modeling the underlying evolution
of q(¢)=1[f.(f),®, ()] within a HMM time-step
(t, <t <t,+ Tair).- We adopt the latter approach. A
simple, linear ramp does not improve the situation
much, e.g., f.(f') = f.(t,) & (' = 1,) Afaiti/ T arire implies
D, (1,41) — D.(1,) = 22T gixf + (,) £ /2, which is still a
large fractional uncertainty. We find instead that evolving
q(?) stochastically according to a phase-wrapped,
Ornstein-Uhlenbeck process (i.e., Brownian motion that
is 2z-periodic in phase) yields good practical results. The
approach is described in Sec. III and Appendix C and tested
against Monte Carlo simulations in Secs. V and VL. It is
analogous to a vernier scale, in which the frequency bins
yield a coarse first approximation to the frequency, and the
phase bins yield a refined approximation. We find empiri-
cally that Ny = 32 is adequate for the transition proba-
bilities assumed in this paper (see Appendix B and
footnote 10). Sub-Nyquist frequency resolution is routinely
achieved in signal processing problems, where phase
tracking is involved, using a variety of techniques [41].

ITI. TRANSITION PROBABILITIES

In this section we introduce an Ornstein-Uhlenbeck
(Brownian) model of the stochastic, intrastep evolution
of the star’s rotation and hence the signal’s frequency and
phase. Transition probabilities A, , for frequency-phase
tracking are presented in Sec. III A. The Ornstein-
Uhlenbeck model is controlled by two auxiliary parame-
ters. We explain how to set these parameters given 7T g5
in Sec. III B.

A. Stepping forward in frequency and phase

In versions I and II of the HMM, it is assumed that f(¢)
jumps by —1, 0, or 4+1 frequency bins at every step with
equal probability 1/ 3.% In version III of the HMM, we again
assume that f,(¢) executes an unbiased random walk
for t, <t <t,+ Tgirr and choose Ty according to
condition (B1), as discussed in Appendix B. However
we model the intrastep random walk explicitly as an
Ornstein-Uhlenbeck process that is 2z-periodic in phase.
The aim is to derive A, , in a way that self-consistently
relates the jumps in f,(¢) and ®,(7) and allows adequate
phase resolution (Ng_>> 1), as discussed in Sec. 11 C.

The Ornstein-Uhlenbeck process is described by a pair
of stochastic differential equations,

df .
dt

- _}/f* + 6§<t>7 (6)

dd,
dt

It is controlled by two parameters: y, a damping rate, and o,
a fluctuation amplitude. The fluctuating torque &(z) has
white noise statistics, viz.

(¢(1)) =0, (8)
(€0)é(@)) = o(z 1), ©)

where (...) denotes an ensemble average. We assume that
there is no white noise forcing term in (7), i.e., the principal
axes of the gravitational-wave-emitting quadrupole are
fixed in the body frame rotating instantaneously at the
frequency f,(¢). In Brownian motion in thermal equilib-
rium, y and o are related by the fluctuation-dissipation
theorem, with ¢ /y proportional to the system temperature.
Here, in contrast, y and o are independent. We explain how
to choose them in practice in Sec. III B.

The stochastic differential equations (6) and (7) are
equivalent to the forward Fokker-Planck equation [50]

op _0f.p) _OU.p)  0p
o of. o0, 2 0%

(10)

whose solution p(, f,, @,) equals the probability density
that the hidden state lies in the infinitesimal domain
(fur fo +df) U (D, D, + dD,) at time ¢ if it started at
g(0) = [£.(0).0,(0)] at =0, ie, p(0.f.®.)—
Olf. — f+(0)]6[®, — @,(0)]. Hence evolving p(t, f., ®,)
from ¢t =1, to t =1, is exactly what one needs to

As in previous papers, we exclude the possibility of impulsive
rotational glitches with f,(7,,1) — f+(t,) > Afgin; [47,48] see
footnote 3 in Ref. [18] and compare Ref. [49].
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calculate the transition probabilities A as defined by (2).

qi49i°
Specifically we write

Al 0,0 a®.) = Pltagts frjs Pa) Af i A@rire - (11)
with f,(t,) =f,, and ®,(¢,) = ®,,,, where the integers j, [
and k, m index discrete frequency and phase bins respec-
tively. Analytic formulas are derived for p(t, ., ®,) and its
characteristic function in Appendix C [51].

In the Viterbi algorithm, it is sometimes more convenient
to calculate the backward transition probabilities, Agi‘f,k =
Pr(q(t,) = q,lq(t,11) = ¢;]. This can be done by solving
the backward Fokker-Planck equation, which is adjoint
to (10). Details and formulas are given in Appendix C.
The resulting PDF is a 2z-wrapped Gaussian; see
Egs. (C10)—(C15).

B. Control parameters

How should the control parameters y and ¢ be chosen?
Two conditions must be satisfied during every HMM step:
y must be small enough, such that (f,) does not drift by
more than one frequency bin, Afy.r; and ¢ must be large
enough, so that we have (f?)— (f.)>~ (Afgin)’, ie.
probability leaks significantly into the frequency bins on
either side of the starting bin but not much further. From the
moment formulas in Appendix C, typical of a diffusion
process, the above conditions reduce to

foll = exp(=yTir)] < Afarine

(12)

and

15 | T N S S
| NS S S S S S S S

Transition in phase [bins]
o

Transition in frequency [Afgyi]
(a)

FIG. 1. Forward transition probabilities Aq/ 4

2
c
2_7/ (1 —exp(=2yTaire)] = (Afdrift)2

(13)

respectively for all f, in the observation band. For a
typical LMXB search with Ty;; = 10 d and f, Z 50 Hz,
we have Afgin/f« <1 x 1078, yTain < 1, and hence
7 < (2f.Tiu) ™" and o~ (4T5;) 7"/

Figure 1 presents an example of the transition proba-
bilities for an illustrative choice of y and o satisfying the
constraints in the previous paragraph and used sub-
sequently in the validation experiments in Secs. V and VL.
Contours of the PDF A 4,4 in the f, — ®, plane are plotted

in Fig. 1(a). Three constant-f, cross sections are plotted
versus @, in Fig. 1(b). We find that p(7,.1, f., ®,) leaks
significantly into the frequency bins on either side of the
starting bin, with A, . =0.196 and A; = 0.603
(normalized). In this implementation, the PDF is truncated
= 0 to achieve computational savings,

..... *i

but if one does not truncate one finds A, . =
3.82 x 107*. The probabilities of jumping up or down in
frequency are equal, as in version I of the HMM, while the
probability of staying in the same bin is higher (0.608) than
in version I (0.333).

In contrast, the PDF extends over many bins in phase,
as is clear from Fig. 1(b), with full-width half-maximum
~1.78 rad (nine bins). Phase wrapping ensures periodicity
in @, but for the plotted parameters the PDF is tiny at the
edges of the plot, and it is hard to verify the periodicity by
eye. The initial state ¢(¢,) determines whether the phase
wraps or not. Figure 1(b) confirms that phase wrapping
alternates between even and odd frequency bins (and
depends on whether f, jumps by zero or £Af;n),

Transition in phase [rad]

- /2 0 w2 n
0.07 T T T
-1bin - —+ -
0.06 >/< 0 bins —%— o
+1 bin X%
/ \
0.05 - B
z / \\
= 004 ></ \ 4
< 7 \
Qa / \
o 003 / \ B
o
Ak Rokx

Transition in phase [bins]

(b)

= Prlq(t,+1) = q;lq(t,) = g;] (not normalized) for f,(t,) = 111.0 Hz, ®,(t,) = O rad,

y=1.0x107"%s7!, and 6 = 3.7 x 10~'° s7%/2_ (a) Contour plot versus f,(t,.1) — f.(t,) and ®,(t,,,) — ®,(t,). The color scale is
arbitrary; hot colors are high, cool colors are low. The white grid delineates frequency-phase bins. The horizontal and vertical axes
are labeled by number of bins. A subset of the hidden state space is plotted for clarity. (b) Cross sections at fixed
Fa(tuy1) = fo(2,) = 0, £Afqur- The crosses, plus signs, and asterisks mark phase bins. The horizontal axes indicate ®,(f,,) —
®, (7,) in units of radians (top) and number of bins (bottom). The backward transition probabilities are identical but centered on ¢(z,, )
instead of ¢(z,).
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as discussed in Sec. I C; the phase jumps by 7z, when the
frequency bin at 7, is odd, and by zero when the frequency
bin at ¢, is even. The contours slope diagonally, because f
and @, are correlated, with (f,®,) — (f,)(®,) # 0; see
Eq. (C14) in Appendix C. The shape of the contours is the
same for the forward and backward transition probabilities,
but the centroid shifts with ¢(z,) and ¢(7,,) respectively.

The above recipe for setting y and o is sensible but not
unique. The optimal values of the control parameters (and
T 4s) depend on the waveform of the true signal, which is
unknown in advance in an astronomical setting. Altering y
and ¢ does not introduce a systematic bias, because the
Ornstein-Uhlenbeck process is symmetric with respect to
positive and negative frequency jumps, but in general it
increases or decreases the sensitivity modestly. It is found
empirically that HMMs are robust to the exact form of
quq,-’ which is why the naive choice of Aq_;qi in version [
of the HMM works well. [14] The extra sensitivity in
version III comes from phase tracking, which depends
weakly on y and o, because the PDF in Fig. 1 is broad in
phase. When publishing searches with real data, it is
important to emphasize that any upper limits are condi-
tional on the signal model, which includes y, o, and T gy,

IV. EMISSION PROBABILITIES

For the class of frequency-domain, continuous-wave
searches considered in this paper, Lo in (3) can be

expressed in terms of a suitable frequency-phase detection
statistic G(f,, ®,.) as

Logi,)q, % exp[G(fir, )] (14)

Here G(f.;, ®,;) is the log likelihood that f,(z,_;) lies in
the i'th frequency bin [f,;, f.ir + Af g, and @, (7,_;) lies
in the /"th frequency bin [®,;, D, + ADgy], with
i=1iNg +i", given the data o(t,)." Concretely o(,)
comprises a set of strain measurements, numbering 7 g
multiplied by the interferometer sampling rate, or their
Fourier-transformed counterparts, sampled during the inter-
val t,_; < <t,. There exist many valid ways to construct
G(f,,®,), depending on computational constraints, the
data format, and the assumed model for the evolution
of q(1) = [f.(1). ®.(1)].

In this paper, we strive to exploit the easy-to-use,
thoroughly tested software infrastructure in the LAL suite
associated with the F-statistic [13]. We are therefore led to
build G(f,,®,.) as a frequency-domain matched filter,
using as many existing LAL components as possible. In
versions I and Il of the HMM, G(f,, ®, ) is constructed as a
maximum likelihood estimator from the F-statistic (iso-
lated source) or a Bessel-weighted sum of F-statistic values
(binary source) [18,19]. In version III, we press into service

4 .
Equally one can use some other reference time, e.g., 7,.

the phase-dependent generalization of the Bayesian
B-statistic used in loosely coherent searches. [21-26]
The latter choice is justified against maximum likelhood
alternatives in Appendix D. We review briefly the signal
model and its definitions in Sec. IV A, define the frequency
domain intermediate data products that we need (e.g.,
complex Fourier amplitudes generated by the LAL) in
Sec. IV B, and present a formula for G(f,, @,) in terms of
the B-statistic in Sec. IV C.

A. Signal model and likelihood

The gravitational wave signal measured at the Earth from
a biaxial rotor can be written as a linear combination of
eight independent components, [13]

4

h(t) = ZAlihli(t) + Agihai(1). (15)

i=1

In (15), A;; and A,; are arbitrary amplitudes set by the
source, and h;(¢) and h,;(t) are defined in Ref. [13] as
sinusoidal functions of ®(7) and 2®(¢) respectively, where
®(r) is the signal phase at the detector [note: ®(z) # @, (1)
in general]. The amplitudes of h;(r) and h,;(t) are
modulated diurnally by the antenna beam-pattern functions
a(t) and b(r), defined by Egs. (12) and (13) respectively
in Ref. [13].

Following Egs. (18) and (96) in Ref. [13], we split the
signal phase into five terms,

®(1) = 2nf o[t + O (1. 8)] + D[t £, . 5]
—2xfoagsin(2zt/P — ¢,) + Dy (7). (16)

In (16), f, is the signal frequency at the detector,’ O, isa
time shift produced by the diurnal and annual motions of
the detector and source relative to the Solar System bary-
center, @ is a phase shift combining the latter two effects
with the intrinsic, deterministic, secular evolution of the

source through the frequency derivatives f(()k) = d*f,/dt*
(k> 1) (see Eq. (14) in Ref. [13]), the fourth term (x ag)
is the Doppler modulation produced by the source’s orbital
motion in a binary system, and ®(¢) is the phase
accumulated from stochastic spin wandering. The sky
position of the source (right ascension «, declination &)
enters @, and ®,. Naturally it is possible to absorb the

binary orbit and stochastic spin wandering into f(()k), and

>One has fo # f.(1) in general. f, (1) is the true, underlying
spin frequency of the star, which we cannot measure directly
and which forms one component of the hidden state. f, is any
arbitrary frequency, where the emission probability and associ-
ated phase model (16) are evaluated, which may or may not
coincide with f,(f), depending on where in the parameter space
we look.
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hence absorb the fourth and fifth terms in (16) into @, but it
is clearer to keep the contributions separate in what follows.

The output from a single interferometer is given by
x(t) = h(t) + n(r), where n(r) denotes additive noise. The
normalized log likelihood after measuring the time series
x(t) over the interval 0 <t < T, is proportional to

In A" = (xl) = 5 (h]). (17)

where we define the inner product

2 /O " (O (2). (18)

X =

(xl) = 7
In versions I and II of the HMM, the emission probability is
computed by maximizing In A" in (17) with respect to the
amplitudes A;; and A,; and evaluating the result on a grid of
fo values to find the peak. (This procedure is not exactly the
same as maximizing over Ay;, A,;, and f,, simultaneously.)
The result is a sum of terms quadratic in (x||4,;) or (x||A,;),
which can be computed from Fourier-transformed inter-
ferometer data as discussed in Sec. III D in Ref. [13] and
Appendix D below; see also Ref. [46] and Sec. 1T A
in Ref. [19]. In version III of the HMM, the emission
probability is computed via the Bayesian B-statistic,
defined in Sec. IV C. The B-statistic can be computed
efficiently from the same, Fourier-transformed interferom-
eter data used by versions I and II. We define the relevant
Fourier integrals in Sec. IV B.

B. Fourier integrals

The waveforms h;;(¢) and h,;(¢) in (15) are amplitude
modulated by the antenna beam pattern functions a(¢) and
b(t). The log likelihood In A" in (17) is a function of (x||A),
which reduces to calculating the Fourier transforms
of x(7)a(t) and x(t)b(r), because one has (x|h;;) =
(x||a(7) cos @(#)) for example. For an isolated source
(ay = 0), let us define the Fourier integrals [13]

F]a(fo):ATGMdlbx[[(fb)]“{t(lb)]e_icpi[t(tb)]_zﬂif"tbv (19)

T s . .
Fuo(fo) = / dtoxlt(1y)|bl (1)~ @25 (20)

where #, = 1+ ®,,(7) defines a barycentered time coor-
dinate #, related implicitly to # through the time shift arising
from the Earth’s motion. In this paper, we neglect the
secular frequency evolution of the source, e.g., due to

electromagnetic braking, and set fék) =0 for k>1 and
hence @[t(#,)] = 0. It is easy to keep fék) #01in (19) and
(20) if desired. We also specialize without loss of generality

to the case A;; = 0, corresponding to a search for one signal
frequency (as opposed to two simultaneously).

For a binary source (aq # 0), the integrands in (19)
and (20) feature an extra, Doppler-modulated phase factor
exp[2zifoaq sin(2zt/P — ¢,)], derived from (16). Upon
expanding this factor using the Jacobi-Anger identity, we
find that F;, and Fy;, should be replaced in L, ), by

MI
J1a(fo) = Z Js(2zfoag)e " F 4 (fo +s/P),  (21)
s=—M'
M .
Jin(fo) = Z Js(2ufoag)e ™™ F1y(fo +5/P),  (22)
s=—M'

where J, denotes a Bessel function of order s of the first
kind. Equations (21) and (22) add together the Fourier
amplitudes in orbital sidebands coherently, by taking into
account the relative orbital phases of the sidebands. [19]
The infinite sums are truncated, because one has J,(x) < 1
for s > x to a good approximation [52,53].

It turns out that the emission probability L, ), in (14)
can be calculated easily from F'|, and F'y;, (isolated source)
or J, and Jy, (binary source) in every HMM implemen-
tation we consider. The maximum likelihood formulas for
Lo(,)q, in versions I and II of the HMM are quoted in
Appendix D, where it is shown that they (and their phase-
dependent generalizations) are poorly suited to rotational
phase tracking. The B-statistic adopted in this paper for
version III of the HMM is presented next in Sec. IV C.

The Fourier integrals (19) and (20) are taken formally
over 0 <t < Ty, In practice, to facilitate data manage-
ment, the integral is subdivided into “atoms” [46]. Each
atom corresponds to one SFT, which is convolved with a
sliding-window sinc function to increase the frequency
resolution from (2T gpr) ™! to (2T 4s) ", as required by (19)
and (20). The reader is referred to Sec. IV. 2 in Ref. [46] for
full details; see also Sec. III A in Ref. [19]. In this paper,
following Ref. [46], we approximate a(z) and b(t) as
piecewise-constant during each SFT.

C. Phase-dependent B-statistic

The B-statistic [21] is a Bayesian alternative to the
maximum likelihood F-statistic [13]. It is derived from the
likelihood function A’ in (17) combined with an isotropic
prior on the source orientation (i.e., spin axis). Its detection
efficiency is &5 per cent greater than that of the F-statistic,
and it is arguably motivated better astrophysically; the
JF-statistic implicitly assumes a uniform prior on the
amplitude, whereas the B-statistic favors lower amplitudes,
which is more realistic. [21] In practice, however, the
F-statistic has proved more popular than the 5-statistic,
having been preferred in various published LIGO searches,
e.g., [2,54] (targeted), [8,55] (directed), and [56,57] (all-
sky), as well as forming the basis of versions I and II of the
HMM [10,16,18,19]. This is because: (i) the advantage
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held by the B-statistic in terms of detection efficiency is
small [21,23,24]; (ii) the F-statistic software in the LAL
was developed first and is now thoroughly tested; and
(iii) the B-statistic involves numerical integrals, which are
relatively expensive computationally, although fast approx-
imations do exist [23,24,26].

In this section, we present a phase-dependent version of
the B-statistic formulated for loosely coherent searches
[23]. The associated emission probability is calculated from
(19) and (20) (isolated source) or (21) and (22) (binary
source), i.e., the same intermediate data products as
versions | and II of the HMM. We settle on this choice
after testing several phase-dependent generalizations of
the maximum likelihood JF-statistic, as discussed in
Appendix D. Empirically we find that: (i) none perform
as well as the B-statistic nor offer any discernible improve-
ment over versions I and II of the HMM; (ii) a HMM based
on the B-statistic approaches the theoretical sensitivity of a
fully coherent search; and (iii) the sensitivity improvement
exceeds the x5 percent advantage of the B-statistic over the
JF-statistic without any phase dependence, [21] so phase
tracking is clearly playing a role. Of course these empirical
findings do not constitute a formal proof, that the phase-
dependent B-statistic always outperforms any phase-
dependent maximum likelihood estimator, cf. Ref. [21].
However such a formal proof lies outside the scope of this
paper and is unnecessary at this stage given the excellent
performance achieved in tests with synthetic data in Secs. V
and VI. Other competing estimators will be tested in future
work, e.g., the phase-relaxed F-statistic [58].

Instead of maximizing A’ in (17) with respect to A,; and
A,;, we marginalize it (by Bayes’s theorem) over uniform
priors in three source-dependent variables: (i) the polari-
zation angle, y; (ii) the cosine of the inclination angle,
cost; and (iii) the characteristic wave strain, hg [23-25].
Let us define

h
A, = 70 (1 4 cos?1) (23)
and

A, = hgcost (24)
to be the real amplitudes of the plus and cross polarizations
respectively, which can be related to A,; as explained in
Ref. [59]. (For simplicity we consider the popular case
A;; = 0 here.) Following Ref. [23], let us also define the

auxiliary complex variables
wh = (2hy) " (A, cos 2y + iA, sin 2y) (25)

and

wh = (2h0)‘1 (A, sin 2y — iA, cos2y), (26)

which satisfy the identities
L= [y + w2 4w — iwh |2, (27)
2]’[0W/] = A21 - iA23, and Zh()W/z = A22 - iA24. In terms of

the above definitions, we obtain the following expression
for the marginalized likelihood [23]:

P 1 B 2
B= / dl/// d(cosz)/ " dhgexp (ho - ho—v>,
0 -1 0 2

(28)

with
U =w"R4(fo. @) + w3 Rip(fo. o). (29)
V = AW |* + 2CRe(w|wh*) + B|wh|?, (30)
R14(fo. o) = Relexp(—i®)F14(fo)]. (31)

and

Ry,(fo, o) = Refexp(—i®@) Fy,(fo)]- (32)

In (30), we have A = (al|a), B = (b||b), C = (al|b), and
C < min(A, B) for most sky positions [26]. The 5-statistic
peaks, when the trial phase ®; in (29), (31) and (32)
matches the true signal phase at the detector, viz. ®(¢)
in (16).

The hy integral in (28) is not normalized as it stands; the
HMM disregards multiplicative constants. Hence we can
take the limit hy™* — co without loss of generality and
express the A integral in closed form as an error function.
In loosely coherent searches, 3 is maximized with respect
to @, [23]. We cannot do the same here, because we track
the rotational phase and therefore need 53 to depend on @,
The final result, expressed again in the notation of
Ref. [23], is given by

w000 = oy [ (55)
X exp (%) {1 + erf (\/%_V” . (33)

with
erf(x) = % A " dy exp(—?). (34)

The double integral in (33) is evaluated numerically by
Simpson’s rule in what follows.

Figure 2 presents examples of the emission probability
for two signals from an isolated source injected into
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FIG. 2. Logarithm of the emission probability, G(fg, @) = In B(fy, @,) (not normalized), represented by its contours in the [ — @
plane (color scale arbitrary). (a) Stronger injection; iy = 4.0 x 10726, (b) Weaker injection; i, = 1.7 x 1072°. The injections are marked
by crosses; their parameters are listed in Table II (isolated source). The observation o(t,,) consists of T, = 10 days of data (N = 1).
The white grid delineates frequency-phase bins with Af . = 5.8 x 1077 Hz and A®4 = 7/16. A subset of the hidden states is
plotted for clarity. The noise is Gaussian, with S;,(f()!/> = 4 x 1072* Hz"'/? as in Table I

Gaussian noise with S;,(f;) = 4 x 1072*. The contour plots
in the figure are generated from 7, = 10 days of syn-
thetic data. In Fig. 2(a) the stronger injection is clearly
detectable, with s, = 4.0 x 10726, and the emission prob-
ability peaks near the correct (fg, @y) bin. Figure 2(b)
displays the weaker injection, with hy = 1.7 x 10726,
There is a hot spot near the correct bin, but it does not
stand out visually from the other, noise-generated hot spots.
The constant-f, cross section does not peak at the correct
value of @, although it still has roughly the same func-
tional form as in Fig. 2(a). Note that the emission
probability is not always unimodal in the vicinity of the
injection as it is in Fig. 2(a). When the complex arguments
of F, and F';, differ sufficiently, B develops two peaks as a
function of @ (at fixed f)), only one of which corresponds
to the signal. The tests in Sec. V show that the HMM is
effective at resolving this ambiguity and identifying the
true peak for Ny > 1.

V. ISOLATED NEUTRON STAR

We begin by testing version III of the HMM on synthetic
data generated by injecting the signal from an isolated
neutron star into additive, Gaussian noise. Section VA
describes the injection procedure. Tracking results are
presented in Sec. VB for a representative sample of
synthetic data. A systematic, threshold-based strategy for
identifying signal candidates during an astrophysical search
is described in Sec. V C and is applied to characterize
the performance of the HMM in Sec. V D. The accuracy
with which the HMM reconstructs the true hidden state
sequence given a successful detection is quantified in
Sec. VE. Versions I (isolated source) and III of the
HMM are compared at each stage. versions II (binary
source) and III are compared in Sec. VI.

A. Synthetic data

The signal phase corresponding to an isolated neutron
star is given by (16) with ay = 0. In the tests below, the
stochastic component of the injected phase evolves during
the interval 7, <7 <t,,, according to @ (7)=2x[(f-
b2 F(1)/6 (¢ =1, £ (1) /24 (¢ =1,) £ (1) + B (1),
where f,(¢) = f.(t,) is drawn randomly from a uniform
PDF while ensuring that [f,(7,,1) — f.(2,)| < Afaure 18
satisfied, and £, ('), f, ('), and ®,,(¢') are continuous from
one HMM step to the next. This prescription is neither
unique nor necessarily optimal; it is one of many, equally
valid approaches. We assume for simplicity that there is
no secular frequency drift, i.e., (f,(t)) = 0. Incorporating
(f.(1)) # 0 is straightforward; it is already part of LAL
implementations of the F-statistic, for example. However it
is unnecessary in many astrophysical settings, because the
HMM with the transition probabilities defined in Sec. III
and Fig. 1 automatically handles secular spin evolution

with (|f, (1)) S Afain/Tasie @ a matter of course.
The stepwise evolution of f, differs deliberately from

the stepwise evolution of f* modeled by the fluctuating
torque £(7) in (6), which underpins the transition prob-
abilities in Sec. III and Appendix C. In general we do not
know the functional form of the spin wandering in
astrophysical sources. [7] Hence it is prudent to assume
different forms of wandering in the test injections and
transition probabilities, to double-check the robustness
of the algorithm. The injection parameters are quoted in
Table II and are the same as those in Ref. [18] to facilitate
comparison, except that in this paper f,(¢y) and ®, ()
are chosen randomly (from uniform PDFs covering the
ranges in Table II) as a self-blinding precaution. The
synthetic data are generated using Makefakedata_v4 in
the LAL.
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TABLE II. Injection parameters used to create the synthetic
data analyzed in Secs. V and VI. Different tests employ different
subsets of the ranges in the first two lines.

Parameter Value Units
D, (1) [0, 27] rad

S (t0) [111.0, 111.1] Hz
f.(to) 0 Hzs™!
178 4.08407 rad
cos1 0.71934 -

a 4.27570 rad

1) —0.27297 rad
Si(fo)'? 4107 Hz™!/2

B. Representative example

Figure 3 illustrates the output of versions I and III
of the HMM for three typical, injected signals with
ho/1072° = 1.7, 1.3, and 1.1. The strongest signal is

T T
Viterbil —A— |
Viterbi III —=—
Injected path @

(e - fi=37) / & farife
L 0o = N W A U N ®
T

Time [Tqrif

(a)

detectable by both versions of the HMM, the intermediate
signal is detectable by version III only, and the weakest
signal is detectable by neither version. The figure displays
the frequency path that best matches the injected f, (7).
When the signal is detected, the best-matching frequency
path is also the optimal HMM path, i.e., the frequency
component of Q*(0). The frequency is recovered accu-
rately, with root mean square errors of e, =6.5 X 1077 Hz=
11Af e and &7, = 5.9 x 1077 Hz = 1.0A f 55, for version
III in Figs. 3(a) and 3(b) respectively. Note that the injected
f.() traces a piecewise-parabolic path, because f,(f) is
piecewise-constant (see Sec. V A). In contrast, the frequency
path recovered by version III of the HMM, which obeys the
Ornstein-Uhlenbeck transition probabilities in Appendix C,
is piecewise-constant in the figure, because the HMM jumps
between discrete frequency bins of width A f g

Figure 4 displays the absolute error between the injected
and recovered phase as a function of time for the three

T T T

Viterbi I (6th path) —A—
Viterbi III —H=— 7

Injected path @

(fe - fr=37) / A farite

Time [Tyrife]

(b)

37) / B farife

(fe - fe

T T T
Viterbi I (20th path) —A—
Viterbi III (411th path) —=—
Injected path @

FIG. 3.

Time [Tqrifd

©

Sample tracking output from versions I (purple curves) and III (green curves) of the HMM for three injected signals (black

curves) from an isolated neutron star with source parameters drawn from Table Il and /,/1072° = 1.7 [panel (a)], 1.3 [panel (b)], and 1.1
[panel (c)]. The purple and green curves are the best-matching frequency paths (with minimum path-integrated, root-mean-square error
gr.; see Sec. VE), centred on f,(#y,) and plotted in units of Af ; they are not necessarily the optimal path Q*(0). The optimal path
matches well [i.e., within two frequency bins of f . (¢) for all 7] for versions I and III in (a) and version Il in (b). The optimal path matches
poorly for version I in (b) and versions I and III in (c); indeed it lies outside the border of the plot. We plot instead the paths with
minimum & , viz. the sixth, 20-th, and 411-th Viterbi paths respectively, which lie within a few frequency bins of f, () purely by chance

but are of no practical use in an astrophysical search. Control parameters: y = 1.0 x 1071% 571, 6 = 3.7 x 10~1°

s73/2,
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Recovered phase - injected phase [rad]
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FIG. 4. Accuracy of HMM phase reconstruction. Absolute pointwise phase error (in rad) between the injected phase and the phase
recovered by version III of the HMM for the three isolated sources in Fig. 3, plotted in the range [z, z] versus time (in units of 10 days).
Panels (a), (b), and (c) correspond one-to-one to the panels in Fig. 3.

isolated sources studied in Fig. 3. Superficially the phase
reconstruction in Fig. 4 looks worse than the corresponding
frequency reconstruction in Fig. 3. The B-statistic concen-
trates the signal power into at most two adjacent frequency
bins yet spreads it out over multiple phase bins. As seen in
Fig. 2(a), B(fy, @) is nearly a delta function in frequency
(like the F- and J-statistics in versions I and II of the
HMM) but has full-width half-maximum =~z in phase.
Nevertheless, although the phase tracking is imperfect, it
delivers improved sensitivity on balance, if one compares
Fig. 3(a) with Fig. 3(b) for example. This improvement
does not occur simply because version III of the HMM uses
the B-statistic, which in its phase-maximized form is ~5 per
cent more sensitive than the F -statistic (see Sec. IV C) [21].
To verify this, we repeat the tests in Figs. 3 and 4 while
artificially scrambling the phase, i.e., randomizing ®,(,)
at every HMM step while keeping f,(¢) continuous as in
Sec. VA. Phase randomization converts the version III
detection of the injection with hy = 1.3 x 10726 into a
nondetection while having no effect on the version I results.

When the signal is not detected, Q*(0) is clearly wrong,
e.g., &, = 1.2x 1072 Hz = 2.1 x 10*Af 4it, for version III
in Fig. 3(c). The agreement looks better in the figure but

artificially so. The minimum-¢;_paths plotted in the figure
turn out to be the 6th, 20th, and 411th Viterbi paths [i.e., not
0*(0)] for the nondetections using version I in Fig. 3(b)
and versions I and IIT in Fig. 3(c) respectively. While these
do lie within a few frequency bins of f,(#) by chance, they
are of no practical use in an astrophysical search, where the
true f,(7) is unknown. The optimal path is plotted when-
ever possible in Fig. 3 but it always lies far outside the
border of the plot, when the signal is not detected.

The PDFs of In BB in pure noise and for a relatively strong
injection are compared in Appendix E 1 for completeness.
They do not follow a chi-squared distribution, unlike the
JF -statistic, because marginalizing over v, cosi, and /A in
(28) implicitly enforces constraints between the amplitudes
in (15), so that In 3 is not a sum of independent squares.

C. Detection strategy

We assess the performance of version III of the HMM
within the Neyman-Pearson framework applied to other
continuous wave search pipelines developed by the LIGO
Scientific Collaboration. [1] Specifically, we generate
receiver operating characteristic (ROC) curves for a range
of hy and N values, generalizing the tests in Ref. [51] to
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include the time-dependent antenna beam-pattern functions
a(t) and b(r). The aims of the exercise are (i) to character-
ize the sensitivity given user-selected false alarm and false
dismissal probabilities, denoted by P, and P, respectively;
and (ii) to develop a practical recipe for how to subdivide
the full data set (duration T,.) into Ny segments of
duration T g;g.

To generate a ROC curve, i.e., a graph of 1 — P4 versus
P,, we must first define precisely what a detection means.
This is not trivial for HMM-based algorithms. In versions I
and II of the HMM, the probability that a Viterbi path
terminates in a particular frequency bin is correlated with
the termination probability for the 2N; nearest bins,
because HMM paths terminating in neighboring bins share
common subpaths in general. The problem worsens in
version III of the HMM, where the tails of p(t,,1. f. ;. ®.x)
in (11) extend outside the range |f.; — f.(t,)| < Afqir and
wrap through 27 in phase, as calculated in Appendix C (see
also Sec. I C). For example, the chance of encountering a
false alarm within ~N bins of another false alarm is higher
than encountering it elsewhere.

Several valid ways exist to handle the above correlations.
In this paper, we adopt the following approach. First, we
divide the full search space into disjoint parcels of width
2Ny Af 4 in frequency and 2z in phase, which we call
“blocks.” Each block contains 2NyNg frequency-phase
bins. (We check that the results do not change significantly,
if the frequency width of the blocks is kN7Af g With
k = 2, in Appendix E.) Starting with multiple realizations
of pure noise (i.e., hy = 0), we calculate

S; = max max

|i’—i|SNT OS(D*//SZﬂ

InPr(0*(0)|0;q" (ty,) = (fir. @) (35)

in the block centered on the ith frequency bin. In (35),
S; is the HMM log likelihood for the optimal path g*(7)
terminating at a given frequency-phase bin, g*(ty,) =
(f.ir, @), maximized over all the frequency-phase bins
in the block centered at frequency f,;, with |f,; — f.i| <
NyAfgin and 0 < @, < 27. We call §; the “block score”
and write it as S henceforth as shorthand.® We then define a
threshold Sy, (f), where f is the central frequency of the
block, such that an analyst-selected fraction P, of the
realizations are false alarms, i.e., they return S > Sy, (f).
(The dependence on f is weak.) We then repeat the exercise
after injecting a signal A, > 0 into multiple noise realiza-
tions. A block with S > Sy, (f) is flagged as a candidate.

®The block score does not equal the Viterbi score used in
previous work, [16,19] e.g., Egs. (29)—(31) in Ref. [19]. The latter
quantity is defined as the number of standard deviations that
InPr[0*(0)|0; g*(ty,) = g;] in the ith bin stands away from the
mean, where the mean and standard deviation are computed over
the full search band (width B) for one realization.

If any subset of the frequency component of the injected
path, {f.(t,),...,f.(t,)}, overlaps with the block, the
candidate counts as a successful detection; otherwise the
candidate is a false alarm.” We check below that the results
do not change significantly, if we require a minimum of
(say) half the injected path to overlap with the block.
Conversely, a false dismissal occurs, when zero candidates
overlap even partially with the one or two blocks containing
the injected signal.®

Sample histograms of the block score S in (35) are
presented in Appendix E 1 as a validation test. Noise-only
and noise-plus-injection histograms are visibly separate,
when the detection threshold is exceeded, demonstrating
the discriminating power of the HMM. The PDFs of S and
In B have different functional forms, brought about by the
maximization steps in the Viterbi algorithm and (35) [19].

Continuous wave searches are typically subdivided into
subbands of width Af;, ~ 1 Hz (0.6 Hz in this paper). Sub-
bands are a housekeeping device to handle the practicalities
of data management (e.g., storage and input-output overhead
on a compute cluster). They are not the same as blocks,
which are logical units in the detection strategy above. It is
therefore necessary to convert the block-based false alarm
probability, P,, to a subband-based false alarm probability,
P, using the binomial theorem, viz. P, =1 — (1 — P,)V
with N = Afw/(2N7Af4ire) [52]. Note that Sy, (f) is a
slow function of f over ~1 Hz, so it is usually good enough
to use its midpoint value across the whole subband [52,53].
The above approach mimics the one adopted in previous
searches for Sco X — 1 with the sideband algorithm, where
frequency bins are correlated over windows of width
(2M" + 1)Af gsi» 1-€., the width of the Bessel comb of
orbital sidebands [20,52,53,60]. The threshold Sy, (f) is also
a function of Ny, as discussed in Appendix E 2.

D. ROC curves

A key question for any detection algorithm is how the
trade-off between P, and P, adjusts, as the SNR changes. To
this end, we present ROC curves in Fig. 5 for s, /10726 = 1.7,
1.3, and 1.1, S,(fo)"/?> =4 x 107 Hz™'/2, T4 = 10 d,
N7 = 37, and the source parameters in Table II, adhering to
the detection strategy in Sec. V C. Results from versions III
and I of the HMM are plotted as solid and dashed curves
respectively. The version III curve for hy = 1.7 x 10726
overlaps with the top border of the figure and is invisible.
The version Il curve for i, = 1.3 x 1072 gives P, ~ 0.1 for

"There is no advantage in also testing for phase overlap with
{®,(t;),...,D,.(t,)}, because B(fy, @) is a broad function of
®,: see Fig. 2.

It is always possible that the highest S value in a block is a
false alarm, while the second-highest (say) is a real signal,
because nearby HMM paths are correlated. In practice it is
imprudent to claim a detection in a genuine, astrophysical search
under such circumstances; the pragmatic response is to wait for
more data.
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FIG.5. Comparative HMM performance for an isolated source.

ROC curves for hy/10726 = 1.7 (blue curve; hidden under top
border), 1.3 (green curve), and 1.1 (purple curve) and the source
parameters in Table II. The false alarm probability P, and
detection probability 1— P4 are plotted on the horizontal
and vertical axes respectively. Solid and dashed curves corre-
spond to HMM versions III and I respectively with T g5 = 10 d
and N; = 37. Control parameters: y = 1.0 x 10710 57!, 5 =
3.7 x 10710 s=3/2, Realizations: 10* per curve.

P, = 1072, a popular combination in published LIGO
searches, e.g., Ref. [16]. In comparison, version I of the
HMM achieves the same (P,, Pq) combination for hg =
2 x 10729, i.e., its sensitivity is ~1.5 times lower [ 18]. Version
III of the HMM is a fairly reliable detection algorithm even at
low false alarm probabilities, with Py, < 0.4 for P, > 107,
The detection probability for P, = 1072 drops below
1 — Py =0.5 for hy < 1.1 x 1072,

A practical task when applying the HMM is to estimate
in advance, how its performance scales with the volume
of data available, and how the data and parameter
space should be subdivided to maximize performance.
Appendix E2 quantifies how the detection probability
scales with Ny under two practical scenarions: (1) T ggf
is fixed, so that the volume of data increases, as Ny
increases; and (i) T is fixed, so that a fixed volume
of data is subdivided into more coherent segments, as Ny
increases. In scenario (i), 1— Py rises monotonically
with N7, as expected. In scenario (ii), 1 — P4 peaks, when
T/ N7 matches the characteristic timescale over which
f.(2) fluctuates intrinsically, also as expected. The block
score threshold Sy, is calculated versus Np for both
scenarios. Appendix E3 checks for completeness, that
the ROC curves are insensitive to how the blocks are
partitioned. It is found that P4 changes by < 3 per cent
at fixed P, (with 107 < P, < 1) for block bandwidths
2kN7Af g in the range 0.243 < k < 2.00, independent of
the absolute position of the leftmost bin in the block.

E. Accuracy

Previous numerical experiments with versions I and II
of the HMM demonstrate that the tracking accuracy is
bounded by the Nyquist criterion [18,19,51]. When an

injected signal is detected successfully, the root mean
square error integrated along the path satisfies
€. < Afair, Whereas one typically finds e > Af g
for false alarms. The representative examples in Fig. 3
suggest that this remains true for version III of the HMM,
with &7 /Afqir = 1.0 (detection), 1.1 (detection), and
2 x 10* (nondetection) for h,/1072¢ = 1.7, 1.3, and 1.1
respectively. Versions I and III are equally accurate in
Fig. 3(a), for example, with &, < Af 4. The tendency for
version III to dwell somewhat longer in certain frequency
bins follows from Ay, in Fig. 1.

We quantify the tracking accuracy systematically
through Fig. 6, which displays &, for the optimal path
in the highest-ranked block against the block score S.
Versions III and I of the HMM are displayed in Figs. 6(a)
and 6(b) respectively. The plotted symbols, each corre-
sponding to one realization, separate into two clusters:
detections at the bottom right, with S Sy (f) and
€. < Afair, and nondetections at the top left, with
S < Sw(f) and &7, > Afyig. A handful of points form a
bridge between the clusters, because a few realizations
produce false alarms with § > Sy,(f) but & > Afyn,
e.g., the point with S~ —2.4 and ¢, ~2.5x 107> Hz in
Fig. 6(a). These accidents are expected; phase consistency
sometimes happens by chance in the noise along a
path with fortuitously high B values. Occasionally the
tracker achieves a good match with &5 < Af g even for
S < Su(f), corresponding to a false dismissal in a real
search. About 5 percent of the latter events occur acci-
dentally, when the signal block happens to rank highest (out
of 20 blocks in Fig. 6) due to features in the noise (even
with iy = 0). Note that no threshold is applied explicitly in
constructing Fig. 6, although implicitly Sy, (f) falls near the
value of § below which &7 > Af iy typically occurs.

The significant uncertainty in phase tracking, exempli-
fied by Fig. 4, does not impair the accuracy of frequency
tracking reported in Fig. 6, as discussed in Secs. IIC
and V B. However, it does circumscribe the astrophysical
questions that can be answered. Knowing the phase
evolution more accurately can help distinguish between
astrophysical emission mechanisms, in situations where the
frequency evolution is not informative enough. A time-
domain version of the HMM offers one possible way to
achieve better phase tracking, at the cost of stepping outside
the well-tested frequency-domain software infrastructure in
the LAL suite. Designing a time-domain HMM is a goal of
future work.

VI. NEUTRON STAR IN A BINARY

We now repeat the tests in Sec. V for a neutron star in a
binary system. The HMM structure and search procedure
remain unchanged, except that F,(fo) and Fi,(f,) are
replaced by J,(fg) and J,,(fy) respectively in the
B-statistic via (28)—(34). Appendix E 4 verifies that this
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FIG. 6. Tracking accuracy of the HMM. Root mean square frequency error e (left axis in units of Hz, right axis in units of
Afain = 5.8 x 1077 Hz) integrated along the optimal path in the highest-ranked block versus the block score S. (a) Version III (red,
open circles) with N7 = 37 and Ty = 10 d. (b) Version I (blue, filled circles) with Ny = 37 and T, = 10 d. Realizations: 3 x 107
per panel. Each realization comprises 20 contiguous, 37-bin blocks, one of which contains an injected signal with i, = 1.3 x 10726 and
the source parameters in Table II. The block scores in (a) and (b) should not be compared as they arise from different statistics (3 and F

respectively).

replacement leads to minimal loss of signal power; the
Doppler sidebands collapse into a single frequency bin
without discernible leakage into neighboring bins, just like
for the [J-statistic. In Sec. VI A we present tracking results
for a representative sample of synthetic data. ROC curves
are discussed in Sec. VIB. In Sec. VIC we plot the
B-statistic as a function of the orbital parameters a, and ¢,,
in order to inform the gridding strategy for future searches,
e.g., for LMXBs. Versions II and III of the HMM are
compared at each stage.

A. Representative example

The signal phase corresponding to a binary neutron star
is given by (16) with a, # 0. Figure 7 illustrates the output
of versions II and III of the HMM for three injected signals
of the above form with the same A values as in Sec. VA,
viz. hy/10726 = 1.7, 1.3, and 1.1. The parameters of the
binary orbit are quoted in Table III, with a, and ¢, set at the
midpoints of their ranges. The stochastic component of
the injected phase, @, (7), evolves according to the algo-
rithm in Sec. VA.

The results in Fig. 7 resemble those in Fig. 3. Both HMM
versions detect the strongest signal, but only version III
detects the intermediate signal. Neither detects the weakest
signal. Version Il is 1.4 times more sensitive than version
I, and its sensitivity is approximately the same for isolated
and binary sources.” Once the HMM fails to detect a signal,
the optimal Viterbi path stands many bins away from the
injected path and normally falls outside the plotted region.
The agreement in Figs. 7(b) and 7(c) looks better than it

*This is consistent with previous work: Version II of the HMM
is sensitive down to the same h value, hy =2 X 1072°, for a
binary source as version I is for an isolated source.

actually is, because we plot the minimum-¢,_paths, which
turn out to be the 2nd, 2nd, and 408th Viterbi paths for the
nondetections using version II in Fig. 7(b) and versions II
and III in Fig. 7(c) respectively. Such coincidental suc-
cesses are useless in an astrophysical search, where the true
f.(t) is unknown. Similarly, it may seem that version II
outperforms version III on the sy = 1.1 x 1072 injection,
because the minimum-¢; paths are the 2nd (version II)
versus the 408th (version III). Again this is misleading:
paths other than the first are not ranked consistently by the
Viterbi algorithm, and besides version III has 32 times more
paths than version II (and a different bin numbering system)
because it tracks both f, and ®,.

The phase component of Q*(0O) is discussed briefly for
completeness in Appendix F.

B. ROC curves

In order to characterize the sensitivity of the HMM
systematically, we compute ROC curves for the same three
signal amplitudes in Fig. 7, viz. hy/1072¢ = 1.7, 1.3, and
1.1. The results are plotted in Fig. 8, where solid and
dashed curves correspond to versions III and II of the
HMM respectively. In the regime of practical interest, viz.
5x 1073 < P, <2 x 107!, version III of the HMM deliv-
ers a detection probability ~0.05 higher than version II at
the same P,, a significant advantage when operating near
the detection limit. Replacing F,(fy) and F,,(f,) with
J1a(fo) and Jy,(fo) in the B-statistic leads to similar
tracking performance for isolated and binary sources,
although there is some modest loss of sensitivity in the
latter case. For example, a detection probability of ~0.75 is
achieved in Fig. 8 for a binary source with 2y = 1.3 x 10726,
given P, = 1072, compared to ~0.90 for an isolated source
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FIG. 7. Sample tracking output from versions II (purple curves) and III (green curves) of the HMM for three injected signals (black
curves) from a source in a binary with parameters drawn from Tables II and IIT with A,/ 10726 =17 [panel (a)], 1.3 [panel (b)], and 1.1
[panel (c)], plotted on the same axes as in Fig. 3. The purple and green curves are the best-matching frequency paths (with minimum
g7.); they are not necessarily the optimal path Q*(0O). The optimal path matches well [i.e., within a few frequency bins of f,(t) for all ]
for versions II and III in (a) and version III in (b). The optimal path matches poorly for version II in (b) and versions II and III in (c);
indeed it lies outside the border of the plot. We plot instead the paths with minimum ¢ , viz. the 2nd, 2nd, and 408th Viterbi paths
respectively, which lie within a few frequency bins of f,(#) purely by chance but are of no practical use in an astrophysical search.

Control parameters: y = 1.0 x 10710 s7!, 6 = 3.7 x 10710 s73/2,

with the same A in Fig. 5. [16] This is because the Jacobi-
Anger decomposition (21) and (22) accounts for the binary
motion imperfectly when combined with the B-statistic,
due to some covariance between the orbital and carrier
phases in the orbital sidebands. For hy > 1.7 x 10726, the
performance is almost identical, as in Appendix E 4.
Monte Carlo simulations confirm that the performance of
the HMM as a function of Ny for Ty;q or T fixed is the

TABLE III.  Orbital parameters used to create the synthetic data
for the binary sources analyzed in Sec. VL

Parameter ~ Value  Units Description

P 68023.7 S Orbital period

ao [1.26,1.62] lt-s  Projected orbital semimajor axis
P [0, 27] —  Reference orbital phase

e 0.0 — Orbital eccentricity

same as in the case of isolated sources (see Figs. 12 and 13
respectively in Appendix E). The results are not plotted to
avoid repetition.

C. Sensitivity to orbital parameters

Electromagnetic observations normally supply prior
constraints on LMXB orbital parameters. [12,61-63]
For many objects, including Sco X — 1, the electromagnetic
measurement of P through high-resolution optical spec-
troscopy is accurate enough, that a search over P is
unnecessary. In contrast, searches over a, and ¢, are
usually required [64].

Figure 9 displays InPr[Q*(0)|0] for version III of the
HMM as a function of ay and T. = ¢, P/(27) + constant,
where T, is the time of ascending node. The log
probability is evaluated at the true, injected value of f,
and maximized with respect to ®,, for a strong signal with
hy = 8 x 10726 tracked over N; = 37 steps. Starting from
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FIG. 8. Comparative HMM performance for a source in a binary.

ROC curves for sources with %,/1072° = 1.7 (blue curve), 1.3
(green curve), and 1.1 (purple curve) and the source parameters in
Tables II and III. The false alarm probability P, and detection
probability 1 — P, are plotted on the horizontal and vertical axes
respectively. Solid and dashed curves correspond to HMM versions
IT and 1T respectively. Control parameters: y = 1.0 x 10716 571,
6 = 3.7 x 10710 s73/2_ Realizations: 10* per curve.
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FIG. 9. HMM performance as a function of binary orbital
elements. Log probability In Pr[Q*(0)|O] versus a and T for a
strong (SNR > 1) binary-star signal with constant f, observed
during Ny =37 10-day segments. (Top left) Contours of
InPr[Q*(0)|0] on the T, — ay plane, centered on the injected
values Th and af". Hot colors stand for the highest log
probabilities. (Top right) Cross section through the peak of
InPr[Q*(0)|0] versus ay for Ty = Ths. (Bottom left) Cross
section through the peak of InPr[Q*(0)|0] versus T, for
ag = af*°. (Bottom right) Zoomed out version of the top left
panel. Injection parameters: hy =8 x 1072, f, = 111.1 Hz,
af'® = 1.441ts, and T = 897753994 s (arbitrary orbital
phase), characteristic of Scorpius X — 1; see also Tables II and III.

the panel at the bottom right of the figure, we observe that
InPr[Q*(0)|0] peaks strongly around the true, injected
orbital elements aj* and Ths. The top left panel zooms
into the peak (note the magnified scale) and shows that it is
encircled by “ripples” reminiscent of a diffraction pattern.
The ripples are visible more clearly in the cross sections at

Ty = Th and ag = a§*, graphed in the top right and
bottom left panels respectively. Both cross sections are
sinc-like, except that the nodes do not touch zero;
Pr[Q*(0)|0] is positive definite. Qualitatively the features
in Fig. 9 match those observed in Fig. 4 in Ref. [19] for the
J-statistic HMM (version 1I), although the scales are not
comparable of course.

In practice, in a search with real data, the grid spacings in
ag and T, are set according to a parameter space metric
and depend on the search frequency f. [64] For example,
the LIGO O2 search for Sco X — 1 with HMM version 1I
employs 768 a, bins of width 2.3 x 1073 1ts [with
1.45 < ay/(11ts) <3.25] at f, =60 Hz, compared to
8227 a, bins of width 2.2 x 10™*1ts at f, = 650 Hz.
[17,63] The resolution is chosen to yield a mismatch of
< 10% in the squared SNR, as defined by Eq. (5) in
Ref. [64], the worst case being when the signal straddles the
boundary between two bins. Without being comparable
directly, the above approach is consistent with Fig. 9: the
squared SNR is of the same order as InPr[Q*(0)|0],
and In Pr[Q*(0)| O] drops off by < 10% from its peak for
lag — al*®| < 1072 Its in the top right panel of Fig. 9 and for
|Tye — Thwe| <5's in the bottom left panel of Fig. 9.
Convenient formulas for the number of a, and T,
templates in terms of the desired mismatch are given in
Sec. V of Ref. [64].

VIL. SCO X-1 MDC: A REALISTIC EXAMPLE

A. Synthetic data

The Sco X —1 MDC is a project to compare system-
atically the performance of published continuous-wave
search pipelines on a level playing field under simulated
Advanced LIGO conditions [20]. The MDC predates
HMM versions I and II. It evaluates the relative proficiency
of five pipelines against criteria including sensitivity,
computational cost, and accuracy in parameter estimation.
The pipelines are based on the CrossCorr [65-67], TwoSpect
[68,69], Radiometer [70-72], Sideband [52,60], and
Polynomial [73] algorithms. Method papers describing each
algorithm are cited in the previous sentence. Since the MDC
was published, two of the pipelines have completed searches
using Advanced LIGO data from O1 and O2 [3,74], as have
HMM versions I and II [16,17]. Two other pipelines have
completed searches using Initial LIGO data from Science
Run 6 (S6) [53,75]. It should be noted that O1 and O2 do not
achieve Advanced LIGO’s design sensitivity, approximated
in the MDC as S,(f)"/?~4 x 1072* Hz"'/?> (Gaussian
recolored).

The MDC enables an important check on the results in
previous sections under realistic yet controlled conditions
on a dataset generated by an independent party. Of course,
the MDC is no longer closed, as it was in its original
incarnation; the TwoSpect, Radiometer, Sideband, and
Polynomial pipelines competed blindly in Ref. [20], before
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the injection parameters were revealed, and the CrossCorr
pipeline analyzed the data in self-blinded mode, after the
injection parameters were revealed. In this paper we
preserve the etiquette of a self-blinded analysis but note
in fairness that some of the authors participated in previous
analyses of the same data with HMM versions I and II
[18,19]. We also note that f, (¢) does not wander for any of
the injected signals, even though we allow for wandering in
the HMM transition probabilities. Extensive testing in
previous published work demonstrates, that the HMM
delivers equal sensitivity, whether f,(7) wanders or not,
as long as Ty, satisfies (B1), [18,19] in line with
theoretical expectations [14]. Strictly speaking, however,
the analysis in this section checks the sensitivity and
accuracy of version III of the HMM; it does not test its
robustness to spin wandering. (Indeed nor did the original
MDC study with the five pipelines in Ref. [20].) A future
incarnation of the MDC including spin wandering, drawing
on the analysis in Ref. [7], is currently being prepared and
should be encouraged.

The parameters of the 50 injected signals in Stage I
(version 6) of the MDC are listed in Table III in Ref. [20].
They are designed to resemble Sco X — 1, with 0.050 <
2f,/(1 kHz) < 1.5 and orbital elements similar to those
measured electromagnetically [61-63]. Since the original
MDOC release, the data for three injections, with indexes 65,
66, and 75 in Ref. [20], are no longer accessible due to
human error. They are omitted from the analysis below,
which is restricted to 47 injections.

B. Search procedure

The analysis is conducted as follows in order to copy
approximately some of the steps in a search with real
LIGO data.

(1) Starting from f, = 50 Hz and defining subbands in
increments of 0.1 Hz, we identify the subband
containing the injected signal. The partition is
similar to the O2 Sco X — 1 search with version
II of the HMM, which implemented 0.6-Hz sub-
bands, without f, being known of course. [17] In
effect this step is self-blinded to a good approxima-
tion, because there are (0.1 Hz)/Af i = 1.7 X 10
frequency bins in the subband, any single one of
which can contain the injected signal in principle.

(2) An orbital grid is laid out in ay and T, as for the
HMM 02 Sco X — 1 search. The grid spacings in a,
and T, are given by 1.2 x 107*(f,/0.3 kHz) !t s
and 0.89(f(/0.3 kHz)!(ay/1.441ts)~! s within the
electromagnetic priors 1.45 < ay/(11ts) < 3.25 and
1164543014 < T, /(1) < 1164543614 respec-
tively [17,63]. The grid spacings are one quarter
of what is predicted by the parameter space metric
via Egs. (70) and (71) in Ref. [64], assuming a
squared-SNR mismatch of < 10%. The safety factor
1/4 is discussed further below. Strictly speaking the

grid spacing varies from one f, bin to the next, but in
practice it is kept uniform within each 0.1-Hz
subband, substituting the subband midpoint into
the above formulas as a good approximation.

(3) A grid is also laid out in orbital period P, with grid
spacing 1.0(f/0.3 kHz)!(ay/1.441ts)~' s involv-
ing the same safety factor 1/4 from step 2 above,
based on Eqs (70) and (71) in Ref. [64] in the regime
P < Ty This is a new step. Some of the MDC
injections are not exactly at P = 68023.7 s, the
central value returned by electromagnetic observa-
tions, [61-63] although they are close to it. Previous
MDC analyses ignore the slight mismatch, moti-
vated by the parameter space metric which implies
that one P template is sufficient, because the
experimental uncertainty (40.04 s) is less than the
metric-based resolution 0.2 s. [19,64] They search
P =68023.7 s only and are still successful; for
example, version II of the HMM finds all 50
injections thus. [19] However version III of the
HMM, which is more sensitive to weaker signals,
also depends more sensitively on P.

(4) Version III of the HMM is executed on 4 x 4 x 4
adjacent triples (ag, Ty, P) centered on the injec-
tion. (The MDC analysis is executed on a subset of
the grid for computational economy; in an astro-
physical search, we scan the whole grid.) Each triple
(ag, Ty, P) is accompanied by an f(, scan divided
into (0.1 Hz)/Afgur/N7r = 4671 blocks as de-
scribed in Sec. V C. The highest log probability
among these 64 x 4671 (fo, ag, Tase, P) combina-
tions becomes the block score according to (35).

(5) The root mean square frequency error &4, is calcu-
lated along the optimal, wandering Viterbi track as
in Sec. V E. Absolute, signed errors ¢,, and &7 are
also calculated for ay and T, respectively as the
injected minus recovered values for the optimal
Viterbi track. This approach is adopted deliberately
to stay consistent with previous MDC analyses,
which verify the accuracy of the top candidate in
a block instead of quantifying the false alarm
probability. [18,20] In a search with real data, one
would instead compare the block score with a
threshold set by P, and follow up any candidates
through a veto procedure [16,17].

C. Signal detectability

The results of analyzing the MDC data with version III of
the HMM are presented in Table IV. Each line of the table
corresponds to one injection, indexed as in Ref. [20] (first
column). The injection parameters f,, ag, and T, are
quoted along with the respective errors &; , €,,, and €7 in
the parameter values recovered by the HMM. Two simu-
lated interferometers (H1 and L1) are employed, chiefly to
preserve consistency with the previous MDC analysis
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involving version II of the HMM [19]. The data start at GPS
time 1230338490 and are divided into Ny = 37 segments
with Tdrift =10d.

Version III detects 47 out of 47 available injections. The
outcome is reassuring but not surprising. Version II also

detects every signal, and version III is ~1.5 times more

TABLE IV. Results of tracking the 47 available injections in the Sco X — 1 MDC, sorted by index from Ref. [20], using version III of
the HMM to track phase and frequency.

Index  hy(107%)  AST(107%) /. (Hz) gr, (Hz) ag (s) €4y () Ty (3) er,, (8)
1 4.160 2.706 54.498391348174 4342 x 1077 1.37952 —9.518 x 10~*  1245967666.02 —11.12
2 4.044 2.511 64.411966012332 4229 x 1077 1.76461 4.803 x 107™*  1245967592.98  —5.27
3 3.565 3.463 73.795580913582  6.836 x 1077 1.53460 —1.585 x 103  1245967461.35  —5.66
5 1.250 1.154 93.909518008164  5.104 x 1077 1.52018 —8.158 x 1075 1245966927.93 222
11 3.089 1.399 154.916883586097  3.464 x 1077 1.39229 4297 x 107 1245967559.97 2.67
14 2.044 1.286 183.974917468730 3.553 x 1077 1.50970 —7.066 x 10~*  1245967551.05  —3.63
15 11.764 4.169 191.580343388804 3.612x 1077  1.51814 —4.484 x 10~*  1245967298.45 0.10
17 3.473 1.253 213.232194220000 2244 x 1077 1.31021  —7.427 x 107> 1245967522.54 1.74
19 6.031 2437 233.432565653291  3.189 x 1077 123123  —1.060 x 10~*  1245967331.14 1.27
20 9.710 3.434 244.534697522529 3941 x 1077 1.28442 4418 x 10~*  1245967110.97 —1.10
21 1.815 0.792 254.415047846878 5561 x 1077 1.07219 7.354 x 1075 124596734640  —1.24
23 2.968 1.677 271.739907539784 3922 x 1077  1.44287 —-2.731x10~* 1245967302.29  —-2.22
26 1.419 1.172 300.590450155009  3.342 x 1077 1.25869 —1.721 x 10~* 124596717747  —1.87
29 4.275 3.131 330.590357652653  4.893 x 1077 1.33070 —6.673 x 10> 1245967520.83  —0.84
32 10.038 4.391 362.990820993568 1.870 x 1077 1.61109 —2.790 x 10™*  1245967585.56 0.24
35 16.402 9.183 394.685589797695  3.466 x 1077 1.31376  —1.059 x 10™*  1245967198.05 1.75
36 3.864 1.539 402.721233789014  5.075 x 1077 1.25484  —6.642 x 10>  1245967251.35 0.79
41 1.562 0.746 454.865249156175  2.651 x 1077 1.46578 —1.896 x 10~*  1245967225.75 0.36
44 2.237 1.996 483.519617972096  8.346 x 1078  1.55221  —1.446 x 10™*  1245967397.86 0.13
47 4.883 1.992 514.568399601819  2.824 x 1077  1.14020 —1.637 x 10~*  1245967686.81 0.33
48 1.813 0.745 520.177348201609  6.614 x 1077 1.33669 —3.329 x 1075  1245967675.30 0.15
50 1.093 1.027 542.952477491471 5178 x 1077 1.11915 2302 x 10™*  1245967927.48  —1.47
51 9.146 3.372 552.120598886904  6.501 x 10~7  1.32783 6.253 x 10~ 1245967589.54  —0.94
52 2.786 1.550 560.755048768919 4209 x 10~7  1.79214  —6.193 x 107> 1245967377.20 0.61
54 1.518 1.256 593.663030872532 5792 x 107 1.61276  —3.115x 10~  1245967624.53 0.30
57 1.577 0.788 622.605388362863 5260 x 1077  1.51329 —5596 x 1075  1245967203.21  —1.00
58 3.416 1.287 641.491604906276  6.158 x 1077 1.58443  —1.418 x 10~*  1245967257.74 0.16
59 8.835 4.981 650.344230698489  7.830 x 1077 1.67711 —1.422 x 10™* 1245967829.90  —0.69
60 2.961 2467 664.611446618250  7.197 x 1077 1.58262 5343 x 107 124596761231  —-0.41
61 6.064 2.158 674.711567789201 4978 x 1077 1.49937 —1.037 x 10~*  1245967003.32  —0.01
62 10.737 3.853 683.436210983289 8223 x 1077 1.26951 —4.060 x 1075 1245967453.97  —0.00
63 1.119 0.745 690.534687981171  6.762 x 1077 1.51824  —-3.958 x 10>  1245967419.39  —0.18
64 1.600 0.570 700.866836291234 5143 x 1077 1.39993  —6.909 x 1075  1245967596.12  —0.96
67 4.580 1.623 744.255707971300  3.620 x 1077 1.67774 —1.551 x 10~*  1245967084.30 0.27
68 3.696 1.844 754.435956775916  4.000 x 10~7  1.41389  —8.960 x 107>  1245967538.70 0.38
69 2.889 1.053 761.538797037770  3.693 x 1077 1.62613  —1.239x 10~*  1245966821.55 0.03
71 2.923 1.232 804.231717847467 3.238 x 1077 1.65203 8.338 x 107  1245967156.55 0.30
72 1.248 0.792 812.280741438401  4.597 x 1077 1.19649  —1.325x 10™*  1245967159.08 0.87
73 2.444 0.936 824.988633484129  9.533 x 1077 141715 —6.960 x 10~  1245967876.83 0.82
76 3.260 1.725 882.747979842807 4.813 x 1077  1.46249  —8.305 x 1075  1245966753.24  -0.17
79 4.681 1.656 931.006000308958  2.697 x 1077 1.49171  —7243 x 1075  1245967290.06 0.14
83 5.925 2.186 1081.398956458276  7.176 x 1077 1.19854 3862 x 10~>  1245967313.93  —1.02
84 11.609 7.184 1100.906018344283  7.529 x 1077 1.58972 —6.257 x 10™¢  1245967204.15  —-0.35
85 4.553 1.633 1111.576831848269  8.018 x 10~7  1.34479  —9.497 x 10™5  1245967049.35  —0.90
90 0.684 0.618 1193.191890630547 4.053 x 1077 1.57513 —-7212x 107> 1245966914.27  —-0.21
95 4.293 3.059 1324.567365220908  5.198 x 1077 1.59169 —1.443 x 10~  1245967424.76 0.53
98 5.404 1.948 1372.042154535880  7.448 x 1077 1.31510 —7.340x 10~5  1245966869.92  —0.34
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sensitive than version II according to the results in Secs. V
and VI. The signal amplitudes are quoted in the second
and third columns of Table IV in terms of h and AT =
ho2712{[(1 4 cos?1)/2]* + cos?1}/?  respectively. The
source inclination influences detectability through the
relative weighting of the plus and cross polarizations,
and hg serves as an amplitude proxy which normalizes
for this effect, as verified in Ref. [19] (see the tests in
Sec. VA and Fig. 5 of the latter reference). The quietest
detected signals from the h, and hgff perspectives are
injections 90 (hy = 6.8 x 10726) and 64 (A" = 5.7 x 10726)
respectively. Both lie well above the version III sensitivity
limit Ay > 1.3 x 10720 established in Secs. V and VL
The conclusions are not affected by the absence of
injections 65, 66, and 75, which are all relatively strong
[7.7 < hy/(1072%) < 9.3] and are detected easily by ver-
sions I and II with two interferometers.

D. Accuracy

Although versions II and III both detect all the injections,
version III recovers the true signal parameters more
accurately. The fifth column of Table IV indicates that
version III recovers f, () with a root mean square error
across Ny = 37 segments of e, <9.5 x 1077 Hz < 2A f grify-
(Recall that the optimal Viterbi track is free to wander,
whereas the injections are stationary.) Indeed 33 out of 47
injections are recovered with ey < Afqn. Essentially
parameter estimation is limited by the spectral resolution.
In contrast, version II of the HMM recovers 27 out of
50 injections with & ~ P!> Afyin, much worse than
the spectral resolution, viz. 1 <& /(107 Hz) <2; see
Table IV in Ref. [19]. The step up from &y ~ Afyi to
€p, ~ P~! occurs, because version I sometimes converges
on the orbital sidebands f, + P!, whereas version III
always converges on the central peak f, for the MDC
injections. Interestingly, no strong correlation is found
between &, and A§" with version III. Once the HMM
detects a signal, &5 < Af 4 is grid-limited and essentially
random. A similar lack of correlation is observed for
version II [19].

Version III is also more accurate than version II when
recovering the orbital elements. The seventh column of
Table IV indicates that version III recovers a, with an
absolute error of |¢, | < 1.6 x 1073 Its. This amounts to <5
times the grid resolution, which decreases « f;' from
6.6 x 107*1ts at f, =54.5 Hz (injection 1) to 2.6 x 1073 1ts
at fo = 1.37 kHz (injection 98). Although the maximum
value of |e, | is comparable for versions II and III,
version III recovers 26 out of 47 injections with
leq,| <1 x 10~*1t s, whereas version II only recovers eight
out of 50 injections with |, | <1 x 107*1ts. Interestingly
version III underestimates a, 41 out of 47 times. It is
currently unclear why this happens, and more tests are

needed to explore the behavior and check if it is a
statistical fluctuation.

The ninth column of Table IV indicates that version I1I
recovers T, with an absolute error of |e7, | < 11 s, ie.,
<5 times the grid resolution, which decreases o fg'ag!
from =5 s at fy=54.5 Hz (injection 1) to ~0.2 s at
fo = 1.37 kHz (injection 98). The T, estimates compare
favorably with the orbital phase errors |e,, | =2z|er |/P <
1.0x 1073 yielded by version II. The maximum ¢, error is
comparable in versions II and III, but version III recovers
21 out of 47 injections with |e; [ < 0.5 s, whereas version
I recovers only five out of 50 injections with |e7 | < 0.5 s.
The T results parallel the behavior observed in ¢, .

Accuracy of parameter estimation is a better diagnostic
for illustrating the superiority of version III in the MDC
context than (say) the minimum number of segments
required to detect a signal. Version II detects 43 out of
50 injections with N7 =1 and the remaining seven with
N <13 (T4 = 10 d) [19]. There is not much room for
version III to outperform against this measure but for the
record it does: it detects every injection except the two
weakest (indexes 64 and 90) with Ny = 1.

VIII. CONCLUSIONS

A HMM coupled with a stepwise matched filter provides
an efficient, semicoherent way to detect and track the
unknown signal frequency of a quasimonochromatic,
continuous gravitational wave source with spin wandering
driven by internal processes (isolated source) or accretion
(binary source). In previous work HMMs have searched for
the LMXB Sco X —1 in LIGO Ol and O2 data using
frequency domain, maximum likelihood matched filters:
the Bessel-weighted F-statistic (version I), which does
not track orbital phase, and the Jacobi-Anger J-statistic
(version II), which does. Here we generalize existing HMM
pipelines to track rotational phase as well as orbital phase
(version III). In the emission probability, the 7-statistic is
replaced by a phase-sensitive version of the Bayesian
B-statistic introduced for loosely coherent searches. The
data are input as SFTs, leveraging the well-tested software
infrastructure in the LAL. In the transition probability, the
intra-step spin wandering is modeled according to a phase-
wrapped Ornstein-Uhlenbeck process. A recipe for choos-
ing the Ornstein-Uhlenbeck control parameters, y and o, is
given in Sec. III B. A revised detection strategy based on
block scores is described in Sec. V C.

The sensitivity of version III of the HMM is quantified.
The ROC curves in Secs. VD and VIB give P4 > 0.9
(isolated source) and P4 > 0.75 (binary source), when the
characteristic wave strain satisfies i, > 1.3 x 10720, with
P, = 1072, Hence version III is ~1.5 times more sensitive
than version II. The requirement of phase continuity from
one HMM step to the next lowers P, at fixed h, and
increases 1 — P4 at fixed P,. Performance is optimized,
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when T4 matches the source’s spin wandering timescale.
The results depend weakly on y, o, the block width when
calculating the block score, and the location of the block
boundary.

The tracking accuracy is quantified in Secs. VE and
VIC. It is found that the root mean square frequency error
is bounded spectrally and is therefore near-optimal, with
€r, < Afaire When an injected signal is detected success-
fully and e > Af 45 otherwise. The absolute errors in the
orbital elements are limited to <5 times the grid resolution
in ay and ¢, (or equivalently T,..) set by the parameter
space metric. [64] The HMM log probability peaks unim-
odally at the correct value in the ay — T, plane, with a
sinc-like cross section (see Fig. 9). The accuracy is
confirmed by the performance of version III of the
HMM in the Sco X — 1 MDC (in self-blinded mode). It
finds 47 out of 47 injections currently available (out of
50 originally) with Ny = 37, T4, = 10 d, and two simu-
lated interferometers, achieving accuracies of |e; | <
9.5x 1077 Hz, |e, | <1.6x1071ts, and |e7 | <11s.
Version III is less prone to converging on the sidebands
f. £ P! and is systematically more accurate, e.g., it
recovers 26 out of 47 injections with |e, | <1x107*Its,
whereas version II only achieves such accuracy eight times
out of 50. The gridding strategy adopted here, which is to
implement conservatively the parameter space metric in
Ref. [64] as described in Sec. VII B, should be regarded as a
first pass. Optimizing the gridding strategy is postponed to
future work, in the context of a search with real data (which
introduces other relevant constraints). Stage II of the MDC
will test the robustness of the HMM and other algorithms
like CrossCorr [67] and TwoSpect [69] to spin wandering.
Previous studies demonstrate that the HMM handles
signals with and without spin wandering with equal
dexterity, as long as Ty satisfies condition (B1) [18,19].

The HMM in this paper is solved by the Viterbi algorithm,
which exploits dynamic programming. The additional phase
tracking step inevitably slows down version III of the HMM
compared to version II, with the number of operations
scaling approximately o« N In N (see Sec. II A), and N
increasing by a factor ~10. Overall, however, the imple-
mentation remains fast, processing ~0.3 Hz per CPU-hr for
one choice of (ag, Ty, P), approximately 10 times slower
than version II. Viterbi-based continuous wave searches have
proved amenable to being implemented on graphical
processing units, which can shorten the run time x40-fold
[76]. The computational savings from an optimized imple-
mentation on graphical processing units can be reinvested to
extend the astrophysical ambition of an analysis, e.g., by
targeting LMXBs other than Sco X — 1 [12]. Savings can
also be reinvested to expand the scope of Viterbi-based,
nonparametric, all-sky searches and searches for wandering
instrumental lines [27].

What conclusions can we expect to draw about the
astrophysical causes of spin wandering, when the HMM

ultimately detects a real signal? At present it is hard to say.
Neutron star models involve a great deal of uncertain
physics, which will blur the interpretation of any HMM
detection, whether it involves versions I, II, or III, unless
the detection itself reveals some unexpected and inform-
ative signature. Electromagnetic observations may improve
the situation. Consider, for example, an LMXB where
one observes simultaneously the X-ray flux Fy(7) and
the wandering spin f.(7). One might hope to cross-

correlate the fluctuations in Fy and f* and thereby test
the accretion physics [7]. However, the traditional

assumption Fy <« M « f,, where M denotes the mass
accretion rate, does not always hold for various reasons,
e.g., nonconservative mass transfer, hydromagnetic con-

tributions to f*, and unsteady dynamics due to magneto-
spheric instabilities [37,77]. Some of the relevant issues are
canvassed in Ref. [78]. As a second illustrative example,
suppose the HMM detects a steady tone with minimal spin
wandering from a radio pulsar, that displays strong timing
noise at radio wavelengths. Such an observation would
arguably suggest, that the gravitational wave signal is
emitted by the weakly coupled superfluid interior of the
star as opposed to the crust (which is locked magnetically
to the radio pulses). Furthermore, if f, from the HMM
approximately equals the time-averaged radio pulse fre-
quency, it arguably represents partial evidence for pinning
of the superfluid [32,79]. These and other possibilities will
clarify themselves, once detections are made routinely.
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APPENDIX A: VITERBI ALGORITHM

The Viterbi algorithm prunes the tree of possible hidden
state sequences Q by appealing to Bellman’s principle of
optimality: if a subpath {g*(¢;), ..., ¢"(¢;)} is optimal, then
all of its subpaths are optimal as well [80]. Dynamic
programming is exploited to implement the principle of
optimality in an efficient, recursive fashion [14,15,18].
Pseudocode describing the implementation is presented
below in abridged form for ease of reference.

Attime 7, (1 < k < N7), let the vector §(z;) store the N
maximum probabilities

8y, (1) = max Prlq(t) = qila(ti1) = q;: 0V (A1)

with 1 <i < Ny, and let the vector ®(7;) store the hidden
states at f;_; leading to the corresponding maximum
probabilities in 8(¢;), viz.

@, (1) = argmax Prlg(t) = q;lq(t;-1) = q;; 0W)],
qj

(A2)
with 0% = {o(1), ..., o(t;)} and
PI'[LI(tk) = Qil‘I(tk—l) =d4js 0(k>] = LO(’A-)‘IIA‘L'II_/(S‘IJ‘ (tk_1>'
(A3)

The components of §(z;) and @(7;) are filled by running
forward through the N observations, then the optimal path
Q*(0) is reconstructed by backtracking.

(1) Initialization:

5‘][<t0) = LU(fO)Q[H‘I[’ <A4)
for 1 <i < Ny.
(2) Recursion:
5qi(tk) = L()(tk)qi]ggl)\(lg[Aqiqjéqj(tk—l)}’ (AS)
@, (1) = argmax[A, , 5, (tr_1)].  (A6)
i 1<j<N, idj-4j
fOf]SlSNQ and 1 SkSNT
(3) Termination:
max Pr(Q|0) = maxd, (ty,) (A7)
q; ’

¢ (in,) = argmaxd, (iy,)  (A8)
4qj
for 1 < j < Ny,
(4) Optimal path backtracking:
q (1) = Py 1) (Brr1) (A9)

for0 <k<N;y-—1

APPENDIX B: DRIFT TIMESCALE

A practical recipe for choosing the drift timescale 7 ;¢ =
t,41 — 1, (see Sec. Il A) when tracking f,(f) is described
in Refs. [18,19]. In this Appendix we generalize the recipe
for the purpose of tracking f,(¢) and ®,(¢) in version III
of the HMM.

The choice of T4, is governed by the packaging of input
data when computing the emission probability Lo which
comes with implicit assumptions about the signal proper-
ties in the interval 7,_; <t <t,. Importantly we require
Loy, to peak as sharply as possible in the neighborhood

of the truly occupied hidden state ¢(,), with L, ,, ~ dlq; —

q(t,)] ideally, in order to maximize Pr[Q*(0O)|O]. Typically
Lo, is computed from frequency-domain data covering
the whole interval ¢,_; <t < t,, and ¢(¢) does not contain
frequency-drift variables like £, (7). Therefore the matched

filter that computes L, , (e.g., the F- or B-statistic)

assumes that f, () stays within a single, discrete bin during
every HMM time-step. For this assumption to hold, one
must choose 7'y to satisfy

14T rife .
/ drf. (1)
t

for all ¢, where Afy;f is the separation between adjacent
frequency bins (which are assumed to be uniformly spaced
in this paper, i.e., Afy; 1S independent of ¢;). A different
method of computing Ly €8 from time-domain data,
may impose a different constraint on 7 ;.

It is tempting to extend the above argument to @, (¢)
and insist that it should stay within a single bin too (of
width Ady = 7/16 in this paper),10 but this is unneces-
sary. Frequency-domain matched filters like the F- and
B-statistic do not assume that ®.(¢) is constant for
t,_1 <t<t,; they are well-behaved functions of
®,(1,_,) at the start of the HMM time-step. Confining
@, (1) to a single phase bin would shorten T4 by a factor
~r/ ADy.q, widen every frequency bin by the same factor

< Af wife (B1)

"The analyst enjoys considerable freedom in setting A® gy,
as long as the peaks in the transition probability in Fig. 1(b) are
resolved. In contrast, Af i = (2Tgyir) " is determined by T g
See Sec. II C for details.
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(Nyquist theorem), and reduce proportionally the signal-to-
noise ratio per frequency bin [13,22].

Naturally one does not know f*(t’ ) in (B1) in advance,
so there is some trial and error involved in choosing T g
through (B1). In this paper we focus on gravitational wave
searches for isolated and accreting neutron stars, whose
rotatational irregularities have been studied extensively in
radio [5,31] and x-ray [6,35] timing experiments, which
yield autocorrelation timescales of days to months. These
electromagnetic measurements therefore offer a starting
point to estimate 7T for other objects in the same class,

where f,(7) is not measured [7]. For reasons of conven-
ience described in Sec. II, we elect to work with Fourier-
transformed data in this paper [18,19], which come
packaged in calibrated, conditioned (antialias filtering, data
drop-out), short-time Fourier transforms (SFTs) of duration
Tser = 30 min [45]. Hence one has Tgpp < Tyire as a
practical matter, a constraint which would be absent in a
time-domain analysis. Given the wide range of measured
autocorrelation timescales, one can envisage a hierarchical
search strategy, in which a search is repeated for
several T, values in the range Tspr < Tgine < Tops» Where
T s ~ 1 yr is the total observation time.

APPENDIX C: PHASE-WRAPPED
ORNSTEIN-UHLENBECK PROCESS

In this Appendix we solve the Fokker-Planck equation
corresponding to the stochastic differential equations (6)
and (7) to obtain the probability density function (PDF)
p(t, f,,®,) and hence the HMM transition probabilities
over the interval ¢, < t < 1, given the initial state ¢(7,,) =
[ *(tn)’ (D*([n)] or the final state q(thrl) = [ *(t”lJr])’
®,(t,.1)]. The discussion follows Appendix A in
Ref. [51]. Equations (6) and (7) are equivalent to tradi-
tional, spatial Brownian motion, with f, and @, playing the
roles of velocity and displacement respectively, except that
@, is 2z-periodic.

If the hidden state g(z,) occupied at the start of the HMM
step t, <t < t,, is known with certainty, the PDF of the
final state at ¢ = 1, is given by the solution pf(z, f,, ®,)
of the forward Fokker-Planck equation [50]

apF 8pF 282 F
- 1
B =yp"+y f*af* fose T o (C1)
evaluated at r = tn+l giVCI’l pF(t”,f*,q)*) :5[ * _f*(tn)]x

5@, —D,(1,)]. If the final state ¢(t,,;) is known
with certainty, the PDF of the initial state is given by
the solution pB(¢, f,, ®,) of the backward Fokker-Planck
equation,

817 B 519‘3

0.2 82 pB

"o @

evaluated at t=1, given pB(t,,,f., ®,) =05[f.—
fo(tny1)]6[®, — ®,(2,,1)]. Equation (C2) is the adjoint
of (C1). Upon multiplying (C1) by the integrating factor
exp(—yt), we find

(t, fr, @,; 0% > —0?),

PPt .. ®.) x exp(—yt)p* (C3)

where 6> > —¢? denotes replacing 6> by —6? in pF.
Upon Fourier analyzing pF, as in Ref. [51], we find that

the characteristic function

2n Y
pr(t,x,m) :/ ddD*/ df, exp(—=im®, — ixf,)
0 —00

x pr(t, f.. @) (C4)
satisfies
8131:' ai)F GZKZI'“)F
W:(—VK""")W— > (C5)
subject to the initial condition
ﬁF(tn’ K, m) = exp[—im(I)*(tn) - in*(tn)]' (C6)

Equations (C5) and (C6) are solved by the method of
characteristics to give

pF(tn+1’K’ m) = exp[—im(I) (t ) - ipf*(tn>]

o2 m 3m
<o (-5 ()]
14 14 14
o2 [m2ct 2m m
X exp Y 7+y_2 K—7
N

and hence

pF(thrl’f*?q)*) = (277:)_2 Z exp(lmtb*)

m=—0o

x / * dkexplixf,)pF(r.,m).  (C9)

By completing the square in the argument of the expo-
nential in (C7), one finds that (C9) can be written as a
wrapped Gaussian [51].
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The solution (C3) to the backward Fokker-Planck
equation (C2) provides an efficient route to calculating
the maximum probabilities at each HMM step, which are
stored in the vector 6(7;) in the Viterbi implementation
described in Appendix A. Equation (C3), just like (C9), can
be expressed as a wrapped Gaussian, viz.

PR(t,.q) = (27)7"(det X))~/

[se]

X Z CXP[—((] - (lm)z_1 (q - Qm)T]’
(C10)
with q = (f,, ®,) and matrix elements
(Qm)l = f*(tn+l) exp(—yr), (Cl 1)
(@2 = @.ty.1) + 21— exp—)] = 20m
(C12)
o2
X = 2—7/ [1 —exp(=2y7)], (C13)
o2
) =2y = 3,2 [1- eXP(—}’T)]z’ (C14)
14

%=§m+m4%wwwm.mm

We can then read off the moments (f, ), (®,), (f2) — (f.)%
(f . ®@,) — (f.)(®,), and (®?) — (®,)? of p® by inspection
from (C11)—(C15) respectively [51].

APPENDIX D: MAXIMUM LIKELIHOOD
ALTERNATIVES TO THE B-STATISTIC

In this Appendix, we review briefly the maximum
likelihood formulas for L, ), used in versions I and II
of the HMM, which do not depend on rotational phase.
[18,19] We then present for completeness a natural, phase-
dependent generalization of these maximum likelihood
formulas. Empirical testing indicates, that the generalized
formula yields no discernible improvement in performance
over versions I and II of the HMM, unlike the B-statistic
presented in Sec. IV C.

In version I of the HMM, [18] for an isolated source
(ap = 0) with zero phase (cf. spin) wandering (®,, = 0),
the log likelihood is just the F-statistic, G(fo) = F(fo),
viz.

_ AR/ HTF(f)"
Qi T

(D1)

where a dagger denotes the Hermitian transpose, with

F(fo) - [Fla(f0)7F1b(f0)]v (DZ)

(¢ )
H= ,
C B
A = (a||la), B = (b||b), and C = (a||b). In the general case
A, #0, Egs. (D1)—~(D3) contain additional, analogous
terms involving F,, and F,,, obtained from F;, and
F, by replacing f, with 2f,.

For a binary source (a, # 0) with zero phase wandering

(®,, = 0), the log likelihood in version I of the HMM is
approximated by the Bessel-weighted F-statistic,

(D3)

M

G(fo) = Y [UsQ2nfoag)PF(fo—s/P), (D4)

s=—M'

with M’ = ceil(2zfyay). Equation (D4) adds together
the power in orbital sidebands incoherently; it takes no
account of the relative Fourier phases of the sidebands. This
omission is corrected in version II of the HMM, [19] where
F,, and Fy, are replaced by J,, and J,;, defined by (21)
and (22) respectively, in order to include orbital phase
information. The log likelihood is calculated similarly to
the binary-modulated F-statistic and yields the 7 -statistic,

G(fo) = T (fo), with

4J(fo)H'J(fo)"

j<f0) B TobsSh(fO)

(D5)

and

J(fo) = V1a(fo): J15(fo0)]- (D6)
Equation (D5) concentrates all the signal power in the
orbital sidebands into one f, bin, unlike (D4), as verified in
Fig. 1 in Ref. [19]. It is therefore as sensitive for binary
sources, as (D1) is for isolated sources, i.e., (D1) and (D5)
can detect the same h value [19].

When the HMM tracks ®,(z) as well as f,(t), it is
tempting to generalize G(f,) to G(f, @g), where @, is the
trial phase, by analogy with (D5). First, one may try to
incorporate the phase into the amplitudes A;;, as in
Ref. [59], e.g., A;; =A cos2ycosD, —A, sin2ysind,,.
Unfortunately, maximizing the likelihood A’ with respect
to A;; returns estimators Ali, which are rotated versions
of the phase-independent estimators, e.g., A;; becomes
Ay cos @y, + Ay sin @,,. The resulting F-statistic is inde-
pendent of phase, as shown in Appendix A in Ref. [19] in
the context of orbital phase. Instead, one may try to
factorize the JF-statistic into a quadratic form constructed
from complex amplitudes, multiply the complex ampli-
tudes by the cosine of the phase, and reassemble the
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FIG. 10. Maximum likelihood phase tracking. Estimated (vertical
axis) versus injected (horizontal axis) phase for s, = 8.0 x 102
(purple points; 63 trials) and sy = 8.0 x 1072° (green points; 63
trials), using the maximum likelihood estimate returned by the LAL
function XLALEstimatePulsarAmplitudeParams.

quadratic form to obtain a real likelihood."" In this spirit,
we define

4R(f0’ q)())H_lR(fO’ q)())-}-

G(fo. ) = TopsSn(fo) ’

(D7)

with

R(f0,®g) = [R14(fo. Do), R15(fo. Po)].  (D8)
Numerical experiments reveal that (D7) produces no
improvement in sensitivity compared to version I of the
HMM. Essentially this is because noise in the phase
estimate defeats the HMM’s ability to reject paths with
inconsistent phase. This can be seen by plotting the output
of the function XLALEstimatePulsarAmplitudeParams
in the LAL suite, which returns maximum likelihood
estimates of the source parameters (including 2})hase) given
Fi, and Fy,, against the injected phase.1 Figure 10
demonstrates that the estimated and injected phases are
strongly correlated for h, = 8.0 x 1072°. However, the
correlation weakens appreciably for /gy = 8.0 x 1072°
and even more so near the detection limit for version III
of the HMM (hy = 1.3 x 1072%), where the points scatter
randomly (not plotted). The Pearson correlation coefficient,
computed versus £ in Table V, exhibits the same behavior.

Note that the HMM tracks the phase difference between
HMM steps; the absolute phase enters through the prior
and is not tracked explicitly. This differs subtly from a fully

"'In nongravitational-wave applications where the signal is an
unmodulated sinusoid with a single polarization mode, and the
antenna beam-pattern does not vary diurnally, this procedure
yiellgs the exact, maximum likelihood estimator [51].

At the time of writing, XLALEstimatePulsarAmplitudePar-
ams incorrectly adds z to the phase. The error is corrected here.

coherent F-statistic search (without spin wandering),
where F is evaluated as a function of @ (fy) as well as

£, a, and 5 [13].

APPENDIX E: VALIDATION TESTS

In this Appendix, we present for completeness and
reproducibility the results of several validation tests applied
to version III of the HMM. The tests relate to the PDF of the
B-statistic after a single HMM step, the PDF of the block
score after multiple HMM steps, the detection probability
as a function of Ny for Ty, or Ty, fixed, the effect of
the block definition on the detector’s performance, and the
conservation of signal power by the detection statistic. The
tests will help to guide future refinements of the HMM.

1. PDF of the detection statistic

Figure 11(a) displays the PDF of In B computed for a
single HMM step in pure noise (k, = 0; purple histogram)
and for a relatively strong injection (hy = 5 x 107%%; green
histogram). The injection shifts the mode of the PDF to the
right, as expected. Figure 11(b) investigates in more detail
the functional form of the noise-only PDF. All the histo-
grams and curves in Fig. 11(b) are normalized, and the
results are independent of f; and (I)0.13 It is clear by
inspection that the noise-only B-statistic does not obey a
central chi-squared distribution with four degrees of free-
dom (unlike the F-statistic) nor with two to six degrees of
freedom. The two statistics correspond to slightly different
choices of amplitude priors within a Bayesian framework
but are otherwise the same, with |In B — F| < 0.05F for a
wide range of signal and noise parameters [21,23-25].
However, by marginalizing over v, cost, and h in (28),
one implicitly enforces constraints between A, and A, and
hence the four amplitudes A{; in (15), so that the statistic is
no longer the sum of four independent squares.

Detection with the HMM is performed using the block
score S defined in (35) in Sec. V C. Figure 11(c) displays
histograms of § after Ny = 37 steps of the HMM for pure
noise (hy = 0; purple histogram) and an injection below
the single-step detection threshold (hy = 1.3 x 1072%; green
histogram). The peaks of the noise-only and noise-plus-
injection histograms are clearly separated, demonstrating
the discriminating power of the HMM. The PDFs of § are
narrower than for In B and have thinner right-hand tails,
because the nonlinear maximization step in the Viterbi
algorithm produces an extreme value distribution similar to
the Gumbel law. [19] The maximum is taken over all
Viterbi paths terminating in a given frequency-phase bin,
so paths terminating in neighboring bins are correlated
because they share common subpaths. There is no analytic

PThere is a weak dependence on the width of the running
median window applied to the power spectral density, as for the
F-statistic [16,53].
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TABLE V. Estimated versus injected phase: Pearson correlation
coefficient as a function of signal strength for the maximum
likelihood estimator XA LEstimatePulsarAmplitudeParams with
10° realizations.

ho (10726) Coefficient
80 0.978
8.0 0.464
1.7 0.156
1.3 0.059

expression for the PDF of InPr[Q*(0)|0] in the literature
to the best of our knowledge. [19] We therefore rely on the
empirical PDF in Fig. 11(c) to set Sy, (f) given P,.

2. Detection probability versus Ny

Another important question is how the performance of
the HMM scales with Ny. We formulate the question with
respect to two practical scenarios: (i) Ty 1s fixed, and

Tops & Ny varies; and (i) Ty, is fixed, and Ty o N7!
varies. Figure 12 presents data for scenario (i). As expected,
the sensitivity of the HMM increases, as N and hence 7',
increase [51]. We observe in Fig. 12(b) that the detection
probability rises with N at fixed P, = 1072, The same
trend occurs in Fig. 12(a) for 10~ < P, < 1. Figure 12(b)
corresponds to a vertical cut at constant P, = 1072 through
the family of ROC curves in Fig. 12(a). One subtlety is that
S depends on Ny through two countervailing factors. The
number of frequency bins per block is proportional to N,
so Sy, should increase with N, ceteris paribus, to keep P,
per block fixed; but the product Pr(Q|0O) in (1) decreases
with Nz, as more factors L, g Aq(1,)q(,) < 1 are
appended, implying that Sy, should decrease with N, for
fixed P,. The latter effect outweighs the former, as is
evident in Fig. 12(c); the threshold decreases from Sy, ~ 4.0
for Nr =5 to S, ~—-5.5 for Ny =35. In a genuine,
astrophysical search one would typically set P, = 1072
for the whole search band (B ~ 1 kHz), or for sub-bands
with Afg, ~ 1 Hz (to facilitate data handling), and hence
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FIG. 11. Normalized PDF of the detection statistic for pure noise (purple histograms) and a detected injection with the source

parameters in Table II (green histograms). (a) Logarithm of the B-statistic, In B(f,, ®, ), computed for a single HMM step in the bin
(f., ®,) containing the injection (where present), with hy = 0 (purple histogram) and hy = 5 x 10726 (green histogram). (b) Noise-only
histogram from (a) rebinned over the domain [—3, 3] and overlaid with normalized, central, chi-squared distributions with 2, 3, 4, and
6 degrees of freedom (solid curves; color scheme in legend), in order to test for congruence with the functional form of the F-statistic
PDEF. (c) Block score S; defined by (35) for the block containing the injection (where present), with hy = 0 (purple histogram),
hy = 1.3 x 10726 (green histogram), and N = 37. Realizations: 2.5 x 103 per histogram.
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FIG. 12. Detector performance as a function of N for Ty = 10 d fixed, Ty, = N7T 455 < Ny variable, and the source parameters in
Table II. (a) ROC curves for iy = 1.7 x 10726 and N = 5 (purple curve), 15 (green curve), 30 (blue curve). (b) Detection probability 1 — P,
versus Ny for iy = 1.3 x 10720 (green curve), 1.7 x 1072° (purple curve), and P, = 10~2 per block. (c) Block score threshold Sy, [see (35)]
versus N for false alarm probability P, = 102 per block; the number of bins per block, Pr(Q|0), and hence Sy, depend on N. All curves
are calculated for version III of the HMM. Control parameters: y = 1.0 x 1071 571, ¢ = 3.7 x 1070 573/2 Realizations: 10> per curve.

have P, < 1072 per block, with NyAfgin < Afqu < B.
The scalings with Ny are the same in this regime, but
the ROC curves are time-consuming to generate by
Monte Carlo simulations.*

Figure 13 presents data for scenario (ii) in the previous
paragraph, i.e., fixed Ts. The trend with N depends on
whether Ty o N7! is less or greater than the characteristic
timescale over which the signal frequency wanders. [51] If
T 4ure 18 less than the wandering timescale, the detection
probability decreases, as Ty, decreases; it is disadvanta-
geous to shorten the coherent integration in a HMM
segment, when the frequency wanders by less than
one bin during a segment. We observe this behavior in
Fig. 13(b) to the left of the peak. If Ty, is greater than the
wandering timescale, the detection probability increases,
as Ty decreases; it is better to make the segments shorter,

“Occasionally situations may arise, where it is desirable to
hold the number of bins per block fixed while varying N7, e.g.,
when comparing results from two data sets of different durations.
We defer the analysis of such situations to future work.

as required by condition (B1), up to the point where the
frequency wanders by roughly one bin during a segment.
We observe this behavior to the right of the peak in
Fig. 13(b). The behavior in Fig. 13(b) for P, = 1072 per
block is consistent with the ROC curves in Fig. 13(a) over
the range 103 < P, < 1. The threshold decreases with N,
in Fig. 13(c), just like in Fig. 12(c), because it is
approximately independent of 7T g;s.

3. Block definition

What happens when a candidate straddles the boundary
between two blocks? In this paper, we treat it as a special
case, to be followed up through a veto procedure in a
genuine astrophysical search. Straddlers represent a modest

fraction ~N }1/ 2 ofall signals or false alarms." Figure 14(a)

15Alternatively one can record straddlers on a candidate list
and consolidate candidates that share common subpaths, after all
the data are analyzed. This complicates the statistical interpre-
tation of the results, because HMM paths with common subpaths
are correlated [19].
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FIG. 13. Detector performance as a function of Ny for Ty = 360 d fixed, Tygin = N7' Tops o N7! variable, and the source parameters
in Table II. (a) ROC curves for i, = 1.3 x 1072 and N = 6 (purple curve), 18 (green curve), 36 (blue curve), chosen to give an integer
number of days per HMM step. (b) Detection probability 1 — Py versus Ny for hy = 1.3 x 1072° (purple curve), 1.5 x 1072® (green
curve), and P, = 1072 per block. (c) Block score threshold Sy, [see (35)] versus Ny for false alarm probability P, = 1072 per block. The
number of bins per block and hence Sy, scale with N, with Ty = N7 T o N7! variable (purple curve) and Ty, = 10 d = constant
[green curve; copied from Fig. 12(c) for comparison]. All curves are calculated for version III of the HMM. Control parameters:
y=10x10""°s"1 6=37x10"1 s73/2, Realizations: 103 per curve.
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FIG. 14. Effects of block definition on performance. (a) ROC curves for blocks of bandwidth 2N ;A f i, whose leftmost frequency
bins are shifted 1,2, ..., Ny — 1 bins to the right of an arbitrary reference bin, for 1y = 1.3 x 1072°, T4 = 10 d, and N = 37. The 36
curves overlap closely and cannot be distinguished by eye. (b) ROC curves for blocks of bandwidth 2kN7 A f g, With k = 0.243, 0.514,
0.757, 1.00, 1.24, 1.51, 1.76, 2.00 (chosen to give an integer number of bins per block). All curves are calculated for version III of the
HMM. Source parameters: see Table II. Control parameters: y = 1.0 x 10710 57!, ¢ = 3.7 x 107!% s73/2_ Realizations: 10> per curve.
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Conservation of signal power. B-statistic at the correct phase bin versus frequency (in Hz) for a strong binary injection with

ho = 8 x 10~ and source parameters drawn from Tables II and III. (a) B evaluated with F,, and F, in (28)—(34). (b) B evaluated with
Ji, and J;, (Jacobi-Anger version) in (28)—(34). Note the different vertical scales in (a) and (b).

verifies that the absolute position of the block boundary
does not affect the ROC curves appreciably. It displays
Ny — 1 individual ROC curves for Ny — 1 different block
boundaries, in which the leftmost frequency bin is shifted
right by 1,2,...,N;y—1 bins relative to an arbitrary,
reference bin. The curves overlap closely and are barely
distinguishable by eye.

Likewise we find that the performance of the HMM
depends weakly on the bandwidth of each block. It is
unlikely for a path to drift by ~N bins after Ny > 1 HMM
steps, even when the tails in A, , with |[j—i] > 1 are
preserved, as in Appendix C (cf. truncated A, , with
|/ —i| < 1in Ref. [18]). Figure 14(b) verifies this property
by plotting multiple ROC curves for block widths
2kN7Af gure With 0.2 < k <?2. Again the curves overlap
closely. We use k = 1 henceforth in this paper.

4. Conservation of signal power

In version II of the HMM, based on the J-statistic,
Jia(fo) and Jy,(f,) marshal the Doppler-shifted signal
power into one frequency bin by coherently summing
orbital sidebands weighted by J, (27 fya,)e~*%. It turns out
that the same holds true empirically for the 5-statistic,
although there exists no formal mathematical proof at the
time of writing; it may not be possible to derive the -
statistic for a binary source exactly as a Jacobi-Anger
expansion of the B-statistic for an isolated source, by
analogy with the [J-statistic. This Appendix verifies
numerically that minimal power is lost or dispersed into
neighboring frequency bins, when the B-statistic is evalu-
ated using J,(fo) and Jy,(fo)-

Figure 15(a) graphs B(f,, ®,) versus f, (evaluated for
@, in the injected bin) for a strong binary signal using F,

and Fy, to evaluate B. As the orbital motion is not
accounted for, 55 displays a comb of orbital sidebands at
f.+s/P, which fill the band 111.09 < f,/(1 Hz) <
111.11. The comb exhibits the classic two-horned envelope
familiar from the Sideband algorithm, [52,60] because the
source spends more time moving perpendicular to the plane
of the sky (when the orbital Doppler shift is a maximum)
than moving perpendicular to the line of sight (when the
Doppler shift is zero). Figure 15(b) shows the same thing as
Fig. 15(a) but with F, and F;, replaced by J;, and Jy,
when computing B. The sidebands now merge into one
peak, which is &40 times higher than the tallest peak in the
comb in Fig. 15(a) (note the different scales). Identical
behavior is seen in Fig. 1 in Ref. [19] for the J-statistic
instead of the B-statistic.

APPENDIX F: REPRESENTATIVE PHASE
PATHS RECOVERED BY THE HMM
FOR A SOURCE IN A BINARY

In this Appendix, we examine for completeness the
optimal phase paths ®,(¢) recovered by version III of the
HMM for the representative examples of binary sources
studied in Sec. VI A.

Figure 16 displays the absolute error between the
injected and recovered phase for the three synthetic
binary sources tracked in Fig. 7. The interpretation is the
same as in Sec. V B. The phase error jumps around, even
after unwinding the phase wrapping, because the B-statistic
spreads the signal power over multiple phase bins. On
balance, though, the imperfect phase tracking delivers
improved sensitivity, as evidenced by comparing
Figs. 7(a) and 7(b) and the ROC curves in Sec. VIB.
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FIG. 16. Phase tracking in a representative source in a binary. Layout as for Fig. 4 but for the three sources in Fig. 7.
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