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Abstract—1In this article, we present a novel approach to
reconstruct the topology of networked linear dynamical systems
with latent nodes. The network is allowed to have directed loops
and bi-directed edges. The main approach relies on the unique
decomposition of the inverse of power spectral density matrix
(IPSDM) obtained from observed nodes as a sum of sparse
and low-rank matrices. We provide conditions and methods for
decomposing the IPSDM of the observed nodes into sparse and
low-rank components. The sparse component yields the moral
graph associated with the observed nodes, and the low-rank
component retrieves parents, children and spouses (the Markov
Blanket) of the hidden nodes. The article provides necessary
and sufficient conditions for the unique decomposition of a
given skew symmetric matrix into sum of a sparse skew
symmetric and a low-rank skew symmetric matrices. It is shown
that for a large class of systems, the unique decomposition
of imaginary part of the IPSDM of observed nodes, a skew
symmetric matrix, into the sparse and the low-rank components
is sufficient to identify the moral graph of the observed nodes
as well as the Markov Blanket of latent nodes. For a large
class of systems, all spurious links in the moral graph formed
by the observed nodes can be identified. Assuming conditions
on hidden nodes required for identifiability, links between the
hidden and observed nodes can be reconstructed, resulting in
the retrieval of the exact topology of the network from the
availability of IPSDM. Moreover, for finite number of data
samples, we provide concentration bounds on the entry-wise
distance between the true IPSDM and the estimated IPSDM.

I. INTRODUCTION

Networks provide convenient representation of large scale
complex systems utilized in diverse areas such as power
grids, biology, finance, and neuroscience. Reconstructing the
underlying network topology or the influence structure of the
interaction from measurements is useful in predicting, and
steering the behavior of the system towards a desired state.
Learning the unknown interaction structure of a network of
agents from time-series measurements can be categorized as
being active [1] or passive [2]. Active techniques require
intervention in the normal operation of the system by injec-
tion of external signals and/or altering the network structure,
by removing or adding agents to the network. Many critical
systems such as the power grid, the financial markets, and
the meteorological system either do not allow for active
interventions or it is not possible to affect the system. On
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the contrary, passive techniques infer topology from time-
series measurements, without affecting the underlying grid
network. Here, in practice, observing time-series measure-
ment at every node is not plausible, wherein it becomes
important to learn the topology of the network when only
a subset of the nodes are observed.

Learning the topology of a network from time-series data
is an active area of research, with considerable emphasis
from the machine learning and probabilistic graphical model
communities (see [1]-[6]). However, here, most works as-
sume that the nodes are random variables which fail to
capture the dynamics of the interaction and thus are improper
for the applications with dynamic dependencies that are com-
mon, for example, in the power grid [7] and its application
to smart grid networks [8], climate science [9] and finance
[10]. Moreover, in many scenarios, topology identification is
the first step in system identification[11], [12].

Filtering based topology reconstruction has gained con-
siderable attention recently for unveiling the topology of
dynamically related agents. In [13], the moral graph of a di-
rected network is reconstructed using the magnitude response
of multivariate Wiener filters. [14] provided a method that
showed that the spurious links present in the moral graph can
be removed by checking the phase response of the Wiener
filter between the links. [13] and [15] provided algorithms for
exact network reconstruction where all parent-child relations
are uncovered but the results are restricted using Granger
causality to systems with strictly causal dynamical depen-
dencies. The aforementioned works, [13]-[15], assumed full
network observability. Several works, [17]-[22], have studied
topology identification in the presence of hidden nodes, but,
restricted to radial tree topologies—characterized by undi-
rected tree topology in [17], for polyforest networks in [18],
and polytree networks in [19]-[21]. Network reconstruction
with corrupted data streams was explored in [25]-[27].

In [29]-[35], the authors considered the problem of es-
timating conditional dependency structure of autoregressive
(AR) Gaussian stochastic processes in the presence of la-
tent nodes, with an emphasis on finiteness of the time-
series available. Here, the problem is formulated in terms
of sparse plus low-rank decomposition of the inverse of
the power spectral density matrix (IPSDM). The articles
[29]-[35] provided interesting optimization frameworks and
theoretical guarantees to identify the conditional dependency
from estimated IPSDM. Here, the graphical representations
of conditional dependencies reconstructed from the IPSDM
retrieves the moral graph [13]. As shown in [13], [36], moral
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graphs can admit many spurious edges.

In this article, we approach the problem of reconstructing
the topology in the presence of latent nodes. Similar to [29]-
[35] a perspective of sparse plus low-rank decomposition of
IPSDM associated with the observed nodes is taken.

Extending the results in [37], this article establishes condi-
tions for a skew symmetric to admit a unique decomposition
as a sparse and low-rank matrix. Towards decomposing a
skew symmetric matrix, this article provides a characteriza-
tion for tangent manifolds of skew symmetric matrices with
a fixed rank and with a given sparsity pattern. Furthermore,
the article provides additional theoretical insights into an
empirical procedure presented in [37], which provides a
sufficient condition that can be tractably assessed for a
unique decomposition. Though not emphasized in the article,
the methodology developed can be used to realize similar
results for unique decomposition of Hermitian matrices as
well.

Based on the extensions of the results in [37] established
here, it is possible to obtain a decomposition of the IPSDM of
the observed nodes, where the sparse part can be leveraged
to realize the moral graph formed by the observed nodes.
We establish identifiability conditions under which the low-
rank component of the observed nodes’ IPSDM yields the
parents, children and spouses (all the the two hop neighbors
that form the Markov Blanket) of the latent (hidden) nodes.
The IPSDM, being complex and frequency dependent, has
real and imaginary parts. We further emphasize the imaginary
part of the IPSDM in the article as it has considerable
structure applicable for a large class of problems. Here too
the sparse component of the imaginary part of the IPSDM
matrix, which is skew symmetric, is shown to yield the moral
graph of networks governed by a linear dynamical model
(defined later) that encompass a wide class of systems. The
above approach can be employed toward the retrieval of the
moral graph of networks of AR models and is applicable to
networked systems addressed in [29] albeit, here we do not
emphasize the finite data aspects.

The moral graph relations can admit many spurious con-
nections not present in the original topology. We demonstrate
that the rank-sparsity patterns induced by the network topol-
ogy on the imaginary part has properties that can be exploited
toward the exact reconstruction of network topology. Here,
under assumptions applicable for a large class of systems,
all spurious links in the moral graph formed by observed
nodes can be identified. Moreover, assuming conditions
on hidden (latent) nodes, which follow from identifiability
conditions, links between the hidden and observed nodes
can be reconstructed resulting in the retrieval of the exact
topology of the network.

This article also serves as an important bridge between the
works presented in [37] and the works related to network
structure reconstruction [13]-[24]. Furthermore, results here
are applicable to many classes of directed graphs without self
loops, not restricted to directed acyclic graphs or bi-directed
graphs, unlike [14], [17].

We summarize below the major contributions of the article.

« Provides non-trivial generalizations of results of [37] to
skew symmetric matrices, with exact characterization of
tangent manifolds of skew symmetric matrices with a
given rank and skew symmetric sparse matrices. We also
provide a sufficient condition that enables a practical
way to select penalty factor for the convex optimization
formulation that yields the unique, sparse plus low-
rank matrix decomposition, restricted to skew symmet-
ric matrices. This contribution is applicable to general
skew symmetric matrix independent of its application
to topology identification.

« Reconstructs the moral graph of observed nodes and
the Markov Blanket of latent nodes from the matrix
decomposition of IPSDM; accounting for network iden-
tifiability issues associated with the latent nodes.

« Establishes that the decomposition of imaginary part of
IPSDM is sufficient to recover moral graph of observed
nodes and the Markov Blanket of the latent nodes.
Conditions and methods for unique decomposition as
a sum of low rank and sparse matrices of the imaginary
part are provided.

« For large class of systems, the exact topology of the
entire network is reconstructed by the decomposition of
imaginary part of the [IPSDM.

« For the more practical scenarios where we have access
only to finite samples of time-series at each node, we
provide a concentration bound for estimation error of
IPSDM.

Organization of the article: Section II presents the unique
decomposition of a skew symmetric matrix into its sparse
and low-rank components. Section III discusses linear dy-
namical systems and its graphical representation. Section
IV addresses moral graph reconstruction, identifiability of
latent nodes, and Markov Blanket reconstruction of the latent
nodes. Exact topology reconstruction is studied in Section
V. Section VI discusses IPSDM estimation from finite time
series. Section VII provides simulation results and Section
VIII concludes the article.

Notations: Bold capital letters denote matrices and bold
small letters denote vectors. S™ denotes the set of all n x n
skew symmetric matrices with real entries. For a matrix
M, [M];;, M;j;, or M(i,j) denote the (z,)-th element
of M, |[M]; is defined as },; ; M|, [M] o is defined as
max;; |M;;|, and [M]o denotes the number of non-zero en-
tries in ML. | M||, denotes the nuclear norm, which is the sum
of singular values of M, and |[M|s denotes spectral-norm,
which is defined as the largest singular value. support(M) is
defined as {(4, j) : M;; # 0}. 3{M} denotes imaginary part
of M. For a vector, [|x|2 denotes euclidean-norm, defined
as />, 22. 0;(M) denotes i™ largest singular value of M.
For time-series (Z;(t)):ez, x(2) = Z[X(k)] denotes bilateral
z-transform of X. For a set S, |S| denotes cardinality of the
set. We use j = +/—1. For a transfer function h(z), z € C,
h = 0 means h is identically zero, i.e., h(z) = 0 for every
|z| = 1. h # 0 means h is not identically zero. Almost
always or almost surely is defined for a probability measure
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that is absolutely continuous with respect to the Lebesgue
measure (e.g. any continuous distribution).

II. SPARSE PLUS LOW-RANK MATRIX DECOMPOSITION
FOR SKEW SYMMETRIC MATRICES

In this section, we discuss the following problem: suppose
we are given a real skew symmetric matrix C € S™ that is
obtained by adding a sparse matrix S € S™ and a low-rank
matrix L € S™; when can we decompose the matrix and
retrieve the component matrices? The material presented in
this section provides the needed preliminaries and extensions
of results from [37], which do not incorporate constraints of
skew symmetry. We remark that the results discussed in
this section for the space of skew symmetric matrices can
be extended to the space of complex matrices. However, we
do not discuss it here.

A. Optimization for Sparse plus Low-rank Decomposition
Consider the following optimization problem.

(§7,I:7) = arggli[{lv\|5\\o+rank(L) (1)

subjectto S+ L = C,
S+8T=0,L+LT =0,

where ~ is a fixed penalty, selected a priori. (1) is a
combinatorial optimization problem and is NP-hard [38]. /;
norm is often employed as a surrogate for ¢y norm [39],
with nuclear norm being a proxy for rank [40]. Thus a more
tractable convex relaxation associated with (1) is:

(S.Ly) = argminy[S|1 + L]« @)

subjectto S+ L = C,
S+sT=0,L+LT =0.

Remark 1: Given C = —C”, imposing the constraint S +
ST = 0 renders L + L” superfluous.

In this article, the convex formulation in (2) is applied
for retrieving the sparse and low-rank components from the
given C.

B. Affine Varieties and Tangent Spaces

In the seminal work [37], the convex optimization problem
(2) without the constraints ST = —S and LT = —L is
considered, which provided sufficient conditions to retrieve
S and L exactly. The results in [37] established results for
general square matrices with a real field. In this section,
we extend the results to skew symmetric matrices in real
field, S™. In order to address the decomposition, we consider
the sparse matrix sets as an affine variety and low-rank
matrix sets as a manifold. We characterize the necessary and
sufficient conditions required for the unique decomposition
in terms of the tangent space to the affine variety of sup-
port constrained skew symmetric matrices at S—the original
sparse matrix—and the tangent space to the manifold of rank
constrained skew symmetric matrices at L-the original low-
rank matrix. Note that an affine variety is defined as the zero
set of a system of polynomial equations [41].

Remark 2: The skew symmetric matrices with real entries
have the property that all the non-zero eigenvalues are pure
imaginary and they exist in conjugate pairs. Therefore, the

rank r of every skew symmetric matrix must be even, and the
multiplicity of the singular values must be a positive multiple
of two.

Next, we provide definitions of tangent spaces, specific to
skew symmetric matrices in real field, as our major focus
in this article is on imaginary part of Hermitian matrices.
The affine variety of skew symmetric matrices constrained
by support size m is defined as:

S(m) :={M e S" : |support(M)| < m}. (3)

Notice that S(m) is defined over the space of all skew
symmetric matrices, S”, i.e., the set of all matrices M €
R™ " with M”T = —M. We establish the following result
on tangent spaces of sparse real skew symmetric matrices.

Lemma 1: For any skew symmetric matrix M € S™, the
tangent space (2(IM) with respect to S(|support(M)|) at M
is:

QM) :={N e S" : support(N) < support(M)}.  (4)
Proof: See Appendix A. [ ]
The dimension of this tangent space is support(M)/2 owing
to the skew symmetric property.

We define set of skew symmetric matrices of rank r as:

R(r) :=={MeS" : rank(M) = r}. %)

It is shown in [42] that R(r) is a differential manifold, whose
2_

dimension is nr — ~5=—

Lemma 2: For any skew symmetric matrix M € S”, the
tangent space 7'(M) with respect to R(rank(M)) at M is:

T(M) := {UXT — XUT : X e R"*"}, (©6)

where M = UDVY7 is the compact singular value decom-
position (CSVD) of M.

Proof: See Appendix B. [ ]
The dimension of 7'(M) is nr — ;
The following lemma is obtained based on Remark 2.

Lemma 3: Let M € S™ be a skew symmetric matrix and
let M = UDV? be CSVD of M, D := diag(o1,...,0,)
with 01 = 09 = - -+ = 0,, where r is the rank of M. Then,
the projection matrices UU” and VV7 of the given skew
symmetric matrix M are equal.

Proof: See supplementary material, Appendix A or [43]. &

Suppose we have prior information about Q(S) and T(L),
in addition to being given C = S + L. Then, it can be
shown that a necessary and sufficient condition for unique

identifiability of (S, L) in terms of the tangent spaces is

Q(S) nT(L) = {0}, @)
i.e., the tangent spaces (S) and T'(L) has trivial inter-
section. In other words, if the tangent spaces intersect only
at origin, then we can retrieve the component matrices S
and L, if we have access to Q(S) and T(L). Given exact
characterization of tangent spaces for real skew symmetric
matrices in Lemma 1 and Lemma 2, it is possible to test for
the necessary and sufficient trivial intersection condition for a
given matrix M. Now, analogous to development in [37], we
obtain the sparse and low-rank decomposition using convex
optimization.
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C. Sparse plus low-rank Decomposition using Optimization

In general, it is not possible to recover the original sparse
and low-rank matrices by solving (2). To begin with, the
solution of the optimization problem depends intricately on
the penalty factor . In Proposition 3, we prove that for -y
close to zero the optimal solution (S., L) returned by (2) is
(C,0), whereas for v sufficiently large (§.,,IAJ,,) = (0,C).

Another issue in decomposing the given matrix C is if
either S is low-rank, or L is sparse. For example, suppose
that the low-rank matrix L is such that fql # 0 with every
other entry zero, and S be any sparse matrix with Sy #
0. Then, the optimization may return (C,0) or (0,C) as
the solution depends on the rank of S. Another example
where the unique decomposition is not possible is when S
has support restricted to the first column and the first column
of L negates all the entries of S. Then, a reasonable solution
is (0,C).

Next, we characterize the optimal regions of (2) and
provide sufficient conditions under which it obtain the unique
decomposition, i.e., returns the true sparse and low-rank
matrices. The following proposition provides a_sufficient
condition for (2) to return the optimum solution (S, L) =
(5. L) o
_ Proposition 1: Suppose that C = S + L, C # 0 where
S,L € S™ is given. Then, (S,L) is the unique optimizer of
(2) if the following conditions are satisfied:

1 QS) ~T(L) = {0}.

2) There exist duals Q1, Q2 € R™*™ such that

@ Py (Q1 — Q2 — QF) = vsign(8),
(®) Ppy(Q1) = UVT,
© [Pog)c(Q1—Qz — QD) <,
@ [P (@)l < 1.
where P, g)(M) is obtained by setting entries of M outside

the support of S to zero and projecting it to the space of skew
symmetric matrices, and Pr ) (M) := PuM + MPy —
PyMPy; Py = UUT, L = UXVT,
Proof: See supplementary material, Appendix B or [43]. ®
D. Sufficient Conditions to Retrieve S and L

Here, we provide some sufficient conditions that guarantee
the existence of the duals Q; and Qs discussed in Propo-
sition 1. The definitions (S) := MaXneo§): N <1 1Nz

<

terize the properties of the tangent spaces.

Remark 3: Our definitions of u(S) and {(L) are different
from the respective definitions in [37]. In fact, the values of
our p and £ are less than or equal to the respective values
in [37].

The following proposition provides a sufficient condition
to obtain the unique decomposition. _ _

Proposition 2: Suppose that C = S+ L is given. Suppose
that /ﬁ(S)f (L) < §. Then, the unique optimum for (2) is
(S‘Y? L, ) = (S,

and ¢£(L) := maXyer ). Nj<1 |N oo are used to charac-

<
L) if
g @) 1-3u(3)@) ®)
1 —4p(S)&(L) w(s)
Proof: See supplementary material, Appendix C or [43]. ®
Remark 4: The range of values in (8) is a superset of
the range specified in [37]. In the worst case, (8) would

(
~ye

return the same interval specified in [32], due to gifference
in definitions of the tangent spaces, (S) and T'(L).

Next, we define deg,q, of a matrix M as degmaz(M) :=
max (maX1<i<n (Z?Zl B{Mij#o}) ,MaX1<j<n (Z?zl ]l{MiﬁéO}))
where 1,0y = 1if z # 0 and 1,0y :=0if z =0
denotes the indicator function. We define the maximum
incoherence of the row/column space of the real skew
symmetric matrix M as inc(M) := max; [UU ez,
where UEXVT is the CSVD of M. This definition is
different from the one in [37] due to Lemma 3.

The following lemma extends the sufficient condition in
Proposition 2 in terms of degy,q, and maximum incoherence.

Lemma 4: Let C = S+ 1L With~degmw(§) and inc(L) as

defined above. If degpqz(S)inc(L) < 75, then the unique
optimum of the convex program (2) is (S4,L~) = (S,L)
for a range of values of v given by:

2ine(L)
vE ==, = )]
1 — 8degmaxz (S)inc(L) degmaz (S)

Proof: The proof is similar to Corollary 3 in [37], and is
skipped due to space constraint. [ ]

Thus, by picking a proper « the convex optimization (2)
returns the unique decomposition (S, L) without the need to
determine (S) and T'(L).

Remark 5: Lemma 4 provides a conservative sufficient
condition and hence covers only a subclass of uniquely de-
composable matrices. In Section VII we provide an example
that does not satisfy the sufficient conditions, but still is
uniquely decomposable using Algorithm 1, i.e., the network
satisfies the transverse intersection (7), but not the sufficient
condition in Lemma 4.

It can be observed from the structure of singular vectors in
the projection matrix UU7' that n must be large for inc(L)
to be small enough to satisfy the condition in Lemma 4.
Moreover, using the results from [4~4], it can be shown that
the number of non-zero entries in S must be at most O(n)

for the sufficient conditions to hold.
The convex program (2) is equivalent to the following

formulation with the mapping ¢t = ﬁ, where ¢ € [0,1]:

1 — 6degmaz (S)inc(L)

(8. Le) = argmint|S|1 + (1 1)|L]« (10)

subjectto S + L = C,
ST =_s, LT = —L.

The following definitions are used to measure the closeness
of the estimated matrices with the true matrices.

S, - S L,-L

toly = HSt~ SlF | t |7 an
IS] 7 L) 7

diffy = (ISt—e —S¢|r) + (| Li—e — Lt|F), 12)

where |.|r denotes the Frobenius norm and ¢ > 0 is a
sufficiently small fixed constant. Note that tol; requires the
knowledge of the true matrices S and L, whereas dif fe
does not require any such prior information. Moreover, the
mapping between ¢ and = is one-to-one.

In practice, we may not have access to any extra informa-
tion other than C; thus determining ¢ required for the unique
decomposition from Lemma 4 and tol; becomes difficult.
Here we provide guidance on which ¢ (and this 7) to be
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employed. The following proposition provides a systematic
approach to identify a proper penalty factor ¢ for the unique
decomposition.

Proposition 3: Suppose we are given a matrix C, which
is obtained by summing S and i, where S is a sparse
matrix and L is a low-rank matrix. If S and L satisfies
deg,..(S)ine(L) < 1/12, then there exist at least three
regions where diff; = 0. In particular, there exists an
interval [tq,%2] < [0,1] with 0 < #; < t2 < 1 such that
(S¢,Ly) = (S, L) for any t € [t1, t5]

Proof: See Appendix C. [ ]
Corollary 1: By solving (10) and calculating dif f; for
every t € {¢,2¢,...,1} we obtain S; and L; and the zero

regions specified in Proposition 3, specifically [¢1,%2], 0 <
t; < te < 1, where dif f; = 0. For a given t € [t1,ts], if
deg, .. (St)inc(Ly) < 1/12, then the decomposition is exact,
that is, tol; = 0 and (S;,L;) = (S,L).

Remark 6: Proposition 3 and Corollary 1 are applicable in
any general sparse plus low-rank matrix decomposition, and
is not restricted to skew symmetric matrix decomposition.

Remark 7: Conversely, if there are only two zero regions,
t close to zero and ¢ close to 1, then we can assert that it
may not be possible to obtain unique decomposition with
this approach. Simulation results show that ¢ € [.26, .4] is a
good region to look for t.

Based on Proposition 3 and Corollary 1, we propose
Algorithm 1 to obtain the unique decomposition, which
returns the estimated sparse matrix S and estimated low-rank
matrix L.

Remark 8: The aforementioned results can be extended to
the space of complex Hermitian matrices also; however, we
do not discuss them here.

In the following section, we discuss some preliminaries
of linear dynamical systems that are useful in understanding
the rest of the article. In Section IV and Section V, we
discuss how the matrix decomposition is extremely useful
to reconstruct the moral graph/topology of a given linear
dynamical model.

ITI. LINEAR DYNAMICAL SYSTEMS
Consider a linear dynamical system with n interact-
ing agents, each equipped with time-series measurements

(Z;(t))tez» i € {1,...,n}, governed by the following linear
dynamical model (LDM):
m ~
X(k) = >, HOX(k—1) + &(k), (13)
l=—w0
where  X(k) = [Z1(k), -, Z.(k)]F, &(k) =

[61(k), - ,en(k)]T, and for 4,5 € {1,2,---,n}, i # j,
€;(k) is a zero mean wide sense stationary (WSS) process
uncorrelated with €;(k). Additionally, the processes
{¥:(k), & (k)}7, are jointly WSS. Let H(z) = Z[H(k)].
Then, H(/) € R"*" denotes the weighted adjacency matrix
with diagonal entries H;;(I) = 0, 1 < ¢ < n, l € Z, such
that H is well posed, i.e., every entry of (I — H(z))™? is
analytic on the unit circle, |z| =1, z € C. An LDM is said

to be topologically detectable if ®e(z) is positive definite
for every |z| = 1. The above model can be represented
using the following Transfer Function Model (TFM),

x(z) = H(2)x(z) + e(z), z€C, (14)

where x(z) = Z[X(k)] and e(z) = Z[é(k)]. In general,
there may exist nodes whose observations are not available
and remain hidden. These nodes that are not accessible are
called hidden/latent/unobservable nodes. ), denotes the set
of observable nodes with cardinality n, and V), is the set of
latent nodes with cardinality ny,.

A. Graphical Representation
The Linear Dynamic Graph (LDG) associated with the

LDM (14) is defined as the directed graph G(V, &), where
V =1{1,2,---,n} and €& = {(4,5)|H,; # 0}. Thus, there
exists a directed edge (¢,j) from node ¢ to node j in the
LDG if and only if H;; # 0. For a directed graph G(V, &),
parent set of node j is P(j) := {i|(¢,5) € £}, child set of
node j is C(j) := {i|(4,¢) € £} and spouse set of node j is
S(j) :={ili € P(C(j))}. Nodes i and j are strict spouses if
i€ 8(j), i ¢ C(j) v P(j). The Markov Blanket of node 4,
denoted kin(i) := C(i) U P(i) U S(%). The moral or the kin
graph, kin(G) := {(i,7) | i € kin(j), 1,5 € V}, where (4, j)
denotes an unordered pair. The topology of G is defined as an
undirected graph top(G) := {(4,5) | i € P(j) v C(j), 4,j €
Vi

Similarly, an LDG obtained by restricting the vertex set
to the observed nodes is defined by G,(V,, E,), where &, :=
{(¢,7)li,7 € V, and Hj; # 0}. The topology among the
observable nodes, T (V,,&,) := top(Go(V,,E,)). We define
an undirected edge set &, := {(i,5) | (i,7) € & or (j,i) €
&y, © < j}. Similarly, the moral graph among the observable
nodes is the undirected graph kin(G,) := {(i,j5) | @ €
kin(j), 4,j € Vo}. We define a path between nodes ¢ and j
in an undirected graph as a set of nodes {i,zo,..., 2,7}
where {(i,z0), (x1,22),..., (Zp_1,21)} < E. We de-
fine a path between nodes ¢ and j in an undi-
rected graph as a set of nodes {i,xo,...,xzx,j} where
{(3,z0), (x1,22), ..., (Th—1,2)} S E. A directed path in
a directed graph is a path between nodes ¢ and j with the
constraint that all the edges are directed from ¢ towards j.
dhop (3, J) is defined for undirected graphs as the number of
links between nodes ¢ and j on the shortest path connecting
i and j. It can be shown that dp.,(¢,7) is a metric for
undirected graphs. For a node ¢ € V, the degree of the node
is deg(i) := |{j € V : (i,7) € £}|. Note that this definition
is for undirected edges.

In the next section, we study properties of the IPSDM
of a given LDM that are useful in topology/moral graph
reconstruction.

IV. EXACT RECONSTRUCTION OF MORAL GRAPH OF
OBSERVED NODES AND MARKOV BLANKET OF

LATENT NODES
A. Moral Graph Reconstruction under Complete Observ-
ability
In this part of the section we present some important
preliminaries for reconstruction of moral graphs from power
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spectral density matrices and methods on how to reconstruct
moral graph under full observability of the network.

For the graph G(V, ), the power spectral density matrix
(PSDM), P (z) € C™*™ is given by
0

Du(z) = Y. E{Z(K)XT(0)}27%, 2€C,|2| = 1.
k=—o0

The PSDM and the IPSDM of the dynamical system
governed by (14) can be respectively written as (see [13])
O, (2) = (I—-H(2)) 1®e(2)(I - H*(2))"! and

15)

01 (2) = (I- H*(2)@5 " (2) (I — H(2)).

X

(16)

Note that ®;'(z) is a diagonal matrix, since &;(k) is
uncorrelated with &;(k) for i # ¢.

The following lemma (Theorem 27 in [13]) provides a
sufficient condition to estimate the moral graph of G(V, )
from the IPSDM.

Lemma 5: Consider a well posed and topologically de-
tectable LDM (H,e) with the associated LDG G(V, &),
described by (14), having full node observability. Let IPSDM
of x be given by (16). Then, [®'];; # 0, i # j implies
i € kin(j). Moreover, the converse holds almost always.

Remark 9: In [29] and the related works, [®1];; # 0
is considered to be equivalent to nodes ¢ and j being
conditionally dependent given the rest of the observations.
That is, retrieving conditional dependence is equivalent to
reconstructing moral graph.

Remark 10: The results of [29] can be extended to AR
models with WSS noise by considering conditional cor-
relation instead of conditional dependence. In this case,
retrieving conditional correlation is equivalent to moral graph
reconstruction.

B. Structure of the IPSDM with Latent Nodes

In the previous subsection we studied the properties of
IPSDM under the assumption that all the nodes are observ-
able. However, topology identification becomes complicated
in the presence of latent nodes, often leading to lack of
identifiability (see IV-C). Here, we discuss some of the
special properties of the IPSDM in the presence of latent

nodes that are exploited in this article.

By separating observable nodes and latent nodes, we
represent x(z) = )’:Zgz)) 2;8 , where x,(z) =
Z[Xo(k)], xp(2) = Z[Xn(k)], e.(z) = Z[e,(k)], and
en(z) = Z[eén(k)]. The TEM in (14) can be expressed as
follows:

3] - [

and e(z) =

el | et R e R

Letting ®x(z2) = [‘?Z‘;Ez% gz’;((?)] and o3l(z) =
Koo(Z) Koh(z) . . .
[Kho(z) Khh(Z)] we have that (by ignoring the index z)

ol = Koy — Kth;,iKho, which follows by applying
block matrix inversion formula and using Schur’s com-
plement representation [45]. Furthermore, using (16), the
IPSDM corresponding to the observed variables can be

written as:
®, ! =S + L, where (18)
S = (Io - H:o)(be_ol (Io - H00)7 (19)
L =H} &, Hy, — U AT, (20)

U =HY® (I-H,)+ (I-Hj,)®, Hy,, and

A=HO,'Hy, + (I-Hj,)®, (I—Hyy).

en

The following proposition shows that support(S) can re-

trieve the moral graph among the observable nodes, kin(G,).

Proposition 4: Consider a well-posed and topologically
detectable LDM, (H, e), described by (14), with the associ-
ated graph G(V,€). Let S be given by (19). Then, the set
& = {(4,7)|Si; # 0,4 < j} reconstructs kin(G,) almost
always.

Proof: Notice that (16) and (19) are exactly the same,
except H, ®, and I in (16) are replaced with H,,, P,
and I, respectively in (19). Thus, by applying Lemma 5 on
S, &, retrieves kin(G,) almost always. [ |

The following theorem shows that S is sparse if the moral
graph, kin(G,) is sparse, while L is a low-rank matrix if
np << n,. This particular structure aids in decomposing
®,! into S and L (or more precisely 3{®_.'} into I{S}
and S{L} using the results from Section II). Notice that the
index z is omitted from the notations. The results hold for
every |z| = 1 uniformly.

Theorem 1: Consider the LDG G(V, £) described by (14).
Let G,(V,,&,) be the LDG, G(V, &), restricted to the ob-
served nodes. The following holds:

|support(S)| < 2|E| + 2|E5°| + n, rank(L) < 2np,  (21)

where £;° denotes the set of undirected edges between the
observable strict spouses with a common observable child.
Proof: See Appendix D. [ ]

Remark 11: Here, we are interested in the scenarios where
2|&,| + 2|€5°] = O(n); note that the maximum number
of interconnections in a graph of n nodes is n?. In this
sense, S is considered sparse. If we can uniquely decompose
®, 1(2) into the sparse matrix S and the low-rank matrix
L, then one can obtain kin(G,) from S (see Proposition
4) and the Markov Blanket of the hidden nodes from L
(see Section IV-D). Further, in Section V-B, we reconstruct
the exact topology of the entire network, including that of
hidden nodes, under some assumptions. However, there are
certain identifiability issues related to hidden nodes, inherent
in network topology, which make the detection of hidden
nodes from L difficult, even impossible in some cases. We
address them next.

C. Identifiability of Latent Nodes

Here, we discuss identifiability of the hidden nodes in-
herent to the graph structure and not limited to any specific
reconstruction method. We illustrate the non-identifiability
via examples.

Fig. 1a and Fig. 1d represent LDGs with LDMs given by
T1=¢1, To = .%1+Z?=4 hgi*%i(k)-‘rgg, Ty = hgg*fg(k)-F
€3, where node 1 is latent, and ZTo = Z?:z; hoi = Z;(k) +
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Fig. 1: Non-identifiability of hidden nodes (red colored
nodes): (a) hidden node is terminal and strict parent (b)
hidden node is terminal and strict child (¢) Markov
Blankets of hidden nodes 1 and 2 overlapped.

€2, T3 = hga * To(k) + €3 respectively. Let é2 = €5 + €.
Then the observed node time-series obtained from the two
LDMs are identical and the two models are indistinguishable
from @, 1.

Similarly, consider the LDGs shown in Fig. 1b and Fig.
le with LDMs given by &1 = €1, T2 = T1 + >, ho; *
%1(]6) + €9, Tg = hgo * %Q(k) + €3, T1 = €1, To = T1 +
Sy hoi = T;(k) + € respectively, where node 3 is latent.
Again, the time-series among the observable nodes obtained
from both the LDGs are the same and hence the two models
are indistinguishable.

Based on the aforementioned discussion, we make the
following assumptions for identifiability of a hidden node.

Assumption 1: Any hidden node kj, in G(V, £) has at least
one observed-child ¢ € V,. Further, k;, is a parent or child
of another observable node j € V,\{c}.

We next illustrate that non-identifiability issues arise when
the Markov Blankets of hidden nodes overlap. Consider the
LDGs shown in Fig. 1c and Fig. 1f with LDMs given by
Tz = Z:IZS ha; * %z(k) + 53, T1 = T3+ gl, Ty = T3 +
gg, Ta =11 +f2+§4’ and 73 = Z?:5 hgi*%i(k)+g3, T, =
Tg + €1, Ty = T1 + €4, where é; = €1 + To , respectively,
where nodes 1 and 2 are latent. Both LDMs result in the
same observed time-series, which leads to non-identifiability
of hidden node 2. Hence, we make the following assumption
about the spatial distribution of hidden nodes in the LDG
GV, é&).

Assumption 2: For
dhop<kh; k;L) > 4.

Assumption 2 is sufficient to ensure that Markov Blankets
of any two distinct hidden nodes kj, and kj, do not overlap.
When the intersection of the Markov Blankets of kj; and
ks contain more than one observable node, then one of the
hidden nodes kj, or k- is non-identifiable (see the illustration
associated with Fig. 1c). If the intersection has at most
one node, then both the hidden nodes might be identi-
fiable. We make a slightly more conservative assumption

every distinct kp,k;, €  Vp,

that the Markov Blankets of the hidden nodes are non-
overlapping. Moreover, the implication of Assumption 2
is that the Markov Blanket of a hidden node h € V), is
{P(h)yuC(h) uS(h)} < V,.

Remark 12: Note that Assumption 2 might seem stronger
than Assumption 2 in [17]. However, [17] restricted attention
to radial topologies associated with bi-directed LDGs and
assumed that the hidden nodes are at least three hops away
from the leaf nodes. On the contrary, algorithms in Section
V can reconstruct more general linear dynamical networks,
including loopy networks.

D. Markov Blanket Reconstruction of the Latent nodes
Here, we provide the following definition and theorems
which helps in learning the Markov Blanket of hidden nodes.

Definition 1: For1,j € V, and hidden node h € V},, define

DEn(i,j) = {91,92,93, 94,95, 96,97, 98, 9o}, DE;’(i,5) =
{9107911}3 and DMh(’L,]) = DEh(’L,j) U DE;LLS(Z,]), where
i — h is denoted as (i,h) with g1 = {(h,4),(h,5)}, g2 =
{(h,d), (G5, W)} g3 = {(h,0),(h, k), (5, k)}, Yk € Vo\{i,j} g4 =
{G, ), (R 9)} 95 = {(i,h), (b, k), (4, K)}, Vk € Vo\{i,j} g6 =
{(i, k), (h, k), (4, W)}, Vk € Vo\{i, 3}, g7 = {(i, k), (h, k), (h, 5)}, VE €
VD\{ivj}! g8 = {(h7 i)?(j7 i)}v g9 = {(h,j),(l,j)}, gio =
{(i,h), (G, )}, and g11 = {(3, k1), (h, k1), (h, k2), (k2,5)}, Vk1, ke €
Vo\{4, 7}
DMy,(i,7) enumerates all the possible paths between two
observable nodes i, j present in the Markov Blanket of hid-
den node h. We now present a result which infers the Markov
Blanket of a hidden node % in G(V, £) from support(L).

Theorem 2: Suppose the LDM in (17) satisfies assump-
tions 1, 2. Let L be given by (20) and let ¢,j € V,, @ # j.
Then, the following statements hold:

(a) If L;; # 0, then there exists g € DMj(4, j) such that
g€ GV, &), for some h € Vy,. Further, dpop(i, h) < 2
and dpop(j, h) < 2.

(b) Given L;; # 0, suppose there exist g1 € DMy, (4, 5)
and go € DMy, (i,j) connecting ¢ and j such that
91,92 € G(V, &), for some hy, ho € Vy,. Then hy = hs.

Proof: See Appendix F. [ ]

Remark 13: We note that, for a set of system parameters,
noise statistics can be construed such that a g € DM, (i, j)
is present in the LDG G(V, &), with L;; = 0. We remark
that such cases are pathological; we will assume that the
converse of Theorem 2(a) holds almost everywhere.

Thus, based on the locations of non-zero entries in L,
we construct Vi = {ili € V,,3k € V,\{i} s.t. Ly, # 0}
and Eg = {(¢,7)|i,j € Vi, L;; # 0}. The following result
shows that (Vy, Ey) is a disjoint collection of connected
undirected subgraphs (see Fig. 4b for example). Moreover,
the number of connected undirected subgraphs in Ejy is
equal to number of hidden nodes n;, in the LDG G(V, E).

Theorem 3: Suppose the LDM in (17) satisfies assump-
tions 1, 2. Let L be given by (20). From L, construct the
following: Vir = {ili € V,,3k € V,\{i} s.t. Ly, # 0}, By =
{(3,4)l¢,7 € Vi, Lj; # 0}. For every hidden node [ € V;,, let
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M =Pl uvCl)uvS1),Q = {(i,j)|i,j € My, L;; # 0}.
Then
(a) Mh ﬂMl2 = @, for all ll,lg € Vh,ll # 12.
(b) Qll ﬂle = @, for all 11,12 € V}“ll # lQ.
MNh

(©) Vb = zU M.
=1

@ Ex = U Q.

Proof: Sle_e1 Appendix G. [ ]

Remark 14: The above theorem estimates the number of
hidden nodes nj; as the number of connected undirected
subgraphs in Fg. Each connected component (M;, Q) is
due to a hidden node [ € V), that is, M; is the Markov
Blanket of [ in G(V, £), while Q; is an undirected edge set
that contain edges among any two distinct nodes in M.

E. Moral Graph Reconstruction of Observable Nodes and

Localization of Hidden Nodes from ®}

As shown in Theorem 1, S is sparse and L is low-rank.
Then, one can retrieve S and L from @' by employing the
following optimization.

min

Sy,Ly) = ar
( A ‘Y) gS7L6Cﬂ,XTL

YISl + L (22

subject to S + L = &L,

S—S*=0, L-L* =0.

Section II has provided certain sufficient conditions for
the unique decomposition, in the space of skew symmetric
matrices. As mentioned in Remark 8, one can extend the
results to the space of complex Hermitian matrices also,
which can be applied to solve (22). Then, support(S)
recovers the exact moral graph among the observable nodes,
kin(G,), and rank(L.) provides a lower bound on the
number of hidden nodes. Additionally, as shown in Theorem

3, support(L. ) retrieves Markov Blankets of all the hidden
nodes.

E. Reconstruction based on I{®,}(z)}

In Theorem 1, it was shown that S is sparse and L is
low-rank, which implies that the same applies respectively
to 3{S} and 3{L}. Based on Theorem 1, one can show that
|support(S{S})| < 2|&| + 2|€2%| and rank(S{L}) < 4ny,.
Therefore, ${S} is sparse and I{L} is low-rank. As @}
is Hermitian, S{®,} is skew symmetric, and hence the
results from Section II are applicable here. Then, by applying
the convex optimization (10) with C = ${®,.}(z)}, one
can retrieve the ground truth 3{S(z)} and S{L(z)}, for all
|z| = 1, and appropriately selected « as shown in Section
II. This procedure is provided in Algorithm 1. The caveat
of decomposing I{®_.!} is that the following assumption is
required for consistent moral graph/topology reconstruction
from {S} and S{L}.

Assumption 3: For any 1 < i,k < n, ¢ # k, if H;,(2) #
0, then S{H;x(2)} # 0, for all z, |z| = 1.

Remark 15: Assumption 3 is necessary to reconstruct
kin(G,) and the Markov Blankets of the hidden nodes
from the decomposition of I{®, !}, instead of decomposing
o, 1 directly. From (19), (20), it follows that 3{S} and

S{L} depend on elements of ${H}. Hence, when As-
sumption 3 holds, the Lemma 5, Proposition 4, Theorem
1, 2, and 3 hold by replacing ®; !, ®_! S, and L with
S{@ 1}, S{P,)}, S{S}, and I{L} respectively. In other
words, kin(G,) and the Markov Blanket of hidden nodes
can be obtained by decomposing I{®_ !} instead of ®_ .
We focus on the decomposition of S{®_ !} in this article.

Remark 16: kin(G,), obtained from ${S} using Propo-
sition 4, would contain top(G,) as well as additional edges
due to strict spouses in G,. Likewise, (M;, ;) obtained from
support(S{L}) using Theorem 3 may contain edges apart
from P(l) u C(l) of a hidden node I. Such spurious edges
maybe many; examples include bi-directed LDGs. There is
a need to eliminate them so that exact recovery of top(G) is
possible.

In the next section, we develop techniques to eliminate
the spurious edges and reconstruct the exact topology, for a
wide class of networks.

V. EXACT TOPOLOGY RECONSTRUCTION
In this section, we develop methods for exact recovery of
top(G), under Assumption 4, which is applicable to wide
class of applications.

A. Elimination of Strict Spouse Edges

Here, we show that, in certain LDMs, the strict spouse
edges satisfy properties that can be exploited toward exact
topology reconstruction. Notice that for some of the results
(viz Theorem 4 and Theorem 5), we restrict our interest to
the models that satisfy the following assumption. For the
networks that satisfy Assumption 4, Theorem 4 will show
that support(3{S}) would reconstruct the exact topology,
top(G,) (not kin(G,)).

Assumption 4: For the LDM in (14), and i, k,[ € V, if
Hyi(z) # 0 and Hy;(z) # 0, then /Hy;(z) = /Hy(2).

Remark 17: Assumption 4 is satisfied by a large class of
engineering systems. For instance, Section 2 of [14] provides
engineering systems that satisfy Assumption 4. Also, other
examples include linearized chemical reaction ODEs [46].
For example, see (10.2.2) in [46].

The following lemma (Theorem 3 in [14]) is useful
in proving the subsequent results and helps in exploiting
additional structure enjoyed by the IPSDM in the networks
satisfying Assumption 4.

Lemma 6: Consider a well-posed and topologically de-
tectable LDM (H,e) with the associated graph G(V,E),
described by (14), having full node observability and sat-
isfying Assumption 4. If 7 and j are strict spouses, then
[S{®5 iy = 0.

Lemma 6 eliminates the spurious edges formed due
to strict spouse connections by observing the entries of
3{®_1}. The proof follows from the expansion of (16). Here,
[%{@;1}]7] =0if Hij =0, Hﬂ =0, and@ = &for
all k € C(i) nC(j). This can be employed to separate the true
parent-child connection from the strict spouse edges in the
moral graph obtained from Lemma 5. Combining Lemma
5 and Lemma 6 with Assumption 3, one can conclude that,
the undirected graph constructed from 3{®, '} is equal to
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top(G), if Assumption 4 holds; else it would be kin(G). We
use this fact in the following theorem to reconstruct top(G,).

Theorem 4: Consider a well-posed and topologically de-
tectable LDM (H,e) with the associated graph G(V, &),
described by (14) and satisfying Assumption 4. Let S be
given by (19) and let &, = {(i,j) : S{Siy;} # 0, i <
j}. Then, & < €&,. Additionally, if the LDM satisfies
Assumption 3, then 30 = &, almost always.

Proof: See Appendix E. [ ]
In the following, we discuss the exact topology reconstruc-
tion from 3{®,.'} based on Theorems 3 and 4.

Algorithm 1 Matrix decomposition
Input:®_ ! (z): IPSDM among V,, ¢, z = €%, w e (—m, 7]
Output: Matrices $(S(z)) and I(L(z))

z

1: Set C = %i@g;( )}

2: Initialize (Sp,Lo) = (C,0)

3: for all t € {¢,2¢,...,1} do

4: Solve the convex optimization (10) and calculate
dif f, in (12)

end for

6: Identify the three regions where di f f; is zero and denote
the middle region as [ty, t]. Pick a g € [t1,t2] and the
corresponding pair (S¢,, Ly, ).

7. if degmaw(gto)inc(ﬁto) < 1—12 then

)

(S(Z)’f‘g\z ) = (gtovf‘to)
Return (S(z),L(z))

10: end if

W

B. Reconstruction of T(V,€):

The topology, 7(V,&), of the LDG G(V,E) will be

reconstructed in three steps: (a) recover the topology re-
stricted to observed nodes given by T (V,, &,), (b) determine
the number of hidden nodes nj;, in the LDG G(V,€) and
(c) reconstruct the topology associated with each hidden
node. We denote the reconstructed topology as 7 (Vg,Er).
The reconstruction is said to be exact when T (V,&) =
T(Vr,Er).
__The first step in_topology reconstruction is to obtain
S = 3{S(2)} and L = S{L(2)} from Algorithm 1. Then,
from S, we reconstruct the topology among observed nodes
T(V,,E,) as shown in Theorem 4. This is performed in
Algorithm 2, which reconstructs 7 (V,,Er), where V, is
the set of observable nodes and &g is the undirected edge
set reconstructed from support(S). Apart from pathological
cases, T (V,, Er) is identical to T (V,, &,) under Assumption
4.

Remark 18: Algorithms 1 and 2 are applicable for any
LDM with Assumption 3 and need not satisfy Assumption
4. However, in that case, T (V,,Er) would return kin(G,).

Remark 19: As mentioned in Section IV-E, one can de-
compose the complex ®..! to obtain S and L, instead of
their respective imaginary parts, thus avoiding the need for
Assumption 3. S and L can then retrieve moral graphs among
the observable nodes and Markov Blanket of hidden nodes.

Algorithm 2 Topology reconstruction of observable nodes

Input: §(z) from Algorithm 1, threshold 7

Output: Reconstructed topology among observable nodes
T(Vm gR)

1: Edge sets g — {}

2: for all (i,7) € {1,2,...,n} X{1,2,...,n} do
3 if ‘S”(ZN > 7 then

4 Er < Er v {(i,j)}

5: end if
6
7
8

: end for
VYV, < {1,2,--- ,n}
: Return T(V,,ER)

We now proceed with estimating number of hidden nodes
and reconstructing the topology associated with hidden nodes
using ${L}.

We emphasize that the undirected edges in (); are not
necessarily present in the true topology 7 (V,E). The only
task remaining in constructing the topology 7 (V,€&) is
finding the true parents or children of the hidden nodes.
For this purpose, we consider each connected component
(M;,Qy), and reconstruct the topology associated with the
hidden node !.

The following result is useful in reconstructing the exact
topology associated with hidden node [ from degree of nodes
in (M;, Q). It shows that the information about the degree of
each node is sufficient to reconstruct the topology associated
with the hidden node [.

Theorem 5: Suppose the LDM in (17) satisfies Assump-
tions 1-4. Consider a hidden node [ € V), and its associated
undirected graph (M;, @Q;) as defined in Theorem 3 for S{L}.
Define a; := maw ¢y, degn, (5), where degay, (i) == [{j €
M\i : (i,7) € Qi}|- The following holds: 3k € M; such that
degn, (k) < aq if and only if |[P(D)\(C(I) v S(1))] = 2 or
IS\C) v PD)] =2 in GV, E).

Proof: See supplementary material, Appendix H or [43]. &

Remark 20: From the proof of the above theorem, the
following holds:

(a) Consider a node a; € C(I) u (P(I) n S(1)). Then, for
every az € (C(I) u P(l) u S(I)\{a1}, (a1, a2) € Q.

(b) Consider a strict spouse, s1 € S(I)\(C(I) uP(1)). Then,
for any a; € C(I) U P(1), (s1,a1) € Q.

(c) Consider a strict parent, p; € P(I)\(C(1) v S(1)). Then,
for any ay € C(I) U 8(1), (p1,a1) € Q.

Regardless of the number of strict spouses and strict
parents in the LDG, G(V,€), for M; = C(l) v P(l) uS(1),
the following holds from (a), (b) and (c): for i € C(I) U
(P(l) nS(1)) and for k € M;\i, (i, k) € Q. That is, a node
from C(1) u (P(I) n S(1)) is connected to every other node
from M; in Q;. Hence, degpy, (i) = |M;|—1 and it is the node
with maximum degree. Therefore, C(I) u {P(l) n S(I)} =
{ili € My, degns, (i) = |M;| — 1}. The nodes in M; with
degnr, (1) < |M;|—1 are either strict parents or strict spouses
of hidden node I.
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We provide the following assumption which is needed
for exact reconstruction of topology associated with hidden
nodes. When the below assumption is violated, that is, if the
number of strict spouse for a hidden node h is one, then
there will be a single false edge present in the reconstructed
topology associated with the hidden node. Rephrasing, the
strict spouse of a hidden node h will be considered as a
neighbor in the reconstructed topology associated with the
hidden node h. The number of such false edges reconstructed
for a network is limited to a maximum of one per hidden
node. Nevertheless, to avoid these false edges associated with
a hidden node, we make the following assumption.

Assumption 5: In the LDG, G(V, &), for any hidden node,
h € V), if there exists a strict spouse, then there must exist
at least one more strict spouse associated with h.

Based on the above theorem and assumption, we pro-
pose Algorithm 3, which outputs the reconstructed topology
T (Vr,Er) that is identical to the true topology 7 (V, ) of
the LDG G(V, ). The Algorithm 3 consists of three parts
as outlined below.

(a) From support of J{L}, determine Vz and Ep. The

graph (Vy, Ey) will be a disjoint collection of con-
np

nected subgraphs | J (M;, @;). The number of hidden
nodes, ny, is givelnii)y the number of connected sub-
graphs. This is done in steps 1 — 10. Vg and £ are
both initialized with {} (steps 11 — 12).
For each (M;,Q;), we create a hidden node h; and
add this to Vg (steps 15 — 16). Next, we construct
the topology associated with h;. For this, we compute
the degree of each node in (M, @Q;) and calculate its
maximum, «; (step 17). We check if there is a node in
M, with degree smaller than ;. If there is no node in
M; with degree smaller than «;, then add undirected
edge (h;,i) to &g for all i € M; (steps 18 — 28).
Otherwise, we collect the nodes in M; with degree
oy in the set dp, and the nodes with degree smaller
than «; in the set ]\71 (steps 29 — 38). The vertex set
dhz = C(hl)up(hl)uS(hl) Thus, add (hl, 2) to £y for
all ¢ € dy, (steps 39 — 41). The nodes in J\E are either
strict parents of h; or strict spouses of h; in G(V, E).
We find the strict parents from ]\71 and add their edges
with h; to Eg (steps 42 — 47).
(c) Repeat (b) for all | = {1,2,--- ,ny} (step 13). Assign
Vr as Vg uV, and &g as g U &, (steps 49 — 50).
The reconstructed topology of the LDG G(V,&) is
T (Vr,Er) (step 51).

The reconstructed topology 7 (Vg,Er) is identical to the
true topology 7 (V,€) of the LDG G(V,€E).

Till now, we have investigated topology identification
under the assumption that the perfect PSDM is available.
However, in practice, we have access only to finite number
of observations of the time-series. In the next section, we
show that if the number of observations, NN, is large enough,
then each entry of the estimated IPSDM can be brought e-
close to the actual IPSDM. Note that we do not assume the
presence of any latent node here. The analysis in this section

(b)

Algorithm 3 Full Topology reconstruction with hidden nodes

Input: i(z) from Algorithm 1, threshold 7 and T (V,,ER)
from Algorithm 2
Output: 7 (Vg,ER), reconstructed topology of the LDG

gV, &)
1: Vg < {}
2. By « {}
3: for all (i,5) € {1,2,...,n} X{1,2,...,n} do
4: if \Llj(z)| > 7 then
5: EHHEHU{(’L,‘?)}
6: VH<—VHU{i7j}
7: end if
8: end for -
9: (Var, En) = | (My, Q) such that My, "My, = Qi, nQuy =
& for all zl,zlz_le (1,2, ...,nn}, 11 # L.
10: ny : number of disjoint connected subgraphs in Eyy
11: Vertex set Vi < {}
12: Edge set & — {}
13: for all [ € {1,2,....,n,} do
14: flag =0
15: add a hidden node h;
16: Vg — Vg u {hl}
17: o 1= maz ey, dega, ()
18: for all : € M, do
19: if degs, (1) < oy then
20: flag=1
21: break
22: end if
23: end for
24: if flag == 0 then
25: for all i € M; do
26: 5H<—5HU{(’L',}L1)}
27: end for
28: end if
29: if flag == 1 then
30, i {}. My {}
31: for all i € M, do
32: if degps, (i) == oy then
33: dhl «— {dhl} U {Z}
34: end if
35: if d%ﬂ@ (Z)j a; then
36: M; — M;u {3}
37: end if
38: end for
39: for all k € dj, do
40: En <—(€HU{(]€, hl)}
41: end for N
42: for all k£ € M; do
43: if (k,d) ¢ Eg for all d € dj,, then
44: SHHEHU{(k,hl)}
45: end if
46: end for
47: end if
48: end for
49: Vp < Vg u,
50: ER — &g u 5]3
51: Return Vg, Er
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is applicable to networks with or without latent nodes.

VI. IPSD ESTIMATION FROM FINITE TIME-SERIES

In this section, we investigate the effect of finite time-
series on the estimation of the IPSDM. Suppose that we
are given the time-series {x(t) € R"} ;. We show that,
with high probability, the entries of an estimated IPSDM
are close to the original IPSDM, if the number of samples,
N is large enough. To begin with, recall that (13) can be
rewritten as X(t) = Y, &(k)&(t — k), t € Z, where
£(z) :== (I —H(z))~'. Similar to [47], for the convenience
of analysis, we define:

Hpo(l, L) := {(x(t),t € Z) : 0 < I < |A(&(2))| < L, for |z]| < p}, (23)

where A(£(z)) denotes eigenvalues of £(z), and restrict
ourselves to the family #,(l, L).

A. Estimation Error

Here, we characterize the difference between the actual
PSDM, ®4(z), in (15) and a PSDM estimated from finite
time-series. We assume that the true correlation function
Ry (k) = E[X(0)XT (k)] follows the relation

| Ry (k)]0 < C1p™", (24)

for some p such that |p| < 1 (recall that X is WSS). Note
that this assumption is common in scalar Gaussian processes
and is an example of strongly mixing process (see [47] and
the references therein for details).

Let ®,(z) denote the truncated version of the PSDM,
Dy (z), and let :I\)x(z) be the PSDM estimated from data.
That is, Dy(2) = ii_p Ry(k)zF, and Oy (z) =

h=—p Ry(k)z7%, where Ry (k) = ¢ Zf\;k x(D)xT (1 +
k) is the estimated correlation matrix. We employ a
concentration bound for [[®x(z) — ®y(2)|ee to bound
[®51(2) — 1 (2)]|lo0s for any |z| = 1. By triangle inequal-

ity,
[®x(2) — Px(2)] o0

< [Px(2) = Bx(2) oo + [Bx(2) = B(2) |0 (25)

|®x(z) — Px ()] oo is the truncation error, which is the error
in truncating PSDM to order p, and ||®x(2) — ®x(2)] s is
the estimation error, which denotes the error in estimating
the p-th order truncated PSDM.

The following proposition provides a bound on element-
wise distance between @, and ®,.

Proposition 5: Consider a linear dynamic system gov-
erned by (13). Suppose that the autocorrelation function

Ry (k) satisfies (24). For any ¢ > 0, if p > log,, (%) -1,

then the truncation error [Py (z) — Px(2)]o < €.

Proof: See supplementary material, Appendix D or [43]. &
Note that

p

3 [Rxk) = Beti)] =7

k=—p

[Bse(2) — Px(2) [0 =

o0}

< 2% [Ru(B) = Re()] o

k=—p

(26)

Thus, by obtaining a bound on |Rx (k) — Ry (k)| o, we can
upper bound @, (z) — @5 (2)| 0.

Next, we provide probably approximately correct (PAC)
bounds for estimating auto-correlation matrices, which in
turn is used in obtaining PAC bounds on PSDMs. The
following proposition bounds deviation of each individual

elements of auto-correlation matrix.
Proposition 6: For every delay index £k < N —n, k €
{0,...,p}, and all € > 0, we have

P (| Bx(k) ~ Ru(h) o0 > <)

. 2 g
< nexp (—(N — k) min {W %D NCY))
1

Proof: See supplementary material, Appendix E or [43]. &
Now, we are ready to obtain the following lemma, which
bounds the estimation error in (25) using (26).
Lemma 7: For every z = ¢/, w € (—m, 7], the error in
estimating truncated PSDM @, (2) is [®x(2) — Px(2)]e0 <
¢ with probability at least

. g2 5
L= nfexp <7(N ~p)min { 32(2p + 1)2n2C2 8(2p + 1)nCy }) '
Proof: See supplementary material, Appendix F or [43]. &

By combining the above lemmas, we obtain the following
theorem.

Theorem 6: Consider a linear dynamic system governed
by (13). Suppose that the autocorrelation function Ry (k)
satisfies (24). Let 0 < €7 < e. Then, for any p such that
p > log, (% , we have [®x(2) — x(2)]0 < &
with probability at least

2 _ _ . 5% €1
Lo < (N =~ p) min { 32(2p + 1)2n2C2 ' 8(2p + 1)nCy }) '
Proof: The proof follows by combining Lemma 7 and

Proposition 5. |

B. IPSDM Estimation Error

Next, we provide a bound for the difference between the
original and the estimated IPSDMs in terms of the difference
between corresponding PSDMs.

Theorem 7: Consider a linear dynamic system governed
by (13) satisfying the Assumption (23). Suppose that the
autocorrelation function Ry (k) satisfies (24). Let 0 < g1 <
e. Then, for any p such that p > log,, (%) —1, we
have

ot — @3 oo <

VLol ( Vne > (28)
i 4 252 _
4o l O] \/ne

[0
with probability at least
1—nZexp <7(N — p) min {

2
€] €1
32(2p + 1)2n2C% " 8(2p + 1)nCy }) ’

where o¢,, and o, , denote the largest and the smallest
eigenvalues of ®.(z) respectively.
Proof: See supplementary material, Appendix G or [43]. &
It follows from Theorem 7 that the element-wise distance
between @1 and ®! can be made arbitrarily small with
high probability, by picking N large enough.
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VII. SIMULATION RESULTS

In this section, we validate our algorithms
tions. All the simulations are performed in Ma
the optimization problem for matrix decompos
YALMIP [48] with SDPT3 [49] solver.

For the simulations, we assume that we have access to
the perfect IPSDM, @, !. From ${®,,} alone, we aim to
reconstruct the topology of the LDM which involves (a)
recover the topology restricted to observed nodes given by
T (Vs, &), (b) determine the number of hidden nodes ny, in
LDG G(V, &), and (c) reconstruct topology associated with
each hidden node.

Remark 21: The objective of our simulation is to demon-
strate the working of Algorithm 1 to_decompose I{P, .}
of this network into S = 3{S} and L = J{L}. Then, by
applying algorithms 2 and 3 on S and L, we can retrieve the
original topology.

A. LDM

For the simulation, we assume that ®,, of a topologically
detectable LDM in (17) with 32 nodes, having the LDG
as shown in Fig. 2 is given. The nodes colored in red
(30,31, 32) are hidden and the rest are observed. Note that
the network in Fig. 2 and the corresponding LDM satisfies
the assumptions 1-5.

B. Sparse plus low-rank decomposition of S{®_}(2)}

We applied Algorithm 1 for matrix decomposition of
${®;.1(2)} to obtain I{S(z)} = S and S{L(z)} = L. Here,
we took z = €% and € = 0.01 for running Algorithm 1.
Fig. 3 shows the values of tol; and dif f, corresponding

Fig. 5: T(Vg, Er): Final reconstructed topology with
hidden nodes.

to the decomposition of 3{®_.!(z)} for various values of .
From the plots, we see that the dif f; plot shows three zero
regions, similar to what was proposed in Proposition 3. We
would like to stress that the network does not satisfy the
sufficient condition of Lemma 4. Nevertheless, the plot can
retrieve the true sparse and low-rank matrices by picking a ¢
in the middle zero region, as described by Algorithm 2. This
network belongs to the subclass of the networks that does
not satisfy the sufficient condition of Lemma 4, but satisfy
the necessary and sufficient condition of (7).

We make three important observations in Fig. 3: (a) for
small ¢, we observe a beginning zero region where dif f,
is zero. This verifies Proposition 3: when the value of ¢ is
very small (smaller than 0.15), the optimal objective value is
obtained by setting zero to 3{L} and the objective achieves
the minimum value of zero at (3{S} + S{L},0). As ¢t is
increased but less than 0.15, we still obtain the optimal
solution at (3{S} + ${L},0), and hence, dif f, is zero
for ¢t very small. (b) The opposite behavior is observed
when t is very large (greater than 0.5). This is the end
zero region, which corresponds to the optimal solution at
(0,3{S} + S{L}). Nevertheless, the value of tol; is quite
high for both of these scenarios, since neither of the solutions
are correct. (c) In the middle region (¢ € [0.24,0.35]) , it is
observed that both the tol; and dif f, are zero; the range
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specified by Proposition 2 (See Corollary 1).

Note that dif f; need not be zero in the middle region.
However, it is observed from simulations that if we pick a
t corresponding to minimum value of dif f; in the middle
region between (0.3,0.4), it is still possible to reconstruct
topology. This is because the finite value of dif f; in middle
region is due to element wise mismatch of non-zero en-
tries. However, the structural pattern of sparse and low-rank
matrices is almost preserved. For topology reconstruction,
structural pattern is more important than the exactness of
the element wise values.

C. Reconstruction of T(V, &)

Topology reconstruction of the LDM involves (a) recover
the topology restricted to observed nodes given by T (V,, &,),
(b) determine the number of hidden nodes n; in LDG
G(V, &) and (c) reconstruct the topology associated with each
hidden node.

From Fig. 3, it is evident that 3{®,! (2)} was decomposed
uniquely into ${S} and S{L} when ¢ € [0.3,0.4], since tol;
is zero. Indeed, due to perfect retrieval, the optimal solution
is (3{S},3{L}). We now use the decomposed matrices
3{S} and 3{L} with 7 = 1076 to obtain the following:

(a) From ${S}, we apply Algorithm 2 to obtain the topol-
ogy of the subgraph restricted to the observable nodes.
The reconstructed topology among observed nodes is
shown in Fig. 4a, which matches perfectly with topol-
ogy of the LDG in Fig. 2 restricted to observed nodes
T Vo, &o)-

(b) From ${L}, we apply Algorithm 3 and construct

Vi, Egr), which is a union of three disjoint connected
3

subgraphs, i.e., (Vi, Eg)=J (M, Q) (refer Fig. 4b).
Therefore, number of hiddle_n1 nodes in the LDG are
three hidden nodes present. ny, is 3.

(c) In Fig. 4b, each connected component (M;,Q;) is a
clique. For [ = {1,2,3}, Algorithm 3 considers [*"
clique (M, @;), places a single hidden node h; in the
clique and reconstructs the topology associated with
hidden node h;. Since (M;,Q;) is a clique, M; =
C(hi) v {P(h) N S(h)}-

From (a), (b), and (c), Algorithm 3 reconstructs the
complete topology including latent nodes (see Fig. 5), which
matches exactly with the topology of the LDG. To sum-
marize, Algorithm 1 decomposed 3{®.!(z)} into sum of
sparse 3{S} and low-rank ${L}. Using 3{S}, Algorithm 2
reconstructs the topology reconstructed to observable nodes.
Using ${L}, Algorithm 3 estimates the number of hidden
nodes, reconstructs the topology associated with each hidden
node and the full topology of the LDG in Fig. 2 is
reconstructed as shown in Fig. 5, which matched exactly
with true topology of the LDG.

VIII. CONCLUSIONS
We presented a novel approach to reconstruct the topology
of networked linear dynamical systems with latent agents,
from IPSDM of the observed nodes. The network was
allowed to have directed loops and bi-directed edges. It

was shown that the IPSDM can be uniquely decomposed
into a sparse and a low-rank matrices. The sparse com-
ponent unveiled the moral graph of the observed nodes,
and the low-rank component retrieved the Markov Blanket
associated with the latent nodes. Necessary and sufficient
conditions for unique sparse plus low-rank decomposition
of a skew symmetric matrix was established, along with
an optimization based algorithm that decompose the skew
symmetric matrix to yield the sparse component S and the
low-rank component L. For a large class of systems, the
unique decomposition of imaginary part of the IPSDM is
sufficient to achieve the moral graph of the observed nodes
including the Markov Blanket of latent nodes. Under some
assumptions, it was shown that the imaginary part of the
IPSDM can be employed to reconstruct the exact topology of
the network. Furthermore, concentration bounds on IPSDM
estimation from finite time-series is provided.

APPENDIX
A. Proof of Lemma 1

We show the result for an n = 3 skew symmetric
matrix. It is straight forward to extend this to a general

0 a b
n. Let A= —a 0 0 | be a skew symmetric matrix.
-b 0 0

A can defined as a point on the variety of skew sym-
metric matrices with support at most 4, ie., S(4) =
V(Xi1, Xo2, Xas, X2, X12 + Xo1, Xi3 + Xa1, Xoz + X32)
UV (X1, Xa2, X33, X13, X12+Xo1, X13+Xa31, Xo3+Xa2)
UV(X11, Xo2, X3, Xo3, X12 + Xo1, X3 + X31,Xo3 +
X32).

Define fii = Xy, V1l <4 < n, fij = Xij + in,V1 <
1 <j<n,and g;; := X;;,V1 < 7,5 < n. Note that A is a
point on the variety defined by f;; =0, 1 <i<n, fi2 =
0, fi3 =0, fo3 =0, and g3 = 0, and is non-singular point
(with respect to the variety). The tangent space of S(4) at
A, T(A), is (see Proposition 9.6.2 in [41]):

T(A) =V ((da(fi))P_1, da(fr2), da (f13), da(f2s), da(g2)) , 29)

where da(f) = ZiFl%(A)(Xij — A;j). It can be
shown that da(fi;) = X, V1 < @ < 3, dA(fZJ) =
X +X,,V1 <i < j <3, and da(g23) = Xa3. Plugging
this in (29), we obtain

0 X2 Xis
TA)={| X2 0 0

: X127X13 eR ;. (30)
—X13 0 0

Clearly, this is the space of all skew symmetric matrices
with support subset of support of A. Extending this analysis
to general n at any point A gives us the result.

B. Proof of Lemma 2

The following lemma is useful in proving this.

Lemma 8: If M is a skew symmetric n x n matrix of rank
r (r even or n > r odd), then there exists a non-singular
matrix P such that M = PQP”, where o= | 5 9| and
s 8 VL[5 3]l 8 8]

Let R(r) := {X € R™" : rank(X) = r, X + XT =
0} be the space of skew symmetric matrices with rank r.
By Youla decomposition (Lemma 8), this is equivalent to
R(r) = {PQPT : P € R"*" invertible}.
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As shown in [42], R(r) is a smooth manifold. Let M
be an element in R(r). Let v : (—=1,1) — R(r) be a
smooth map such that v(t) = P(t)QPT(¢) with v(0) =

B L . dv(f) _
P(0)QP”(0) = M, where P(¢) is invertible . Then, <% ) =

%EQQPT@) +P(t)QdPTTt(t). For ¢t = 0, this can be written
as d’zit) = AM + MAT’ where A — ddil:(o)l)fl(o)

Define I/I} :O= {AM + MAT : A € R"*"} and let Ty, :=
{+'(0) : v is a smooth map from (-1,1) to R(r)} be the
tangent space with respect to R(r) at M. We claim that
'y = W. T'yy € W is obvious. To show the converse, let
w e W. Let A be such that AM + MAT = w, and choose
P(t) := P(0) + tAP(0). Invertibility of P(¢) follows from
invertibility of P(0) and continuity of determinant. We need
to show that this map belongs to the tangent space I";;. Note

that O — AP(0) and d"—“)] — AM + MAT,
aTa |, (0) and = o

which proves the claim. Plugging in M” = —M and CSVD,
M = UEQUT, in the definition of W, and substituting
X = —AUXQ completes the proof.

C. Proof of Proposition 3

For any matrix A € R"*", %HAHl < A« < k2flAl,
where k1, ko are real numbers. Note that k£, and ko can be
functions of n. The tightest bound available is k; = n and
ko =1 [45].

Define f(S,L,t) := t[S[y + (1 — ¢)|L|. Clearly, the
minimum value at t = 0 is f(So, Lo, 0) = 0, and is obtained
at the point (S,L) = (C, 0). Next, consider ¢ = ¢ for some
e close to zero. The objective value at (S,L) = (C—N,N)
for t = €, where N # 0 is

f(S,L,€) = €|]C = Nl + (1 — )| N]s.

€Y

Let the objective value for ¢t = e at the point (C,0) be
g(€) := f(C,0,¢) = €| C|;. This can be rewritten as

g9(€) = €|C =N + NJ; <¢]|C - Ny + €[N

< €|C — NJ|; + €k1| N, (32)

where the first inequality follows from the triangle inequality,
and the second inequality follows since ||N|; < k1 |IN| 4.

Then, f(S,L,e)—g(e) = (1—(k1+1)e)||N||«. For 0 < e <
€r,, where e, = ﬁ, we have that f(S,L,¢) — g(e) > 0,
since |N|x > 0. Thus, we have shown that for ¢ = € the
value of the objective function at (C — N,N) is strictly
greater than that at (C, 0). Moreover, this is true for all N #
0. Therefore, we can conclude that for 0 < t < ¢r, the
optimal solution is (C, 0).

§imiAlarly, it is easy to see that the minimum value at ¢ = 1,
f(S1,L1,1) = 0, and is obtained at the point (S,L) =
(0, C). Proceeding similar to the above analysis for ¢t = 1,
with (S,L) = (N,C — N) and g(e¢) := f(0,C,¢e) = (1 —
€)|C|«, we can conclude that f(S,L,¢) —g(e) = (1 — (ka +
1)€)|IN|1. For ey <t < 1, where ey = %7, we have that
f(S,L,e) — g(e) > 0, for every N # 0. Thus, for ¢t > ey,
the optimal solution is (0, C)

Proposition 2 and Lemma 4 showed that (with the change
of variable t = /(1 + 7)), for every ¢ within the specified
range, the optimal solution is (S;,L;) = (S,L). That is,

if pé < 1/6 or deg,,. (S)inc(L) < 1/12, then we can
find an interval (t;,f2) < [0,1] with 0 < t; <t < 1
such that (S,L) = (S;,L;) for any ¢ € (t1,t2). This
implies that diff, = 0 for t € [t; + ,t2 — €] and
sufficiently small interval . Therefore, there exists at least
three zero regions for the plot of dif f, versus ¢ if any of
the sufficient conditions mentioned above is satisfied and ¢
is small enough.

D. Proof of Theorem 1

To prove the first part, let £, be the set of undirected edges
obtained by removing direction from &,, without repetition.
Then, by Proposition 4, £, U&5* 2 {(i,5) : Si; # 0, i < j},
ie., |[support(S)| < 2|E,| + 2|85 +n < 2|E| +2|E5°| +n,
where the additional n is due to the diagonal entries of S.

To show the upper bound on rank, let A = U*¥A~1¥,
Notice that rank(A) < min{rank(¥),rank(A)} < np.
Similarly, rank(H} &, "Hp,,) < ny,. Then, rank(L) < 2ny,
from (20).

E. Proof of Theorem 4

From (19), observe that S is a Hermitian matrix, which
is true if and only if ${S} is anti-symmetric, and thus the
diagonal entries of I{S} are zeros. Lemma 5 showed that if
S;j # 0, then (¢, 7) € kin(G,). Combining this with Lemma
6, we get if 3(S;;) # 0 then i € C(j) or ¢ € P(j). That is,
£, cé,. R

To prove the equality, we need to show that £, 2 &,.
Let ¢ # j and suppose [H,,];; # 0. By expanding (19),
Sij = (®,)ij — Sneq (HE) (e, )i; — Sr_1 (P2,)ik(Hoo )y,
3 S (H*) (22 )kt (Hoo)y;. Clearly S;; # 0 since
[Hoyo)i; # 0, except for a few pathological cases that occur
with Lebesgue measure zero. It follows by Assumption 3 that
3{S;;} # 0, except over a set of Lebesgue measure zero.

F. Proof of Theorem 2

Recall expression (20) for L. By expanding each term in
(20) we obtain that if Hy, = 0, then A is diagonal, and
U(kp,j) can be written as

U(kn,5) = H3, (3, kn)@c, + Hao(kn, ),

h

= >, o, Hiy(k, ki) Hoo (. ) (33)
k=1
Then, we can conclude the following from the aforemen-
tioned equations.
« If the hidden nodes are at least two hops away, then A
is real and diagonal.
o If any of k;, — j or j — ky, or kp, — k < j exists for
some k € V,, then ¥y, ; # 0
. Forn}z; # J, Ly is given by E}}le expression (34) below.

. —1 .
Lij = LZI[H;‘:O(L/L)](i)ChJHho(l’J) - Zl d

3 o~
|

)

v

. —1 * . —1 —1 % .
[Hohwl)@ew + ol — @eo’kHOMk,l)[Hm(k,z)]]

Il

k=1

3

% . -1 a1
[Hoh(.ﬁz)@ew + Hpo (b DIPG)

-2 ‘?efolkah(k,l)[Hoo(k,j)]} (34)
k=1 )

Let a1, az, and ag respectively denote first, second, and third
terms in the first bracket and let by, bo, and b3 respectively
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denote first, second, and third terms in the second bracket.
Then, (34) can be rewritten as,

(a)

(b)

L(Z7]) =

Mh

2 d; [a1 + as + a3] [b1 + by + b3]
=1
np

= > [Hpo(l,)]* @2, Hio(l, 5)—

>

[Hyo(l,0)]* @, Hao(l, §)—

1

!
0s -

dl[a1b1 + a1bs + a1bs + azby + asba+
=1

a2b3 + azby + aszbs + a3b3].

(33)

We use contrapositive argument to prove this. Suppose
that, for every hidden node h € V},, there does not exist
g € DMy (i, 7) such that g € G(V, £). Then, from (35),
it follows that L;; = 0. Therefore, if L;; # 0, then
there exists g € DMp(4, ) such that g € G(V, E), for
some h € V. Clearly, for any g € DMy (i, 7), we have
d}wp(i, h) < 2 and dhop(j7 h) < 2.

Let i,j € V,. Suppose that L;; # 0. Then, from
part (a), there exists g1 € DMy, (4,7) such that g; €
GV, &), for some hy € Vy,. Suppose for contradiction
that there exists ho € Vp\{h1} such that there exists
g2 € DMy, (i,7) such that go € G(V,&). Then, we
have dpop(hi, h2) < dpop(hi,%) + dpop (i, he) < 4 from
Theorem 2(a), which contradicts Assumption 2. Hence,
hy1 = ho.

G. Proof of Theorem 3

()

(b)

(©)
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Suppose M;, n M, # & for some l1,l2 € Vp, 11 # la.
Then, there exists a € M;, n M,,. Since a € M, it
follows from the definition of M, that dpep(a,li) <
2. Similarly, a € M, and dj.p(a,lz) < 2. Then, we
have dpop(l1,l2) < dhop(l1, @) + dnop(a, l2) < 4, which
contradicts Assumption 2. Therefore, M;, N M;, = &
for all ll,lz € V}“h #* lg.

Suppose @1, N Qi, # I for some ly,lz € Vy,, 11 # lo.
Then, there exists (ig, jo) € Qi N Qi,- (%0,70) € Quy»
which implies that ig, jo € M), . Similarly, (i, jo) € Q,
implies that ig,jo € M;,. Thus, ig,j0 € M, N My,
which contradicts part (a). Therefore, Q;, N Q, = .

h
We first show that Vy 2 [ J M;. To show this, let
=1

Mh
a € |J M;. Then, a € M; for some [ € V. It follows
1=1

from the definition of M; that a € P(I) U C(1) U S(I).
If a € P(I) uC(l), then by Assumption 1, there exists
ce M\a. If a € S(D\(C(I) v P(1)), then there exists
k € M\a, such that k& € C(I) n C(a). Given the
existence of node k € C(l), by Assumption 1 there
exists ¢ € M;\{a, k}. Clearly there is a node ¢ € M;\a
in G(V, &), which is also present in DM;(a,c). From
(35) and Remark 13, it follows that L,. # 0. Because
L. # 0, it follows from the definition V7, that a € V.

MNh
Now, we show that Viy < | J M. Let a € Vi, then from

1=1
the definition of Vy, there exists ¢ € V,\a, such that
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L. # 0. From Theorem 2 parts (a) and (b), there exists
a unique hidden node ! € V}, such that g € DM, (a, k)
exists in G(V,&). From the definition of DM;(a,k),

T

it follows that a € M,;. Hence, a € |J M;, which
1=1

concludes the proof.

nhp MNh
We first show Ey 2 | J Qi. Let (ig,j0) € |J @i, then
! =1

=1 =
there exists a [ € Vy, such that (ig, jo) € Q;. From the
definition of @y, {io,jo} € M; < Vg and L, ;, # 0.
Thus (io,jo) € EH-

ny
To show the converse Ex < |J @y, let (ig,jo) € En,

then L;,;, # 0. From Theolréin 2(b), there exists a
unique hidden node ! € V},, such that a g € DM, (io, jo)
exists in G(V,&). It follows from the definition of
DMl(iQ,jo) that {io,jo} € M7lv.; {io,jo} € M;. and

Liojo 7 07 thus (iOajO) € Ql < U Ql-
=1
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