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UAV-Assisted Edge Computing and Streaming for

Wireless Virtual Reality: Analysis, Algorithm

Design, and Performance Guarantees
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Abstract—Emerging virtual reality (VR) applications require
high data rate transmission and low end-to-end latency, which has
become one of the main challenges for future wireless networks.
Unmanned aerial vehicle (UAV) mounted base stations and comput-
ing facilities can be used to provide better wireless connectivity and
computing services to edge VR users to meet their computing needs
and reduce the end-to-end latency. We propose a novel UAV assisted
mobile edge computing (MEC) network to enable high-quality
mobile 360-degree video VR applications by leveraging UAVs to
provide the required communication and computing needs. Then,
we formulate the joint UAV placement, MEC and radio resource
allocation, and 360-degree video content layer assignment (UAV-
MV) problem, which aims to select the allocation of computing
and communications resources and the location of the UAVs such
that the delivered quality of experience (QoE) is maximized across
the mobile VR users, given various system constraints. We show
that the problem is NP-hard, and decompose it into three lower-
complexity subproblems that we solve sequentially. We design an
approximation algorithm with performance guarantees that solves
the UAV-MV problem based on the solutions to the three subprob-
lems. Our simulation results show that the average QoE enabled
by the proposed algorithm is 15% and 90% greater relative to two
competitive reference methods.

Index Terms—Unmanned aerial vehicles (UAV), mobile edge
computing (MEC), Internet of Things (IoT), virtual reality, 360-
degree video, joint resource allocation, wireless 360-degree video
streaming.

I. INTRODUCTION

O
NE primary application of future wireless networks is

virtual reality (VR) [1]. The VR market is expected to

produce a $62 billion annual revenue by 2027 [2]. 360-degree

video streaming to VR headsets is gaining popularity in diverse

areas, e.g., gaming and entertainment, education, healthcare,

and remote monitoring. Since 360-degree video streaming has

high data rate and low latency requirements, how to deliver such
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content to mobile devices with high quality-of-experience (QoE)

is a key challenge for future wireless networks [1].

Unmanned aerial vehicles (UAVs), received much attention

from both academia and industry, has been proposed to mount

base stations to provide better wireless connectivity and enlarge

the coverage area [3]. Mobile edge computing (MEC) has been

proposed and deployed at the mobile edge to provide cloud

computing and IT capabilities close to mobile users to improve

the user experience such as the latency [4], [5]. UAV-mounted

BS/computing facilities have been studied to enhance the imple-

mentation flexibility of MEC and improve the wireless connec-

tivity between mobile devices and the ground base station [5].

Wang et al. [6] proposed to utilize UAV-mounted server and

ground servers to provide computing and communication ser-

vices to on-line mobile applications, and the mobility of users

and edge servers are considered to maximize the number of

served mobile applications. Yu et al. [7] studied the UAV-aided

MEC system for the Internet of Things (IoT) devices, and the

objective is to maximize the energy efficiency of a UAV and

minimize the latency of IoT devices. Guo et al. [8] proposed a

VR framework with millimeter wave and MEC for wireless VR

applications to achieve high QoE, the UE association, caching

and offloading are jointly optimized. Du et al. [9] investigated the

high quality immersive VR video service provisioning problem,

and they proposed a method based on the deep reinforcement

learning to optimize the view port rendering, offloading and

power with the target to minimize the average energy con-

sumption with satisfying the QoE constraints. Dang et al. [10]

proposed a mobile VR delivery framework based on the fog

radio access networks, and the target is to maximize the av-

erage tolerant delay with satisfying the fixed transmission rate

constraints.

Resource allocation, transmission scheduling, and scalable

coding for efficient multi-UAV 360◦ video capture and streaming

has been studied in [1]. Multi-user mobile edge 360◦ video

streaming via joint video tile scheduling, resource allocation and

caching has been explored in [11]. The study in [12] proposed to

tile the 360o video content using the H.265 standard and stream

the tiles in view with the best quality. Gupta et al. [13] stud-

ied multi-user dual-connectivity scalable 360o video streaming,

where the base layer is sent via a WiFi link and the enhancement

layers are sent via a millimeter wave link.

To our knowledge, we are the first to study mobile VR

scalable 360◦ video streaming by leveraging UAV-aided MEC
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Fig. 1. A framework for wireless 360-degree video virtual reality via UAV-
assisted edge computing/streaming.

to provide the required computing and communication needs.

We formulate a joint UAV placement, MEC and radio resource

allocation, and 360-degree video content layer assignment (UAV-

MV) problem aiming to maximize the QoE across all mobile VR

users, given various system constraints.

Our main contributions are: 1) We propose a novel UAV-aided

MEC network for next generation 360-degree video mobile VR

streaming; 2) We formulate the UAV-MV problem, prove it

is NP-hard, and decompose it into three subproblems; 3) We

propose approximation algorithms to solve the sub-problems,

and propose a (1 + ε)-approximation algorithm to solve the

UAV-MV problem with guaranteed performance; 4) Simulation

results show that the proposed algorithm is superior to base-

line algorithms and can better balance the user workload. Our

framework and system setting that we investigate are illustrated

in Fig. 1.

The rest of the paper is organized as follows. In Section II,

we present our system models of the content, communications,

and computing aspects of the scenario we investigate. In Sec-

tion III, we carry out the formulation of the optimization problem

of interest. Analysis of the problem, design of approximation

algorithms to solve it, and verification of their performance

guarantees is carried out in Section IV. Performance evaluation

via simulation experiments is carried out in Section V. Finally,

we conclude in Section VI.

II. SYSTEM MODEL

Let U be the set of users, B be the set of BSs with computing

facilities, including the macro base station (MBS) and UAVs

with computing facilities, and B′ be the set of UAVs acting as

relays (no computing facilities). Each 360◦ video in the system

comprises multiple embedded content layers that progressively

improve the QoE, i.e., a base layer and several enhancement

layers. We consider that each layer has the same data size

and processing computing requirement. The number of content

layers and the QoE delivered to a user depend on its down link

data rate. Let qki = qk ∈ Q denote the normalized QoE of user

i when the first k layers of its scalable 360◦ video are delivered,

where Q = {q1, q2, . . .qL}, qk−1 > qk, and
∑

k q
k = 1 [14],

[15]. Concretely, if Qk denotes the absolute QoE of the content

(e.g., video quality PSNR) when reconstructed from its first

k scalable layers, then qk = (Qk −Qk−1)/
∑

k(Q
k −Qk−1),

for Q0 = 0. Finally, a scalable 360◦ video streamed to user

i requires layer processing from the server and transmission,

Ai = {ri, ei, τi}, where ri, ei, τi denote its data size, the re-

quired computing resource (CPU cycles), and the maximum

tolerable latency.

A novel framework for wireless VR applications is shown

in Fig. 1; UAV 1 and the MBS are equipped with computing

resources; UAV 2 is full duplex enabled and works as a relay

BS; each user is connected to a VR device to execute VR applica-

tions; user 1 and user 2 are served by UAV 1 directly to receive the

computing and communication resources, while user 3 and user

4 are served by the MBS directly to receive the computing and

communication services; user 5 is served by the MBS via UAV

2 and its computing demand is served by the MBS. Each user

requires both communication and computing resources. If a user

is served by the MBS or a UAV directly, the MBS/UAV needs

to assign computing and communications resources to this user.

If a user is served by the MBS via a relay UAV, the MBS needs

to assign computing and communications resources to this user,

and the relay UAV also needs to assign communication resource

to this user. Different users utilize different frequency spectra

for communications to avoid interference [16].

A. Communications Model

Let βi,j be the data rate towards user i from BS j, β1
i,j be the

data rate of the direct BS to user link, and β2
i,j be the data rate

of the indirect MBS to user link via a relay UAV. It holds that

βi,j = max(β1
i,j , β

2
i,j), for j = 1 (MBS), and βi,j = β1

i,j , for

j > 1. Moreover, β1
i,j(ωi,j) = ωi,jβ0 log2(1 + si,j), where ωi,j

is the allotted frequency spectra (LTE resource blocks (RBs)) to

user i by BS j; β0 is the bandwidth of one RB; si,j is the SINR

between BS j and user i. We formulate it as: si,j = pi,jφ
′
i,1/σ

2
i,j ,

for j = 1, and si,j = pi,jφi,j/σ
2
i,j , otherwise. Here, φ′

i,1 is the

path loss between user i and the MBS; σ2
i,j=ωi,jβ0ξj is the

thermal noise power, and ξj is its power spectral density; φi,j is

the path loss between user i and BS j that includes line-of-sight

excessive path loss φL
i,j , non-line-of-sight excessive path loss

φN
i,j , and free space path loss φF

i,j [17].

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φi,j = φL
i,j + φN

i,j + φF
i,j ,

φL
i,j = ψi,jη

L,

φN
i,j = (1 − ψi,j)η

N ,

φF
i,j = 20log(4πf1di,j/f0),

ψi,j = [1 + a1 · e
−a2(

180θi,j
π

−a1)]−1

(1)

Here, a mean path loss is used to calculate the path loss between

user i and BS j because of the absence of terrain knowledge [16],

[18]; ψi,j is the probability of a link between user i and BS j (in

the air) experiencing line-of-sight excessive path loss; a1 and

a2 are environment parameters; ηL and ηN are the additional

line-of-sight path loss and none-line-of-sight path loss; di,j is the

3-D distance between user i and BS j; f1 is the carrier frequency
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and f0 is the speed of light. Then, we have

φi,j = ψi,jη
L + (1 − ψi,j)η

N + 20log(4πf1di,j/f0). (2)

Let βBL
i,j′ be the data rate of a backhaul link from the MBS to

UAV j ′ UAV, βAL
i,j′ be the data rate of an access link from UAV

j ′ to user i, and sBL
i,j and sAL

i,j be the SINR of the backhaul and

access links. Then, we can formulate the data rate from the MBS

to user i via relay UAV j ′ as:

⎧

⎨

⎩

β2
i,1 = min(βBL

j,′1 , β
AL
i,j′ ), ∀i ∈ U ,

βBL
j,′1 = ωi,1β0 log2(1 + sBL

j,′1 ), ∀i ∈ U , j ′ ∈ B′,

βAL
i,j′ = ωi,1β0 log2(1 + sAL

i,j′ ), ∀i ∈ U , j ′ ∈ B′.
(3)

The SINR of the backhaul link and the access link are:
⎧

⎪

⎨

⎪

⎩

sBL
j,′1 =

pi,1φ
′
j,′1

p′
i,j′

/c0+σ2
j,′1

, ∀i ∈ U , j ′ ∈ B′,

sAL
i,j′ =

p′
i,j′

φi,j′

pi,1φi,1+σ2
i,j′

, ∀i ∈ U , j ′ ∈ B′.
(4)

Here, φ′
j,′1 is the path loss between the MBS and the relay UAV

j ′; p′i,j′ is the assigned power by the relay UAV j′ to the user

i; p′i,j′/c0 is the self interference (SI); c0 is the SI cancellation

capacity [19]; pi,1φi,1 is the backhaul interference.

B. Computing Model

In this article, we consider computing and downlink commu-

nications for VR applications [13]. The MBS (j = 1) and UAVs

(j > 1, j ∈ B) are equipped with computing facilities to serve

users with VR applications, etc., providing computing, caching

and storage services to users [5], [20].

Let Cj be the computing capacity (CPU cycles per second)

of BS j and yi,j be the assigned share to user i. Then, we can

formulate the computing delay associated with streaming 360◦

content to user i as tCi,j = ei/yi,j [21], [22]. Similarly, we can

formulate the transmission delay of streaming the content as

tTi,j = ri/βi,j . Thus, the total provisioning delay for user i is

ttotali,j = tTi,j + tCi,j .

III. PROBLEM FORMULATION

We formulate our optimization problem of interest as shown

below, where the key notation and variables we have used in the

formulation are summarized in Table I.

P0 : max
xk
i,j

,yk
i,j

,ωk
i,j

,pk
i,j

,vj

∑

i

∑

j

∑

k

xk
i,jq

k
i ,

s.t. C1 :
∑

j

xk
i,j ≤ 1, ∀i ∈ U , ∀j ∈ B,

C2 : xk+1
i,j ≤ xk

i,j , ∀i, j, k, k < qmax,

C3 :
∑

i

∑

k

xk
i,jω

k
i,j ≤ ωmax

j , ∀j ∈ B,

C4 :
∑

i

∑

k

xk
i,jp

k
i,j ≤ PM , j = 1,

C5 :
∑

i

∑

k

xk
i,jp

k
i,j ≤ PU , ∀j ∈ B, j > 1,

TABLE I
KEY NOTATION AND VARIABLES

C6 :
∑

i

∑

k

xk
i,jy

k
i,j ≤ Cj , ∀j ∈ B,

C7 :
∑

k

xk
i,jt

T
i,j,k +

∑

k

xk
i,jt

C
i,j,k ≤ τi, ∀i, j,

C8 : vj ∈ Θ, ∀j ∈ B, j > 1,

C9 : xk
i,j ∈ {0, 1}, ∀i, j, k,

C10 : 0 ≤ yki,j ≤ Cj , ∀i, j, k,

C11 : 0 ≤ ωk
i,j ≤ ωmax

j , ∀i, j, k,

C12 : 0 ≤ pki,j ≤ PM , ∀i, k, j = 1,

C13 : 0 ≤ pki,j ≤ PU , ∀i, k, j ∈ B, j > 1. (5)

Our objective is to maximize the QoE across all users. C1 is

the resource allocation constraint to ensure that a content layer

is served to a user by one BS at most. C2 is a scalable 360-degree

video content layer provisioning constraint to ensure that a lower

layer is served before a higher layer. C3 is a bandwidth capacity

constraint for a BS. C4 and C5 are power capacity constraints for

the MBS and a UAV. C6 is a computing capacity constraint for

a BS. C7 is a latency threshold constraint to ensure that a user is

served within a given latency threshold. C8 is a UAV placement

constraint in the horizontal plane. C9, C10, C11, C12 and C13

are bounds for all variables. In this work, we divide a coverage

area into |Θ| equal sub-areas, and the center of each sub-area

is a potential position to place a UAV. Then, these sub-areas

formed set Θ and they are labeled as 1, 2, . . . , |Θ|. Note that vj
is the position of UAV j, it can be any position in the set of these

candidate positions, vj ∈ Θ.

IV. PROBLEM ANALYSIS

We can show that any instance of the Max-Generalized As-

signment Problem (Max-GAP) can be reduced to the problem

in (5) by considering |Q| = 1 (the BSs, the user computing and

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 17,2022 at 14:37:52 UTC from IEEE Xplore.  Restrictions apply. 



3270 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 3, MARCH 2022

communication requirements, and the user QoE can be mapped

to the bin, cost, and profit factors in Max-GAP). Thus, (5) is also

NP-hard, as the Max-GAP problem is a well known NP-hard

problem Max-GAP) [23].

To reduce the complexity of (5), we consider its power as-

signment to be proportional to the bandwidth assignment as

pki,j = ςjω
k
i,j , where ςj is the assigned power per Hz for BS j.

Then, constraints C4 and C5 can be omitted. We also consider

the computing resource assignment to be proportional to the

radio resource assignment as yki,j = κjω
k
i,j , where κj is a factor

of proportionality for BS j. Then, constraint C6 can be omitted,

too. Hence, we can reformulate P0 as problem P1:

P1 : max
xk
i,j

,ωk
i,j

,vj

∑

i

∑

j

∑

k

xk
i,jq

k
i ,

s.t. C1, C2, C3, C7, C8, C9, in P0. (6)

To solve P1, we decompose it into three subproblems

that we solve sequentially. These are: (i) joint computing

and communication resource assignment and user assignment

(Joint-CUE), (ii) joint computing and communication resource

assignment and scalable 360-degree video layer assignment

(Joint-CAL), and (iii) UAV placement.

Concretely, we first consider the UAV positions as given, and

solve a simpler instance of P1, where the user and video layer

assignments coincide (Joint-CUE). We then introduce the con-

cept of a sub-user, associated with a video layer served to a given

user, and reformulate P1 to solve the assignment of sub-users

and computing/communication resources, again for given UAV

positions. We build upon the solution to Joint-CUE, to design an

algorithm that solves the above problem (Joint-CAL). Finally,

we leverage the latter algorithm to formulate an optimization

method that identifies the best UAV positions via an exhaustive

search.

A. Joint-CUE Problem

For given UAV positions, we reformulate P1 by linking the

video layer assignment to the user assignment. Concretely, if

user i is served by BS j, then all layers of its 360◦ content are

served by this BS. Then, constraint C2 can be omitted. Hence,

we can reformulate (6) as problem P2, where xi,j =
∑

k xi,j ,

ωi,j =
∑

k ωi,j , qi =
∑

k q
k
i , and qi =

∑

k q
k
i .

[Joint-CUE] P2 : max
xi,j ,ωi,j

∑

i

∑

j

xi,jqi,

s.t. C1 :
∑

j

xi,j ≤ 1, ∀i ∈ U ,

C2 :
∑

i

xi,jωi,j ≤ ωmax
j , ∀j ∈ B,

C3 : xi,jt
T
i,j + xi,jt

C
i,j ≤ τi, ∀i ∈ U , j ∈ B,

C4 : xi,j ∈ {0, 1}, ∀i, j. (7)

Note that ωi,j is determined by xi,j . Concretely, for ev-

ery user-BS assignment (xi,j = 1), constraint C3 in problem

P2 has only one variable ωi,j , and we can compute it as

argminωi,j
(tTi,j + tCi,j ≥ τi), which identifies the smallest ωi,j

that meets the above inequality. Otherwise (xi,j = 0), ωi,j will

be set to zero. Thus, we can reformulate P2 as P3 by omitting

C3, and compute ωi,j as above, from the solution of P3.

P3 : max
xi,j

∑

i

∑

j

xi,jqi ,

s.t. C1, C2, C4, in P2. (8)

To carry out these two tasks, we formulate Algorithm 1. In

its design, we consider that there are more users than BSs and

the computing/communications requirements of any user are

smaller than the respective capabilities of every BS.

In Algorithm 1, two independent solutions are obtained first.

Then, the objective value for the two solutions is computed, and

the solution with a bigger value is returned. The first solution

is obtained by Steps 1–19 based on a weight factor defined as a

ratio between the maximum QoE for user i and the respective

communications resource assignment by BS j (qi/wi,j). The

second solution is obtained by Steps 20–24 based on identifying

the |B| users with biggest maximum QoE values. Finally, the

bigger objective value for the two solutions is set as the final

output in Steps 25–30.

Theorem 1: Algorithm 1 is a 1
2
-approximation algorithm for

the joint-CUE problem. Moreover, it produces the optimal result

when all users are served, i.e.,
∑

i

∑

j xi,j = |U |.
Proof: Since P3 is an integer linear program problem, it

is difficult to obtain the optimal solution. Thus, we transform

P3 into problem P4 by relaxing the discrete variables xi,j

to be continuous, i.e., 0 ≤ xi,j ≤ 1. Let ψ3(xi,j) and ψ4(xi,j)
denote the objective functions of P3 and P4. We note that
dψ4

dxi,j
= qi = 1 > 0, ψ4(xi,j) is a convex function, and the opti-

mal solution is easily achieved by convex optimization [24].

Let OPT (P3) and OPT (P4) denote the optimal value of

ψ3(xi,j) andψ4(xi,j). Then, we haveOPT (P3) ≤ OPT (P4),
ψ3(xi,j) ≤ OPT (P3), andψ4(xi,j) ≤ OPT (P4). We assume

the number of users is more than the number of BSs (|U | >
|B|), and each BS is enough to serve any single user. To continue

the proof, we consider two different workload scenarios: (1)

heavy workload (at least one user is not served) and (2) light

workload (all users are served).

1) For heavy workload,
∑

i

∑

j xi,j < |U |. In its operation,

Algorithm 1 sorts the users in descending order based on their

weight factors. Let n be the index of the first user not selected

to be served, i.e., xn,j = 0, ∀j. As noted earlier, two solutions

(xi,j ∈ Γ2, xi,j ∈ Γ4) are produced internally by Algorithm 1,

and the one with a bigger objective value is returned as the final

solution (max(ψ3(xi,j)|xi,j∈Γ2
, ψ3(xi,j)|xi,j∈Γ4

)).
Then, we can write ψ4(x

∗
i,j) = OPT (P4) =

ψ3(xi,j)|xi,j∈Γ2
+ ψ3(δjxi,j)|xi,j∈Γ2

, where δj = (ωmax
j −

∑n−1
i=1 xi,jωi,j)/βi,j , i = n− 1 + j, and 0 < δ < 1. Now,

we have that ψ3(δjxi,j)|xi,j∈Γ2
≤ ψ3(δjxi,j)|xi,j∈Γ4

≤
ψ3(xi,j)|xi,j∈Γ4

, because Γ4 comprises the users with the

maximum QoE. Moreover, we also have that ψ3(xi,j)|xi,j∈Γ2
+

ψ3(δjxi,j)|xi,j∈Γ2
≤ ψ3(xi,j)|xi,j∈Γ2

+ ψ3(xi,j)|xi,j∈Γ4
, and

OPT (P4) ≤ ψ3(xi,j)|xi,j∈Γ2
+ ψ3(xi,j)|xi,j∈Γ4

. Then, it
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holds thatψ3(xi,j)|xi,j∈Γ2
≥ 1

2
OPT (P4) orψ3(xi,j)|xi,j∈Γ4

≥
1
2
OPT (P4). Thus, max(ψ3(xi,j)|xi,j∈Γ2

, ψ3(xi,j)|xi,j∈Γ4
) ≥

1
2
OPT (P4) and max(ψ3(xi,j)|xi,j∈Γ2

, ψ3(xi,j)|xi,j∈Γ4
) ≥

1
2
OPT (P3), because OPT (P3) ≤ OPT (P4), implying that

the worst objective value produced by Algorithm 1 is more than
1
2

of the optimal objective value of problem P3 (OPT (P3)).

In sum, the approximation ratio of Algorithm 1 is 1
2
.

2) Here,
∑

i

∑

j xi,j = |U |. We have ψ3(xi,j) = |U | and

ψ4(xi,j) = |U |. Meanwhile, OPT (P3) = OPT (P4) = |U |,
implying that ψ3(xi,j) = OPT (P3). Thus, the AA-CUE algo-

rithm produces the optimal solution in this case. �

Theorem 2: The approximation ratio of the AA-CUE algo-

rithm is (1 − ε) if ωi,j ≤ εωmax. In other words, the AA-CUE

algorithm is a (1 − ε)-approximation algorithm of problem P3

and problem P2. Here, ε ≤ 1
2
.

Proof: We assumed n is the index of the first user not being

served, and the prior (n− 1) users are served. Let the achieved

QoE of these n users be q1, q2, . . . , qn−1, qn, and the required

bandwidth be ω1, ω2, . . . , ωn−1, ωn. We have ω1 + ω2 + · · ·+
ωn−1 ≤ ωmax,ω1 + ω2 + · · ·+ ωn−1 + ωn ≥ ωmax, and q1

ω1
≥

q2

ω2
· · · ≥ qn

ωn
. Then,

q1 + q2 + · · ·+ qn−1 + qn
ω1 + ω2 + · · ·+ ωn−1 + ωn

≥
qn
ωn

q1 + q2 + · · ·+ qn−1 + qn
ωmax

≥
qn
ωn

ωn

ωmax
(q1 + q2 + · · ·+ qn−1 + qn) ≥ qn

εωmax

ωmax
(q1 + q2 + · · ·+ qn−1 + qn) ≥ qn

ε

n−1
∑

i=1

qi ≥ (1 − ε)qn

qn ≤
ε

1 − ε

n−1
∑

i=1

qi . (9)

Note that (n− 1) users are served and n is the index of the first

user not provisioned. Then, we have

q1 + q2 + · · ·+ qn−1 + qn ≥ OPT (P3)

(q1 + q2 + · · ·+ qn−1) +
ε

1 − ε

n−1
∑

i=1

qi ≥ OPT (P3)

q1 + q2 + · · ·+ qn−1 ≥ (1 − ε)OPT (P3)

ψ3(xi,j)|xi,j∈U1
≥ (1 − ε)OPT (P3) . (10)

After that, max(ψ3(xi,j)|xi,j∈Γ2
, ψ3(xi,j)|xi,j∈Γ4

) ≥
ψ3(xi,j)|xi,j∈Γ2

≥ (1 − ε)OPT (P4). Thus, the approximation

ratio of the AA-CUE algorithm is (1 − ε). �

B. Joint-CAL Problem

After solving the Joint-CUE problem, we try to solve the Joint-

CAL problem by focusing on the 360◦ content layer assignment

for all users. For given UAV positions vj , we can reformulate

(6) as problem P5 below. Note that P5 is different from the

multi-knapsack problem and the Max-GAP problem because of

constraint C2, which requires a lower content layer to be served

first, before a higher layer.

[Joint-CAL] P5 : max
xk
i,j

∑

i

∑

j

∑

k

xk
i,jq

k
i ,

s.t. C1 :
∑

j

xk
i,j ≤ 1, ∀i ∈ U , ∀j ∈ B,

C2 : xk+1
i,j ≤ xk

i,j , ∀i, j, k, k < qmax,

C3 :
∑

i

∑

k

xk
i,jω

k
i,j ≤ ωmax

j , ∀j ∈ B,

C4 : xk
i,j ∈ {0, 1}, ∀i, j, k. (11)
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Algorithm 2: Approximation Algorithm for the Joint-CAL

Problem (AA-CAL).

Input: B, B′, U , Cj , Ai, P
M , PU , ωmax

j , and vj ;

Output: xk
i,j , ωk

i,j , pki,j , and yki,j ;

1: map scalable 360-degree video layers to sub-user,

i = i · k;

2: run Algorithm 1;

3: obtain xi,j and ωi,j ;

4: calculate xk
i,j and ωk

i,j by xi,j and ωi,j ;

5: compute pki,j and yki,j ;

6: return xk
i,j , ωk

i,j , pki,j and yki,j .

To leverage Algorithm 1 (solution of problem P3), we trans-

form problem P5 to P6 by removing constraint C2. P6 be-

comes problem P3 when we map each 360◦ content layer k of

user i to a sub-user i = i · k. Using this advance, we can adopt

Algorithm 1, to formulate Algorithm 2 to solve P6. After that,

we prove that any solution generated by Algorithm 2 for problem

P6 is also a solution for P5.

P6 : max
xk
i,j

∑

i

∑

j

∑

k

xk
i,jq

k
i ,

s.t. C1, C3, C4 in P5. (12)

Theorem 3: Algorithm 2 is an approximation algorithm for

problem P6, and its approximation ratio is 1
2
.

Proof: P6 has the same solution as P3, if we map content

layer k of user i to a sub-user i = i · k and assign resources to

sub-users. Moreover, Algorithm 2 is designed based on Algo-

rithm 1 and the solution xk
i,j , ωk

i,j , pki,j , y
k
i,j of Algorithm 2 is

computed based on the solution of Algorithm 1. The approxi-

mation ratio of Algorithm 1 was proved in Theorem 1. Thus, the

approximation ratio of Algorithm 2 is 1
2
. �

Theorem 4: Any solution generated by Algorithm 2 for prob-

lem P6 is also a valid solution for problem P5.

Proof: 1) Algorithm 2 is designed based on Algorithm 1

that employs a delivered QoE vs. resource demand weight

for a user, prioritizing users with higher weights. Algorithm 2

applies the same approach to prioritize sub-users. The weight

of sub-user (i · k − 1) is bigger than that of sub-user (i · k).
This is because lower layers have higher normalized QoE and

every layer has the same data size, as introduced earlier. Hence,

a sub-user (i · k) will always be served after sub-user (i · k −
1) and constraint C2 in problem P5 will be automatically

satisfied.

2) Assume for the sake of contradiction that one solution

generated by Algorithm 2 for user i is xk−1
i,j = 0 and xk

i,j = 1.

However, this cannot represent a solution to P5, as it violates

its constraint C2. Moreover, this also cannot represent a solution

produced by Algorithm 2 because sub-user (i · k − 1) has a

higher weight than sub-user (i · k) and Algorithm 2 serves

sub-users with higher weights preferentially. Thus, a feasible

solution generated by Algorithm 2 can only be: xk−1
i,j = 1 and

xk
i,j = 0.

In sum, a solution achieved by Algorithm 2 for problem P6

is also an appropriate solution for problem P5. �

C. The UAV Placement Problem

After solving P5, the assignment of 360◦ video layers, and

computing, bandwidth, and power resources is computed, for

given UAV positions. Now, we need to find the best UAV

positions. We transform (5) into problem P7 below, by adopting

the solution to P5 to omit the constraints in (5) that include xk
i,j ,

ωk
i,j , pki,j , and yki,j .

P7 : max
vj

ψ7(vj) ,

s.t. C1 : vj ∈ Θ, ∀j ∈ B, j > 1. (13)

Here, ψ7(vj) = ψ0|xk
i,j

=x̃k
i,j

,ωk
i,j

=ω̃k
i,j

,pk
i,j

=p̃k
i,j

,yk
i,j

=ỹk
i,j

, ψ0 is

the objective function in (5), and x̃k
i,j , ω̃k

i,j , p̃ki,j , ỹki,j is a solution

produced by Algorithm 2. As the number of UAVs is small, we

solve (13) via an exhaustive search [16], [25].

D. The UAV-MV Problem

Using the solutions to the three considered subproblems, we

formulate an approximation algorithm (AA-UAV-MV) to solve

(5), included in Algorithm 3 below.

Theorem 5: Algorithm 3 is a (1 − ε)-approximation for prob-

lem P1 ifωk
i,j ≤ εωmax, and the optimal result is achieved when

all layers of entire users are provisioned.

Proof: Based on the previous analysis carried out in Theo-

rem 1 – Theorem 4, we can conclude that Algorithm 3 has a

(1 − ε)-approximation ratio. Concretely, the worst solution of

Algorithm 3 is better than (1 − ε) of the optimal solution of

(5). Moreover, the optimal solution is achieved when all 360◦

content layers for entire users can be served. �

The complexity of solving the UAV-MV problem is

O(|B|N1N 3
1C

N3

N2
). Here, N1 = |U | · |Q|, N2 = |B|+ |B′| −

1, and N3 = |Θ|. The complexity of Algorithm 3 is O((|B|+
log(N1) + 2)N1C

N3

N2
), that of Algorithm 2 is O(N1|B|+

N1 log(N1) + 2N1), that of solving the UAV placement prob-

lem is O(CN3

N2
), and that of Algorithm 1 is O(|U ||B|+

|U | log(|U |) + 2|U |). For the detailed complexity of Algo-

rithm 1, it is O(|U ||B|) of Steps 1–8, it is O(|U | log(|U |)) of
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Step 9, it is O(|U |) of Steps 10–19, and it is O(|U |) of Steps

20–30.

We briefly outline the deployment and implementation as-

pects of the proposed UAV-MEC network. As shown in Fig. 1,

the UAV-MEC network proposed in this article is a centralized

network, and the server in the MBS provides computing service

and also runs as a controller for the whole network. We only

considered one time slot in this paper and we assume the user

demands change slowly (fixed) in this paper. In the beginning

of a time slot, the controller generates the scheduling results by

leveraging Algorithm 3 after obtaining the basic information of

the network, e.g., the locations of users, the channel information

between users and the MBS, the demands of users, and the

available resources in the MBS and UAVs. The scheduling

results include: the UAV placement, the user association, the

power and bandwidth assignment and the computing resource

assignment. Then, the UAVs will fly to the target locations

and be hovering on that location in the whole duration of this

time slot. Meanwhile, the MBS and UAVs assign the com-

puting and communication resources to users according to the

schedule.

V. PERFORMANCE EVALUATION

We use MATLAB to carry out simulation experiments. We

set the coverage area of the MBS to 500m× 500m, divided

into 25 equal areas for positioning UAVs in the horizontal

plane. Three UAVs are utilized for edge computing and one

UAV operates as a relay node. The altitude of all UAVs is

set to 100m. For the frequency spectra assignment for each

BS, the MBS is allocated with half of the total spectra and

the rest BSs with computing facilities (j ∈ B, j > 1) equally

share the rest half of the total spectra, ωmax
1 = ωmax/2 and

ωmax
j = 1

2
ωmax/(|B| − 1), j > 1. For the rest BSs without

computing facilities (j′ ∈ B′), they equally share the total spec-

tra of the MBS because they are deployed as relay nodes for the

MBS. Three different 360◦ videos, Wingsuit, Roller Coaster,

and Angel Falls, and their normalized QoE values are adopted

from [15]. They feature 4K resolution and 30 fps frame rate,

which are encoded into 5 scalable layers using SHVC [26] with

a GOP size of 30 frames. A user requests at random one 360◦

video as its content of choice. Our optimization is carried out per

GOP of the content and thus we set τi as 1 s. The user distribution

is generated according to the Matérn cluster process; the parent

points represent the clusters and daughter points represent the

users, which are generated according to a Poisson process and

the uniform distribution, respectively [27]. Our main simulation

parameters are summarized in Table II.

We use two reference methods to benchmark Algorithm 3.

The first one is named Best-SINR-VR and employs the best SINR

strategy for the user to BS assignment and the UAV placement

is the same as in Algorithm 3. The second method is named

S-MBS-VR and serves all users by the MBS. Both reference

methods employ the same approach to assing 360◦ content layers

to users: The base layer for all users is served first, followed

by the first enhancement layer, second enhancement layer, etc.

This process continues until all layers are served or the system

TABLE II
SIMULATION PARAMETERS

Fig. 2. Average QoE versus number of users.

resources are exhausted. The complexity of the AA-UAV-MV Al-

gorithm, the Best-SINR-VR algorithm, and the S-MBS-VR algo-

rithm are O((N1|B|+N1 log(N1) + 2N1)C
N3

N2
), O((N1|B|+

N1 log(N1) +N1)C
N3

N2
) and O(2N1 +N1 log(N1)), respec-

tively. Here, N1 = |U | · |Q|, N2 = |B|+ |B′| − 1, and N3 =
|Θ|.

The average QoE is the mean value of the received QoE of

all users. For the received QoE of each user, it is defined in

Section II. Here, Q = {29%, 25%, 21%, 16%, 9%} is the set

of normalized QoE for all five layers, including the obtained

normalized QoE for each served layer. Fig. 2 shows the average

QoE versus the number of users. We can see that the average QoE

of all three methods decreases as the number of users increases,

as an increasing number of enhancement layers for different

users cannot be served. AA-UAV-MV has the highest average

QoE and S-MBS-VR has the lowest average QoE. The average

QoE of AA-UAV-MV reaches up to 15% and 68% improvement

relative to Best-SINR-VR and S-MBS-VR. This is because the

optimization AA-UAV-MV employs most effectively use of the

available system resources.

Fig. 3 shows the cumulative distribution function (CDF) of the

average QoE for 18 users. We can see that the QoE values for

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 17,2022 at 14:37:52 UTC from IEEE Xplore.  Restrictions apply. 



3274 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 3, MARCH 2022

Fig. 3. Cumulative Probability.

Fig. 4. Standard deviation vs number of users.

AA-UAV-MV, Best-SINR-VR, and S-MBS-VR fall in the ranges

[51%, 60%], [48%, 55%], and [29%, 38%], respectively. Thus,

AA-UAV-MV provides the highest expected QoE and smallest

QoE variation (standard deviation) across the user population.

Fig. 4 shows the average QoE standard deviation (STD) across

the served users versus number of users. The STD for all three

methods decreases with the latter. This is because the system

resources are limited, and an increasing number of users expe-

rience low QoE, as the user load increases. Still, AA-UAV-MV

demonstrates the lowest STD, 55% and 27% lower relative to

Best-SINR-VR and S-MBS-VR. This indicates that AA-UAV-MV

can better balance the user load.

Fig. 5 shows the results of the normalized average QoE

versus more users. The same trend as Fig. 2 can be observed:

the normalized average QoE of all algorithms decreases as the

number of users increases because the network cannot support

the services of the base layer and enhancement layers of all

users under heavy workload, and more users receive the base

layer service as compared to Fig. 2. The normalized average

QoE of the AA-UAV-MV algorithm reaches up to 10% and 90%

improvement as compared to the Best-SINR-VR algorithm and

the S-MBS-VR algorithm. For 38 users, the normalized average

QoE of the S-MBS-VR algorithm and the AA-UAV-MV algorithm

is 19.7% and 37.4%, implying that all users nearly receive the

services of the base layer by the S-MBS-VR algorithm and all

Fig. 5. Normalized average QoE versus more users.

Fig. 6. Normalized average QoE versus the scale of computing resource and
the various number of users.

users roughly receive the services of two layers by the AA-UAV-

MV algorithm.

Fig. 6 shows the results of the normalized average QoE

versus different scales of computing resources and the various

number of users. The scale factor of computing resources is set

as γ ∈ {1, 1.5, 2}, implying that the total available computing

resources in all BSs are multiplied by a scale factor, Cj = γCj .

The normalized average QoE of all algorithms increases as

the scale factor increases under a given number of users. The

normalized average QoE improvement of the AA-UAV-MV al-

gorithm with γ = 2 is up to 1.7 as compared to γ = 1; that of the

Best-SINR-VR algorithm is up to 2 as compared to γ = 1, and

that of the S-MBS-VR algorithm is up to 7.4% as compared to

γ = 1. The reason why the AA-UAV-MV algorithm does not have

much normalized average QoE improvement is that the AA-UAV-

MV algorithm has efficiently assigned both communications and

computing resources to users; only increasing the computing

resource does not lead to an increase of the normalized average

QoE.

The simulation results have demonstrated that the AA-UAV-

MV algorithm is able to effectively solve the UAV-MV problem

with guaranteed performance and it can efficiently assign both

communications and computing resources to users.
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VI. CONCLUSION

We explored the UAV-MV problem that aims to optimize

the delivery of scalable 360◦ video content to mobile VR

users, by intelligently allocating ground/air-based edge com-

puting/communication resources and positioning the UAV BSs.

We show that the UAV-MV problem is NP-hard, decompose it

into three subproblems: the Joint-CUE problem, the Joint-CAL

problem, and the UAV placement problem. We have proposed

approximation algorithms to solve the subproblems sequentially.

Then, another approximation algorithm, named AA-UAV-MV

algorithm, has been proposed to solve the UAV-MV problem

based on the solutions to the subproblems. Our approach demon-

strates 15% and 90% improvement in average QoE relative to

two competitive reference methods. Our results also demonstrate

that the user load is better balanced by our algorithm.
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