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UAV-Assisted Edge Computing and Streaming for
Wireless Virtual Reality: Analysis, Algorithm
Design, and Performance Guarantees

Liang Zhang

Abstract—Emerging virtual reality (VR) applications require
high data rate transmission and low end-to-end latency, which has
become one of the main challenges for future wireless networks.
Unmanned aerial vehicle (UAV) mounted base stations and comput-
ing facilities can be used to provide better wireless connectivity and
computing services to edge VR users to meet their computing needs
and reduce the end-to-end latency. We propose a novel UAV assisted
mobile edge computing (MEC) network to enable high-quality
mobile 360-degree video VR applications by leveraging UAVs to
provide the required communication and computing needs. Then,
we formulate the joint UAV placement, MEC and radio resource
allocation, and 360-degree video content layer assignment (UAV-
MYV) problem, which aims to select the allocation of computing
and communications resources and the location of the UAVs such
that the delivered quality of experience (QoF) is maximized across
the mobile VR users, given various system constraints. We show
that the problem is NP-hard, and decompose it into three lower-
complexity subproblems that we solve sequentially. We design an
approximation algorithm with performance guarantees that solves
the UAV-MYV problem based on the solutions to the three subprob-
lems. Our simulation results show that the average QoE enabled
by the proposed algorithm is 15% and 90% greater relative to two
competitive reference methods.

Index Terms—Unmanned aerial vehicles (UAV), mobile edge
computing (MEC), Internet of Things (IoT), virtual reality, 360-
degree video, joint resource allocation, wireless 360-degree video
streaming.

1. INTRODUCTION

NE primary application of future wireless networks is
O virtual reality (VR) [1]. The VR market is expected to
produce a $62 billion annual revenue by 2027 [2]. 360-degree
video streaming to VR headsets is gaining popularity in diverse
areas, e.g., gaming and entertainment, education, healthcare,
and remote monitoring. Since 360-degree video streaming has
high data rate and low latency requirements, how to deliver such
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content to mobile devices with high quality-of-experience (QoE)
is a key challenge for future wireless networks [1].

Unmanned aerial vehicles (UAVS), received much attention
from both academia and industry, has been proposed to mount
base stations to provide better wireless connectivity and enlarge
the coverage area [3]. Mobile edge computing (MEC) has been
proposed and deployed at the mobile edge to provide cloud
computing and IT capabilities close to mobile users to improve
the user experience such as the latency [4], [5]. UAV-mounted
BS/computing facilities have been studied to enhance the imple-
mentation flexibility of MEC and improve the wireless connec-
tivity between mobile devices and the ground base station [5].
Wang et al. [6] proposed to utilize UAV-mounted server and
ground servers to provide computing and communication ser-
vices to on-line mobile applications, and the mobility of users
and edge servers are considered to maximize the number of
served mobile applications. Yu et al. [7] studied the UAV-aided
MEC system for the Internet of Things (IoT) devices, and the
objective is to maximize the energy efficiency of a UAV and
minimize the latency of IoT devices. Guo et al. [8] proposed a
VR framework with millimeter wave and MEC for wireless VR
applications to achieve high QoE, the UE association, caching
and offloading are jointly optimized. Du ez al. [9] investigated the
high quality immersive VR video service provisioning problem,
and they proposed a method based on the deep reinforcement
learning to optimize the view port rendering, offloading and
power with the target to minimize the average energy con-
sumption with satisfying the QoE constraints. Dang et al. [10]
proposed a mobile VR delivery framework based on the fog
radio access networks, and the target is to maximize the av-
erage tolerant delay with satisfying the fixed transmission rate
constraints.

Resource allocation, transmission scheduling, and scalable
coding for efficient multi-UAV 360° video capture and streaming
has been studied in [1]. Multi-user mobile edge 360° video
streaming via joint video tile scheduling, resource allocation and
caching has been explored in [11]. The study in [12] proposed to
tile the 360° video content using the H.265 standard and stream
the tiles in view with the best quality. Gupta et al. [13] stud-
ied multi-user dual-connectivity scalable 360° video streaming,
where the base layer is sent via a WiFi link and the enhancement
layers are sent via a millimeter wave link.

To our knowledge, we are the first to study mobile VR
scalable 360° video streaming by leveraging UAV-aided MEC
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Fig. 1. A framework for wireless 360-degree video virtual reality via UAV-
assisted edge computing/streaming.

to provide the required computing and communication needs.
We formulate a joint UAV placement, MEC and radio resource
allocation, and 360-degree video content layer assignment (UAV-
MYV) problem aiming to maximize the QoE across all mobile VR
users, given various system constraints.

Our main contributions are: 1) We propose a novel UAV-aided
MEC network for next generation 360-degree video mobile VR
streaming; 2) We formulate the UAV-MV problem, prove it
is NP-hard, and decompose it into three subproblems; 3) We
propose approximation algorithms to solve the sub-problems,
and propose a (1 + ¢)-approximation algorithm to solve the
UAV-MYV problem with guaranteed performance; 4) Simulation
results show that the proposed algorithm is superior to base-
line algorithms and can better balance the user workload. Our
framework and system setting that we investigate are illustrated
in Fig. 1.

The rest of the paper is organized as follows. In Section 1I,
we present our system models of the content, communications,
and computing aspects of the scenario we investigate. In Sec-
tion I1I, we carry out the formulation of the optimization problem
of interest. Analysis of the problem, design of approximation
algorithms to solve it, and verification of their performance
guarantees is carried out in Section I'V. Performance evaluation
via simulation experiments is carried out in Section V. Finally,
we conclude in Section VI.

II. SYSTEM MODEL

Let 7% be the set of users, Z be the set of BSs with computing
facilities, including the macro base station (MBS) and UAVs
with computing facilities, and %’ be the set of UAVs acting as
relays (no computing facilities). Each 360° video in the system
comprises multiple embedded content layers that progressively
improve the QoE, i.e., a base layer and several enhancement
layers. We consider that each layer has the same data size
and processing computing requirement. The number of content
layers and the QoE delivered to a user depend on its down link
data rate. Let ¢¥ = ¢* € Q denote the normalized QoE of user
© when the first k layers of its scalable 360° video are delivered,
where Q = {¢',¢%,.. ¢}, ¢*' > ¢F, and 3, ¢* =1 [14],
[15]. Concretely, if Q’€ denotes the absolute QoE of the content
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(e.g., video quality PSNR) when reconstructed from its first
k scalable layers, then ¢* = (QF — Q" 1)/ >, (QF — Q*1),
for Q° = 0. Finally, a scalable 360° video streamed to user
1 requires layer processing from the server and transmission,
A; = {ri,e;, 7}, where r;, e;, 7; denote its data size, the re-
quired computing resource (CPU cycles), and the maximum
tolerable latency.

A novel framework for wireless VR applications is shown
in Fig. 1; UAV 1 and the MBS are equipped with computing
resources; UAV 2 is full duplex enabled and works as a relay
BS; eachuser is connected to a VR device to execute VR applica-
tions; user 1 and user 2 are served by UAV 1 directly to receive the
computing and communication resources, while user 3 and user
4 are served by the MBS directly to receive the computing and
communication services; user 5 is served by the MBS via UAV
2 and its computing demand is served by the MBS. Each user
requires both communication and computing resources. If a user
is served by the MBS or a UAV directly, the MBS/UAV needs
to assign computing and communications resources to this user.
If a user is served by the MBS via a relay UAV, the MBS needs
to assign computing and communications resources to this user,
and the relay UAV also needs to assign communication resource
to this user. Different users utilize different frequency spectra
for communications to avoid interference [16].

A. Communications Model

Let 3; ; be the data rate towards user i from BS j, 3 ; be the
data rate of the direct BS to user link, and 62-27 j be the data rate
of the indirect MBS to user link via a relay UAV. It holds that
B ; = max( Z-l’j, 2-2’]-), for j =1 (MBS), and §3; ; = Z-I’j, for
j > 1. Moreover, 521,3‘ (wi j) = wi jPolog, (1 + s; ), where w; ;
is the allotted frequency spectra (LTE resource blocks (RBs)) to
user 7 by BS j; By is the bandwidth of one RB; s; ; is the SINR
between BS j and user i. We formulate itas: s; ; = p; ;¢ /07 ;.
for j = 1, and s; ; = p; j¢i j/0; ;, otherwise. Here, ¢} , is the
path loss between user 7 and the MBS; 0’% j=wi jBo; is the
thermal noise power, and £; is its power spectral density; ¢; ; is
the path loss between user ¢ and BS j that includes line-of-sight
excessive path loss ¢F ., non-line-of-sight excessive path loss

4.3°
2;-, and free space path loss ¢5j [17].

$ij =+ O + bl
il:j = wi,jULa

oy = (1= )n™, (1)
I'; = 20log(47 fidi ;/ fo),

18060

Yij=[14a-e = —a]-!

Here, a mean path loss is used to calculate the path loss between
user ¢ and BS j because of the absence of terrain knowledge [16],
[18]; 95 ; is the probability of a link between user ¢ and BS j (in
the air) experiencing line-of-sight excessive path loss; a; and
a, are environment parameters; ” and 1"V are the additional
line-of-sight path loss and none-line-of-sight path loss; d; ; is the
3-D distance between user ¢ and BS j; fi is the carrier frequency

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 17,2022 at 14:37:52 UTC from IEEE Xplore. Restrictions apply.



ZHANG AND CHAKARESKI: UAV-ASSISTED EDGE COMPUTING AND STREAMING FOR WIRELESS

and fj is the speed of light. Then, we have
iy = Vign™ + (1 — i j)n™ + 20log(dnfid/f).  (2)

Let Bfﬁ be the data rate of a backhaul link from the MBS to
UAV j’ UAV, 6;‘}% be the data rate of an access link from UAV
j'touser i, and s/ and s;'7" be the SINR of the backhaul and
access links. Then, we can formulate the data rate from the MBS
to user 7 via relay UAV j’ as:

1‘2,1 = min( f,f, fﬁ), View,
BPY = wiafology(1 4+ sPh), View,j’ e #, (3)
B;j&][/ :wi’lﬂologz(l—i—sf}ﬁ), Vi € 62/7]'/ cAB.

The SINR of the backhaul link and the access link are:

/
BL _ _Pii%in__ Y o
Sj’/l - P; 7//Co+0§ " ’ vie Z/[,] SK% 3 (4)
SAL:M Vield.i' € B
i, P1,1¢i,1+af>j,’ »J .

Here, ¢;’,1 is the path loss between the MBS and the relay UAV
J's pl; ; is the assigned power by the relay UAV j' to the user
1; pgy J /co is the self interference (SI); ¢ is the SI cancellation
capacity [19]; p; 19,1 is the backhaul interference.

B. Computing Model

In this article, we consider computing and downlink commu-
nications for VR applications [13]. The MBS (j = 1) and UAVs
(j > 1,7 € PB) are equipped with computing facilities to serve
users with VR applications, etc., providing computing, caching
and storage services to users [5], [20].

Let C; be the computing capacity (CPU cycles per second)
of BS j and y; ; be the assigned share to user i. Then, we can
formulate the computing delay associated with streaming 360°
content to user 7 as tiC:j = e;/y;,; [211, [22]. Similarly, we can
formulate the transmission delay of streaming the content as
tgj =r;/Bi ;. Thus, the total provisioning delay for user i is
ttotal — 4T 4 4C

i, g T Vg

III. PROBLEM FORMULATION

We formulate our optimization problem of interest as shown
below, where the key notation and variables we have used in the
formulation are summarized in Table I.

. k _k
P N S PIPIY I AT
i,5°Y4,5:%Ws,50Pq Vi 3 j k
s.t. 01:Zx?;j§1, Vie U Nje B,

J

k1 k
C2: T <z

C3: Zfojwa <wi*, Vi e A,

Vi’ j7 k? k < qmax’

i k
Ca:Y > alpl; < P
i k

C5:) > akpb, <PY Viezj>1,
i k

Jj=1
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TABLE I
KEY NOTATION AND VARIABLES

Symbol | Definition

wmax the total bandwidth of the network in terms of RBs.
w}"“x the total bandwidth the jth BS in terms of RBs.
PM the maximum transmission power of the MBS.

PU the maximum transmission power of an UAV.

the user-BS assignment indicator; it is 1 if the ith user
is provisioned by the jth BS; otherwise, it is 0.

£k binary variable, used to indicate the achieved QoE from
the jth BS to the kth layer of the ith user.

the assigned computing resource to the kth layer of the
ith user by the jth BS.

Wk the assigned bandwidth from the jth BS to the kth
layer of the ith user.

pt’.‘J the assigned power from the jth BS to the kth layer
of the ith user.

< the set of candidate positions for UAVs in the horizon-
tal plane.

Vi the position of the jth BS in the horizontal plane.

C6:% > abyl; <Cj, Vi,
ik

C7: fojtszk + megt%k <7, V1,7,
k k

C8:v; €0, VjiecAB,j>1,
ng’ljj 6{071}7 Vz,],k,

C10:0 <y}, <Cj, Vi, j.k,

Cl1:0< wlk’j < W;'naaj? Vivja kv

C12:0<pi; <PY, Vikj=1,

C13:0<pj, <PY Vikje®j>1 (5

Our objective is to maximize the QoE across all users. C1 is
the resource allocation constraint to ensure that a content layer
is served to a user by one BS at most. C2 is a scalable 360-degree
video content layer provisioning constraint to ensure that a lower
layer is served before a higher layer. C3 is a bandwidth capacity
constraint for a BS. C4 and CS5 are power capacity constraints for
the MBS and a UAV. C6 is a computing capacity constraint for
a BS. C7 is a latency threshold constraint to ensure that a user is
served within a given latency threshold. C8 is a UAV placement
constraint in the horizontal plane. C9, C10, C11, C12 and C13
are bounds for all variables. In this work, we divide a coverage
area into |©| equal sub-areas, and the center of each sub-area
is a potential position to place a UAV. Then, these sub-areas
formed set O and they are labeled as 1,2, ..., |©|. Note that v,
is the position of UAV j, it can be any position in the set of these
candidate positions, v; € ©.

IV. PROBLEM ANALYSIS

We can show that any instance of the Max-Generalized As-
signment Problem (Max-GAP) can be reduced to the problem
in (5) by considering | 2| = 1 (the BSs, the user computing and
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communication requirements, and the user QoE can be mapped
to the bin, cost, and profit factors in Max-GAP). Thus, (5) is also
NP-hard, as the Max-GAP problem is a well known NP-hard
problem Max-GAP) [23].

To reduce the complexity of (5), we consider its power as-
signment to be proportional to the bandwidth assignment as
pl; = jwy;, where ; is the assigned power per Hz for BS ;.
Then, constraints C4 and C5 can be omitted. We also consider
the computing resource assignment to be proportional to the
radio resource assignment as y* =R wk ;> where £ is a factor
of proportionality for BS j. Then, constraint C6 can be omitted,
too. Hence, we can reformulate & as problem Z;:

max

, L2
ZJ’ w

s.t. C1,02,C3,C7,C8,C9,

P -

in . 6)

To solve &7, we decompose it into three subproblems
that we solve sequentially. These are: (i) joint computing
and communication resource assignment and user assignment
(Joint-CUE), (ii) joint computing and communication resource
assignment and scalable 360-degree video layer assignment
(Joint-CAL), and (iii) UAV placement.

Concretely, we first consider the UAV positions as given, and
solve a simpler instance of &1, where the user and video layer
assignments coincide (Joint-CUE). We then introduce the con-
cept of a sub-user, associated with a video layer served to a given
user, and reformulate Z?; to solve the assignment of sub-users
and computing/communication resources, again for given UAV
positions. We build upon the solution to Joint-CUE, to design an
algorithm that solves the above problem (Joint-CAL). Finally,
we leverage the latter algorithm to formulate an optimization
method that identifies the best UAV positions via an exhaustive
search.

A. Joint-CUE Problem

For given UAV positions, we reformulate &) by linking the
video layer assignment to the user assignment. Concretely, if
user ¢ is served by BS j, then all layers of its 360° content are
served by this BS. Then, constraint C2 can be omitted. Hence,
we can reformulate (6) as problem &7,, where x; ; = > & Tijs

Wi = 2 p Wi @i = 2x 4t and g = 35, qf
[Joint-CUE] 5 : z}r,law)f, zi:zj:l‘i,j%

st. C1:Y @iy <1, Vie¥,
J

C2: in’jwi’j < w;naz, VJ € A,
[

C3: xw” <n,VieU,je R,
C4:z,,;, €{0,1}, Vi,j. (7)

+xwt”

Note that w; ; is determined by x; ;. Concretely, for ev-
ery user-BS assignment (z; ; = 1), constraint C3 in problem
&, has only one variable w; ;, and we can compute it as
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argmin,,_ (tT + tl 2 7;), which identifies the smallest w; ;
that meefs the above inequality. Otherwise (z; ; = 0), w; ; will
be set to zero. Thus, we can reformulate &2, as 73 by omitting

C3, and compute w; ; as above, from the solution of #3.

P31 max g E Ti i
Ti,j Ny
j

%

st. C1,C2,C4, in ;. ®)

To carry out these two tasks, we formulate Algorithm 1. In
its design, we consider that there are more users than BSs and
the computing/communications requirements of any user are
smaller than the respective capabilities of every BS.

In Algorithm 1, two independent solutions are obtained first.
Then, the objective value for the two solutions is computed, and
the solution with a bigger value is returned. The first solution
is obtained by Steps 1-19 based on a weight factor defined as a
ratio between the maximum QoE for user ¢ and the respective
communications resource assignment by BS j (¢;/w; ;). The
second solution is obtained by Steps 20-24 based on identifying
the | 2| users with biggest maximum QoE values. Finally, the
bigger objective value for the two solutions is set as the final
output in Steps 25-30.

Theorem 1: Algorithm 1 is a %-approximation algorithm for
the joint-CUE problem. Moreover, it produces the optimal result
when all users are served, i.e., >, > @ ; = |%]|.

Proof: Since 5 is an integer linear program problem, it
is difficult to obtain the optimal solution. Thus, we transform
&5 into problem &, by relaxing the discrete variables z; ;
to be continuous, i.e., 0 < z; ; < 1. Let ¥3(x; ;) and Yu(z; ;)
denote the objective functions of 73 and £?,. We note that
(f{%? =¢; = 1 > 0,4(x; ;) is a convex function, and the opti-
mal solution is easily achieved by convex optimization [24].
Let OPT (%) and OPT (%) denote the optimal value of
’(/}3 (l’i’j) and ¢4(33i,j)~ Then, we have OPT(egzg,) < OPT(@;;),
w3 (.Q?i?.j) < OPT(@Q, and 1@1(%‘1‘)]‘) < OPT(=@4) We assume
the number of users is more than the number of BSs (|%| >
| %), and each BS is enough to serve any single user. To continue
the proof, we consider two different workload scenarios: (1)
heavy workload (at least one user is not served) and (2) light
workload (all users are served).

1) For heavy workload, >, >~ x; ; < |%|. In its operation,
Algorithm 1 sorts the users in descending order based on their
weight factors. Let n be the index of the first user not selected
to be served, i.e., x, ; = 0,Vj. As noted earlier, two solutions
(v4,5 € I'2, 25 ; € I'y) are produced internally by Algorithm 1,
and the one with a bigger objective value is returned as the final
solution (maX(i/)_g (xi,j) |96L] e, Y3 (xi7j) ‘in,j €ly ))

Then, we can write ¢4(£C;‘}j) = OPT (%) =
V3(2ij)la; jers + ¥3(0;245)|a, jer,, Where §; = (Wi —
Z?;II xi,jwi,j)/ﬁi’j, i=n—147, and 0< 6 < 1. Now,
we have that  3(0;%i;)la, jer, < ¥3(0;%i ), jery <
V3(;5)|z; jer,, because I'y comprises the users with the
maximum QoE. Moreover, we also have that 13 (; j)|z, ;er, +
V3(052i5) e, jery < ¥3(2ig)|a, jery + V3(@i5)|a; jer,, and
OPT(@4) < ’lﬁ3(l‘i,j) z; ;€D =+ ’(/)3(5(11"]‘) Then, it

:E,;,]’GFA;'
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Algorithm 1: Approximation Algorithm for the Joint-
CUE Problem (44-CUE).

Input : %, R, U, Cj, A, pM_ pU, a);?“”, and v;;
Output: x; ; and w; j;

1 y=%;

2 for i €Ty do

3 for j € B8 do

4 w;,j = argmin (tlrj + licj - Tith <0);
oy ,

5 calculate y; ; = w; jKj;

6 calculate W; ; = q;/w; j;

7 compute weight W™ = max(W; ;);

8 obtain w; .= argmax W; j;

| N wig

9 put all users in descending order by W["4*;
10 =1, w;sed =0, =%, and I'; = @;
11 while w’]‘.sed < w;’.“”‘ &T'y # 2 do

12 if wised 4 w;. i< w;.”“x, Vi € wy then
13 Xi,j = 1; ’

14 ' =T\ {i} and FzzrzU{xi’j};
15 w?sed — w;gsed +w;‘,j;

16 else

17 L r() = F] )

18 go to step 2;

19 i=i+1;

20 b=1,T3=%, and 'y = @;
21 for b < |B| do
’
22 i’ = argmax ¢; and x; j = argmaxwx; jq;, Vi € I'3;
: y i
’

23 X = 1;
24 I'; =I5\ {i’} and F4:F4U{x;.j};

and y3(x; ;)|

25 calculate t//g(x,-,.,-)|xij€r2 e ;
B i,j 4

26 if Y3(x; ;) > g{/;(x; j) then

27 | return x; j € I, and ¢3(x; ;)

28 else

29 L replace x; ;j by X ;€ I'y, and return ;D3(xi’j);

30 obtain x; j and w; ;.

holds that ¢3(z; ;) |« ;er, > %OPT(@‘Q or 3(;5)|z, jery >
F1OPT (). Thus, max(v3(2ij)|e, ery, ¥3(wi))|a, jery) =
sOPT(2y) and  max(¥3(2i5)|e; jers, ¥3(%ij) e, sery) >
10PT(25), because OPT(5) < OPT(Z;), implying that
the worst objective value produced by Algorithm 1 is more than
% of the optimal objective value of problem %23 (OPT(%%5)).
In sum, the approximation ratio of Algorithm 1 is %

2) Here, >, > . @ j = |%|. We have s(z; ;) = |%| and
Ya(x; ;) = |% |- Meanwhile, OPT(%5) = OPT (%) = |% |,
implying that 13(z; ;) = OPT(Z3). Thus, the AA-CUE algo-
rithm produces the optimal solution in this case. |

Theorem 2: The approximation ratio of the AA-CUE algo-
rithm is (1 — €) if w; j < ew™**. In other words, the AA-CUE
algorithm is a (1 — )-approximation algorithm of problem 425
and problem Z2,. Here, ¢ < %

Proof: We assumed n is the index of the first user not being
served, and the prior (n — 1) users are served. Let the achieved

3271

QoE of these n users be qi, ¢, ..., Gn—1,Gn, and the required
bandwidth be wy,ws, ..., wn_1,wn. We have wy +wp + -+ +
wno1 WM Wt wy 4wyt Fwp > WM and 2>
%"' > g—:.Then,
q1 +q2+"'+Qn—l +Qn > @
wytwy+ -t wpor Fwn T Wy

Ot@t- -t tdn  Gn

wmar{: - w7L

W,
W(ql+q2+"'+Q’n71+Qn)ZQn

5(A)W”Lll$

W(ql+q2+"'+qn71+Qn)ZQn

9
Gn ST G0 ©)

Note that (n — 1) users are served and n is the index of the first
user not provisioned. Then, we have

G+ @+ ano1 + a0 > OPT(P)

n—1

9
et gn) +—— Y ¢ > OPT(P
(@1 + @+ +q,1)+1_€i:1q_ (23)

a+q@+-+ g > (1—-e)OPT(S5)

¢3(xi’j)|zi,j€%l > (1 —¢e)OPT (%) . (10)
After

3 (i z)
ratio of the AA-CUE algorithm is (1 — ¢). |

that, max (Y3 (Tij)|e, jers, V3(Ti )|z, jer,) >
2, e, > (1 —€)OPT(Z,). Thus, the approximation

B. Joint-CAL Problem

After solving the Joint-CUE problem, we try to solve the Joint-
CAL problem by focusing on the 360° content layer assignment
for all users. For given UAV positions v;, we can reformulate
(6) as problem Zs below. Note that &5 is different from the
multi-knapsack problem and the Max-GAP problem because of
constraint C2, which requires a lower content layer to be served
first, before a higher layer.

[Joint-CAL] s : max Zzzxquf ,

st. Cl:Y alf, <1, Vie%.Vje,
J

C2: xfjl <z Vi k k< g™,

1,79
C3: Zfo]wa <wi', Vi e %,
i k
C4:a;; €01}, Vi j k. (11)
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Algorithm 2: Approximation Algorithm for the Joint-CAL
Problem (AA-CAL).

Input: , %', %, C;, A;, pPM pU, wje®, and v;;

Output: xf,j, wﬁj, pf’j, and yf’j;
1: map scalable 360-degree video layers to sub-user,
i =1-k;
run Algorithm 1;
obtain x; ; and w; ;;
calculate a:fj and wﬁj by z; ; and w; ;;
compute pf j and yf IE
k

return Ty s

AN AN S

k k k
wi > Pij and g’ ;.

To leverage Algorithm 1 (solution of problem Z73), we trans-
form problem &5 to & by removing constraint C2. & be-
comes problem £7; when we map each 360° content layer %k of
user ¢ to a sub-user ¢ = 7 - k. Using this advance, we can adopt
Algorithm 1, to formulate Algorithm 2 to solve Z. After that,
we prove that any solution generated by Algorithm 2 for problem
P is also a solution for Hs.

. k k
P max E E E x;iq
T i § ok

st. C1,C3,C4 in Ps. (12)

Theorem 3: Algorithm 2 is an approximation algorithm for
problem %, and its approximation ratio is %

Proof: & has the same solution as &, if we map content
layer k of user ¢ to a sub-user ¢ = ¢ - k and assign resources to
sub-users. Moreover, Algorithm 2 is designed based on Algo-
rithm 1 and the solution xf,j, wﬁ s pf Iy yf ; of Algorithm 2 is
computed based on the solution of Algorithm 1. The approxi-
mation ratio of Algorithm 1 was proved in Theorem 1. Thus, the
approximation ratio of Algorithm 2 is % |

Theorem 4: Any solution generated by Algorithm 2 for prob-
lem P is also a valid solution for problem Zs.

Proof: 1) Algorithm 2 is designed based on Algorithm 1
that employs a delivered QoE vs. resource demand weight
for a user, prioritizing users with higher weights. Algorithm 2
applies the same approach to prioritize sub-users. The weight
of sub-user (i -k — 1) is bigger than that of sub-user (i - k).
This is because lower layers have higher normalized QoE and
every layer has the same data size, as introduced earlier. Hence,
a sub-user (i - k) will always be served after sub-user (i - k —
1) and constraint C2 in problem &5 will be automatically
satisfied.

2) Assume for the sake of contradiction that one solution
generated by Algorithm 2 for user i is xf;' =0 and ;L"f ;=1
However, this cannot represent a solution to &s, as it violates
its constraint C2. Moreover, this also cannot represent a solution
produced by Algorithm 2 because sub-user (i -k — 1) has a
higher weight than sub-user (i-k) and Algorithm 2 serves
sub-users with higher weights preferentially. Thus, a feasible
solution generated by Algorithm 2 can only be: xf;' =1 and
:Cf = 0.
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Algorithm 3: The AA-UAV-MV Algorithm.

Input : %, %', U, Cj, A, pM_ pU. o_»;”“x, and O;
Output: xll"j, wl’.ij, p{."j, yﬁj, and vj;
1 for v; € © do
2 update the horizontal positions of UAVs;
3 calculate x; ; and w;,;j by Algorithm 1;
: k k k k : .
4 obtain Xij Wi P Vi by Algorithm 2;
5 calculate y7(v;);
6 get v;'. = argmax y7(v;);
vj
k k k k .
7 update Xi Wi s Pp s and Vi

k k .
8 return Xi Wi Pijs Vi jo and v;.

In sum, a solution achieved by Algorithm 2 for problem %7
is also an appropriate solution for problem Zs. |

C. The UAV Placement Problem

After solving &s, the assignment of 360° video layers, and
computing, bandwidth, and power resources is computed, for
given UAV positions. Now, we need to find the best UAV
positions. We transform (5) into problem #?; below, by adopting
the solution to &5 to omit the constraints in (5) that include xf o
wﬁj, pﬁj, and yfj

EZE max Pr(vj)
st. Cl:v; €0, VjeAB,j>1.

Here, 1/}7(1}j) = 1/}()|mk _ =k

k _k k _sk k _~k o 1S
R WAL Rt WL SRS el T ¥

13)

the objective function in (5), and if o (I;f > ﬁﬁ o gjf j is a solution
produced by Algorithm 2. As the number of UAVs is small, we
solve (13) via an exhaustive search [16], [25].

D. The UAV-MYV Problem

Using the solutions to the three considered subproblems, we
formulate an approximation algorithm (AA-UAV-MV) to solve
(5), included in Algorithm 3 below.

Theorem 5: Algorithm 3 isa (1 — €)-approximation for prob-
lem &2, if wf ; < ew™** and the optimal resultis achieved when
all layers of entire users are provisioned.

Proof: Based on the previous analysis carried out in Theo-
rem 1 — Theorem 4, we can conclude that Algorithm 3 has a
(1 — €)-approximation ratio. Concretely, the worst solution of
Algorithm 3 is better than (1 — €) of the optimal solution of
(5). Moreover, the optimal solution is achieved when all 360°
content layers for entire users can be served. |

The complexity of solving the UAV-MV problem is
O(|B|N N{CY,). Here, Ny = |%| - | 2|, Ny = | 2| + | B'| —
1, and N3 = |©|. The complexity of Algorithm 3 is O((|4| +
log(N1) +2)N|C}}), that of Algorithm 2 is O(Ny|%| +
Njlog(Ny) + 2Ny), that of solving the UAV placement prob-
lem is O(C%;) and that of Algorithm 1 is O(|%|| 4| +
|% |log(|% |) + 2|% ). For the detailed complexity of Algo-
rithm 1, itis O(|% || %|) of Steps 1-8, itis O(|% | log(|%|)) of
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Step 9, itis O(|%|) of Steps 10-19, and it is O(|%|) of Steps
20-30.

We briefly outline the deployment and implementation as-
pects of the proposed UAV-MEC network. As shown in Fig. 1,
the UAV-MEC network proposed in this article is a centralized
network, and the server in the MBS provides computing service
and also runs as a controller for the whole network. We only
considered one time slot in this paper and we assume the user
demands change slowly (fixed) in this paper. In the beginning
of a time slot, the controller generates the scheduling results by
leveraging Algorithm 3 after obtaining the basic information of
the network, e.g., the locations of users, the channel information
between users and the MBS, the demands of users, and the
available resources in the MBS and UAVs. The scheduling
results include: the UAV placement, the user association, the
power and bandwidth assignment and the computing resource
assignment. Then, the UAVs will fly to the target locations
and be hovering on that location in the whole duration of this
time slot. Meanwhile, the MBS and UAVs assign the com-
puting and communication resources to users according to the
schedule.

V. PERFORMANCE EVALUATION

We use MATLAB to carry out simulation experiments. We
set the coverage area of the MBS to 500 m x 500 m, divided
into 25 equal areas for positioning UAVs in the horizontal
plane. Three UAVs are utilized for edge computing and one
UAV operates as a relay node. The altitude of all UAVs is
set to 100 m. For the frequency spectra assignment for each
BS, the MBS is allocated with half of the total spectra and
the rest BSs with computing facilities (j € %, j > 1) equally
share the rest half of the total spectra, w]"** = w™* /2 and
Wit = fwmae /(|8| — 1), j > 1. For the rest BSs without
computing facilities (j' € %’), they equally share the total spec-
tra of the MBS because they are deployed as relay nodes for the
MBS. Three different 360° videos, Wingsuit, Roller Coaster,
and Angel Falls, and their normalized QoE values are adopted
from [15]. They feature 4K resolution and 30 fps frame rate,
which are encoded into 5 scalable layers using SHVC [26] with
a GOP size of 30 frames. A user requests at random one 360°
video as its content of choice. Our optimization is carried out per
GOP of the content and thus we set 7; as 1 s. The user distribution
is generated according to the Matérn cluster process; the parent
points represent the clusters and daughter points represent the
users, which are generated according to a Poisson process and
the uniform distribution, respectively [27]. Our main simulation
parameters are summarized in Table II.

We use two reference methods to benchmark Algorithm 3.
The first one is named Best-SINR-VR and employs the best SINR
strategy for the user to BS assignment and the UAV placement
is the same as in Algorithm 3. The second method is named
S-MBS-VR and serves all users by the MBS. Both reference
methods employ the same approach to assing 360° content layers
to users: The base layer for all users is served first, followed
by the first enhancement layer, second enhancement layer, etc.
This process continues until all layers are served or the system
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TABLE IT
SIMULATION PARAMETERS
the coverage area 500m x 500m
U] {12,14,---,24}
Q {29%, 25%, 21%, 16%, 9%}

[15]

{10, 12, 14} Mbps

[500, 1500] CPU cycle/bit

1 x 1010 CPU cycle/s

2x 1010 CPU cycle/s
(9.61,0.16, 1, 20)

131.1 + 42.810g10(d; ;). d;,;

r;i, full video i data rate
e;, computing requirement
UAV computing capacity
edge computing capacity
(a1,a2,n1.1N)

path loss for the MBS

in km [28]
rayleigh fading for the MBS | 8 dB
Ny —174 dBm/Hz
rM 33 dBm
PY 27 dBm
w™4% | the total bandwidth 50 RB (10 MHz)
Bo, bandwidth of one RB 180 kHz

100

‘
- AA-UAV-MV
= Best-SINR-VR

S-MBS-VR

Average QoE (%)

40

30 . . . . .
12 14 16 18 20 22 24
Number of Users

Fig. 2. Average QoE versus number of users.

resources are exhausted. The complexity of the AA-UAV-MV Al-
gorithm, the Best-SINR-VR algorithm, and the S-MBS-VR algo-
rithm are O((Ny|2| + N, log(Ny) +2N,)C?), O((N; | %] +
N log(Ny) + NI)C%z) and O(2N, + N;log(Ny)), respec-
tively. Here, Ny = |% |- | 2|, N, = |B| + |#'| — 1, and N3 =
|O].

The average QoE is the mean value of the received QoE of
all users. For the received QoE of each user, it is defined in
Section II. Here, @ = {29%,25%,21%, 16%,9%} is the set
of normalized QoE for all five layers, including the obtained
normalized QoE for each served layer. Fig. 2 shows the average
QoE versus the number of users. We can see that the average QoE
of all three methods decreases as the number of users increases,
as an increasing number of enhancement layers for different
users cannot be served. AA-UAV-MV has the highest average
QoE and S-MBS-VR has the lowest average QoE. The average
QOoE of AA-UAV-MYV reaches up to 15% and 68% improvement
relative to Best-SINR-VR and S-MBS-VR. This is because the
optimization AA-UAV-MV employs most effectively use of the
available system resources.

Fig. 3 shows the cumulative distribution function (CDF) of the
average QoE for 18 users. We can see that the QoE values for
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Fig. 4. Standard deviation vs number of users.

AA-UAV-MYV, Best-SINR-VR, and S-MBS-VR fall in the ranges
[51%, 60%)], [48%,55%], and [29%, 38%)], respectively. Thus,
AA-UAV-MV provides the highest expected QoE and smallest
QOoE variation (standard deviation) across the user population.

Fig. 4 shows the average QoE standard deviation (STD) across
the served users versus number of users. The STD for all three
methods decreases with the latter. This is because the system
resources are limited, and an increasing number of users expe-
rience low QOoE, as the user load increases. Still, AA-UAV-MV
demonstrates the lowest STD, 55% and 27% lower relative to
Best-SINR-VR and S-MBS-VR. This indicates that AA-UAV-MV
can better balance the user load.

Fig. 5 shows the results of the normalized average QoE
versus more users. The same trend as Fig. 2 can be observed:
the normalized average QoE of all algorithms decreases as the
number of users increases because the network cannot support
the services of the base layer and enhancement layers of all
users under heavy workload, and more users receive the base
layer service as compared to Fig. 2. The normalized average
QoE of the AA-UAV-MYV algorithm reaches up to 10% and 90%
improvement as compared to the Best-SINR-VR algorithm and
the S-MBS-VR algorithm. For 38 users, the normalized average
QoE of the S-MBS-VR algorithm and the AA-UAV-MV algorithm
is 19.7% and 37.4%, implying that all users nearly receive the
services of the base layer by the S-MBS-VR algorithm and all
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Fig. 5. Normalized average QoE versus more users.
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Fig. 6. Normalized average QoE versus the scale of computing resource and
the various number of users.

users roughly receive the services of two layers by the AA-UAV-
MYV algorithm.

Fig. 6 shows the results of the normalized average QoE
versus different scales of computing resources and the various
number of users. The scale factor of computing resources is set
as v € {1,1.5,2}, implying that the total available computing
resources in all BSs are multiplied by a scale factor, C; = vC}.
The normalized average QoE of all algorithms increases as
the scale factor increases under a given number of users. The
normalized average QoE improvement of the AA-UAV-MV al-
gorithm with v = 2isup to 1.7 as compared to v = 1; that of the
Best-SINR-VR algorithm is up to 2 as compared to v = 1, and
that of the S-MBS-VR algorithm is up to 7.4% as compared to
v = 1. The reason why the AA-UAV-MYV algorithm does not have
much normalized average QoE improvement is that the AA-UAV-
MYV algorithm has efficiently assigned both communications and
computing resources to users; only increasing the computing
resource does not lead to an increase of the normalized average
QoE.

The simulation results have demonstrated that the AA-UAV-
MYV algorithm is able to effectively solve the UAV-MV problem
with guaranteed performance and it can efficiently assign both
communications and computing resources to users.
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VI. CONCLUSION

We explored the UAV-MV problem that aims to optimize
the delivery of scalable 360° video content to mobile VR
users, by intelligently allocating ground/air-based edge com-
puting/communication resources and positioning the UAV BSs.
We show that the UAV-MV problem is NP-hard, decompose it
into three subproblems: the Joint-CUE problem, the Joint-CAL
problem, and the UAV placement problem. We have proposed
approximation algorithms to solve the subproblems sequentially.
Then, another approximation algorithm, named AA-UAV-MV
algorithm, has been proposed to solve the UAV-MV problem
based on the solutions to the subproblems. Our approach demon-
strates 15% and 90% improvement in average QoE relative to
two competitive reference methods. Our results also demonstrate
that the user load is better balanced by our algorithm.
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