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Abstract— Flight delays could disturb passengers’ travel
plans and cause financial loss to the airlines. Therefore, efforts
have been spent in the past to conduct flight delay prediction,
which could assist passengers, airports and airlines in better
planning. Existing methods focus on predicting whether a flight
will delay and how long the delay will be, but lack an effective
explanation revealing possible reasons causing the delay, which
is useful for timely decisions. Motivated by the demand of such
cause-aware flight delay prediction, we propose an explainable
multi-task framework to predict not only the delay duration
but also the delay causes. The proposed framework consists of
three modules: (1) flight record encoder that derives record
embeddings, (2) flight sequence encoder integrating useful
signals from other related flights, and (3) flight delay predictor
that outputs delay duration as well as the possible causes of the
delay. The proposed framework is evaluated on three real-world
datasets. The results show that the proposed model outperforms
multiple baselines on the flight arrival delay prediction task and
is able to provide the causes behind the flight delay.

Index Terms— Deep Learning, Multi-task Learning, Flight
Arrival Delay Prediction

I. INTRODUCTION

Flight delays leading losses to both the passengers and
airlines have become a serious and widespread problem.
Therefore, many efforts have been devoted towards solving
the critical task of flight delay prediction. Among them, ma-
chine learning models [1], [2], [3], [4], [5] have demonstrated
to be effective in predicting flight delays. These methods
focus on predicting whether the flight delay will take place
and the duration of the possible delays. Limited efforts have
been spent on investigating flight delay causes. In [6], the
authors model the causal factors for the flight delay and
derive the weights of the causal factors. However, the causal
factor analysis is conducted on the feature level. It is still
hard to explain the delay causes as the weights are for
individual features but not derived at a more meaningful
semantic level. In addition, the interactions among features
were not considered. In [2], the delay causes of the previous
flight is used as additional input features to improve the
current flight delay prediction. However, the model cannot
predict the delay causes for the future flights.

According to the U.S. Bureau of Transportation Statis-
tics [7], the causes of flight delay can be divided into
five categories, which are air system cause, security cause,
weather cause, airline cause and late aircraft cause. The
delay duration caused by each category (i.e., cause-specific
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delay) is recorded for each past flight record. This provides
a valuable information source for the task of flight delay
prediction, but is seldom explored in existing work. The
prediction on possible delay causes and their contributions to
the duration of flight delay can provide important information
to airline companies so that they can investigate these causes
to mitigate possible delays. In addition, compared with
existing models, a prediction model built upon cause-specific
delays may have better prediction performance as the delay
causes could be regarded as additional supervision to guide
the prediction model.

Motivated by the aforementioned benefits, we propose an
explainable deep learning framework for flight arrival delay
prediction, which is named as Cause Aware Prediction of
Flight Arrival Delay (CAP-FAD). There are three integral
modules in the proposed CAP-FAD framework: (1) a flight
record encoder that derives the embeddings of the raw
features, (2) a flight sequence encoder which learns the
representations of a sequence of related flights, and (3) a
flight delay predictor that makes predictions. The flight delay
predictor is based on a multi-task learning framework, where
the representations are shared among the predictions on
different delay types. The information about cause-specific
delays is introduced into the CAP-FAD as additional su-
pervision, which can not only improve the delay prediction
performance but also explain possible delay causes. Another
important source of information is departure delay as the
objective is to predict arrival delay and departure delays
are highly correlated with arrival delays. The experiments
are conducted on three real-world datasets and the results
show that the proposed CAP-FAD framework outperforms
existing baselines and can predict the delay causes. The main
contributions of this paper can be summarized as follows:
• We demonstrate the importance of incorporating possi-

ble delay causes into the fight delay prediction model,
which leads to improvement in both the prediction
performance and the model interpretability.

• We propose a novel multi-task deep learning framework
for cause-specific delay prediction. It can not only
predict if and how long the flight will delay, but also
explain possible causes of the flight arrival delay,

• Comprehensive experiments are conducted on three
real-world datasets. The results show that the proposed
framework outperforms four existing methods and can
predict the flight delay causes.

II. RELATED WORK

In this section, we will review existing work related with
flight delay prediction and multi-task learning.



Flight Delay Prediction: Various flight delay prediction
models have been studied, ranging from classical statistical
models to machine learning models. With respect to the
statistical models, a multiple linear regression model is
proposed to predict flight arrival delay based on departure
delay and route distance in [8]. In [2], the Cox Proportional
Hazards survival model is applied to capture the effects of
multiple factors on flight departure and arrival delay. In terms
of the machine learning models, Rebollo and Balakrishnan
(2014) applied random forest model for flight departure
delay classification and regression [9]. Balakrishna et al.
(2010) investigated a reinforcement learning based approach
to predict aircraft taxi-out delay, which is a major component
in flight departure delay [10]. More recently, the Long Short-
Term Memory (LSTM) [11] has been utilized to capture the
impact of delay from previous flights to predict an aircraft’s
future departure delay [3].

Multi-Task Learning (MTL): MTL aims to optimize
several learning tasks simultaneously. There are mainly two
approaches of applying MTL in deep learning: hard param-
eter sharing and soft parameter sharing [12]. The former
allows various tasks to share the same neural network layers
for feature extraction and use task-specific layers to handle
different tasks. The latter employs independent networks for
tasks but applies message passing between specific layers.
The concept of MTL can be extended to auxiliary learning
in which tasks are classified as a primary task and additional
auxiliary tasks [13]. The auxiliary tasks serve as regularizers
to improve the generalization ability of the primary task to
unseen data [13], [14].

We design a multi-task deep learning framework in this
paper where departure and cause-specific arrival delay pre-
dictions are introduced as auxiliary tasks. These auxiliary
tasks can serve as regularizers to enhance the performance
of the primary flight arrival delay task. Meanwhile those
auxiliary tasks reveal the possible delay causes explicitly,
thus also explain the reasons behind the flight arrival delay.

III. PROBLEM STATEMENT

In this section, we first introduce important notations in
this paper and then define the flight arrival delay prediction
problem.

We denote the set of airports, the set of airlines and the
aircraft set as P , L and C. For a flight Fj , it has an aircraft
ID represented as cj where cj ∈ C. The airline that Fj

belongs to is denoted as lj . The original and arrival airports
of Fj are oj and aj , where oj and aj ∈ P . The scheduled
departure and arrival time of flight Fj are tdj and taj . Thus
the scheduled duration of flight Fj can be defined as tfj ,
where tfj = taj − tdj . In addition, the distance between the
origin airport and the arrival airport is represented by bj . We
use Fj =< cj , lj , oj , aj , t

d
j , t

a
j , t

f
j , bj > to denote the general

information of the flight Fj .
In addition to the general flight information, the weather

condition of the origin airport at the scheduled departure
time is also included in the record. We denote the predicted
weather condition of the origin airport as Wj . We use

Rj =< Fj ,Wj > to denote the flight record j. The set
of all flight records is denoted as R.

Let tdj and taj denote the actual departure and arrival
time of flight Fj . Thus the departure and arrival delay
can be defined using the difference between the actual and
scheduled departure and arrival time. The departure delay
djd = max{0, tdj−tdj}. As defined by the commercial aviation
industry, the flight arrival delay is the time of duration that a
flight is late or postponed. The flights that arrive more than
15 minutes after its scheduled gate arrival time are considered
as delayed flights [7]. Thus the arrival delay djt of flight Fj

is defined as:

djt =

{
0, taj − t

a
j ≤ 15

taj − t
a
j , taj − t

a
j > 15

(1)

Meanwhile, let dj = 1(djt > 0) denote if the flight Fj is
delayed, where 1(x) is the indicator function.

According to the U.S. Bureau of Transportation Statis-
tics [7], there are five different causes that lead to the flight
arrival delays: air system delay, security delay, airline delay,
late aircraft delay, and weather delay. For the flight Fj ,
we use dja, djs, djl , djc and djw to denote its duration of
delay caused by air system, security, airline, late aircraft,
and weather accordingly.

Two more concepts need to be explained: pre-order flight
and flight record sequence. Pre-order flight is the previous
flight which shares the same aircraft of the target flight. In
another word, the destination of the pre-order flight is the
departure airport of the target flight. We use Fk → Fj to
represent that flight Fk is the pre-order flight of Fj . Flight
record sequence related with Fj is the sequence of flight
records that departure before the flight Fj from the same
airport. The sequence is sorted by the scheduled departure
times and represented as Sj =< R1,R2, ...,Rj >.

Finally, the flight arrival delay prediction can be defined as
given the flight record set R, predict if the flight will delay
or not (i.e. dj) and how long the flight will delay (i.e. djt ).

IV. METHODOLOGY

The architecture of the proposed CAP-FAD is shown in
Figure 1(a). There are three modules in the proposed CAP-
FAD framework: a flight record encoder, a flight sequence
encoder and a flight delay predictor. The details of those
modules are introduced in the following part.

A. Flight Record Encoder

The flight record encoder is used to encode the features
of the target flight record Rj and the features related with
the delay of its pre-order flight Fk. The inputs of the flight
record encoder are: the flight record Rj =< Fj ,Wj >, the
arrival delay dkt of the pre-order flight Fk, and the pre-order
flight gap g(Fk → Fj) between the scheduled departure time
tdj of Fj and the actual arrival time tak of flight Fk.

The features Rj , dkt and g(Fk → Fj) can be separated into
discrete and continuous features. As shown in Figure 1(b),
the flight record encoder encodes the discrete features into
high-deminsional dense vectors and then concatenate the



(a) Overview of CAP-FAD (b) Flight Record Encoder (c) Flight Delay Predictor

Fig. 1: The overview of CAP-FAD and architecture of its flight record encoder and delay predictor.

embeddings of discrete features with the continous features.
The concatenation is fed into a fusion layer to obtain the
representation of the flight record. We denote the set of
discrete features as FD and the set of continuous features
as FC . Assume there are N discrete features and M distinct
values of all the N discrete features in FD. We denote the
number of continuous features as |FC |. Thus the inputs of
the flight record encoder can be represented as xd ⊕ xc.
xd ∈ {0, 1}M represents the discrete features after the binary
encoding. Each binary element in xd represents the presence
of that feature value. xc ∈ R|FC | are the values of continuous
features. ⊕ denotes the vector concatenation operation.

The flight record encoder learns an embedding matrix A ∈
Rde×M , where the colomun i represents the embedding of
the ith value in the binary discrete feature representation xd

and de is the dimension of the embedding vector. We use
xd ∈ Rde×N to denote the dense representation of xd:

xd = (A(i1)⊕A(i2)⊕ · · · ⊕A(iN ))T (2)

where A(i1),A(i2), · · · ,A(iN ) are the column
i1, i2, · · · , iN of the embedding matrix A, and i1, i2, · · · , iN
represent the indices of element 1 in xd.

Then the flight record encoder flattens the dense repre-
sentation of the discrete features xd and concatenate it with
the continuous features xc to get the embedding of the flight
record. The embedding of the flight record can be denoted
as x = ReLU(Wr × [xd⊕xc]

T +br). x ∈ Rdr denotes the
embedding of the flight record and dr is the number of di-
mensions of the vector. Wr ∈ Rdr×(Nde+|Fc|) and br ∈ Rdr

are the trainable weights and bias. ReLU(x) = max{x, 0}
denotes the Rectified Linear Unit activation function.

B. Flight Sequence Encoder

It is observed that the delay of flights at the same airport
during a period may not be independent from each other and
the delay of an aircraft often propagates. Thus, we propose
the flight sequence encoder to leverage the information of
the flights related with the target flight to help predict its
arrival delay.

We use X =< x1,x2, · · · ,xj > to denote the embeddings
obtained from the flight record encoder of the flight record
sequence Sj =< R1,R2, · · · ,Rj >, where Rj is the record
of the target flight. Since the sequence is ordered according to
their scheduled take off times, the actual departure time may

not follow that order. Some flights may departure after the
target flight even they have earlier scheduled departure times.
To handle this issue, we use the lower bound of the departure
delay instead of actual departure delays of those flights to
make predictions. What we know is that those flights have
not departured until the time to make prediction. Thus the
actual departure delay should be larger than the gap between
the time when making prediction and the scheduled departure
time. Let ˜

djd denote the lower bound of the actual departure
delays of the flight record Rj , which can be represented as:

˜
djd = min{tcut − tdj , d

j
d} (3)

where tcut is the time of the prediction. tdj is the scheduled
departure time of flight fj and djd is the actual departure
delay of flight fj .

The sequence of concatenation of the flight record em-
bedding and lower bound of the departure delay is fed into
a LSTM [11] to generate the representation of the flight
sequence S. The outputted hidden state hj−1 ∈ Rh defined
in Eq. 4 by the LSTM integrates the historical information
of the first (j−1) flights and can be used to predict the delay
of the Fj , where h is the dimension of the hidden states.

hj−1 = LSTM(xj−1 ⊕ ˜
dj−1d ) (4)

C. Flight Delay Predictor
The flight delay predictor aims to predict if and how long

the flight will delay on arrival. The flight arrival delay is
highly related with the departure delay and can be caused
by different reasons. In the proposed flight delay predictor,
we utilize a multi-task learning architecture that takes the
flight arrival delay as the primary task, and the departure
delay and cause-specific delay prediction as the auxiliary
tasks. The architecture of the flight delay predictor is shown
in Figure 1(c). The inputs of the flight delay predictor are
the hidden state vector hj−1 integrating the historical flight
information of the first (j − 1) flights and the flight record
embedding xj . There are seven sub-networks in the predictor
and the final prediction is generated by integrating the
prediction of those sub-networks. More details are described
in the following part.

To integrate the historical information and the target flight
record, a summary vector vj ∈ Rds is generated as:

vj = ReLU(Ws × [hj−1 ⊕ xj ] + bs) (5)



where Ws ∈ Rds×(h+dr) and bs ∈ Rds are trainable
matrices and ds is the dimension of vj .

Then the summary vector is fed into seven different sub-
networks to predict different types of flight delay. The seven
sub-networks are used to predict the departure delay, arrival
delay, air system delay, security delay, airline delay, weather
delay and late aircraft delay separately. The subnetworks
to predict the departure delay and arrival delay share the
same architecture, and the five subnetworks to predict cause-
specific delay share the same architecture. All those subnet-
works share the same input vj .

Let SN(x) denote the shared subnetwork architecture for
departure and arrival flight delay prediction, where

SN(x) = FC(ReLU(FC(x))) (6)

FC(x) is the fully connected layer. Let ˆ
djt denote the

predicted arrival delay of flight record Rj and ˆ
djd is the

predicted departure delay. Then we have that:
ˆ
djt = SNt(vj), p

j
t = σ(

ˆ
djt )

ˆ
djd = SNd(vj), p

j
d = σ(

ˆ
djd − 15)

(7)

where SNt and SNd, sharing the architecture with SN , are
the sub-networks for predicting flight departure delay and
arrival delay separately. pjt and pjd are the probability that
the flight will delay on arrival and departure. σ(x) = 1

1+e−x

is the Sigmoid activation function.
Different from the architecture of the sub-networks for

departure and arrival delay prediction, a gate layer is added to
those sub-networks to filter out useful signals for the specific
causes. Then the filtered signals will be fed into the fully
connected network SN for the cause-specific flight delay
prediction. Take air system delay as an example, let d̂ja and
pja be the predicted duration and probability, which can be
derived as:

pja = σ(
ˆ
dja),

ˆ
dja = SNa(vj

a)

vj
a = vj ⊗ va

g ,v
a
g = σ(Wa

gv
T
j + ba

g)
(8)

where SNa is the sub-network sharing the same architecture
of SN for air system delay prediction. Wa

g ∈ Rds×ds and
ba
g ∈ Rds are the trainable weights of the gate layer for the

air system delay prediction. ⊗ represents the element-wise
multiplication.

Similarly the predicted duration of security delay (d̂js),
airline delay (d̂jl ), weather delay (p̂jw) and aircraft delay
(d̂jc); as well as their corresponding predicted probability
pjs, p

j
l , p

j
w, p

j
c can be derived.

As shown in Fig. 1(c), the total arrival delay can be also
represented by the sum of the delays of different causes.
Thus we can aggregate the predicted arrival delay and the
sum of cause-specific delays to make the final prediction.
The final predicted flight arrival delay can be described as:

d̂j = α
ˆ
djt + (1− α)( ˆdja + ˆ

djs +
ˆ
djl +

ˆ
djw +

ˆ
djc) (9)

α denotes the weighted factor that needs to be learned.
And the probability that the flight will delay on arrival is
represented as pj = σ(d̂j − 15).

D. Loss function

The CAP-FAD framework is trained based on losses
from both primary and auxiliary tasks, which are arrival
delay prediction, departure delay prediction, air system delay
prediction, security delay prediction, airline delay prediction,
weather delay prediction, late aircraft delay prediction and
the aggregated final prediction. Let T = {T1, T2, · · · , T8}
denotes the task set of those 8 tasks.

The losses for each prediction task include the classifica-
tion loss and regression loss, where the classification loss is
based on the cross-entropy loss and the regression loss is
based on the mean square error (MSE).

The classification loss of task Ti is denoted as :

Lc
Ti

=
−
∑

(yj
Ti
log(pjTi

) + (1− yj
Ti
)log(1− pjTi

))

|R| (10)

yjTi
and pjTi

are the groundtruth label and the predicted
probability that the flight will delay of record Rj in task Ti.

The regression loss for each prediction task is defined as:

Lr
Ti

=
1

|R|
(max{0, ˆ

djTi
− t} − djTi

)2 (11)

ˆ
djTi

is the predicted delay of record Rj in task Ti. t = 15
for the arrival delay prediction and t = 0 for all other tasks.

The total loss LTi
for task Ti ∈ T is the weighted sum of

the classification loss and regression loss, which is:

LTi
= Lc

Ti
+ λLr

Ti
(12)

where λ is the balance weight.
Then the total loss of the proposed framework can be

defined as the sum of the losses of those eight tasks, which
can be defined as: L =

∑8
i=1 LTi

where L denotes the total
loss of the proposed framework.

V. EXPERIMENT

A. Datasets

The datasets include two parts: one is the flight informa-
tion and the other is the airport weather conditions.

The flight datasets were collected by the U.S. Depart-
ment of Transportation’s Bureau of Transportation Statistics1.
There are three datasets including the on-time performance
of domestic flights connecting 322 airports in the U.S. from
January to March 2015 separately. Each dataset includes
4, 898 aircrafts from 14 airlines.

We collected the weather data of airport stations via
Weather Underground2. The duration is from 1st January
2015 to 31st March 2015. The temporal resolution of the
scrawled weather data is an hour. The collected weather
information includes the temperature, weather condition,
wind speed and precipitation.

The preprocessing steps are combining the flight dataset
and weather information according to the airport and time,

1https://www.bts.dot.gov/topics/airlines-and-
airports/understanding-reporting-causes-flight-
delays-and-cancellations

2https://www.wunderground.com/

https://www.bts.dot.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delays-and-cancellations
https://www.bts.dot.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delays-and-cancellations
https://www.bts.dot.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delays-and-cancellations
https://www.wunderground.com/


Jan. Feb. Mar.

# of flight records 418,034 374,221 451,991
# of arrival delayed flights 84,653 84,238 84,163
mean and std of arrival delay 58±61 61 ±66 59±64
# of air system delayed flights 50,587 50,488 47,536
mean and std of air system delay 23±28 24±30 23 ±32
# of security delayed flights 269 207 269
mean and std of security delay 22±27 20 ±25 23 ± 32
# of airline delayed flights 46,514 46,162 49,315
mean and std of airline delay 33±58 34±59 33±59
# of weather delayed flights 5,884 8,180 4,108
mean and std of weather delay 40±59 46±76 50±81
# of late aircraft delayed flights 46,744 45,481 46,055
mean and std of late aircraft delay 42 ±47 43 ±50 42±50
# of departure delayed flights 161,155 158,333 177,034
mean and std of departure delay 32 ±50 33±53 31±51

TABLE I: Statistics of Datasets

and removing those flight records with missing values or
without weather condition, or the flights that are cancelled.
The detailed statistics of each dataset after preprocessing is
shown in Table. I. All the delays are described in minutes.

B. Baselines

1) Linear regression (LR): The inputs of the model are
the raw features. For the discrete features, one-hot
encoding is applied.

2) XGBOOST: XGBOOST is a powerful aggregation
model for the regression task. The inputs of the model
are the same as the LR.

3) Cox proportional hazards (COX) [2]: Cox proportional
hazards (COX) [15] is a classical survival analysis
model. The COX model is proposed for flight delay
propagation [2]. We use the COX model with the
available features in the datasets as the baseline.

4) LSTM [3]: It considers the delay propagation and takes
a 24-hour flight sequence as the input.

In addition to the above existing methods, we also compare
with two variations of the CAP-FAD to show the effective-
ness of designing subnetworks in it. The two variations are:

1) FAD: In FAD, the five cause specific subnetworks are
removed (i.e. α in Eq. 9 is set to 1).

2) CAP-FAD-T: In this model, the subnetwork for direct
arrival delay prediction (SNt) is removed (i.e. α in
Eq. 9 is set to 0).

C. Experimental Setup and Implementation Details

Each dataset is divided into the training dataset and testing
dataset according to the date of the records. The flight records
of the first 24 days of each month are used as the training
dataset and the left are used for testing. The flight records
are sorted by the scheduled departure time at each airport
everyday. We use the flight sequence 30 minutes before the
scheduled departure time of the target flight for prediction.

Tensorflow [16] is used to implement the model. The
model is trained using a mini-batch with a size of 256.
The dimension of the feature embeddings is set to 10 (i.e.
de = 10) and the dimension of the hidden state is set to 50
(i.e. h = 50). The maximum number of epochs is set to 100.
All the parameters are initialized randomly. The loss function

is optimized by Adam Optimizer [17] with the initial learning
rate set to 0.001. To reduce overfitting, we adopt dropout with
a rate of 0.2 and perform early stop as well.
D. Results

The accuracy, recall, precision, F1 value, RMSE and MAE
of the flight arrival delay prediction on the three datasets are
shown in Fig. 2(a) to Fig. 2(f) separately. The unit of the
RMSE and MAE is minute. We can observe that the pattern
of model performance on all the metrics are highly consistent
and the proposed framework outperforms all other baselines
on all the metrics. It demonstrates the effectiveness of the
proposed framework by considering the cause specific delay
in the flight arrival delay prediction task. It is worth noting
that although inferior to the CAP-FAD framework, its two
variations FAD and CAP-FAD-T beat all other baselines.

The performance of LR is the worst. Since the LR model
does not consider the delay propagation, which provides
important signal for flight delay prediction task. In addi-
tion, the linear assumption may also limit its performance.
XGBOOST achieves the second best performance among
those baselines, and is only inferior to the LSTM model.
This may be attributed to the power of model aggregation
in the XGBOOST. The performance of COX is also worse
than the performance of the LSTM model. It shows that
although the COX model takes the propagation of flight delay
into consideration, LSTM has better ability to capture useful
signals for the flight delay prediction task.

E. Ablation Study

To further investigate the effectiveness of aggregating
the direct arrival delay prediction and cause specific delay
prediction, we conduct the ablation study. The proposed
CAP-FAD framework is compared with its two variations:
FAP which is without the cause specific prediction and CAP-
FAD-T which only use the cause specific delay to predict the
arrival delay. As shown in Fig. 2, it is can be noted that the
performance metrics of those two models are comparable
with each other while worse compared with the CAP-FAD
model. It is possible that different information is captured
by different sub-networks, so when aggregating them the
performance will be improved. Moreover, it demonstrates
the effectiveness and the necessity of aggregating the sub-
networks for flight arrival delay prediction.

F. Delay Cause Analysis

In this section, we will evaluate the explainability of the
proposed model. The prediction accuracies of all the cause
specific delays on all the three datasets are beyond 90%,
which demonstrates the ability to interpret the arrival delay
causes of the proposed framework. Here is an example of the
cause specific delay prediction shown in Fig. 2(g). The left
and right plot present the pattern of the actual and predicted
cause specific delay. We can find that the two patterns are
very similar. The actual arrival delay is mainly caused by the
air system, airline and weather, and the air system issue is
the main reason of the arrival delay. It is consistent with the
predicted distribution.



(a)Accuracy (b)Recall (c)Precision (d)F1

(e)RMSE (f) MAE (g)CaseStudyResults

Fig.2:FlightArrivalDelayPredictionandCaseStudyResults

VI.CONCLUSION

Accurateflightdelaypredictionsareimportantforboth
travelersandcommercialaviationcompanies.Althoughex-
tensivemachinelearningtechniqueshavebeenproposedfor
thistask,littleworkhasbeendonetocapturethedelay
causes,whichcouldbeusefultoaviationcompanies.In
thispaper,weproposedanovelmulti-taskdeeplearning
frameworkCAP-FADthatprovidescause-awareprediction
offlightarrivaldelays.Bythisframework,thecausespecific
delaypredictionsandthedeparturedelaypredictionareinte-
gratedasauxiliarytaskssothatbetterfeaturerepresentations
andusefulsignalsfortheprimaryflightarrivalprediction
canbecaptured.Comprehensiveexperimentsareconducted
onthreereal-worlddatasets.TheresultsshowthattheCAP-
FADcannotonlyprovideanexplanationofthedelaycauses
butalsoachievebetterpredictionperformancethanbaselines,
suggestingtheimportanceofconsideringthedelaycausesin
theflightarrivaldelayprediction.
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