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Ultralight scalars are an interesting dark matter candidate that may produce a mechanical signal by
modulating the Bohr radius. Recently it has been proposed to search for this signal using resonant-mass
antennas. Here, we extend that approach to a new class of existing and near term compact (gram to
kilogram mass) acoustic resonators composed of superfluid helium or single crystal materials, producing
displacements that are accessible with opto- or electromechanical readout techniques. We find that a large
unprobed parameter space can be accessed using ultrahigh-Q, cryogenically cooled centimeter-scale
mechanical resonators operating at 100 Hz–100 MHz frequencies, corresponding to 10−12–10−6 eV scalar
mass range.
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Introduction.—The existence of dark matter (DM) is
supported by numerous astrophysical observations [1–5].
However, the standard model (SM) of particle physics
provides no clear DM candidates, spurring searches for new
(beyond the SM) particles like weakly interacting massive
particles [6–8] and axions [9–12]. String theory suggests
many new light particles, motivating the possibility of
ultralight dark matter [13–18].
For sufficiently low masses (mDM ≲ 10−1 eV), DM

particles behave as a classical field, due to their large
occupation numbers. DM would then be produced non-
thermally through coherent oscillations of a cosmological
scalar field [19–22]. Cosmic microwave background
anisotropies, large-scale structure observations, and other
measurements impose a lower limit ofmDM ≳ 10−22 eV for
ultralight DM (cf. [23–30]).
Under a parity transform, some ultralight DM particles

(such as axions) transform as pseudoscalars, while others
(e.g., dilatons and moduli) transform as scalars. The
parameter space for new ultralight scalars has been con-
strained by stellar cooling bounds [31,32] and by torsion
balance experiments [33,34]. Through couplings to the SM,
scalar fields would modulate the fine-structure constant α
and lepton masses (e.g., the electron mass me) [35,36]. If
this scalar field is the dark matter, this modulation would
occur at the DM Compton frequency, ωDM ¼ mDMc2=ℏ, an
effect detectable using atomic clocks, atom interferometry,
laser interferometry, and other methods [37–43].
Modulation of α and me also produces a mechanical

signal—an oscillating atomic strain—throughmodulation of
the Bohr radius, a0 ¼ ℏ=αcme [42]. This strain can give rise
to measurable displacement in a body composed of many
atoms and be resonantly enhanced in an elastic body with
acoustic modes at ωDM. Recently it has been suggested to

search for this acoustic DM signature using resonant-mass
antennas [42]. Data from the AURIGA gravitational wave
(GW) detector have already put bounds on scalar DM
coupling [44]. In Ref. [42], new resonant DM detectors
were proposed, including a frequency-tunable Cu-Si sphere
coupled to a Fabry-Perot cavity and more compact quartz
bulk acoustic wave (BAW) resonators [45]. A technique for
broadband detection of low-mass scalar DM was explored
in Ref. [46].
Here we propose extending the compact-resonator

approach to a broader class of existing gram- to kilo-
gram-scale devices composed of superfluid He or single
crystals. These devices (along with BAW resonators dis-
cussed earlier [42]) have been studied in the field of cavity
optomechanics [47–49] and provide access to a broad
frequency (mass) range of 100 Hz≲ ωDM=2π ≲ 100 MHz
(10−12 ≲mDM ≲ 10−6 eV). The key virtue of this approach
is that, owing to their small dimensions and crystalline
material, these devices can be operated at dilution refrig-
erator temperatures with quality factors as high as 1010

[45], thereby substantially reducing thermal noise. We
present analytic expressions for thermal-noise-limited
DM sensitivity for an arbitrary acoustic mode shape and
find that the minimum detectable scalar coupling can be
orders of magnitude below current bounds.
Scalar DM field properties.—DM particles in the

Milky Way have a Maxwellian velocity distribution about
the virial velocity vvir ≈ 10−3c [50]. Given the local DM
density (ρDM ≈ 0.3 GeV=cm3 [51]), ultralight DM particles
behave as a classical field. We consider DM as a field
with coherence time τc ¼ ½ðvvir2=c2ÞωDM%−1 and coherence
length λc equal to the de Broglie wavelength λDM [50]. DM
mass mDM ≲ 10−6 eV corresponds to λDM ≳ 1 km, imply-
ing that the field is spatially uniform over laboratory scales.
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Coupling of dark matter to α and me leads to an
oscillating strain given by [42]

hðtÞ ¼ −
δαðtÞ
α0

−
δmeðtÞ
me;0

¼ −h0 cos ðωDMtÞ; ð1Þ

where

h0 ¼ dDM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM
ωDM

2c2

s

: ð2Þ

Here dDM ¼ dme
þ de is a dimensionless constant describ-

ing the strength of the DM coupling to the electron mass
(dme

) and fine-structure constant (de) [36,37,42] (see
Supplemental Material [52] for details on the coupling).
Resonant-mass detection.—A scalar DM field modulates

the size of atoms (by h, fractionally) at the Compton
frequency ωDM. This effect introduces an isotropic stress
in a solid body (rather, any form of condensed phasematter).
This stress is effectively spatially uniform over length scales
much smaller than λc [50]. Such a periodic stress may excite
acoustic vibrations in the body. Note that not every acoustic
mode couples to DM; a point that we wish to emphasize is
that a uniform stress only couples to breathing modes.
Mechanical resonators that operate in nonbreathing

modes are not sensitive to scalar DM strain. An example

of modes that would not be excited are those of a rigidly
clamped solid bar. In this case, a spatially uniform stress
will not cause any of the atoms in the bar to displace from
their equilibrium position because of the zero net force on
each. Without rigid clamping to impose an equal and
opposite force on the edges of the bar, the bar will be free to
expand and contract. We have found that, by introducing at
least one free acoustic boundary, a spatially uniform stress
can couple to acoustic modes. It is for this reason that we
specify that only breathing modes couple to scalar DM.
To quantify the effect of DM on an elastic body (the

detector), we have adapted the analysis for continuous
gravitational waves in Ref. [53]. We begin with the dis-
placement field ui ¼

P
n ξnðtÞuniðxÞ, where uni is the

normalized spatial distribution (mode shape) and ξn is the
time-dependent amplitude of the nth acoustic mode; sub-
script i denotes the spatial component fx; y; zg. This allows
us to model the detector as a harmonic oscillator with
effective mass μn ¼

R
ρ
P

i junij2dV. It is driven by thermal
forces fthðtÞ and a DM-induced force fDMðtÞ ¼ ḧðtÞqn,
where qn ¼

R
ρ
P

i unixidV is a parameter that determines
the strength of the coupling between a scalar strain and the
nth mode of the detector. By introducing dissipation in the
form of velocity damping, the modes of the resonator obey
damped harmonic motion

(a) (b) (d)

(e)(c)

FIG. 1. (a) Log-log plot of coupling strength dDM vs DM frequency νDM and mass mDM, assuming de ¼ 0. The red region is excluded
by the Eöt-Wash equivalence principle (EP) test [34,42]. Further constraint is provided by analysis of ∼1 month of data by AURIGA
(expt.). The projected sensitivity of AURIGA for a full ∼10yr of signal integration is in burgundy [44]. The blue region is natural for
electron Yukawa coupling with a 10 TeV cutoff [42]. Solid circles are the predicted minimum detectable coupling ðdDMÞmin for each
proposed detector, assuming an integration time of 1 yr and experimental parameters described in the main text. Light blue points:
ðdDMÞmin for the first 100 longitudinal modes of a superfluid helium detector. Green points: ðdDMÞmin for the first 25 odd-ordered
longitudinal modes of a cylindrical HEM® sapphire test mass [48]. Dark blue points: ðdDMÞmin for the first 25 odd-ordered longitudinal
modes of a sapphire micropillar [55]. Lavender points: ðdDMÞmin for lower-order longitudinal modes of quartz BAW resonators [45,56].
(b) Rendering of superfluid helium detector. Following the design in Ref. [57], we use R ¼ 10.8, L ¼ 50cm. (c) Rendering of HEM®
sapphire test mass. From Ref. [48], R ¼ 15 mm, L ¼ 10 cm. (d) Rendering of sapphire pillar; s ¼ 4 mm, L ¼ 1 cm. (e) Rendering of
quartz BAW resonator. From Refs. [45,56], device 1 uses L1 ¼ 1, D1 ¼ 30, R1 ¼ 300 mm and device 2 uses L2 ¼ 1.08, D2 ¼ 13,
R2 ¼ 230 mm. L is the thickness and R is the radius of curvature of the top surface.
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̈ξn þ
ωn

Qn

_ξn þ ω2
nξn ¼

fDM
μn

þ fth
μn

; ð3Þ

where ωn and Qn are, respectively, the resonance frequency
and quality factor of the nth mode (see Supplemental
Material [52]).
Thus, the strategies developed for resonant detection of

gravitational waves, originally proposed by Weber [54],
can also be applied to detecting DM [42]. Note that not all
GW detectors double as scalar DM detectors. Broadband
interferometric detectors, such as the Laser Interferometer
Gravitational Wave Observatory, are only sensitive to
gradients in the DM strain field [37]. A spatially uniform
isotropic strain would produce equal phase shifts in each
arm of an interferometer. Moreover, scalar DM strains
atoms, not free space—in this sense, it is not equivalent to a
scalar GW.
DM parameter space.—The parameter space for scalar

couplings dme
and de is shown in Figs. 1 and 2, respec-

tively. Each plot includes sensitivity estimates for four
candidate detectors (discussed below and in the caption).
Overlaid are experimental constraints set by EP tests (the
Eöt-Wash experiment) and gravitational wave searches
(AURIGA), as well as the benchmark “natural dDM” line.
Below we briefly review these constraints.
The Eöt-Wash experiment, a long-standing test of the

weak equivalence principle using a torsion balance, has set
the strongest existing constraints on dme

and de. The orange
exclusion region in Fig. 1(a) comes from the comparison of
the differential accelerations of beryllium and titanium
masses to 10−13 precision [34].
AURIGA is a resonant-mass gravitational wave detector

based on a 3-m-long, 2200 kg Al-alloy (Al5056) bar cooled
to liquid He temperatures [44]. The detector has collected
∼10 yr of data, one month of which has been analyzed to

search for scalar DM [44]. Extrapolating to its full (10 yr)
run time, the DM sensitivity of AURIGA is ðdDMÞmin ≈
10−5 for 850 ≤ νDM ≤ 950 Hz. This bandwidth is set by the
sensitivity over which thermal motion of the Al bar can be
detected.
The naturalness criterion requires that quantum correc-

tions to mDM be smaller than mDM itself [58]. Consistent
with other work [42,58,59], this cutoff is chosen as roughly
the energy scale up to which the SM is believed to be valid.
The blue region in Fig. 1 indicates where the naturalness
criterion is satisfied for a cutoff of 10 TeV.
Thermal noise and minimum detectable coupling.—

Mechanical strain sensors, like AURIGA, are fundamen-
tally limited by thermal noise. We consider milli- to
centimeter-scale mechanical resonators operating at hertz
to megahertz frequencies, for which thermal motion is the
dominant noise source, but deep cryogenics and quantum-
limited displacement readout are available. The expression
for thermally limited strain sensitivity was first applied
to resonant-mass DM detection in Ref. [42]. Here, we
summarize the derivation of strain sensitivity, arriving at
general expressions for arbitrary resonator geometries.
Thermal noise is well described by a white-noise

force spectrum, Sthff ¼ ð4kBTμnωn=QnÞ, which drives the
mechanical resonator into Brownian motion [60].
Following Eq. (3), this limits the sensitivity of a strain
measurement to

ffiffiffiffiffiffiffi
Sthhh

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBTμn
Qnqn2ωn

3

s

: ð4Þ

Accounting for the DM field’s finite coherence time, the
minimum detectable strain for 2σ detection of the signal
over measurement duration τint ≫ τc is

hmin ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16vvirkBTμn
Qnqn2ωn

5=2c

s

τint−
1
4: ð5Þ

The minimum detectable DM coupling is

ðdDMÞmin ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vvirc
πGρDM

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTμn

Qnqn2
ffiffiffiffiffiffiffiffiffiffiffiffi
ωnτint

p

s
; ð6Þ

which can also be expressed in terms of the minimum
detectable strain as

ðdDMÞmin ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

8πGρDM

s

ωnhmin: ð7Þ

Equations (4)–(7) are analytical expressions, general to
any mechanical detector of arbitrary elastic material and
geometry. Equation (6) is used to generate the results for

d

m

d

d

FIG. 2. Coupling strength dDM vs DM frequency νDM and
mass mDM in de parameter space. Point types and colors are as in
Fig. 1. Higher sensitivities are needed to probe new parameter
space for de coupling than for dme

.
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each detector in Fig. 1(a) for τint ¼ 1 yr (see Refs. [52,61]
for details on integration time scaling).
Typical hmin values derived for the devices in this Letter

are ∼10−24–10−23. From Eq. (7) it is evident that higher
frequency detectors require a lower hmin in order to
maintain the same minimum detectable coupling. This
scaling arises from the inverse relationship between the
DM field amplitude h0 and Compton frequency ωDM.
Another challenge to high-frequency detection is that the

DM signal’s coherence time τc is inversely proportional
to the Compton frequency. Rearranging Eq. (5) gives (for

τint ≫ τc) hmin ¼ 2
ffiffiffiffiffiffiffi
Sthhh

q
ðτintτcÞ−1=4. Thus, a shorter coher-

ence time increases ðdDMÞmin.
The detector geometry also introduces unfavorable

frequency scaling, as higher frequency resonators are
generally smaller, implying a reduced coupling factor qn.
Geometric considerations reduce qn for higher n modes.
For the reasons explained above, ðdDMÞmin tends to scale

as ∼ω7=4
DM for simple longitudinal modes. Thus, designing

mechanical resonators to beat limits set by EP tests is
difficult in the ωDM ∼ GHz range.
Device parameters and results.—We now consider

several possible scalar dark matter detectors based on
acoustic breathing mode resonators (see Refs. [52,62]
for details on the mode shapes for each resonator).
Figure 1 highlights four resonators with gram to kilogram
effective masses and hertz to megahertz frequencies. Each
detector behaves like a miniature Weber bar antenna [44].
To facilitate comparison, we assume a 10 mK operating
temperature and mechanical Q factors of 109, unless
otherwise constrained by experiment. Specific parameters
are stated in the caption of Fig. 1. Note that, while the mode
shapes uni (indicated by color coding) in Figs. 1(b)–1(e) are
rendered numerically in COMSOL [63], the results plotted in
Figs. 1(a) and 2 are analytical.
For DM frequencies 100 Hz≲ νDM ≲ 25 kHz, we con-

sider the superfluid helium bar resonator probed optome-
chanically, as discussed in Ref. [47] [Fig. 1(b)]. To permit
breathing modes, the helium container is designed to be
only partially filled. The niobium shell supporting the
container is assumed to be infinitely rigid due to its much
greater bulk modulus. The resonant medium is the 2.7 kg
volume of superfluid. Assuming T ¼ 10 mK and Q ¼ 109

(limited by doping and clamping loss) [47], ðdDMÞmin for
the first 100 longitudinal modes is plotted in light blue in
Fig. 1(a). For the fundamental mode (ν1 ≈ 120 Hz), the

strain sensitivity is
ffiffiffiffiffiffiffi
Sthhh

q
¼ 2.5 × 10−21 Hz−1=2.

For DM frequencies 50 kHz≲ νDM ≲ 2.5 MHz, we
consider a 0.3 kg HEM® sapphire cylinder intended for
use as an end mirror in future cryogenic GW detectors [48].
We note that an existing class of similar, promising devices
is not considered in this Letter [64–68]. We assume
T ¼ 10 K as an experimental constraint due to the low
thermal conductance of the test mass suspensions [69].

A quality factor of Q ¼ 109 is assumed based on historical
measurements of Braginsky and co-workers [70,71],
though we note a more contemporary benchmark is
Q¼2.5×108 at T ¼ 4 K [72]. Green points in Fig. 1(a)
are estimates of ðdDMÞmin for 25 longitudinal modes
with dimensions as shown in Fig. 1(c). For the funda-
mental mode (ν1 ≈ 54 kHz), the strain sensitivity isffiffiffiffiffiffiffi
Sthhh

q
¼ 2.4 × 10−22 Hz−1=2.

For DM frequencies 550 kHz≲ νDM ≲ 27 MHz, we
consider a modification of the quartz micropillar resonator
developed by Neuhaus et. al. [49,55] (see also Ref. [73])
for cryogenic optomechanics experiments. The micropillar
is assumed to be scaled up in size [Fig. 1(d)] and
reconstructed of sapphire, whose higher density and sound
velocity produces larger strain coupling in order to begin
ruling out parameter space in the megahertz regime
with only ∼0.3 g of mass. Estimates of ðdDMÞmin for the
first 25 odd-ordered longitudinal modes, with Q ¼ 109 and
T ¼ 10 mK, are shown in blue in Fig. 1(a). For the
fundamental mode (ν1 ¼ 550 kHz), the strain sensitivity

is
ffiffiffiffiffiffiffi
Sthhh

q
¼ 7.7 × 10−23 Hz−1=2.

Finally, for DM frequencies 10≲ νDM ≲ 350 MHz, we
consider two gram-scale quartz BAW resonators [45],
initially proposed to search for scalar DM in Ref. [42].
Lavender points in Fig. 1(a) are for several longitudinal
modes assuming an average quality factor of 1010 for
device 1 and 109 for device 2, with Q adjusted for a few
specific modes corresponding to measurements in
Ref. [45]. Because of the unfavorable frequency scaling
described above, these BAWs are predicted to surpass dme

EP test constraints for only a few lower-order modes, when
operating at T ¼ 10 mK. The strain sensitivity for the

mode at ν ≈ 10 MHz is
ffiffiffiffiffiffiffi
Sthhh

q
≈ 5 × 10−23 Hz−1=2.

Excluded from the figures are high-frequency devices
such as phononic crystals [74,75] and gigahertz BAWs [76].
We found them unable to compete with EP test constraints.
In principle, one could extend our Letter to lower frequency
mechanical resonators. In this case, sensitivity would
ultimately be limited by strain noise due to Newtonian
gravity gradients and seismic fluctuations [77].
Detector readout requirements and bandwidth.—We

have considered the thermal limit to resonant-mass DM
detection for various compact resonators. To reach this
limit, the imprecision of the readout system Simp

hh must be
smaller than thermal noise Sthhh, yielding a fractional

detection bandwidth of Δω=ω ≈Q−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sthhh=S

imp
hh

q
.

The resonators discussed permit high-sensitivity opto-
mechanical readout. Sapphire cylinders and pillars can be
mirror coated (e.g., using crystalline coatings [78]) and
coupled to a Fabry-Perot cavity. For devices in Fig. 1,
thermal displacement of the end face is on the order of
10−14 m=

ffiffiffiffiffiffi
Hz

p
(cylinder) and 10−16 m=

ffiffiffiffiffiffi
Hz

p
(pillar) near
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the fundamental resonance, implying a fractional band-
width of 10−5 (10−7) for a shot-noise-limited displacement
sensitivity of 10−18 m=

ffiffiffiffiffiffi
Hz

p
(achievable with milliwatts of

optical power for a cavity finesse of 1000).
Superfluid He and quartz BAW resonators have been

probed noninvasively with low-noise microwave circuits.
The piezoelectricity of quartz permits contact-free capaci-
tive coupling of a BAW to a superconducting quantum
interference device amplifier; this has enabled fractional
bandwidths of 10−6 for a 10 mK, 10 MHz with Q ∼ 108

device [79]. Helium bars have likewise been capacitively
coupled to superconducting microwave cavities. For the bar
considered in Fig. 1, a detailed road map to thermal-noise-
limited readout is described in Ref. [57].
Frequency tuning can also increase the effective detector

bandwidth. The sound speed of quartz and sapphire are
both thermally tunable, however, ultracryogenic operation
practically limits the utility of this approach. Superfluid He
permits broadband mechanical tuning by pressurization
(which has been used to change the sound speed of He by
50% [80]). Another possible route is through dynamical
coupling to the microwave or optical resonator used for
readout. Though weak, such “optical spring” effects
(well studied in cavity optomechanics [81]) are noninvasive
and might be used to trim the detector at the level of
the fractional DM signal bandwidth, ΔωDM=ωDM ¼
ðωDMτcÞ−1 ∼ 10−6.
Trade-offs between bandwidth, sensitivity, and tunability

ultimately determine the search strategy for a given
detector. For instance, while three of the detectors dis-
cussed above (based on helium bar, sapphire cylinder, and
sapphire micropillar resonators) can surpass the sensitivity
of the Eöt-Wash experiment in under a minute, their
bandwidth will likely be smaller than that of the DM
signal ΔωDM. To widen the search space, a natural strategy
(analogous to haloscope searches for axion DM) would be
to scan the detector in steps of ΔωDM, each time integrating
for a duration long enough to resolve thermal noise
τint ≳ 4Q=ωDM × Simp

hh =Sthhh. The slow scaling of sensitivity
with τint Eq. (5) allows this strategy to significantly enhance
the effective detector bandwidth. The total run time of the
experiment can be reduced (or bandwidth increased) by
using more detectors, which is facilitated by the compact-
ness of the devices proposed.
Conclusion and outlook.—Existing or near term com-

pact mechanical resonators with high-quality-factor
acoustic modes operating at cryogenic temperatures
have the potential to beat constraints on DM-SM
coupling strength set by tests for EP violations in the
100 Hz–100 MHz range. We note that these resonators
are not sensitive to vector DM candidates, such as those
treated in Ref. [82]. A spatially uniform (over detector
size) vector field will not induce vibrations that require
a displacement gradient, therefore, not exciting breath-
ing modes.

Frequency tuning techniques, along with arrays of these
compact resonators can be used to enhance bandwidth and
sensitivity, thereby enabling tabletop experiments to cover
a vast unexplored region in the DM-SM coupling param-
eter space.
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