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Abstract—In this paper we analyse the equilibrium configura-
tions for the time-inverted Kuramoto Model with homogeneous
agents and a fixed ring topology, where time-inverted means
that the coupling between the different states is via a negative
factor. This model exhibits a dual behaviour with respect to
the classic Kuramoto Model with a positive coupling. In the
paper, we show the existence of two possible stable equilibrium
configurations: the splay state formation (1-clustered coverage)
and the deployment in clusters (x-clustered coverage). We
provide sufficient conditions for the splay state formation
and a stability analysis for the networked system. Moreover,
we provide some initial results towards the controllability of
the final equilibrium configurations. In particular, we lay the
foundations to understand the conditions to switch between
stable equilibria.

I. INTRODUCTION

Distributed control of multi-agent systems is a very active
research area, both in the control and in the robotics commu-
nities. In these fields, one of the topics that received the most
attention is the emergence of collective behaviours from the
combination of local interaction rules [1], [2]. The Kuramoto
Model [3] falls in this class of models.

A Kuramoto model is defined by

N
HL =7 Z Qi sin(Hj — 91)
j=0

where the varaibles 61,05, ...,0y represent the state of a
number of different agents. When v = +1, we will say that
the states are positively coupled, while for v = —1 we will
say that they are negatively coupled (i.e., the system is time-
inverted).

Over the years, much of the attention on the Kuramoto model
has been on the synchronisation of oscillators. If each state
0; represents the phase of an oscillator, it can be shown that
under some conditions the phases will eventually converge
to the same value and the oscillators be synchronised [4] if
the different states are positively coupled. Much less studied
is the case when the oscillators are negatively coupled.
One interesting behaviour that emerges in this case is one
in which the different states are equally spaced: the so
called splay state. The splay state is very much studied
in different communities from the neurosciences [5] and to
vehicle coordination [6].
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In the robotics community, a coordination scheme that prov-
ably and robustly converges to the splay state has profound
and far reaching implications. In the wide range of the possi-
bile applications, we can select two paradigmatic examples.
As a first example, consider the problem of deploying a
number of robots along a closed circular curve that encloses
an area of interest. If each robot has a limited sensing
range, the splay state is the configuration of the agents
that minimises the probability for an intruder to penetrate
unnoticed into the area. As a second example, consider
a number of robots approaching a shared area (e.g., an
intesection). If the states are related to the time each agent
is allowed to move, the splay state is the schedule that
maximises the time interval between two successive accesses
to the shared area.

For all these applications it is imperative to know under
which conditions the splay state can be reliably reached and
if this evolution can be “forced” through appropiate input
actions.

A. Related work

In 1967 Winfree [7] first proposed a coupled oscillator model
by considering a general interaction rule among the agents.
The Kuramoto Model properly said was first introduced in
1975 [8], giving rise to a research area which has remained
active . The large majority of researchers focused on the use
of Kuramoto Model for synchronisation purposes. Monzén et
al. [9] studied the global stability properties of the Kuramoto
Model under the assumption of complete visibility graph
between the oscillators. The assumption of complete visi-
bility graph is relaxed in the analysis proposed by Jadbabaie
et al. [10]. More recently, hybrid coupling functions have
been used in [11] to prove uniform global asymptotic stabil-
ity, while conditions for cluster synchronisation are studied
in [12].

As clearly recognised in the survey of Dorfler et al. [4],
the use of positively coupled Kuramoto Model for the phase
synchronisation has been studied much more in depth that the
use of negatively coupled Kuramoto Model, which is related
to the phase balancing problem. Sepulchre et al. provide
results on homogeneous agents local phase balancing, in both
cases of a mesh [13] or of a general [14] communication
framework. Xu et al. in [15] analysed a Kuramoto-like
dynamics with sine-terms replaced by cosines to achieve a
splay formation (i.e., the agents are deployed uniformly over
the circle), however they require a strict condition on the
incidence matrix associated to the graph topology. In [16]
the authors analyse the interaction between conformist and
contrarians oscillators, with positive and negative coupling
strength. In [17] the phase balancing problem is studied for
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Liénard-type oscillators. Methods to achieve splay state for-
mations for impulse-coupled oscillators are provided in [18],
[19], while in [20] Marshall et al. propose a simple control
law to achieve circular pursuit patterns, they show that under
the proposed control law the equilibrium formations are
generalised regular polygons.

B. Paper contributions

In this paper, we restrict our focus to the negatively coupled
Kuramoto Model. The main difference with respect to previ-
ous works on Kuramoto-based phase balance problem [14]
can be found on the chosen communication topology be-
tween the agents. We assume to have a time-invariant ring
graph topology. Thanks to this choice, we can expose im-
portant properties on the dynamic behaviour of the system.
Our contributions are threefold: i. we state a sufficient
condition for agents to reach splay state configuration; ii.
we analyse all the stable configurations of the system that
can occur, characterising their degree of stability; iii. we
offer a preliminary analysis on how to set up a control
scheme that enables to drive the system state from one stable
configuration to another.

The paper is organised as follows. In Sec. II we provide a
formal description of the problem. In Sec. III we characterise
the different equilibrium configurations and analyse their
stability. In Sec. IV we offer a preliminary discussion on how
to drive the system into a specific equilibrium configuration.
Finally, in Sec. V we offer our conclusions and announce
future work directions.

II. PROBLEM DESCRIPTION

We consider a set of [N agents moving on a circle and
following the Kuramoto Model with inverse coupling

N
éi = — Zaij sin(ﬁj — Gl) (1)
7=0

where 6; denotes the position on the circle of the i—th agent,
and a;; > 0 the coupling between them. In particular, we
assume that the agents are coupled according to undirected
circulant topology [21], where A = [a;;] with A € RV*V
is the following symmetric matrix

Cop C1 C2 C1
Cc1 Cp C1 C2
A= ¢ Co ; 2
C2 C1
C1 C2 ¢1 Co

with ¢g = 0 and all the other entries that can be either O or 1.
Notice that the matrix A corresponds to a generic circulant
matrix with the constraint of symmetry, since we are going to
consider only undirected graph topologies. In compact form
the dynamics of the interconnected agents read as

0 = Bsin(B'0). 3)

where B € RV*M js the incidence matrix associated to the
graph topology G(V, &) with number of nodes |V| = N and

Fig. 1. Example of Kuramoto equilibria for NV = 7 agents (blue circles)
with a complete graph topology. The order parameter (4) is reported with
a red circle and its time evolution with a thin red line. (a) Random initial
configuration 6(0). (b) Equilibrium for the agents’ synchronisation (R =
1) obtained with the classic Kuramoto dynamics. (c¢) Equilibrium for the
balanced deployment (R = 0) obtained through (3) (dual behaviour).

number of edges |€] = M, while 6 = [01,0,,...,0x]". In
the literature (see [10]), a common measure of the level of
synchronisation for the system is given by the magnitude of
ReV, called order parameter. More precisely,

N

%Zej 0 (4)

i=1

Re¥ =

it represents in the complex plane the mean of the agents’
positions. When R = 1 the system falls in the case of full
synchronisation (or consensus, i.e. all the agents converge
to a common state). On the other side, when R = 0, the
agents in the system are in a balanced configuration. The
order parameter, i.e. the modulus of (4), can be also written
as a function of the graph topology:

r?=1- % ([cos0] " Lcos 0] + [sin 6] " L[sind]), (5)
where L = BB is the Laplacian matrix associated to the
graph topology, also equal to the difference between the
degree matrix D and the adjacency matrix A, i.e., L = D—A.
By selecting as Lyapunov candidate the function V (6) = 72,
we have

. . 2 . 2 ...
V(Q) = V@V . 9 = _WB SIH(BTG)Q = —me—re S 0.

By the LaSalle invariance principle [22] the system will
converge to an equilibrium, i.e., 9(00) =0p.

It is worthwhile to note that, for the complete graph topology,
while for the classic Kuramoto dynamics the system goes
towards the synchronisation of all the agents (i.e. R — 1), by
adopting (3), the system converges to a balanced deployment
(ie. R — 0). To clarify this point, Figure 1-a depicts a
random starting configuration with N = 7 agents (blue dots
on the circle) and a complete graph topology (the edges
of the graph are represented with orange lines connecting
the agents). The red circle represents the order parameter
position (4), assuming the centre of the circle as the origin
O = (0,0). In Figure 1-b,c we depict the final configurations
reached respectively by enforcing the classic Kuramoto dy-
namics (with positive coupling) and the time-inverted (i.e.,
with negative coupling) Kuramoto dynamics (3).
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Given the Kuramoto system thus described, the main objec-
tive of the paper is to characterise the equilibrium configu-
rations of (1) and their stability properties for specific graph
topologies. We will also design controls to steer the agents
between stable configurations. Notice that in the paper we
use the terms “oscillator’s phase” or “agent’s position” with
the same meaning, in the sense that the phase of an oscillator
univocally identifies the position of an agent on the closed
curve considered (i.e., the circle).

III. SYSTEM ANALYSIS
A. k-clustered coverage

By considering the dynamics in (1) with the undirected cir-
culant topology (2), by using basic trigonometry properties,
it can be shown that 6 is an equilibrium configuration if and
only if

diag(cos 0) A sin = diag(sin #) A cos 6. (6)

Let us define 6*® = [0} 6;% . 03" the equilib-
rium point, whose configuration is circular symmetric (i.e., it
is possible to assume 01‘(” ) = 0). By exploiting the properties
of circulant matrices [23], [24], it results

2mp 2rp(N — 1) T
NN

(see [23] for the detailed derivation). To check the stability
for the different values of p € N, we have to linearise the
dynamics (1). The eigenvalues of the associated Jacobian
matrix J(p) can be computed analytically, since the matrix
is also circulant (as reported in [23]).

Notice that, if we are considering generic undirected p-
circulant graphs, that indicates circulant topologies where the
cardinality of the neighbour set |N;| = p ,Vi , there exist
additional exotic stable equilibrium configurations [25] (as
is shown in Figure 1-c, where we considered an (N — 1)-
circulant graph). Let us denote with f; the phasor associated
to agent 7, and its neighbour set as NV;. In [9], it is proved that
an equilibrium satisfies the parallelism constraint between
> jen, i and f;, Vi. For the case of 2-circulant topologies,
i.e. with adjacency matrix (2) with ¢; = 1 and ¢, = 0,V k #
1, the eigenvalues associated with the linearised system are
given by

M(J(p)) = —2cos <2]7\r[p) [lJrcos (2;")] ®)

Hence, the equilibrium (7) is stable if and only if p €
(N/4,3N/4), according to linear system theory [26]. When
we restrict to 2-circulant graph topologies, all the stable
equilibria are subsumed by the form (7). Indeed, due to
the Jacobian matrix J(p) structure, the stability condition
is given by Zje/\f,- cos(6; — 6;) < 0, Vi, that, once com-
bined with the phasors parallelism, returns the equilibrium
configurations (7) with p € (N/4,3N/4). However, we can
be more flexible; let us define the ring topology, where each
agent has |V;| = 2 and |V| = |€| > 2. By considering a ring
topology these results hold true; since an equilibrium point
for a 2-circulant topology is an equilibrium point also for a

0*® = o, (7)

Fig. 2. Stable equilibrium configurations for N =
[4,5,6,7,8,9].

ring topology and the associated eigenvalues are necessarily
the same. As a consequence, the rest of the paper will focus
on the ring topologies equilibrium configurations (7). At this
point, denoting the set of prime numbers as N”, we are in
the position to prove one of the main results of the paper:
Lemma 1. Given N € N” and p € N in the interval 0 <
p < N, the equilibrium positions 0*P) in (7) splits the circle
in N equal parts.

Proof. The fact that N is a prime number and p € (0, N) C
N implies that §*(P) positions on the circle (i.e., modulo 27)
and defined in (7) are all different. The fact that the circle
is equally divided in NN parts, follows from the difference
between two consecutive positions, which remains constant
and equals to AG7P) = 27 — *® — 2T for p ¢ N and
Vi = 1,..., N — 1. Moreover, A@;V(p) = Gf(p) — 01*\,(’7) =
0— w = 2%” — 27p, which is equal to the others
modulo 27. O

Figure 2 graphically represents the different stable equilib-
rium configurations for N = 13 when the p € (N/4,3N/4).
According to what is stated in Lemma 1, all the possible
final configurations make the agents reach the splay state
formation over the circle. One interesting fact is that the
set N/4 < p < 3N/4 can be split into two symmetric
sets P' = (N/4,N/2) and P” = (N/2,3N/4). From
Lemma 1, it follows immediately that the reached coverage
configuration on the circle for p’ € P’ is the same by
permutation for a p” € P”, ie., being P a permutation
matrix and selecting one value p’ € P/, 3'p” € P” such

that °%" = Po*@) and AP = Agz(p/). In particular,
organising P’ in ascending order, i.e. p;. < p; 41> ¥4, and
P” in descending order, i.e. p;’ > p;’+1, V4, we have the
same equilibrium for the pair {p’,p}, Vj. With reference
to Figure 2, we have then that the same final coverage is
reached for p = {4,9}, p = {5,8} and for p = {6,7}.
Notice that these considerations about the solution symmetry
are true in case of generic N and can be extended also for
p € [0, N].

In light of Lemma 1, we can state what follows.

Theorem 1. [The Solitude of prime numbers] Given N €
N” and the initial positions 0(0) are not in an unstable
equilibrium point, by imposing (3) and considering a fixed
ring topology, the overall system achieve a splay state pattern
over the circle i.e., it achieves static coverage.
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Fig. 3. Final equilibrium configurations obtained by imposing (3) with dif-
ferent number of agents N € N and starting from random initial positions
0(0). We depict in green the position of the global order parameter (4) to
highlight the coverage reached configuration.

Proof. Since the system do not start from an unstable
equilibrium configuration, it will converge to a stable equi-
librium configuration by the LaSalle invariance principle.
Since we assumed a time-invariant ring topology, the stable
equilibrium configurations are characterised by (7) with
p € (N/4,3N/4). Since N € N7, the proof follows from
Lemma 1. O

Figure 3 exemplifies the equilibrium configurations obtained
from the evolution of the dynamics in (3) with fixed ring
topology R and randomly generated starting positions 6(0).
We picked different N € N”; the agents reach a splay state
pattern on the circle, according to the Theorem 1.

Now we extend the results of Theorem 1 for generic N €
N\ {0, 1}. To this end, we first have to distinguish between
two different kind of stable equilibria, namely static coverage
or static coverage in clusters, as reported in what follows.
Definition 1. We define a cluster in the equilibrium configu-
ration two positions 0] ® and 9;—(1’ ) such that 91-*(}7 ) —9; P) =
2am, with a € N.

Lemma 2. Given N € N\ {0,1}, the number of agents
that clusters together at the equilibrium is given by the
maximum common divider between N and p, denoted by
k = mcd(N,p). The agents’ clusters subdivide the circle in
N/k equal parts.

Proof. By considering the stable equilibrium in (7), dividing

p=0 p= p=2 p= p=4
l,"'\\ .,’.".\ .,’.".\ ¢,’.“ .
N="7" o ! » |t » ! )
% S8 |- .o '
voer? | WY U
PR O -~ - PrES
, N Q N, R N
1 v [ A} 1 \ 1 v 1 \
N=8. ¢ X » e 9 o )
NSRS Nl | e
PN el & T LY s
1 v @ V@ \ i v @ \
N=9. ® | 9 ! 9| o ! ?
\ 7 q R AR Y ®
L Neee® e | e D

UNSTABLE EQUILIBRIA

Fig. 4. Stable and unstable equilibrium configurations (7) for the dynam-
ics (3) with fixed 2-circulant topologies. We show the different equilibrium
configurations by varying the values of p and the number of agents, which
are 7, 8,9 respectively.

both numerator and denominator by x, we can rewrite

27p/K
Njn

2mp/k(N —1)] "

9*®) — |0
’ N/k

)
It can be noticed that when p = &k, the equilibrium (9)
imposes a circle subdivision in N/k equal parts, hence s
is the number of agents clustered together. When p # « and
k > 1, since p/x € N\ {0,1} the circle is still divided in
N/k parts with k clustered agents. O

We call the equilibrium configuration described by Lemma 2
as k-clustered coverage. With this terminology, we can then
denote the synchronisation case as an N-clustered coverage,
while the splay state pattern is equivalent to 1-clustered
coverage. All the possible x-clustered coverage equilibria,
either stable and unstable, for N = {7,8,9} agents, are
depicted in Figure 4. First, notice that regardless of the
number of agents and by means of (9), we have N-clustered
coverage (i.e., agents synchronisation) for p = 0, which is
for the dynamics (3) an unstable equilibrium configuration
in light of (8) (which will be adopted in the following
to characterise the unstable configurations). Similarly, for
p = 1 we have unstable equilibria, all related to a 1-clustered
coverage (maximum coverage) for Lemma 2. On the top row
of Figure 4, we have the case of NV = 7 always reaching 1-
clustered coverage (under the assumption that 0 < p < N)
since N is prime and in light of Lemma 2. While for
p = {0,7} the system is in a 7-clustered coverage. The
middle raw reports the case of N = &, always exhibiting
a r-clustered coverage: using Lemma 2, it follows that for
p=1{1,3,5,7} we have a 1-clustered coverage; for p = 2 or
p = 6 a 2-clustered coverage; for p = 4 we have instead a 4-
clustered coverage, while for p = {0, 8} the system is in an
8-clustered coverage (i.e. synchronisation case). Notice that
the equilibrium for p = {0,1, 2,6, 7, 8} are unstable. Finally,
the bottom row considers N = 9, it reaches 9-clustered
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Fig. 5. The potential values V = 2 as a function of p and the number of
agents N. The yellow circles indicate the minimum values of the potential,
which always correspond to p = | N/2].

coverage for p = {0,9}, unstable 1-clustered coverage for
p = {1,2,7,8}, a stable 3-clustered coverage when p = 3
and p = 6, a stable 1-clustered coverage for p = {4, 5}.
Definition 2. We define the stability degree of an equilibrium
the value attained by the Lyapunov function V (0) = r2.

To identify the equilibrium with lowest Lyapunov function
value (with a slight language abuse named most stable
equilibrium), the following Lemma turns useful.

Lemma 3. Given the dynamics in (3), the most stable
equilibrium corresponds to the one maximising the difference
AO*®P) between linked agents, it matches with p = | N/2|
in (7).

Proof. As is reported in [10], the order parameter, in (5) for
the case of ring topologies, can be rewritten as
2 NZ—2N+1] cos(B"0)

= 2 )
hence the Lyapunov function V' = r is minimised when
the positions’ differences ¢ = BT are equal to 7. As a
consequence, the most stable configuration is the one that
maximises the distance between linked agents. By consider-
ing the equilibrium in (7), it is reached when p = N/2 if N
is even (i.e., AG*NV/2) = 1), and for p = (N £1)/2 if N
is an odd number (AP*((NED/2) — 7 _ 7/N), which is a
splay state pattern. Hence, the proof. O

(10)

2

In Figure 5, we depict the value that assumes V = r2 as

a function of p € (N/4,3N/4) for different N. For each
curve, according to Lemma 3, the global minimum of the
potential function is reached at p = | N/2].

IV. TOWARDS THE CONTROL OF THE FINAL
EQUILIBRIUM CONFIGURATION

Computing a-priori the final equilibrium configuration, given
the initial conditions, is a challenging problem, however
some insights can still be derived. Using the concept of
stability degree given in Definition 2 and assuming that C is

the set of controllable agents, i.e., the agents whose position
can be controlled, we found that it is always possible to
change the equilibrium configuration of the overall system
by acting on the position 6, as stated in the following
conjecture.

Conjecture 2. Given N € N\ {0,1} with a fixed ring
topology, if the agents’ position are in a stable configuration
with a certain value of p # |N/2] and the position of
a single agent i € C is changed from 0; to 0; + A#b;,
the time evolution of the system (3) surely reaches a final
equilibrium configuration corresponding to p™ = p£1 such
that [p* — |N/2]| < [p— |N/2]| if A6, = . If p = | N/2],
the change of the position does not change the equilibrium
configuration.

Notice that, if the aim of an agent ¢ € C is to steer the
system in a splay configuration, this is always possible when
the number of agents N is odd. In fact, the most stable
equilibrium configuration in the sense of Lemma 3 is always
in a splay configuration (i.e., 1-clustered coverage). In the
case of an even NV, it results that the most stable equilibrium
configuration is an N/2-cluster coverage, i.e. all the agents
are clustered at two opposite positions. Conjecture 2 ensures
that the unique controlled agent ¢ € C can always steer the
system to reach that configuration. However, one single agent
cannot switch the system to a less stable configuration: to this
end, we need the following additional conjecture.
Conjecture 3. Given an even number of agents N with a
fixed ring topology, if the agents’ positions are in a stable
configuration with a certain value of p = N/2 and the
positions of the agents i,j € C, with j € N;, are changed
from 0; to 0; + AB; and 0; to 0; + Ab;, the time evolution
of the system (3) reaches a final equilibrium configuration
corresponding to pt = p £ 1 such that V(G*p+) > V(6*P).
The configuration p*™ = N/2 + 1 is a splay configuration
only if N/2 is an even number .

We can then state that if the cardinality |C| = 1, it is
possible only to move along more stable configurations,
while if |C| = 2 both switches are feasible. These results are
not formally proved in this version of the paper, however
we validated them through extensive simulations. Figure 6
reports an example for N = 24 in which the value of the
Lyapunov function is plotted as a function of the controlled
position shift Af;. By perturbing the agent ¢ € C of an
amount equal to Af;, the value V() can only decrease,
hence reaching more stable configurations according to Def-
inition 2. Moreover, the value of p is always decreased of at
most 1, unless the minimum configuration is considered, i.e.
the one with p = | N/2|, where no switch can be observed,
according to Conjecture 2. Another important information is
related to the value of Af; that is necessary to fire the switch:
as the configuration is more stable (i.e. with increasing p),
the smaller is the set of controlled actions Af; to apply on
the i—th agent. Nonetheless, Af; = 7 is alway able to apply
a configuration switch (see Conjecture 2).

To show empirical validity of Conjecture 3, we show in
Figure 7 the controlled positions feasible pairs Af; and
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Fig. 6. Starting from the equilibrium configuration p, by selecting C = {i},
we depict the potential values V' = 72 as a function of Af;. The system
has N = 24 agents.

AB; (rad)

Fig. 7. Set of position differences Af; and Af; for the i—th and j—th agents
which enables an equilibrium switch from p = N/2 towards p = N/2—1.

Ab; to enforce the equilibrium configuration switch from
p=N/2top= N/2—1. The map in Figure 7 is generic
i.e. it is valid for any choice of N.

Finally, Figure 8 shows the time evolution of the Lyapunov
function V() and the reached stable configurations for a
network of N = 20 agents. We started from a random
configuration and the system evolves towards the stable
configuration with p = 6. From the stable configuration
with p = 6, we control the first agent position, which is
Gf(p ) — 0, towards Gf(p ) — 7, thus switching to another
stable configuration with p = 7, reached after 2 seconds.
The position change is performed three more times every
2 seconds, thus leading first to p = 8, p = 9 and then to
p = 10, which is the most stable configuration according
to Lemma 3. At this time, by perturbing the positions of
two agents, picking the position differences from the map

P
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Fig. 8. Time evolution of V() = r2 for a network with N = 20 agents.
For t = 0 s and every 2 seconds, we select one single agent and we apply a
controlled position shift A@ = 7. As a result, the system switches towards
more stable configurations, until the minimum value for p = 10 is reached
at t = 8 s. At this time, the set of controllable agents is enlarged, i.e.
|C| = 2 and, by applying the differences of positions reported in Figure 7,
the final system configuration is brought back to p = 9.

in Figure 7, the system returns to the configuration p =
N/2—1 =29, which is a splay state pattern since N/2 is an
even number.

V. CONCLUSIONS

We analysed the time inverted Kuramoto model with a
fixed ring graph topology. We discussed the equilibrium
configurations of the dynamical system, and we provide
sufficient condition to achieve 1-clustered coverage. The
cases where x-clustered coverage occurs is discussed and
we propose two conjectures to study the controllability of
the equilibria. In the near future, we plan to study more
deeply the controllability of the equilibria, considering time-
varying communication topologies, communication delays
and generic graph topologies e.g. directed graphs. We are
also interested in studying how to increase the system
resiliency against generic cyber-attacks using the results
from the controllability analysis. Another interesting research
direction is related to persistent monitoring algorithms on
generic closed curves; it can be analysed both the case
of homogeneous persistent monitoring and the case where
there are points of interest that require higher monitoring
frequencies.
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